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ABSTRACT 

 Renewable Energy Communities have received 

considerable interest in recent years. Besides the 

economic, social and environmental benefits for end-users 

and society, their implementation on the electricity 

distribution network  entails technical impacts which still 

need to be correctly understood.. In this work, we quantify 

these impacts on a community established on a LV 

domestic network subject to a European grid tariff 

structure, in which local generation surplus are shared 

among members. We first develop a collaborative demand-

side management model to compute operational technical 

indices, such as community peak-to-average ratio, line 

losses, etc. We then develop an investment model to 

analyse the impact of communities on PV adoption in LV 

grids. We compare results with a benchmark in which 

members consume and invest individually. We show that 

community operation tends to reduce peak power and 

overall exchanges at the MV/LV substation, as well as 

overall line losses. The PV investment model proves that a 

community organization tends to favour the installation of 

more PV generation while controlling grid impacts, 

provided that a constraint on the SCR is imposed in the 

sizing model.  

INTRODUCTION 

Renewable Energy Communities (RECs) consist in 
organized entities gathering consumers and prosumers 
who are allowed to exchange energy locally, without 
resorting to the traditional wholesale/retail market 
structure. Promoted by the European Union (EU) in  
Directive 2018/2001 [1], they aim at fostering local private 
investment in renewable energy production, by placing the 
citizen at the centre of the electricity supply chain, and at 
mobilizing flexibility available in Low Voltage (LV) and 
Medium Voltage (MV) networks. The Directive is since 
being transposed into decrees and laws in the member 
states, so that more and more pilot projects and actual 
communities are currently emerging.(see e.g. [2], [3] for 
examples in Wallonia and Brussels respectively). Citizens 
are interested in RECs since they can reap financial, 
ecological and social benefits through the mutualization of 
resources and the joint investment in Distributed Energy 
Resources (DERs). However, the massive roll-out of 
RECs on the electricity distribution grids entails impacts 
of various natures, i.e. technical, economical, regulatory as 
well as legal, which still need to be correctly quantified.  

RECs have been intensively investigated in the 

literature, given the variety in terms of possible internal 
market designs. Short-term (operational) and long-term 
(investment and sizing of energy assets) economic impacts 
for REC members have been more particularly studied: 
authors in [4] investigated for instance energy bill savings, 
at the individual and community levels, brought by the 
REC. In another study [5], the added value of REC for 
investments in distributed generation has been quantified. 
Environmental concerns are often another major issue for 
energy community members: the influence of RECs 
operation on CO2 emissions is for example reported in [6]. 

Finally, the technical impacts that RECs may have on 
distribution grids has also attracted attention. In [7], grid 
indices (over- and undervoltage, line loading, etc.) are 
computed for a REC including photovoltaic and battery 
storage . However, the authors considered investment in 
community-owned assets, one battery and one PV 
installation for the REC. The local  energy production is 
also exchanged for free in the REC. In [8], the impact of 
individually and community-owned battery storage 
systems on a potential reduction of the reverse flows has  
been studied: authors showed that the high share of PV 
systems at the distribution level in RECs resulted in the 
increase of such flows, which are detrimental to the MV-
LV transformers. Nevertheless, this paper did not include 
any consideration about physical grid quantities as node 
voltages, line losses, etc.. Reference [9] explicitly models 
the network. . More specifically, authors address the issues 
of line loading and over- and undervoltage limits in a 
community with a peer-to-peer (P2P) mechanism.  

In this paper, the REC is established on an LV feeder, 
constituted principally by domestic users who may own 
photovoltaic (PV) generation, electric vehicles, batteries 
and heat pumps, in addition to standard appliances. We 
consider an internal market design in which the local 
generation surplus is shared among the community 
members (see Fig. 1). This design is representative of 
community organizations which can be encountered in 
Belgium [10] and France [11] for instance. The public low-
voltage distribution grid infrastructure is modelled ex-post 
for assessing the technical impacts of the REC. The main 
contributions of this paper are the following: 
• We propose a coordinated demand-side management 

model (DSM) within a community in order to quantify 
the potentialities in terms of peak shaving, line losses 
reduction, and reverse power flows; 

• We develop a community investment model to 
quantify the optimal amount of PV power to install in 
a community, with a constraint on the community’s 
minimal self-consumption, and compute grid indices 
in the optimal sizing situation. 

We compare the obtained results with a benchmark 
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case in which the end-users optimize their operation and 
investment individually, without any community. 

The remainder of the paper is structured as follows. 
Section 2 describes the community framework and the two 
models, along with the underlying assumptions. The use 
case is defined in Section 3. Section 4 presents the results 
in terms of technical and energy efficiency performances. 
Conclusions are drawn in the final section. 
 

Fig. 1: Renewable Energy Community Model [12] 

2. METHODOLOGY 

We present the coordinated demand-side management 

and investment models (objective function, cost structure, 

constraints), along with their underlying assumptions. Grid 

impacts are quantified ex-post by running power flow 

models on the computed optimal schedules/investments. 

2.1 Demand-side management model 

We formulate the DSM model as a day-ahead 

coordinated optimal scheduling problem, aiming at 

minimizing the community electricity bill, by acting on the 

demand-side appliances. We assume a perfect forecast of 

generation and consumption, and that all the community 

members follow the recommendations of the tool. A 

community manager gathers data concerning the flexible 

loads members consent to use over the considered day.  

Let 𝒩 = {1, … , N} be the set of community members 

connected to the same low-voltage network, and 𝒯 =
{1, … , 𝑇} the set of optimization intervals of duration Δ𝑡 of 

the day. Every member 𝑖 ∈ 𝒩 can be equipped with PV 

panels and/or a battery storage system, and multiple 

flexible appliances (see below). The surplus of power 

production is mutualized for the other members. 

 

2.1.1 Community demand-side model 

Different devices may compose the physical net load 

of a community member, as represented in Fig.1. 

A. Flexible loads are devices whose operation can be 

shifted either in time and/or in power. These are defined 

by a temporal flexibility window and operational 

constraints. The temporal flexibility window during which 

device 𝑎 ∈ 𝒜𝒾 can be operated is represented by a binary 

vector δ𝑖,𝑎 = (δ𝑖,𝑎
1 , … , δ𝑖,𝑎

𝑇 ). A value of 1 indicates that 

member 𝑖 agrees to run appliance 𝑎 over time slot 𝑡 ∈ 𝒯. 

Their power consumption is modelled by 𝑥𝑖,𝑎 =

(𝑥𝑖,𝑎
1 , … , 𝑥𝑖,𝑎

𝑇 ). We model two categories of flexible loads: 

1) Time-shiftable loads (e.g. dishwasher, 

washing machine, etc.). Such loads have a fixed power 

consumption 𝑀𝑖,𝑎 and an operation duration 𝑁𝑎, that 

can be shifted along the day. We introduce binary 

variables, 𝑢𝑖,𝑎
𝑡 , equal to 1 if time-shiftable appliance a 

of member 𝑖 ∈ 𝒩 is ON: 

𝛿𝑖,𝑎. 𝑢𝑖,𝑎
⊤ = 𝑁𝑎 (1) 

(1 − δ𝑖,𝑎). 𝑢𝑖,𝑎
⊤ = 0 (2)  

∑ 𝑢𝑖,𝑎
𝑡

𝑡0+𝑁𝑎

𝑡=𝑡0+1

≥ 𝑁𝑎(𝑢𝑖,𝑎
𝑡0+1 − 𝑢𝑖,𝑎

𝑡0
), 𝑓𝑜𝑟 𝑡0 = 1: 𝑇 − 𝑁𝑎 (3) 

𝑥𝑖,𝑎
𝑡 = 𝑀𝑖,𝑎. 𝑢𝑖,𝑎

𝑡 (4) 

Equations (1)-(2) limit the duration of operation to 

one cycle and make sure that the appliance is ON 

during the temporal flexibility window only. Eq. (3) 

ensures that the appliance is run continuously until the 

end of the process, and (4) defines the power consumed 

by the time-shiftable loads. 

2) Power-shiftable loads (e.g., Heat Pumps, 

Electrical Vehicles, etc.). The power consumption 

pattern can be controlled during usage, but total energy 

𝐸𝑖,𝑎. over the available time window is imposed:  

δ𝑖,𝑎. 𝑥𝑖,𝑎
⊤ . ∆𝑡 = 𝐸𝑖,𝑎 (5) 

(1 − δ𝑖,𝑎). 𝑥𝑖,𝑎
⊤ . ∆𝑡 = 0 (6) 

0 ≤ 𝑥𝑖,𝑎
𝑡 ≤ 𝑀𝑖,𝑎 (7)  

Equations (5)-(6) limit the energy consumed to the 

predetermined total energy, and limit the operation slot 

to the temporal flexibility window. Eq. (7) limits the 

power consumed in the range [0; 𝑀𝑖,𝑎]. 

B. Battery storage system of member 𝑖 ∈ 𝒩 is 

modelled with the use of two variables: the state-of-charge 

(SOC) 𝑒𝑖
𝑡 and the charging/discharging power 𝑠𝑖

𝑡 . 
𝑠𝑖

𝑡 = 𝑠𝑖,𝑐ℎ
𝑡 − 𝑠𝑖,𝑑𝑖𝑠

𝑡 (8) 

𝑒𝑖
𝑡 = 𝑒𝑖

𝑡−1 + (η𝑠𝑡𝑠𝑖,𝑐ℎ
𝑡−1 −

1

η𝑠𝑡

𝑠𝑖,𝑑𝑖𝑠
𝑡−1 ) ∆𝑡 (9) 

𝑒𝑖
1 = 𝑅𝑠𝑡 . 𝐸𝑠𝑡

𝑚𝑎𝑥 (10) 

𝑒𝑖
𝑇+1 ≥ 𝑅𝑠𝑡 . 𝐸𝑠𝑡

𝑚𝑎𝑥 (11) 

−𝑀𝑠𝑡
𝑚𝑎𝑥 ≤ 𝑠𝑖

𝑡 ≤ 𝑀𝑠𝑡
𝑚𝑎𝑥 (12) 

with 𝑠𝑖,𝑐ℎ
𝑡 , 𝑠𝑖,𝑑𝑖𝑠

𝑡 ≥ 0, respectively the power charged to and 

the power discharged from the battery. Equations (8)-(9) 

model the storage system operation. (10)-(11) impose the  

initial SOC to be a fixed share, 𝑅𝑠𝑡, of the total capacity, 

𝐸𝑠𝑡
𝑚𝑎𝑥 . At the end of the day, the SOC must recover its 

initial level. Eq. (12) limits the charging and discharging 

power to 𝑀𝑠𝑡
𝑚𝑎𝑥. 

C. Non-flexible loads are aggregated and represented 

by 𝑑𝑖 = (𝑑𝑖
1, … , di

T) ≥ 0 (13). 

D. PV panels electricity production is modelled as the 

product between the installed PV capacity, 𝑃𝑃𝑉, and a load 

factor profile, 𝑏. The solar production of member 𝑖 ∈ 𝒩 is 

therefore 𝑔𝑖 = 𝑃𝑃𝑉,𝑖 . 𝑏 ≥ 0 (14). Note that non-flexible 

loads and PV load factor profiles are deterministic. 

The physical net load of member 𝑖 ∈ 𝒩at time 𝑡 ∈ 𝒯 

is then modelled as: 
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𝑙𝑖
𝑡 = 𝑑𝑖

𝑡 + ∑ 𝑥𝑖,𝑎
𝑡

𝑎∈𝒜𝒾

+ 𝑠𝑖
𝑡 − 𝑔𝑖

𝑡 (15) 

According to the physical net load sign, the member 

either imports, 𝑙𝑖
𝑡 ≥ 0, or exports, 𝑙𝑖

𝑡 < 0, power from the 

low-voltage grid. We define the positive and negative net 

load as 𝑙𝑖
𝑡+ = 𝑚𝑎𝑥(0, 𝑙𝑖

𝑡) and 𝑙𝑖
𝑡− = 𝑚𝑎𝑥(0, −𝑙𝑖

𝑡).  

For economic purposes, virtual power flows are 

defined. The positive net load, or power consumed, is 

supplied by power imported from the supplier, 𝑖𝑖
𝐷𝐴,𝑡

, 

and/or from the local market, 𝑖𝑖
𝑐𝑜𝑚,𝑡

. Similarly the negative 

net load, or power injected, can be sold to the supplier, 

𝑒𝑖
𝐷𝐴,𝑡

, or on the local market,𝑒𝑖
𝑐𝑜𝑚,𝑡

 : 

𝑙𝑖
𝑡+ = 𝑖𝑖

𝐷𝐴,𝑡 + 𝑖𝑖
𝑐𝑜𝑚,𝑡 (16) 

𝑙𝑖
𝑡− = 𝑒𝑖

𝐷𝐴,𝑡 + 𝑒𝑖
𝑐𝑜𝑚,𝑡 (17) 

On the local market, the sold power must match the 

power bought by REC members during each time interval. 

∑ 𝑒𝑖
𝑐𝑜𝑚,𝑡

𝑖∈𝒩

= ∑ 𝑖𝑖
𝑐𝑜𝑚,𝑡

𝑖∈𝒩

(18) 

 

2.1.2 Cost structure 

The objective of the DSM model is to minimize the 

community electricity bill, which is decomposed into two 

main terms: commodity and grid costs. The commodity 

cost accounts for: 

• External supplier costs: these costs cover the part 

of consumption not acquired on the local market. 

For each user 𝑖 ∈ 𝒩, we have 𝐶𝑠𝑢𝑝,𝑖
𝑡 =

𝜆𝑖𝑚𝑝𝑖𝑖
𝐷𝐴,𝑡∆𝑡. 

• Local electricity costs: these costs relate to the 

electricity purchased on the local REC pool, at 

price 𝜆𝑖𝑙𝑜𝑐 . For each user 𝑖 ∈ 𝒩, we have 𝐶𝑙𝑜𝑐,𝑖
𝑡 =

𝜆𝑖𝑙𝑜𝑐𝑖𝑖
𝑐𝑜𝑚,𝑡∆𝑡. 

• Revenues from exported electricity: the prosumers 

in the REC may sell their excess of local 

production either to the electricity supplier or on 

the local market. These sales create revenues for 

the prosumers expressed as 𝑅𝑠𝑢𝑝,𝑖
𝑡 = 𝜆𝑒𝑥𝑝𝑒𝑖

𝐷𝐴,𝑡∆𝑡, 

if the energy is sold to the supplier, or as 𝑅𝑙𝑜𝑐,𝑖
𝑡 =

𝜆𝑒𝑙𝑜𝑐𝑒𝑖
𝑐𝑜𝑚,𝑡∆𝑡, if it is sold on the local market. 

In this paper, we consider a fixed single-supplier price. 

We assume also that prices for buying electricity from 

(selling electricity to) the community are lower (higher) 

than the ones proposed by the supplier.  

The commodity costs of the community can therefore 

be aggregated as: 

𝐶𝑐𝑜𝑚 = ∑ [∑ 𝐶𝑠𝑢𝑝,𝑖
𝑡 − 𝑅𝑠𝑢𝑝,𝑖

𝑡 + 𝐶𝑙𝑜𝑐,𝑖
𝑡 − 𝑅𝑙𝑜𝑐,𝑖

𝑡

𝑖∈𝒩

]

𝑡∈𝒯

(19) 

The other part of the bill is related to grid usage 

(upstream transmission and distribution grids, and local 

distribution grid). We assume here a grid costs structure 

similar to the one that will be applied in Brussels 

(Belgium) starting from January 2023 [13]. For each 

member i, we have: 

• Volumetric-based costs: these grid costs are 

charged in [€/MWh] based on the energy 

exchanged with the supplier during the day. For 

each user 𝑖 ∈ 𝒩, we have 𝐶𝑔𝑟,𝑖 = (𝜆𝑑𝑖𝑠𝑡𝑟𝑖𝑏 +

𝜆𝑡𝑟𝑎𝑛𝑠𝑝)(𝑖𝑖
𝐷𝐴,𝑡 + 𝑒𝑖

𝐷𝐴,𝑡)∆𝑡.  

• Capacity-based costs: they are charged in [€/MW] 

based on the peak power consumption over the 

day. For each user 𝑖 ∈ 𝒩, we have 𝐶𝑝𝑒𝑎𝑘,𝑖 =

𝜆𝑝𝑒𝑎𝑘 𝑚𝑎𝑥
𝑡

(𝑙𝑖
𝑡+). 

 

The grid costs of the community can be expressed as: 

𝐶𝑔𝑟𝑖𝑑 = ∑ ∑ 𝐶𝑔𝑟,𝑖

𝑖∈𝒩𝑡∈𝒯

+ ∑ 𝐶𝑝𝑒𝑎𝑘,𝑖

𝑖∈𝒩

(20) 

 

2.1.3 MILP formulation 

The demand-side management model can be expressed 

as a Mixed-Integer Linear Programming (MILP) Problem. 

{
min

𝛩
𝐵𝑐𝑜𝑙𝑙 = 𝐶𝑐𝑜𝑚 + 𝐶𝑔𝑟𝑖𝑑

𝑠. 𝑡. (1) − (18)
(21) 

The set of decision variables is defined as 𝛩 =
{𝑢𝑖,𝑎, 𝑥𝑖,𝑎, 𝑠𝑖 , 𝑒𝑖 , 𝑙𝑖 , 𝑖𝑖

𝐷𝐴, 𝑒𝑖
𝐷𝐴, 𝑖𝑖

𝑐𝑜𝑚, 𝑒𝑖
𝑐𝑜𝑚}. We use the well-

known branch-and-bound algorithm to solve (21).  

2.2 Investment model 

We formulate the investment problem as a long-term 

PV sizing tool, which aims at determining the optimal 

capacity of PV for each member of the community, 

considering the REC local market design, that would 

minimize the total cost for the community. The DSM 

model (21) is used to estimate operational costs (OPEX). 

 

2.2.1 Cost structure 

Let 𝒟 = {1, … , 𝑑, … , 𝑁𝑑} be the set of days with 𝑁𝑑 the 

number of days considered in the investment horizon. The 

investment cost is defined as: 

𝐶𝑖𝑛𝑣𝑒𝑠𝑡 = λ𝑃𝑉 ∑ 𝑃𝑃𝑉,𝑖

𝑖∈𝒩

(22) 

where 𝑃𝑃𝑉,𝑖 is the installed PV capacity of member 𝑖 ∈

𝒩 and λ𝑃𝑉 is the equivalent annual annuity of investment 

charges in €/kW/year. The annual annuity is computed 

based on investor cost of equity and accounts for the equity 

invested, the debt charges and the depreciation revenues. 

 

2.2.2 MILP formulation 

The investment model can be formulated, similarly to 

the demand-side management model, as a MILP Problem, 

with the installed PV capacity as a decision variable, and 

with two additional constraints. Constraint (23) limits the 

amount of PV installed per household based on the Belgian 

legislation. Constraint (24) imposes a minimum 

community self-consumption rate (SCR, i.e. ratio between 

the production consumed locally and the total production) 

over one year, in order to control the amount of reverse 

power flows and avoid over-investment. We have: 
𝑃𝑃𝑉,𝑖 ≤ 𝑃𝑃𝑉

𝑚𝑎𝑥 (23) 
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1 −
∑ ∑ ∑ 𝑒𝑖

𝐷𝐴,𝑑,𝑡
𝑖∈𝒩𝑡∈𝒯𝑑∈𝒟

∑ ∑ ∑ 𝑔𝑖
𝑑,𝑡

𝑖∈𝒩𝑡∈𝒯𝑑∈𝒟

≥ 𝑆𝐶𝑅𝑚𝑖𝑛 (24) 

{
min

𝛶
𝐶𝑖𝑛𝑣𝑒𝑠𝑡 + ∑ 𝐵𝑐𝑜𝑙𝑙

𝑑

𝑑∈𝒟

𝑠. 𝑡. (1) − (18) + (23) − (24)

(25) 

where 𝐵𝑐𝑜𝑙𝑙
𝑑 , represents the operational costs of the 

community. The set of decision variables is defined as 𝛶 =

{𝑢𝑖,𝑎
𝑑 , 𝑥𝑖,𝑎

𝑑 , 𝑠𝑖
𝑑 , 𝑒𝑖

𝑑, 𝑙𝑖
𝑑 , 𝑖𝑖

𝐷𝐴,𝑑, 𝑒𝑖
𝐷𝐴,𝑑, 𝑖𝑖

𝑐𝑜𝑚,𝑑 , 𝑒𝑖
𝑐𝑜𝑚,𝑑 , 𝑃𝑃𝑉,𝑖}. 

3. CASE STUDY 

3.1 Community parameters 

The studied REC is composed of 55 members 

connected behind the same MV-LV feeder. For the non-

flexible loads, electricity consumption profiles are 

extracted from the Pecan Street Project dataset with a 1 

hour time step [14]. 

The flexible loads are assigned to each member based 

on a penetration level. For each simulated day, their 

planned operation is based on the usage frequency of the 

devices and different temporal flexibility windows (the 

δ𝑖,𝑎 vector) are assigned to the operation: day flexibility, 

night flexibility, and peak hours. Three time-shiftable 

loads are considered: dishwasher, washing machine, and 

clothes dryer. These loads have a fixed power profile. We 

model two types of power-shiftable loads, i.e. electric 

vehicles and heat pumps. These loads have a range of 

operating power and predetermined energy consumed each 

day. For the heat pumps, different energy needs are applied 

according to the season. Storage system is assigned to 

community members according to a 50% share. The 

initial/final battery level parameter 𝑅𝑠𝑡 is fixed at 50%. 

Community parameters (tariffs, loads characteristics) 

are detailed in [15]. Members are connected to the 

Modified LV 116 buses IEEE network [16]. 

3.2 DSM model: Benchmark 

We compare the outcomes of the DSM model when the 

end-users collaborate as a community (model (21)), and 

when each end-user performs an individual optimization 

of her own electricity bill. The physical net load output of 

the models are passed to a three-phase, balanced 

distribution load flow tool [17] in order to compute grid 

KPIs (see section 3.4) in both situations. The DSM model 

is run each time for 16 days (8 days with high PV 

generation – 8 days with low PV generation). The same 

installed PV capacity, between 0 and 10 kW per 

household, and appliances configuration are considered in 

both frameworks. 

3.3 Investment model: Benchmark 

Instead of using an arbitrary installed PV capacity, the 

investment model is used to determine the optimal amount 

of PV capacity needed by each member, in both REC and 

individual frameworks. They are compared for different 

minimum SCR levels. Two scenarios are considered for 

the equivalent annuity (via inflation rate) and commodity 

prices. One corresponds to the current situation (high 

commodity prices) and the other represents the pre-crisis 

situation (low commodity prices) [15]. 

The investment model is simulated on a representative 

year (built on 8 representative days, i.e. 1 week day and 1 

week-end day for each season), replicated through a 20-

years investment horizon accounting for the correct 

actualization rates. Similarly to the DSM case, the physical 

net loads of each day go through a load flow calculation. 

3.4 Key performance indicators 

We compute in each case the following KPIs: 

• Peak-to-average ratio (PAR): This indicator 

quantifies the variability of the overall 

consumption profile, 𝐿𝑡 = ∑ 𝑙𝑖
𝑡

𝑖∈𝒩 : 

𝑃𝐴𝑅 =  
𝑚𝑎𝑥 𝐿𝑡+

𝑚𝑒𝑎𝑛 𝐿𝑡+
 

where 𝐿𝑡+ = 𝑚𝑎𝑥(0, 𝐿𝑡). 

• Peak power [kW]: Maximum global consumption 

of the community.  

• Node voltage level [pu]: The voltage at each node 

of the network is observed to ensure that it remains 

between the [0.9;  1.1] [𝑝𝑢] limits. 

• Line losses [kW]: Total line losses on the  studied 

distribution grid over a simulated day. 

• Line loading percent: This indicator represents the 

fraction of the line maximum power used.  

• Self-consumption rate (SCR): The ratio between 

the production consumed locally and the total 

production. It is related to the reverse power flows. 

𝑆𝐶𝑅 = 1 −
∑ ∑ 𝑒𝑖

𝐷𝐴,𝑡
𝑡∈𝒯𝑖∈𝒩

∑ ∑ 𝑔𝑖
𝑡

𝑡∈𝒯𝑖∈𝒩

 

• Self-sufficiency rate (SSR): The ratio between the 

load supplied locally and the total load. It is related 

to the import power flows.  

𝑆𝑆𝑅 = 1 −
∑ ∑ 𝑖𝑖

𝐷𝐴,𝑡
𝑡∈𝒯𝑖∈𝒩

∑ ∑ 𝑙𝑖
𝑡 + 𝑔𝑖

𝑡
𝑡∈𝒯𝑖∈𝒩

 

4. RESULTS AND DISCUSSION 

MILP models are coded in Julia/JuMP and solved 

using Gurobi. Simulation times reach 25s for the DSM 

model, and 340s for the investment model. The results of 

the DSM models are summarized in Table 1. The values 

are averaged over the 8 high and low PV generation days. 

As expected, the most significant differences between 

REC operation and individual optimization are observed 

during high PV days. 

 
Table 1: DSM benchmark results summary 

 

PAR [-] Peak Power [kW] SCR [%] SSR [%] Line losses [kW]

Day

Community Opti. 2,5 55 92 75 8

Individual Opti. 1,6 68 63 51 14

Day

Community Opti. 1,2 88 100 2 41

Individual Opti. 1,2 100 100 2 41

High PV

Low PV
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For the same installed PV capacity, the community 

achieves higher SCR and SSR results thanks to the internal 

exchange market, thereby limiting exchanges with the 

upstream network. The REC framework also reduces the 

peak power as well as the line losses. However, the PAR 

is higher with the REC: the average tends to be smaller as 

the community might require external power only during 

cloudy and night periods, and no power from the upper 

grid during sunny periods. Fig. 2 shows the histogram of 

nodal voltages over the whole network. We see that it 

never exceeds the 1.1pu limit, although we tend to be 

closer to the limit in the individual case. 
 

 
Fig. 2: Probability density of node voltage 

 

We run the investment model for different values of the 

SCR constraint (see Table 2). We further compare the two 

price scenarii for the 80% SCR level. Results show that the 

economic advantages of RECs incentivize the investment 

in PV capacity. The higher local production induces less 

imports from the upstream grid (and thus better SSR 

values), at the cost of higher electrical lines loading. In the 

80% case, the incentivization of PV investment in the 

REC is particularly important in a situation with high 

energy prices and inflation rate. This is linked to the higher 

supplier export prices that favor the local production 

despite the increased investment costs, increasing the 

reverse power flows through the MV/LV transformer. 

 
Table 2. Investment model benchmark results summary 

 

5. CONCLUSION AND FUTURE WORKS 

This paper develops a short-term (coordinated DSM) 

and a long-term (PV investment) model for a REC in 

which members can exchange PV surplus locally, both 

used to assess technical impacts on the local grid. We show 

using the DSM model that a community operation tends to 

reduce peak power and overall exchanges (through the 

higher SCR and SSR values) at the MV/LV substation, as 

well as overall line losses. The PV investment model 

shows that a community organization tends to favour the 

installation of more PV generation than the individual case 

while controlling grid impacts, provided that a constraint 

on the SCR is imposed in the sizing model. 
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