
SYNTHESIZER PRESET INTERPOLATION USING TRANSFORMER AUTO-ENCODERS

Gwendal Le Vaillant 1,2, Thierry Dutoit 1

1 Information, Signal and Artificial Intelligence (ISIA), University of Mons, Belgium
2 HE2B-ISIB Research Institute, Brussels, Belgium

ABSTRACT

Sound synthesizers are widespread in modern music pro-
duction but they increasingly require expert skills to be mas-
tered. This work focuses on interpolation between presets,
i.e., sets of values of all sound synthesis parameters, to enable
the intuitive creation of new sounds from existing ones.

We introduce a bimodal auto-encoder neural network,
which simultaneously processes presets using multi-head at-
tention blocks, and audio using convolutions. This model has
been tested on a popular frequency modulation synthesizer
with more than one hundred parameters. Experiments have
compared the model to related architectures and methods,
and have demonstrated that it performs smoother interpola-
tions. After training, the proposed model can be integrated
into commercial synthesizers for live interpolation or sound
design tasks.

Index Terms— Synthesizer, Sound, Interpolation, Tim-
bre, Transformer, VAE

1. INTRODUCTION

Sound synthesizers can generate audio signals whose timbre
ranges from acoustic instruments to entirely novel sound tex-
tures. They are ubiquitous in modern music production, and
their use even defines some new music genres. Synthesis pro-
cesses are controlled using sets of parameters, called presets,
which are usually large [1–3]. They require expert knowledge
to be created and handled, so that a lot of presets are provided
by synthesizer manufacturers and developers themselves.

Our research addresses the problem of preset interpo-
lation, for musicians to be able to discover new sounds in-
between two reference presets, or to create smooth transitions
from a preset to another. This requires to manipulate dozens
of parameters simultaneously, with intricate relationships
between parameters and synthesized audio, and interactions
between parameters themselves.

While several recent works have used neural networks to
match synthesizer presets with input sounds [1–6], ours is
the first to formally focus on preset interpolation. Its main
contribution is a model that enables smoother interpolations,
compared to related generative architectures. It is also the
first model that successfully handles synthesizer presets as

sequences using Transformer [7] encoders and decoders, and
models numerical synthesis parameters using Discretized Lo-
gistic Mixture (DLM) distributions [8].

2. RELATED WORK

2.1. Neural Audio Synthesis

Models such as WaveNet [9] can be trained to synthesize
raw audio waveforms using Convolutional Neural Networks
(CNNs). In order to prevent per-sample computations, recent
works have tried to learn synthesis processes akin to com-
mercially available music synthesizers. Some are based on
source-filter models [10, 11], whereas others [12] model a
differentiable FM (Frequency Modulation) synthesis architec-
ture similar to a synthesizer named DX7.

However, these neural networks include the synthesis it-
self, and they are trained using gradient descent. Therefore,
they can’t be applied to existing commercial synthesizers [3–
5], which rely on non-differentiable processes.

2.2. Sound Matching

Various neural network architectures have been successfully
used to search for synthesis parameters that correspond best
to an input sound. Long Short-Term Memory (LSTM, [13])
neural networks have been used to infer a preset from Mel-
Frequency Cepstral Coefficients (MFCCs) [1]. Other archi-
tectures were based on CNNs to process audio spectrograms
or raw waveforms [2, 4, 6], or a combination of CNN, LSTM
and Multilayer Perceptron (MLP) blocks to process different
types of input audio features [3].

Several works [1, 3, 4] have focused on the sound match-
ing task for a software implementation of the well-established
DX7 FM synthesis architecture. It is known to be able to syn-
thesize a wide variety of digital- and natural-sounding instru-
ments [12], while being notoriously hard to handle consider-
ing the large amount of synthesis parameters (155). Experi-
ments presented in this paper focus on this non-differentiable
FM synthesis architecture.

2.3. Generative Models

Among the previously cited works, a few [2, 4] are based on
generative models, which first encode input audio data x into
a latent vector z, then try to reconstruct the audio and infer the
preset from z. After training, latent vectors can be sampled
from a prior distribution p (z) in order to generate new audio
samples and new presets.

A common framework to learn both latent representa-
tions and a generative model is the Variational Auto-Encoder
(VAE) [14]. It learns an approximate posterior distribution
q (z|x), which represents how x is encoded into the latent
space, and a decoder model p (x, z) = p (x|z) p (z). The
encoded distribution q (z|x) is usually Gaussian with a di-
agonal covariance matrix, i.e. q (z|x) = N (z;µ, σ2) where
µ and σ2 are the outputs of an encoder neural network. The
latent prior p (z) is usually set to N (z; 0, I), while p (x|z)
can be any distribution whose parameters are the outputs of a
decoder neural network. The loss L(x) is an upper bound on
the negative log-likelihood of the true data distribution:

L(x) = βDKL [q(z|x)‖p(z)]− Ez∼q(z|x) [log p(x|z)] (1)

where DKL denotes the Kullback-Leibler divergence and
β controls the tradeoff between latent regularization and re-
construction accuracy [15].

The first term from (1) can be considered as a regulariza-
tion term, because it forces q(z|x) to remain close to a mul-
tivariate standard normal distribution. This prevents x inputs
from being encoded as distributions with disjoint supports,
such that the latent space should be continuous [14] i.e. simi-
lar inputs should correspond to similar encoded distributions.
Moreover, if x has a much higher dimensionality than z, then
the latter can be considered as a compressed and meaningful
representation of x.

2.4. Interpolation using Auto-Encoders

Auto-encoder models, e.g. VAEs [15] or adversarial auto-
encoders [16], can be trained to improve the interpolation be-
tween data points. However, such works are based on learned
generators, in contrast to ours which focuses on learning how
to interpolate presets for an external sound generator. Some
previous works [2, 4] about VAE-based sound matching have
stated that they could perform interpolations, as any regular-
ized VAE model does. However, the interpolation itself was
not studied, and no quantified results were presented.

3. PRESET INTERPOLATION

3.1. Synthesizer and Datasets

Focusing on DX7 FM synthesis, we used a published database
of approximately 30k presets [4], and randomly split it into
a 80%/10% training/validation set and a 10% held-out test

set. The main volume, transpose and filter controls, which are
not part of the FM synthesis process, were set to their default
values, and left untouched. Each preset then consists of 144
parameters, including Algorithm which controls the discrete
routing of signals between oscillators. Algorithm alone can
completely change the synthesized timbre, such that it is ar-
guably the most important FM synthesis parameter. However,
it introduces highly non-linear relationships between presets
and output sounds, so the most recent works [3, 12] trained a
different model for each Algorithm value. In our work, a sin-
gle model was trained and the dataset includes the Algorithm
parameter.

x̂ ⇠ p(x|z)
<latexit sha1_base64="g0I9CffJGoDY/569kQz7y8/Hwow=">AAAC9XicjVHLbtNAFD11gYbwaNou2YyIkMomGhuSJrsINiyDRNpKTVSNnUkyil+yx23TNL/RHTvULT/QbfsLFX8Af8GdwRGwqGAs2/eee86ZuXP9NFS55vzbmrP+4OGjjcrj6pOnz55v1ra29/OkyALZD5IwyQ59kctQxbKvlQ7lYZpJEfmhPPBn70394ERmuUriT3qeymEkJrEaq0Bogo5rfDAVejGIhJ7648XZcskGuYpYuvsbYhdslZwvXx/X6rzhNXmn7TLe4LQ8j4ImdzutFnMtwnkd5eoltTsMMEKCAAUiSMTQFIcQyOk5gguOlLAhFoRlFClbl1iiStqCWJIYgtAZfSeUHZVoTLnxzK06oF1CejNSMrwiTUK8jGKzG7P1wjob9D7vhfU0Z5vT3y+9IkI1poT+S7di/q/O9KIxRtv2oKin1CKmu6B0KeytmJOzP7rS5JASZuIR1TOKA6tc3TOzmtz2bu5W2Pp3yzSoyYOSW+CHOSUNeDVFdn+w7zXcNw3v49t691056gpe4CV2aZ576OIDeuiT9yWucYNb59T57Hxxrn5RnbVSs4O/lvP1J3yso/c=</latexit>

SamplingCNN z
<latexit sha1_base64="mdPScjrxRFpG5Qd976Gn7i1Adcg=">AAACzXicjVHLTsJAFD3UF+ILdemmkZi4IgVNdEl0405M5BGBmGkZYEJfaacmiLj1B9zqbxn/QP/CO2NJVGJ0mrZnzr3nzNx77dAVsbSs14wxN7+wuJRdzq2srq1v5De36nGQRA6vOYEbRE2bxdwVPq9JIV3eDCPOPNvlDXt4quKNGx7FIvAv5SjkHY/1fdETDpNEXbU9Jgd2b3w7uc4XrKKllzkLSikoIF3VIP+CNroI4CCBBw4fkrALhpieFkqwEBLXwZi4iJDQcY4JcqRNKItTBiN2SN8+7Vop69NeecZa7dApLr0RKU3skSagvIiwOs3U8UQ7K/Y377H2VHcb0d9OvTxiJQbE/qWbZv5Xp2qR6OFY1yCoplAzqjondUl0V9TNzS9VSXIIiVO4S/GIsKOV0z6bWhPr2lVvmY6/6UzFqr2T5iZ4V7ekAZd+jnMW1MvF0kGxfHFYqJyko85iB7vYp3keoYIzVFEjbx+PeMKzcW4kxp1x/5lqZFLNNr4t4+EDzj2Tow==</latexit>

�2
<latexit sha1_base64="VJ0rkxmSurrj+3W3Rvz+GoYLucs=">AAAC1nicjVHLSsQwFD3W97vq0k1xEFwNnVHQpejGpYKjA44OaSczBvsiSRUZdCdu/QG3+kniH+hfeBMj+EA0pe3Jufec5N4bFYlQOgyfB7zBoeGR0bHxicmp6ZlZf27+QOWljHkjzpNcNiOmeCIy3tBCJ7xZSM7SKOGH0dm2iR+ec6lEnu3ry4Ifp6yXia6ImSaq7c+1UqZPo26/pUQvZSf1q7ZfCauhXcFPUHOgArd2c/8JLXSQI0aJFBwZNOEEDIqeI9QQoiDuGH3iJCFh4xxXmCBtSVmcMhixZ/Tt0e7IsRntjaey6phOSeiVpAywTJqc8iRhc1pg46V1Nuxv3n3rae52Sf/IeaXEapwS+5fuI/O/OlOLRhcbtgZBNRWWMdXFzqW0XTE3Dz5VpcmhIM7gDsUl4dgqP/ocWI2ytZveMht/sZmGNfvY5ZZ4NbekAde+j/MnOKhXa6vV+t5aZXPLjXoMi1jCCs1zHZvYwS4a5H2Bezzg0Wt6196Nd/ue6g04zQK+LO/uDYYclp0=</latexit>

CNN

Transformer Encoder

Transformer Decoder

eµ
<latexit sha1_base64="zqc1CfMUjx4rpTWstcapH5qO00o=">AAAC1XicjVHLSsNAFD2Nr1pfUZdugkVwVdIq6LLoxmUF+wBbSpJO29C8mEwKJWQnbv0Bt/pL4h/oX3hnTEEtohOSnDn3njNz77Ujz42Fab4WtKXlldW14nppY3Nre0ff3WvFYcId1nRCL+Qd24qZ5wasKVzhsU7EmeXbHmvbk0sZb08Zj90wuBGziPV8axS4Q9exBFF9Xe/6lhjbw5T1066fZFlfL5sVUy1jEVRzUEa+GqH+gi4GCOEggQ+GAIKwBwsxPbeowkREXA8pcZyQq+IMGUqkTSiLUYZF7IS+I9rd5mxAe+kZK7VDp3j0clIaOCJNSHmcsDzNUPFEOUv2N+9Uecq7zehv514+sQJjYv/SzTP/q5O1CAxxrmpwqaZIMbI6J3dJVFfkzY0vVQlyiIiTeEBxTthRynmfDaWJVe2yt5aKv6lMycq9k+cmeJe3pAFXf45zEbRqlepJpXZ9Wq5f5KMu4gCHOKZ5nqGOKzTQJO8pHvGEZ62tZdqddv+ZqhVyzT6+Le3hA1L1lpA=</latexit>

µ
<latexit sha1_base64="6qrLORsz+zI71FOU6qGWzGNmxSE=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVdIq6LLopsuK9gFtkWQ6rUPzYjJRShH8Abf6aeIf6F94Z0xBLaITkpw5954zc+/1Yl8kynFec9bC4tLySn61sLa+sblV3N5pJVEqGW+yyI9kx3MT7ouQN5VQPu/EkruB5/O2Nz7X8fYtl4mIwis1iXk/cEehGArmKqIue0F6XSw5Zccsex5UMlBCthpR8QU9DBCBIUUAjhCKsA8XCT1dVOAgJq6PKXGSkDBxjnsUSJtSFqcMl9gxfUe062ZsSHvtmRg1o1N8eiUpbRyQJqI8SVifZpt4apw1+5v31Hjqu03o72VeAbEKN8T+pZtl/lena1EY4tTUIKim2DC6Opa5pKYr+ub2l6oUOcTEaTyguCTMjHLWZ9toElO77q1r4m8mU7N6z7LcFO/6ljTgys9xzoNWtVw5Klcvjku1s2zUeexhH4c0zxPUUEcDTfIe4RFPeLbqVmil1t1nqpXLNLv4tqyHD49vkFs=</latexit>

e�
<latexit sha1_base64="FUHjfGXEhZg1H8mc/RrEUzapeYE=">AAAC2HicjVHLSsNAFD3GV62vapdugkVwVdIq6LLoxmUF+8C2lEk6bYfmRTIRSim4E7f+gFv9IvEP9C+8M6agFtEJSc6ce8+ZuffaoStiaVmvC8bi0vLKamYtu76xubWd29mtx0ESObzmBG4QNW0Wc1f4vCaFdHkzjDjzbJc37NG5ijdueBSLwL+S45B3PDbwRV84TBLVzeXbHpNDuz/h3Uk7FgOPTafdXMEqWnqZ86CUggLSVQ1yL2ijhwAOEnjg8CEJu2CI6WmhBAshcR1MiIsICR3nmCJL2oSyOGUwYkf0HdCulbI+7ZVnrNUOneLSG5HSxAFpAsqLCKvTTB1PtLNif/OeaE91tzH97dTLI1ZiSOxfulnmf3WqFok+TnUNgmoKNaOqc1KXRHdF3dz8UpUkh5A4hXsUjwg7Wjnrs6k1sa5d9Zbp+JvOVKzaO2lugnd1Sxpw6ec450G9XCwdFcuXx4XKWTrqDPawj0Oa5wkquEAVNfIe4xFPeDaujVvjzrj/TDUWUk0e35bx8AGpnpfd</latexit> Linear projectionEmbedding

Categorical Numerical

Preset u
<latexit sha1_base64="lQI2MbEIKbLLURYuluxG8Ouki/A=">AAAC3nicjVHLSsNAFD3Gd31VXYmbwSK4ChNf1Z3oxmUF2wpWNIlTDebFZCJKKe7ciVt/wK1+jvgH+hfemaagC9EJSe6ce86Zufd6aRhkivP3AWtwaHhkdGy8NDE5NT1Tnp1rZEkufVH3kzCRR56biTCIRV0FKhRHqRRu5IWi6V3t6XzzWsgsSOJDdZuKk8i9iIN24LuKoNPyQkuJG9WpSZEJxbqsFbnq0mt38u5pucJtvrnOtzcYtze4s7Xm9ILtapU5NjergmLVkvIbWjhHAh85IgjEUBSHcJHRcwwHHClhJ+gQJikKTF6gixJpc2IJYriEXtH3gnbHBRrTXntmRu3TKSG9kpQMy6RJiCcp1qcxk8+Ns0Z/8+4YT323W/p7hVdEqMIloX/p+sz/6nQtCm1smRoCqik1iK7OL1xy0xV9c/atKkUOKWE6Pqe8pNg3yn6fmdFkpnbdW9fkPwxTo3rvF9wcn/qWNOD+FNnvQWPVdtbs1YP1ys5uMeoxLGIJKzTPKnawjxrq5H2HZ7zg1Tqz7q0H67FHtQYKzTx+LOvpC1yYmng=</latexit>

Positional
Embeddings

… …

Softmax DLM DLM…
… …

p(u|z)
<latexit sha1_base64="z4BV0FJ1gDvppvU/+yDBsmQvsvg=">AAAC33icjVHLLgRBFD3ae7wGOzYVEwmbTvUMhp2wsSQxSBCpbjV0pl/prpYwJrGzE1s/YMvfiD/gL9yq6UlYCNXp7nvPPedU3bpuEviZ4vy9z+ofGBwaHhktjY1PTE6Vp2cOsjhPPdnw4iBOj1yRycCPZEP5KpBHSSpF6Aby0G1t6/rhlUwzP4721XUiT0NxEflN3xOKoLPyXLJ0Egp16TbbeYfdsl5y01k+K1e4zddW+MYq4/Yqd9ZrTjfYqNeZY3OzKijWblx+wwnOEcNDjhASERTFAQQyeo7hgCMh7BRtwlKKfFOX6KBE2pxYkhiC0BZ9Lyg7LtCIcu2ZGbVHuwT0pqRkWCRNTLyUYr0bM/XcOGv0N++28dRnu6a/W3iFhCpcEvqXrsf8r073otDEuunBp54Sg+juvMIlN7eiT86+daXIISFMx+dUTyn2jLJ3z8xoMtO7vlth6h+GqVGdewU3x6c+JQ24N0X2e3BQtZ2aXd1bqWxuFaMewTwWsETzrGMTO9hFg7zv8IwXvFrCurcerMcu1eorNLP4saynL2KrmnM=</latexit>

Learned Positional Embeddings
… …

x
<latexit sha1_base64="18rSS8Q1StnQECWLLJ7fRzPJUlA=">AAACzXicjVHJTsMwEH0Ne9kKHLlEVEicKifQAjcEF24UiS5iEXKCC1GzyXEQqMCVH+AKv4X4A/gLxiaV4IDAUZLxm/eePTNeGgaZYuytZI2Mjo1PTE6Vp2dm5+YrC4vtLMmlL1p+Eiay6/FMhEEsWipQoeimUvDIC0XH6+/pfOdayCxI4iN1m4qziF/GQS/wuSLo+DTi6srrDW7uzytVVnPrbHvLsVmN0XJdCurM2W40bMcgjFVRrGZSecUpLpDAR44IAjEUxSE4MnpO4IAhJewMA8IkRYHJC9yjTNqcWIIYnNA+fS9pd1KgMe21Z2bUPp0S0itJaWOVNAnxJMX6NNvkc+Os0d+8B8ZT3+2W/l7hFRGqcEXoX7oh8786XYtCD1umhoBqSg2iq/MLl9x0Rd/c/laVIoeUMB1fUF5S7BvlsM+20WSmdt1bbvLvhqlRvfcLbo4PfUsa8HCK9u9B26056zX3cKO6s1uMehLLWMEazXMTO9hHEy3yjvGEZ7xYB1Zu3VkPX1SrVGiW8GNZj59KhpPZ</latexit>

Fig. 1. Overview of the SPINVAE (Synthesizer Preset INter-
polation VAE) architecture.

3.2. Model

Thanks to its latent space properties, the VAE framework is
well suited to interpolation tasks. For instance, a VAE could
be trained to encode presets u into latent codes z, and to
decode them. Nonetheless, it is not certain that the latent
space would be continuous in the perceptual audio domain,
i.e. that similar z(n), z(m) latent vectors would be decoded
to u(n),u(m) that sound similar to a human. Ideally, any
z should hold meaningful compressed audio information.
Therefore, we employed a VAE that encodes and decodes
presets u and spectrograms x (synthesized using u) simulta-

Fr
am

eE
rg

_m
ed

Fr
am

eE
rg

_IQ
R

Sp
ec

Ce
nt

_m
ed

Sp
ec

Ce
nt

_IQ
R

Sp
ec

Cr
es

t_
m

ed
Sp

ec
Cr

es
t_

IQ
R

Sp
ec

De
cr

_m
ed

Sp
ec

De
cr

_IQ
R

Sp
ec

Fl
at

_m
ed

Sp
ec

Fl
at

_IQ
R

Sp
ec

Ku
rt_

m
ed

Sp
ec

Ku
rt_

IQ
R

Sp
ec

Ro
llO

ff_
m

ed
Sp

ec
Ro

llO
ff_

IQ
R

Sp
ec

Sk
ew

_m
ed

Sp
ec

Sk
ew

_IQ
R

Sp
ec

Sl
op

e_
m

ed
Sp

ec
Sl

op
e_

IQ
R

Sp
ec

Sp
re

ad
_m

ed
Sp

ec
Sp

re
ad

_IQ
R

Sp
ec

Va
r_

m
ed

Sp
ec

Va
r_

IQ
R

F0
_m

ed
F0

_IQ
R

Ha
rm

De
v_

m
ed

Ha
rm

De
v_

IQ
R

Ha
rm

Er
g_

m
ed

Ha
rm

Er
g_

IQ
R

In
Ha

rm
_m

ed
In

Ha
rm

_IQ
R

No
ise

Er
g_

m
ed

No
ise

Er
g_

IQ
R

Od
dE

ve
nR

at
io

_m
ed

Od
dE

ve
nR

at
io

_IQ
R

Am
pM

od At
t

At
tS

lo
pe De

c
De

cS
lo

pe
Ef

fD
ur

Fr
eq

M
od LA
T

RM
SE

nv
_m

ed
RM

SE
nv

_IQ
R Re
l

Te
m

pC
en

t0.0

2.5

5.0

7.5

Sm
oo

th
ne

ss
 (s

ca
le

d)

Reference linear interpolation
SPINVAE interpolation

Fig. 2. Interpolation smoothness (lower is better) for each audio feature extracted by Timbre Toolbox [17]. For features to lie
on a similar scale, values have been divided by the mean value of each feature for the reference model.

neously. The VAE loss becomes:

L(x,u) =βDKL [q(z|x,u)‖p(z)]
− Eq(z|x,u) [log p(x,u|z)]

(2)

We model p(x|z) and p(u|z) as independent distributions
(Fig. 1). The audio decoder p(x|z) models each spectrogram
pixel as a unit-variance Gaussian distribution. The audio en-
coder and decoder are nine-layer CNNs with residual connec-
tions.

The preset decoder p(u|z) uses appropriate distributions
for different synthesis parameters. Categorical parameters
(e.g. Algorithm, waveform type, etc.) are modeled by ap-
plying a softmax function on each output token. Numerical
parameters (e.g. frequency, attack time, etc.) are nonethe-
less discrete. Therefore, we’ll optimize the log-likelihood of
DLM distributions [8], which were originally proven effec-
tive to model pixel values. Such distributions are well suited
to discrete numerical data with a limited range, because they
compute probabilities using discrete bins, and tend to assign
more probability to the lowest and highest bins. Considering
the histogram of numerical parameters values, three mixture
components seemed appropriate. Moreover, we extended the
original DLM implementation to model parameters with dif-
ferent sets of discrete values (e.g. 8, 15, 100 quantized steps).

Among related works, only one [1] modeled presets as
sequences, using LSTMs. This was a natural choice because
parameter values are highly dependent on others (e.g. Algo-
rithm). However, our early tests using LSTMs had demon-
strated poor performance and unstable training. Therefore,
presets are encoded and decoded using multi-head attention
(Transformer, [7]) blocks without masking, i.e. each hidden
token can attend to tokens at any position in the sequence.
Inspired by [18], learnable input tokens eµ and eσ are con-
catenated to the preset embeddings’ sequence. These two ex-
tra tokens are processed by the Transformer encoder, and the
corresponding outputs are added to the CNN outputs. On the
decoder side, z is used to compute keys and values, while
some learned input embeddings are used to compute queries.

The Transformer encoder and decoder are made of six lay-
ers each, and the latent dimension and Transformer hidden
size have been empirically set to 256. Implementation and
training details are available in our source code repository1.

3.3. Audio Interpolation Metrics

After training and validation, the model has been used to com-
pute 1.5k interpolation sequences between pairs of consecu-
tive samples from the shuffled held-out test dataset (3k sam-
ples). First, two samples (x(n),u(n)) and (x(m),u(m)) are
encoded into z(n) = µ(n), z(m) = µ(m). Then, a latent linear
interpolation is performed to obtain {zt, t ∈ [1, T]} vectors,
with z1 = z(n) and zT = z(m). Each zt is finally decoded
into a ut preset, programmed into the synthesizer and ren-
dered to audio. Each sequence contains T = 9 steps.

Evaluating the quality of an interpolation is straightfor-
ward for simple artificial objects, e.g. 2D lines whose length
and orientation can be easily measured [16]. However, it is
harder to define what a ”good” audio interpolation is. Thus,
this work relies on Timbre Toolbox [17] to extract audio fea-
tures engineered by experts. They have been computed for
all rendered audio files. Timbre features can be grouped into
three main categories: temporal (e.g. attack time and slope),
spectral (e.g. spread, centroid), and harmonic (e.g. inhar-
monicity, odd-to-even ratio).

All available features but Noisiness, which was almost
constant to an inconsistent 1.0 value, have been included in
the results (Fig. 2). A logarithm function has been applied
to spectral features in Hz, for values to lie on an approxi-
mately linear perceptual scale. Timbre Toolbox features are
computed inside several time frames (slices), such that multi-
ple values are available for each feature of a given audio file.
Following Peeters et al. [17], only the median value and Inter-
Quartile Range (IQR) are used.

Similar to [16, 18], two metrics have been computed for
each interpolation sequence: smoothness and non-linearity.

1https://github.com/gwendal-lv/spinvae

The smoothness of a feature is defined as the RMS of the
second-order derivative of this feature’s values across the se-
quence. Non-linearity is the RMS distance between measured
feature values, and an ideal linear regression from start to end
values of the feature.

3.4. Results

The most common preset interpolation method, which is im-
plemented in some commercial synthesizers, consists in per-
forming an independent linear interpolation for each synthesis
parameter. This can lead to smooth interpolations, because
synthesis controls are usually mapped to a perceptual scale,
e.g. a log-scale for frequencies and amplitudes. Thus, this
method has been considered as the reference interpolation.

Fig. 2 shows the smoothness of audio features, for in-
terpolations computed by our model and using the reference
method. Thirty-five features are significantly smoother (one-
sided Wilcoxon signed-rank test, p-value < 0.05), and the
average smoothness is improved, i.e. reduced, by 12.6% (Ta-
ble 1). This table also presents improved nonlinearity results,
not displayed in Fig. 2 due to space constraints. The com-
panion website2 presents examples of interpolations between
presets, and also extrapolations beyond test presets.

Table 1. Performance of different interpolation models com-
pared to the reference linear per-parameter interpolation.
Number of significantly improved features (out of 46 total)
and average feature value variation (lower is better) for the
Smoothness and Nonlinearity metrics. More extensive results
and details about audio features are available on the compan-
ion website2.

improved Average
Model features variation (%)

Smooth. Nonlin. Smooth. Nonlin.
SPINVAE 35 38 −12.6 −12.3
Preset-only 25 30 −4.6 −6.4
Sound match. 8 7 +66.8 +29.7
DLM 2 31 37 −8.2 −10.4
DLM 4 30 40 −9.2 −14.5
Softmax 23 40 −1.2 −15.6
MLP 18 27 +21.0 −1.8
LSTM 15 1 +123 +93.5

4. ABLATION STUDY

Table 1 demonstrates that our interpolation model outper-
forms other related architectures, and provides insight into its
ability to increase performance.

Models from the first section of Table 1 are general ar-
chitecture variants of SPINVAE. The Preset-only model does

2https://gwendal-lv.github.io/spinvae/

not auto-encode x, i.e. it is a Transformer-VAE [18, 19] ap-
plied to presets. Compared to the reference, it improves the
interpolation but does not perform as well as the bimodal
SPINVAE. This indicates that learning audio representations
alongside preset representations is well suited to this interpo-
lation task. The Sound matching model uses the same archi-
tecture as [2, 4], which can be obtained by setting the preset
encoder outputs to zero i.e. q(z|x,u) = q(z|x). However, we
could not use the exact same decoder model as these previous
works, because they rely on bijective networks which impose
strong constraints on the latent dimension and are expected to
model continuous numerical synthesis parameters only. The
degraded performance of this Sound matching model proba-
bly comes from a discrepancy between the learned audio-only
latent representations, and the corresponding decoded presets.

The second section of Table 1 presents results obtained
with different probability distributions used to model numer-
ical synthesis parameters. DLM 2 and 4 designate DLMs of
two and four components, respectively (instead of three for
SPINVAE), while Softmax indicates that discrete numerical
values are learned as categories. The latter had been used
to improve sound matching performance [3, 4, 6]. The inter-
polation performance is slightly reduced when using DLM
2 distributions, which are not flexible enough to model the
data. DLM 4 and Softmax, nonetheless, improve linearity
while degrading smoothness. However, subjective listening
tests seemed to indicate that smoothness is more important to
interpolation quality than linearity. Therefore, SPINVAE uses
the DLM distribution, with three components rather than four.

Models from the last section of Table 1 encode and decode
presets using MLP or LSTM networks. They perform poorly,
which confirms that Transformer blocks are better suited to
handle synthesizer presets.

5. CONCLUSION

The SPINVAE architecture has been introduced to auto-
encode synthesizer presets and audio simultaneously, in order
to perform interpolation between presets. Sequences of syn-
thesized sounds, obtained from interpolated presets, were
evaluated by computing the smoothness and nonlinearity of
46 audio features. The evaluation demonstrated that SPIN-
VAE outperforms related architectures, e.g. generative sound
matching models. It is also the first model to encode and
decode presets using Transformer blocks, and to apply DLM
distributions to presets. An ablation study showed that these
two elements helped improve the interpolation.

The proposed model was trained on a complex and non-
differentiable FM synthesis process, and can be virtually ap-
plied to any commercial synthesizer. It can be integrated into
synthesizer plugins for live preset interpolation or sound de-
sign. Combined with sound matching, the model could even
perform interpolations between any re-synthesized recorded
sounds.

6. REFERENCES

[1] M. J. Yee-King, L. Fedden, and M. d’Inverno, “Au-
tomatic programming of vst sound synthesizers using
deep networks and other techniques,” IEEE Trans-
actions on Emerging Topics in Computational Intelli-
gence, vol. 2, no. 2, pp. 150–159, 2018.

[2] P. Esling, N. Masuda, A. Bardet, R. Despres, and
A. Chemla-Romeu-Santos, “Flow synthesizer: Univer-
sal audio synthesizer control with normalizing flows,”
Applied Sciences, vol. 10, no. 1, 2020.

[3] Zui Chen, Yansen Jing, Shengcheng Yuan, Yifei Xu,
Jian Wu, and Hang Zhao, “Sound2synth: Interpreting
sound via fm synthesizer parameters estimation,” in
Proceedings of the Thirty-First International Joint Con-
ference on Artificial Intelligence, IJCAI-22, 2022.

[4] Gwendal Le Vaillant, Thierry Dutoit, and Sebastien
Dekeyser, “Improving synthesizer programming from
variational autoencoders latent space,” in 24th Inter-
national Conference on Digital Audio Effects (DAFx),
2021.

[5] Christopher Mitcheltree and Hideki Koike, “Serumrnn:
Step by step audio vst effect programming,” in Inter-
national Conference on Computational Intelligence in
Music, Sound, Art and Design (Part of EvoStar), 2021.

[6] O. Barkan, D. Tsiris, O. Katz, and N. Koenigstein,
“Inversynth: Deep estimation of synthesizer parameter
configurations from audio signals,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
vol. 27, no. 12, pp. 2385–2396, 2019.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” in Ad-
vances in Neural Information Processing Systems, 2017.

[8] Tim Salimans, Andrej Karpathy, Xi Chen, and
Diederik P. Kingma, “PixelCNN++: Improving the pix-
elCNN with discretized logistic mixture likelihood and
other modifications,” in International Conference on
Learning Representations, 2017.

[9] J. Engel, C. Resnick, A. Roberts, S. Dieleman,
M. Norouzi, D. Eck, and K. Simonyan, “Neural au-
dio synthesis of musical notes with wavenet autoen-
coders,” in International Conference on Machine Learn-
ing, 2017, p. 1068–1077.

[10] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “Ddsp:
Differentiable digital signal processing,” in Interna-
tional Conference on Learning Representations, 2020.

[11] Krishna Subramani, Preeti Rao, and Alexandre
D’Hooge, “Vapar synth - a variational parametric model
for audio synthesis,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2020.

[12] Franco Caspe, Andrew McPherson, and Mark Sandler,
“DDX7: Differentiable FM Synthesis of Musical In-
strument Sounds,” Proceedings of the 23rd Interna-
tional Society for Music Information Retrieval Confer-
ence, 2022.

[13] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, 1997.

[14] D. P. Kingma and M. Welling, “Auto-encoding vari-
ational bayes,” International Conference on Learning
Representations, 2014.

[15] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot,
M. Botvinick, S. Mohamed, and A. Lerchner, “beta-vae:
Learning basic visual concepts with a constrained varia-
tional framework,” International Conference on Learn-
ing Representations, 2017.

[16] David Berthelot, Colin Raffel, Aurko Roy, and Ian
Goodfellow, “Understanding and improving interpola-
tion in autoencoders via an adversarial regularizer,” in
International Conference on Learning Representations,
2019.

[17] Geoffroy Peeters, Bruno Giordano, Patrick Susini, and
Nicolas Misdariis, “The timbre toolbox: Extracting au-
dio descriptors from musical signals,” in The Journal of
the Acoustical Society of America, 2011, vol. 130.

[18] Mathis Petrovich, Michael J. Black, and Gül Varol,
“Action-conditioned 3D human motion synthesis with
transformer VAE,” in International Conference on Com-
puter Vision (ICCV), 2021.

[19] Junyan Jiang, Gus G. Xia, Dave B. Carlton, Chris N.
Anderson, and Ryan H. Miyakawa, “Transformer
vae: A hierarchical model for structure-aware and in-
terpretable music representation learning,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020.

