A general framework for two-photon spontaneous emission near plasmonic nanostructures

Smeets Steve, Maes Bjorn, Rosolen Gilles

Micro- and Nanophotonic Materials Group

Smeets.Steve@umons.ac.be

BPS - May 17th 2023 - UNamur

Spontaneous emission

- **Fundamental process** in the field of light-matter interaction ۲
 - \rightarrow Responsible for most of the light we see around us

One-photon spontaneous emission

 $|g\rangle$

ħω_{eg} \ΛΛΛ∕→

iccoloNamek. via Wikimedia Commons

Lưu Ly, via Wikimedia Commons

Spontaneous emission

- **Fundamental process** in the field of light-matter interaction lacksquare
 - \rightarrow Responsible for most of the light we see around us
- **Two-Photon Spontaneous Emission (TPSE):** second-order process ۲
 - \rightarrow 8 to 10 orders of magnitude slower than the emission of a single photon [1]
 - \rightarrow Continuous spectrum
 - \rightarrow Responsible of the lifetime of the 2s state \rightarrow Explanation of the continuous spectrum coming from planetary nebulae

One-photon spontaneous emission

 $|e\rangle$

 $|g\rangle$

 $|e\rangle$

ħω_{eg}

 $|m\rangle$

 $|g\rangle$

[1] Rivera et al. *Science* 353, 263-269 (2016)

Two-photon spontaneous emission

 $\hbar ω_{eg} - \hbar ω$

Photonic environment

Purcell effect (1946): the spontaneous emission rate of an emitter depends on its environment

$$P = \frac{\Gamma^{(1)}}{\Gamma_0^{(1)}}$$

2D plasmonic nanostructures: ideal to harness two-quanta emission processes [2] \bullet

Surface plasmons

[2] Muniz et al. Physical Review Letters 125(3), 033601 (2020)

Photonic environment

Purcell effect (1946): the spontaneous emission rate of an emitter depends on its environment

$$P = \frac{\Gamma^{(1)}}{\Gamma_0^{(1)}}$$

- **2D plasmonic nanostructures:** ideal to harness two-quanta emission processes [2]
 - \rightarrow Light confinement at the nanoscale
 - \checkmark Light emission enhancement via the Purcell effect by several orders of magnitude [1,3]
 - \checkmark Breakdown of the electric dipole selection rule [3] \rightarrow Forbidden transitions accessible [1], TPSE can dominate [4]
 - X Study of advanced nanostructures hampered by a lack of efficient numerical and theoretical methods

Need for an efficient and general framework which goes beyond the electric dipole approximation by considering higher-order multipolar contributions to second-order processes

- [1] Rivera et al. *Science* 353, 263-269 (2016)
- [2] Muniz et al. *Physical Review Letters* 125(3), 033601 (2020)
- [3] Rusak et al. Nat Commun 10, 5775 (2019)
- [4] Rivera et al. Proceedings of the National Academy of Sciences 114(52), 13607-12 (2017)

Electric Dipole (ED) Magnetic Dipole (MD) Electric Quadrupole (EQ)

Fermi's golden rule approach

Second-order transition rate given by Fermi's golden rule ۲

$$\Gamma_{\rm tot}^{(2)}(\boldsymbol{R}) = \Gamma_{\rm 2ED}^{(2)}(\boldsymbol{R}) + \Gamma_{\rm 2MD}^{(2)}(\boldsymbol{R}) + \Gamma_{\rm 2EQ}^{(2)}(\boldsymbol{R}) + \Gamma$$

Plasmonic nanostructure of arbitrary shape

> $\neg(2)$ mixed (\boldsymbol{R})

Derivations of TPSE rates

Former derivation [2,5] ullet

- \rightarrow Only for the 2ED contribution
- \rightarrow Can be applied only for symmetric structures with the emitter at specific positions
- **Our derivation** [6]

[2] Muniz et al. *Physical Review Letters* 125(3), 033601 (2020)

- [5] Muniz et al. Phys. Rev. A 100, 023818 (2019)
- [6] Smeets et al. Phys. Rev. A, Submitted (2023)

 \rightarrow 2ED, 2MD, and 2EQ contributions

 \rightarrow Can be applied for arbitrary shaped nanostructures with the emitter at any position

TPSE rate as a function of one-photon Purcell factors

Transition rate tailoring

Photonic environment contribution

Emitter contribution

- Normalized tensors: multipolar second-order transition moments
- Depend only on the electronic structure of the emitter
- Calculated for a specific transition of the emitter

- Tensors expressed as a function of one-photon Purcell factors of the two emitted quanta of complementary energy
- Depend only on the photonic environment
- Computed classically with COMSOL Multiphysics[®] (FEM)

$$\frac{W_{\varphi}}{W_0} = P_{\varphi} = \frac{\Gamma_{\varphi}^{(1)}}{\Gamma_0^{(1)}}$$

- \blacktriangleright W_{φ} : Power emitted by a classical radiating point source
- To calculate for different source orientations (6 for ED/MD, 15 for EQ)

$$(\mathbf{R})F^{\mathrm{EQ}}_{\alpha\beta}(\omega_{eg}-\omega;\mathbf{R})$$

Emitter's position

TPSE rate as a function of one-photon Purcell factors

$$(\mathbf{R})F^{\mathrm{EQ}}_{\alpha\beta}(\omega_{eg}-\omega;\mathbf{R})$$

Emitter's position

Photonic environment contribution

- Tensors expressed as a function of one-photon Purcell factors of the two emitted quanta of complementary energy
- **Computed classically** with COMSOL Multiphysics[®] (FEM)

$$\frac{P_{\varphi}}{P_{\varphi}} = P_{\varphi} = \frac{\Gamma_{\varphi}^{(1)}}{\Gamma_{0}^{(1)}}$$

- W_{φ} : Power emitted by a classical radiating point source
- To calculate for different source orientations (6 for ED/MD, 15 for EQ)

• Purcell factors \rightarrow Decomposition into radiative (photons) and non-radiative (plasmons) parts \rightarrow 3 TPSE pathways

Photon-photon

Photon-plasmon

10

Plasmon-plasmon

3. Application

[2] Muniz et al. Physical Review Letters 125(3), 033601 (2020)

✓ Agreement with analytical results [2]

- ✓ Photon-pair emission rate enhanced by 5 orders of magnitude
 - Plasmon-pair emission rate enhanced by 8 orders of magnitude

- ✓ Photon-pair emission rate enhanced by 11 orders of magnitude
 - Plasmon-pair emission rate enhanced by 15 orders of magnitude

3. Application

• Emitter off-axis

- → New results: the framework can be applied with emitter at any position
- \rightarrow New peaks
 - Dark modes

Conclusion

• Our framework

- → Efficiently computes TPSE rate of a quantum emitter near an arbitrary shaped nanostructure and beyond the electric dipole approximation
- \rightarrow Based on the computation of Purcell factors via classical simulations
 - \checkmark Allows the study of complex geometries
 - \checkmark Allows the separate calculation of the radiative and non-radiative channels
- → Efficient and useful tool for design optimization
- → Applications: spectroscopy, quantum applications
- → Paper: Smeets et al. General framework for two-photon spontaneous emission near plasmonic nanostructures. *Phys. Rev. A*, Submitted (2023)

