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Abstract

Social coding platforms such as GitHub and mechanisms such as pull requests,
code reviews, issue reports, and commenting allow developers to contribute to
several different software projects without any geographical restrictions. Devel-
opers use software bots in order to reduce their workload by automating tasks
such as reporting continuous integration failures and test coverage, checking
license agreement signing, triaging issues, reviewing code and pull requests, up-
dating dependencies, etc. As such, bots have become very common in software
development practices and they are widely used in software projects. While
bots offer many benefits, they also have limitations and potential drawbacks,
making it necessary to study their impact on software development. However,
there is no automatic way to distinguish human accounts from bot accounts in
software development repositories. Studies that investigated the effect of bots
relied on a manual inspection or simple heuristics like the presence of “bot” in
the account name to identify bots in software repositories, but these methods
are either inefficient or produce many false negatives.

In this dissertation the main goal is to fill this gap by conducting empiri-
cal studies about software development bots and to develope tools and tech-
niques to automatically identify them. We shed light on the fact that bots are
prevalent in software repositories and commonly active contributors to such
projects. We developed a ground truth dataset of GitHub bot accounts and
human accounts, characterized bots based on their pull request and issue com-
menting activities, and trained a classification model to identify bots based on
the discovered characteristics. Since the model was able to identify most bots
effectively, we included it as an integrated part of an open-source tool called
BoDeGHa to make it easier for practitioners and researchers to use.

We extended the classification model to be able to identify bots in commit
data. We also developed another tool that predicts the type of Git accounts
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based on their commit message. Additionally, we created a classification model
using natural language processing techniques to identify bot activities. We fur-
ther developed a classification model to improve the predictions of BoDeGHa.
Finally, we carried out a comparison between existing bot detection methods
and provided an ensemble model that combines all these techniques to iden-
tify bots. In conclusion, this dissertation provides valuable insights into the
prevalence and impact of bots in software development and offers practical
tools and techniques to automatically identify them, which can benefit both
practitioners and researchers in the field.
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CHAPTER 1
Introduction

“What you seek is seeking you.”

Molana Rumi

I started my PhD studies in 2019 after a decade of practical software de-
velopment experience. Throughout my career as software developer and in my
previous academic studies I have learnt and used a wide variety of different
software development methodologies, technologies, design patterns, and tools.
My experience extends to collaborative software development with other devel-
opers using advanced version control tools and social coding platforms. I have
been using GitHub as a social coding platform and a codebase for collaborating
with other software developers.

Today, GitHub has become the most popular platform to host open-source
software projects. It is also an excellent source of data to empirically study
contemporary software development practices and projects. GitHub data is
therefore being used by many researchers to extract knowledge to analyse,
understand and improve software development processes.

With my software development background and data analytics experience
I decided to pursue doctoral studies in this important field of software devel-
opment analytics. To pursue my PhD goal I started to empirically analyse
development automation tools. This dissertation presents my research that I
have conducted over the last four years. The dissertation explains my research
objectives, thesis statement, methodology, findings and software artifacts as
well as as discussions around the subject.

1



2 Introduction

1.1. Thesis objectives

The emergence of social coding platforms such as GitHub has revolutionized
collaborative software development practices in the last decade, especially in
the open-source community. Developers collaborate in many different soft-
ware projects without geographical restrictions. They contribute code using
mechanisms such as pull requests, perform code reviews, submit issues and
communicate with other developers through commenting mechanisms in so-
cial coding platforms. This change in style of development has significantly
increased the workload of software developers and has made software main-
tenance more challenging. In order to reduce this workload, developers tend
to adopt workflow automation tools such as bots. Such tools facilitate collab-
orative software development by performing repetitive tasks such as running
tests, building, deploying and releasing new versions, reporting code coverage,
performing code quality checks and welcoming new contributors.

As such, workflow automation and bots have become a key aspect of con-
temporary collaborative software development practices. Thus, it is important
to study the evolution and impact of the presence of such tools on the collabo-
rative development process. There is, however, no automatic method available
for identifying automated bot activities in software development repositories.
Research in this area focuses primarily on proposing bots, as well as analysing
specific bots and their impact. Studies that investigated the effect of bots in
software engineering process, relied on a manual method to identify bots in
software repositories and there is no automatic method to accurately identify
bots. This dissertation aims to address the lack of the presence of an auto-
matic bot identification method by proposing classification models and tools
to detect them.

In this regard, we have conducted several empirical studies in order to reveal
the prevalence of automated development activities. First, we analyze the
evolution of continuous integration systems as the backbone of such automatic
tools and track the historical changes in their trends of usage. Then, we show
that bots are among the most active contributors and existing methods are not
able to effectively identify them. Next, we create a large ground-truth dataset
of bot and human accounts based on their activities in GitHub pull request and
issue comments. We characterized automated activities and we identified four
features that allowed us to create a classification model and evaluate it on this
ground-truth dataset. We also developed an open-source command-line tool
to detect bots in GitHub repositories. Finally, we report about the studies to
improve the existing models, extending the model to identify bots in commit
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activities and the associated tool, and providing more advanced classification
models to detect bots and human activities.

1.2. Background

Software development includes several phases and iterations, including collect-
ing requirements, analysis, design, creating applications, testing them, deploy-
ing, and maintaining the released product. These steps are collectively called
the Software Development LifeCycle (SDLC). A piece of software goes through
all these processes from concept to launch and continues to evolve after the
initial release. Each step in this process typically produces an output (e.g., an
idea, a document, a diagram, or a working piece of software), which functions
as an input for the next step (Ince & Andrews, 1998).

Despite their sequential nature, these steps do not end once the software
has been delivered to stakeholders, and the software development team repeats
them many times to enhance the product (Davis et al., 1988). A full software
development cycle is followed during each iteration which minimizes the overall
risk of failure and allows the project to adapt to changes quickly. An SDLC
model aims to ensure successful product delivery through a series of steps.
Some of the prominent SDLC models are the waterfall model, iterative model,
spiral model, etc (Davis et al., 1988; Sultanía, 2015).

Development of software is a collaborative problem-solving activity that
requires knowledge acquisition, information sharing, and integration, as well
as minimal communication breakdowns (Bird, 2011; Tymchuk et al., 2014).
Developing software systems successfully requires collaboration across every
phase of the SDLC. Developers typically perform many different tasks during
a software development process, including creating software artifacts (source
code, models, documentation, and test scenarios), managing and coordinat-
ing their work, as well as communicating with other developers (Whitehead,
2007). Meanwhile, the software artifacts go through changes several times by
different developers in different steps. Hence, an orchestrator tool is made for
facilitating the collaboration between developers. A Version Control System
(VCS) (Tichy, 1985) is a tool that facilitates the collaboration in a software
project by tracking changes made to the source code and allowing developers
to work on the codebase concurrently.
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1.3. Version control systems

Change is a crucial part of software development as a software product en-
counters many modifications over the course of its lifetime. In order to track
these changes version control systems (VCS) are commonly used. The main
purpose of VCS is collaboration (Koc & Tansel, 2011). Early VCSs were de-
veloped in the 1970s to facilitate the continuous modification of source code
by multiple developers (Rochkind, 1975). A VCS enables developers to collab-
orate on a shared codebase without interrupting each other. A VCS provides
the ability to track the evolution of files, and the state of code at a specific
time and restore code to a specific time if required. A VCS is not just about
code changes but it also stores, who, when, and (possibly) why this change has
happened (Koc & Tansel, 2011).

VCSs come in two forms, Centralized Version Control System (CVCS) and
Distributed Version Control System (DVCS) (Otte, 2009). In the centralised
model users work with a central repository while in the distributed model
there is no central repository but each user works on their local repository.
Concurrent Versions System (CVS) and Subversion have been very popular
CVCS tools in the past, next to commercial tools such as Perforce, ClearCase
and many more (de Alwis & Sillito, 2009; Collin-Sussmen et al., 2002). Git,
Mercurial, Bazaar, and BitKeeper are well-known examples of DVCS (Collin-
Sussmen et al., 2002). CVCSs come with some disadvantages. Given that the
code base needs to be stored on a central server, there is a risk of losing all
changes in the event of server corruption, unsolicited changes could disrupt
the development process, and if the server goes down, developers will not be
able to save their versioned changes. Most open-source software projects have
therefore adopted distributed version control systems to record, manage, and
propagate source code changes to avoid problems caused by the aforementioned
risks (Somasundaram, 2013).

In 2005, Linus Torvalds released a new version control system called Git.
Since Git is the most popular DVCS and used by most software development
platforms, we focus in this section specifically on it. Torvalds’ goal was to
develop a version control tool with an emphasis on speed and support for dis-
tributed and non-linear way of coding which were not supported by existing
CVCSs. Although Git was initially not intended as a general-purpose tool,
it provided generic concepts that enabled agile development processes (Just
et al., 2016). This has made Git one of the most widely used DVCS (Otte,
2009) nowadays, both in the open-source community and the industry. It
allows developers to work offline in their own branch more efficiently by pro-
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viding a large set of powerful features such as parallel branches and provides
opportunities for teams to increase agility.

In addition to the general features that all VCSs provide, Git offers several
additional features that make it an attractive DVCS. It allows the develop-
ment team to manage parallel development activities with branches in order
to isolate individual work and merge the result back to the main branch after
finishing the tasks. This feature especially makes it more interesting than its
competitor Mercurial. Git also provides more level of granularity when merging
operations which means it allows developers to more easily manage and resolve
conflicts that may arise when merging changes from multiple sources (Just
et al., 2016).

1.4. Collaborative software development

The demand for better software products, faster services, and the growth in the
number of companies providing these solutions have led in the past decades
to companies distributing their development processes overseas, also known
as global software development. It is common for a software project to have
developers in different locations, often on more than one continent (Herbsleb,
2007). Software development is considered by researchers to be a complicated
activity, since it involves many risks and uncertainties. Adding the physical
and temporal distance between the participants of the development process to
the traditional difficulty of developing software increases the challenges of the
process and creates new difficulties (Herbsleb, 2007).

To ensure the success of a software development project, collaboration be-
tween developers is necessary at all stages of the development cycle. It has
been a challenge in global software engineering research and practice to under-
stand developer collaboration practices as well as communication and messag-
ing tools used to facilitate developers working together in software development
tasks (Dabbish et al., 2012; Gousios et al., 2016, 2015; Lanubile et al., 2010;
Constantino et al., 2020). Researchers proposed and evaluated tools (Bjorn
et al., 2014; Lanubile et al., 2010) and models (Arciniegas-Mendez et al., 2017;
Steinmacher et al., 2019), in order to facilitate collaboration and help devel-
opers with collaborative tasks.

Open-source software (OSS) development is a notable model of collabora-
tive development (Laurent, 2004; Riehle et al., 2009) that is increasingly rely-
ing on third-party contributors. By providing workflows that allow developers
to work in isolation, as well as to collaborate by integrating their work with
other developers, DVCSs have enabled the open-source movement to generate
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more contributions (Kalliamvakou et al., 2014a). Using branching and merg-
ing, developers can separate their work by purpose in a dedicated workspace
and merge their code frequently. While DVCSs allow developers to work in
isolation and merge their changes into a software project, they still require
a central code repository where the code is placed. Code hosting platforms
(such as SourceForge) or social coding platforms (such as GitHub, GitLab and
BitBucket) provide such a central space.

Collaboration extends software development from only a technical activity
to a social phenomenon (Tsay et al., 2014a). Social activities such as com-
menting and reviewing play an essential role in such an environment and are
sometimes as critical as technical activities (Tsay et al., 2014b). Social cod-
ing platforms combine social and technical requirements of collaboration in
software development in a single environment (Metz, 2015). They suggest an
open workflow where collaborators can participate in projects in a variety of
ways. For example, contributors can contribute to discussions regarding bugs
and features through an issue tracking system, or make changes to a project
directly through Git, and indirectly through the pull request mechanism and
let it be reviewed and accepted by maintainers through a code review mech-
anism (Gousios et al., 2014; Tsay et al., 2014a,b). Among the existing social
coding platforms, GitHub is the most popular one (Varuna & Mohan, 2019).

1.5. Pull-based development

Git and GitHub have revolutionized software development by facilitating dis-
tributed collaborative software development (Arora et al., 2016). GitHub is by
far the largest social coding platform, hosting the development history of mil-
lions of collaborative software repositories, and accommodating over 73 million
users in 2021 (GitHub, 2021). Features provided by GitHub make it a lot eas-
ier for individuals and teams to use Git as a DVCS and collaborate in software
development through a web interface. The reason for GitHub’s reputation as
a social coding platform is that, in addition to providing a Git repository host
and all of the Git capabilities, it also allows developers to contribute code
through a Pull Request (PR).

The novelty of this approach lies in the fact that the development effort is
decoupled from the decision to incorporate the results of the development into
the codebase (Gousios et al., 2014, 2015, 2016). In the pull-based development
model, one can distinguish between direct and indirect developer contributions
to a project. Direct contributions come from a typically small group of develop-
ers with direct access to the main repository, while indirect contributions come
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from developers who fork the main repository, update their copies locally, and
submit pull requests. The indirect contribution method allows contributors to
develop and submit their code without having to deal with repository main-
tenance concerns and enables maintainers to review the code, test it, request
changes, and finally integrate it into the codebase without getting involved in
code development.

1.6. Development workflow automation

1.6.1 Continuous integration

It’s been more than a decade that software developers work on the same project
without geographical restrictions and commit codes to the code base regularly
in order to check the integration issues and to ensure that the latest version
of the code is available for other developers (Jiménez et al., 2009). CI is a
software development practice in which a tool continuously integrates, tests,
and builds developer code after each commit or at specific times, and reports
the build’s results (Vasilescu et al., 2014). CI systems reduce the integration
failures by applying quality control checks to the code contributions. Duvall
et al. (Duvall et al., 2007) reported that this results in a faster development
process and improved software quality.

CI systems come in two forms. They are either offered as cloud-based
services that enable developers to use the continuous integration process only
by connecting their repository to the service, or they are on-premise tools that
require a server and setup. Many CI systems exist, some of the most well-
known ones are Travis, CircleCI, Jenkins, GitLab CI and GitHub Actions.

GitHub’s implementation of the pull-based development model makes it
possible for anyone to contribute code to any repository within a minute. This
provides exceptionally low entry barriers for potential contributors but also
presents testing-related challenges reported by GitHub project owners (Pham
et al., 2013). These challenges led software developers to make use of CI
systems to facilitate automated testing. Whenever a commit or pull request is
received, the contribution is automatically merged into a testing branch, the
existing test suite is run, and the author and owner of the project are notified.

1.6.2 Continuous deployment and delivery

Continuous delivery and deployment are continuous practices that enable orga-
nizations to frequently and reliably release new features (Shahin et al., 2017).
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The terms continuous delivery and continuous deployment are sometimes used
interchangeably in academic and industrial contexts, but each has its own def-
inition (Fitzgerald & Stol, 2017).

Continuous DElivery (CDE) ensures that an application is always in a
production-ready state following the successful passing of automated tests and
quality checks (Weber et al., 2016). Chen et al. (Chen, 2015) reported that,
CDE follows practices that offer benefits such as reducing deployment risk,
lowering costs to deliver software packages, and getting faster user feedback.

Continuous Deployment (CD) automates the deployment of an application
to production or to a customer’s environment on a continuous basis (Weber
et al., 2016). An important distinction between CD and CDE is the production
environment. Skelton et al. (Skelton & O’Dell, 2016) consider CD as a push-
based approach and there is no manual step before the production, while CDE
approach is a pull-based approach for which a business decides what and when
to deploy. Although CDE practices can be applied to all types of systems
and organizations, CD practices may only be relevant for certain types of
organizations or systems.

Hereafter when we use the term continuous integration, or CI for short, we
refer to tools and services dedicated to all activities of CI and CD/CDE, either
cloud-based or on-premise.

1.6.3 Development bots

As mentioned before, social coding platforms such as GitHub have taken the
collaborative nature of open-source software development to a new level, by
integrating mechanisms such as issue reporting, pull requests, commenting and
reviewing support into distributed version control tools (Gousios et al., 2014;
Tsay et al., 2014a,b). According to (Gousios et al., 2016) the pull-based
development method has significantly increased the workload of repository
maintainers to communicate with other contributors, review source code, deal
with contributor license agreement issues, explain project guidelines, run tests
and build code, and merge pull requests.

To reduce this workload, repository maintainers have been adopting au-
tomated tools to perform repetitive tasks in the development process (Wessel
et al., 2018b), such as updating dependencies (Mirhosseini & Parnin, 2017)
(e.g., dependabot) and fixing vulnerabilities (e.g., snykbot), improving code
reviews (e.g., Review bot) (Balachandran, 2013) and documenting code refac-
torings (Rebai et al., 2019). Such tools are commonly known as development
bots (Erlenhov et al., 2020b), or bots for short. They are generally seen as a
promising approach to deal with the ever-increasing complexity of contempo-
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rary distributed software development. Bots are also sometimes a representa-
tion of the presence of a CI system in a project, for example, CodeCov is a
code coverage analyser that reports the result of running test suites in CI (Zhai
et al., 2019). Bots have been reported to automate a significant amount of de-
velopment workload, and many of them are among the most active project
contributors (Golzadeh et al., 2022a). However, many of these bot accounts
are not marked as bot in GitHub since they use regular accounts like other
developers. This can impose issues for both researchers and practitioners.

1.7. Thesis statement

In the light of all the above explanations and the increasing use of bots in the
GitHub social coding platform, there is a need to understand their activities
and provide automatic methods to identify bots. Appropriate bot identification
techniques and tools can help practitioners and researchers to easily identify
such bots and avoid overlooking the implications of their use, both in practice
and while studying software engineering data.

When I started my PhD research, there were no available automatic tech-
niques to accurately identify GitHub bots. Bot identification was achieved only
through a manual investigation or very simple heuristics such as the presence
of the string "bot" in the account name. Such heuristics are very shallow and
lead to a lot of incorrect predictions. It was therefore necessary to propose
better techniques for identifying bots in social coding platforms like GitHub.
This has led me to formulate the following thesis statement:

Development bots are increasingly used to automate more and more
aspects of collaborative open-source software development. This raises
the need to accurately identify bots and their automated activities in
social coding platforms.

Thesis statementThesis statement

1.8. Contributions

This dissertation contributes to the body of software engineering knowledge by
providing insights about CIs and bot activities, datasets, classification models
and corresponding tools. Following is an overview of all contributions:
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• A dataset of CI usage in the development repository of 91,810 npm pack-
ages in GitHub.

• Insights regarding the usage and evolution of CI tools in GitHub reposi-
tories, including CI churn, migration between CIs, co-usage of CIs, and
the effect of the introduction of GitHub Actions (GitHub’s integrated CI
system) on the usage of other CIs.

• Insights regarding the usage of bots in GitHub repositories and evidence
that many bots are active contributors, which may pose different research
and practice challenges.

• A ground-truth dataset of bot accounts in GitHub.

• Characterisation of bot activities in GitHub pull request and issue com-
ments in order to distinguish bot activity from human activity.

• A classification model to detect bot based on their commenting activ-
ity in GitHub issue and pull request comments and the corresponding
command-line tool called BoDeGHa.

• A classification model to detect bots that are active in commits, based on
their commit messages and the corresponding command-line tool called
BoDeGiC.

• A probabilistic classification model to distinguish bot activity from hu-
man activity in GitHub. This classification model makes it possible to
identify accounts that have been shared between a human and a bot
known as mixed accounts.

• A classification model to improve predictions of BoDeGHa by using di-
verging predictions of accounts that are active in multiple repositories.

• A comparison of five available bot identification techniques and ensemble
model that uses that five different bot identification in a single classifier
in order to improve bot identification.

1.9. Thesis structure

This dissertation is organized into 7 chapters. The current chapter discussed
the basics and thesis objectives and introduces the structure of the thesis as well
as the published articles that I have co-authored. As a result of my research
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the reader will find a literature review of the state of the art in Chapter 2.
Detailed results and findings of my studies are presented in the Chapters 3, 4,
5 and 6. Chapter 7 summarizes the main contributions of this dissertation and
discusses future work. More specifically:

Chapter 2 presents and discusses the state of the art in those research do-
mains that are closely related to my work. This comprises an introduction to
collaborative software development and social coding platforms at the begin-
ning of the chapter. The chapter continues by discussing about studies related
to continuous integration tools and services. After that, an overview of the
state of the art on bots in software engineering is presented. The final section
introduces studies related to the implications of the use of such automation
tools.

Chapter 3 presents the results of an empirical analysis of the CI landscape
on GitHub. It presents evidence of how the GitHub CI landscape has evolved
and how GitHub projects use CIs simultaneously or migrate to other CIs.
The chapter also narrows down on how the introduction of GitHub Actions
has changed the GitHub CI landscape. In addition, we discuss contributor
acknowledgement in GitHub and the fact that bots are among the active con-
tributors to GitHub projects, so identifying and understanding them is crucial
for both practitioners and researchers. The results presented in this chapter
are based on the following published peer-reviewed scientific articles:

• Golzadeh, M., Decan, A., & Mens, T. (2022) On the rise and fall of CI
services in GitHub. In International Conference on Software Analysis,
Evolution, and Reengineering (SANER),
DOI 10.1109/SANER53432.2022.00084

• Golzadeh, M., Mens, T., Decan, A., Constantinou, E., & Chidambaram,
N.(2022) Recognizing bot activity in collaborative software development.
IEEE Software special issue on software bots,
DOI 10.1109/MS.2022.3178601

Chapter 4 describes a step-by-step process to create a ground-truth dataset
of bot and human accounts in a large set of GitHub repositories. While cre-
ating this ground-truth we observed some specific behavior in bot accounts.
For example, we noticed that bots tend to use repetitive messages and they
rarely submit empty comments due to the nature of their tasks. This chapter
discusses these characteristics in detail and describes how they can be used
to develop an automated technique to distinguish bots from human contribu-
tors. The results presented in this chapter are based on the following published
peer-reviewed scientific articles and dataset:

https://ieeexplore.ieee.org/document/9825792
https://ieeexplore.ieee.org/document/9782582
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• Golzadeh, M., Legay, D., Decan, A., & Mens, T. (2020) Bot or not? De-
tecting bots in GitHub pull request activity based on comment similarity.
International ICSE Workshop on Bots in Software Engineering (BotSE),
DOI 10.1145/3387940.3391503

• Golzadeh, M., Decan, A., Legay, D., & Mens, T. (2021) A ground-truth
dataset and classification model for detecting bots in GitHub issue and
PR comments. Journal of Systems and Software, 175,
DOI 10.1016/j.jss.2021.110911

• Golzadeh, M., Decan, A., Legay, D., & Mens, T. (2021) A ground-truth
dataset to identify bots in GitHub,
DOI 10.5281/zenodo.4000388

Chapter 5 explains how we trained a classification model for identifying
bots using the features presented in Chapter 4, along with the evaluation of
the model. Based on this model we developed and released an open-source
command-line tool called BoDeGHa that allows practitioners and researchers
to use the classification model in practice. Lastly, we discuss the limitations
of our study as well as threats to their validity. The results presented in this
chapter are based on the following published peer-reviewed scientific article
and an associated tool that we developed:

• Golzadeh, M., Decan, A., Legay, D., & Mens, T. (2021) A ground-truth
dataset and classification model for detecting bots in GitHub issue and
PR comments. Journal of Systems and Software, 175,
DOI 10.1016/j.jss.2021.110911

• BoDeGHa: An automated tool to identify bots in GitHub repositories by
analysing pull request and issue comments.
https://github.com/mehdigolzadeh/BoDeGHa

Chapter 6 presents our effort to overcome the limitations of the model pre-
sented in Chapter 5 in order to improve bot identification. We achieved this
goal both by improving the model of Chapter 5 and by developing new classifi-
cation models. We extended our approach to work with other kind of software
development activities. We also implemented a more fine-grained model to
classify individual bot activities and human activities instead of classifying
GitHub accounts. We improved the accuracy of BoDeGHa by using predic-
tions of accounts in multiple repositories and we created an ensemble model
based on multiple bot identification techniques. The results presented in this

https://doi.org/10.1145/3387940.3391503
https://doi.org/10.1016/j.jss.2021.110911
https://doi.org/10.5281/zenodo.4000388
https://doi.org/10.1016/j.jss.2021.110911
https://github.com/mehdigolzadeh/BoDeGHa
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chapter are based on the following published peer-reviewed scientific articles
and an associated tool that we developed:

• Golzadeh, M., Decan, A., & Mens, T. (2020). Evaluating a bot detection
model on git commit messages. In 19th Belgium-Netherlands Software
Evolution Workshop (BENEVOL)
DOI 10.48550/arXiv.2103.11779

• BoDeGiC: An automated tool to identify bots in Git repositories by
analysing commit information.
https://github.com/mehdigolzadeh/BoDeGiC

• Golzadeh, M., Decan, A., Constantinou, E., & Mens, T. (2021a). Iden-
tifying bot activity in GitHub pull request and issue comments. In In-
ternational ICSE Workshop on Bots in Software Engineering (BotSE).
DOI 10.1109/BotSE52550.2021.00012

• Chidambaram, N., Decan, A., & Golzadeh, M. (2022). Leveraging pre-
dictions from multiple repositories to improve bot detection. In Interna-
tional ICSE Workshop on Bots in Software Engineering (BotSE).
DOI 10.1145/3528228.3528403

• Golzadeh, M., Decan, A., & Chidambaram, N. (2022a). On the accuracy
of bot identification tools. In International ICSE Workshop on Bots in
Software Engineering (BotSE),
DOI 10.1145/3528228.3528406

Fig. 1.1 (at the end of this chapter) provides an overview of the structure
of the thesis chapters, highlighting the organization of the papers and their
corresponding outputs.

Finally, Chapter 7 highlights the contributions towards the thesis statement
and reflects on the developed dataset, classification models and tools. It also
opens perspectives and gives directions for future research.

1.10. Additional publications

Alongside the publications listed above, my PhD research has resulted in the
following additional papers that are part of a warm-up in my PhD studies or
that have resulted from collaboration with other researchers.

https://doi.org/10.48550/arXiv.2103.11779
https://github.com/mehdigolzadeh/BoDeGiC
https://doi.org/10.1109/BotSE52550.2021.00012
https://doi.org/10.1145/3528228.3528403
https://doi.org/10.1145/3528228.3528406
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• Golzadeh, M., Decan, A., & Mens, T. (2019). On the effect of discussions
on pull request decisions. In the 18th Belgium-Netherlands Software
Evolution Workshop (BENEVOL),
http://ceur-ws.org/Vol-2605/16.pdf

• Golzadeh, M., (2019). Analysing socio-technical congruence in the pack-
age dependency network of Cargo. In the 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering- Graduate student competition track
(ESEC-FSE),
DOI 10.1145/3338906.3342497

• Decan, A., Mens, T., Rostami Mazrae, P, Golzadeh, M. (2022). On the
Use of GitHub Actions in Software Development Repositories. In the
38th International Conference on Software Maintenance and Evolution
(ICSME) 2022,
10.1109/ICSME55016.2022.00029

• Rostami Mazrae, P., Mens, T., Golzadeh, M. , Decan, A. (2023). On the
usage, co-usage and migration of CI/CD tools: A qualitative analysis.
Empirical Software Engineering 2023,
10.1007/s10664-022-10285-5

http://ceur-ws.org/Vol-2605/16.pdf
https://doi.org/10.1145/3338906.3342497
https://ieeexplore.ieee.org/document/9978190
https://www.springerprofessional.de/on-the-usage-co-usage-and-migration-of-ci-cd-tools-a-qualitative/24596704
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CHAPTER 2
State of the art

“Knowledge is the light that illuminates
the path of those who seek it.”

Mulla Sadra Mirdamad

The emergence of social coding platforms, the distributed collaboration
in software development and the pull-based contribution style has changed
the way developers collaborate in software projects, especially in open-source
software development. Due to an increase in workload, workflow automation
practices are becoming more popular. Developers widely use automation sys-
tems in order to support their repetitive tasks. For example, testing, building,
quality checking, deploying code, detecting vulnerabilities and updating depen-
dencies are no longer manual tasks and many software projects use CI tools
and development bots to automate these repetitive tasks.

Numerous studies have been conducted to identify the positive and negative
impact of workflow automation tools on software development processes. This
chapter provides the state of the art of the research on this domain. It begins
with a review of past and recent research about CI systems. It presents a
comprehensive insight about the studies related to continuous integration and
the impact of adopting such tools during collaborative software development.
The chapter continues with studies that have focused on the use of bots in
software engineering. The research in this area includes studies that propose
bots to help software developers, studies that investigate the impact of bots
in software development process and studies related to identifying bot account
and bot activities.

17
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2.1. Continuous integration systems

Continuous Integration (CI) is one of the core practices of the eXtreme Pro-
gramming (XP) methodology proposed by Beck & Andres (2004). By making
integration a daily practice, continuous integration aims to reduce the cost as-
sociated with integrating code developed by different developers within a team
(or between different teams). While CI encourages collaborative code develop-
ment and knowledge sharing its primary advantage is the reduced risk of large
and cumbersome integrations (Beck & Andres, 2004).

With the rise of social coding platforms such as GitHub, software develop-
ment has become increasingly collaborative. This has enhanced the popularity
of modern distributed version control system (), especially those based on
Git (Vasilescu et al., 2015b). Several CI services have been offered to sup-
port developers in social coding platforms (e.g., Travis, CircleCI, Azure De-
vOps and Jenkins) in order to ease the automation of build pipelines based on
source code changes on VCS (Gousios et al., 2015). Studies indicate that CI
is being adopted by more and more projects (Hilton et al., 2016a) and provide
evidence of changes in the practice of these projects, such as an increase in
commit frequency and an increase in test automation (Zhao et al., 2017).

Fowler & Foemmel (2006) presented ten core CI practices in which they
claimed they could be successful in increasing the speed and improving the
quality of software development feedback cycles. Elazhary et al. (2021) studied
how organisations implemented these practices and found the benefits and
challenges as well as how they changed the implementation based on their
needs and preferences. Researchers have investigated different aspects of using
CI services in projects, such as understanding the implementation of CI services
in different environments (Ståhl & Bosch, 2014; Debbiche et al., 2014; Zampetti
et al., 2017; Sampedro et al., 2018; Amrit & Meijberg, 2018), discovering their
potential benefits and determining how to take advantage of them (Kaynak
et al., 2019; Bernardo et al., 2018; Embury & Page, 2018; Rahman et al., 2018;
Sampedro et al., 2018; Rahman & Roy, 2017), weaknesses (Rausch et al., 2017;
Vassallo et al., 2019; Widder et al., 2019; Vassallo et al., 2018). Researchers
also uncovered changes in the developer’s behaviour after using a CI tool Gupta
et al. (2017); Baltes et al. (2018); Zampetti et al. (2019) and analysed reasons
and effects of build failure and success while using CI Jain et al. (2019); Vassallo
et al. (2017); Rausch et al. (2017); Ortu et al. (2018). All these studies reveal
the importance of CI tools and their immense impact on commercial and open-
source software.

In addition, researchers classified software repositories utilizing CI tools
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according to their characteristics Gautam et al. (2017), the success of CI us-
age (Vasilescu et al., 2014), the human resources required to keep CI run-
ning (Manglaviti et al., 2017), analysed burdens of implementing CI (Mårtens-
son et al., 2017), build time of CI (Laukkanen & Mäntylä, 2015; Debroy et al.,
2018; Rodríguez et al., 2013; Bisong et al., 2017; Ghaleb et al., 2019) and
failure (Islam & Zibran, 2017; Paixão et al., 2017). Some others focused on
continuous delivery (Paule et al., 2019; Laukkanen et al., 2018; Vassallo et al.,
2016; Chen, 2015; Neely & Stolt, 2013) and deployment features of CI sys-
tems (De Jong & Van Deursen, 2015; Leppänen et al., 2015; Rahman et al.,
2015; Claps et al., 2015; Rossi et al., 2016).

Vasilescu et al. (2015a) performed a quantitative study on 246 GitHub
projects to demonstrate how CI can improve these projects. CI usage resulted
in a higher volume of pull requests getting accepted, as well as a higher number
of defects being discovered due to the increased volume of pull requests. In
a 2016 study of 34,544 open-source projects on GitHub and a survey of 442
developers, many teams did not use continuous integration due to a lack of
familiarity with the technology according to Hilton et al. (2016a). Yu et al.
(2015) performed a regression analysis on 103K pull requests from 40 different
GitHub projects in order to identify reasons that affect pull request evaluation
latency. These studies focused on open-source software projects hosted on
GitHub but there are also studies that have focused on CI usage in industrial
cases.

In a series of studies Ståhl & Bosch (2013); Ståhl & Bosch (2014); Ståhl
& Bosch (2016); Ståhl et al. (2017) analysed the relation between different
aspects of software development and CI on industrial cases. Martensson et al.
(2019) conducted a qualitative study with interviewees from four companies
that develop large-scale embedded software systems. They built a model that
shows how the CI/CD pipeline can be designed to include test activities. A
mixed-method study conducted by Savor et al. (2016) of CI usage in two com-
panies revealed that the CD part of the tools was not being utilized to its
full potential due to company policies. Challenges identified with CI usage in-
cluded: the need for continuous investment in the CI, the difficulty in finding
and keeping skilled developers to configure and use the CI, the need to em-
power a culture that encourages developers to use the CI, and the additional
effort involved to keep the software (including the CI) up to date.

Researchers studied available CI services such as Travis (Souza & Silva,
2017; Gallaba & McIntosh, 2020; Pinto et al., 2018), CircleCI (Gallaba et al.,
2022), GitHub Actions (Chandrasekara & Herath, 2021; Valenzuela-Toledo &
Bergel, 2022), and Azure (Buchanan et al., 2020). Beller et al. (2017) per-
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formed a quantitative study that examined the use of Travis in public GitHub
repositories exclusively. They showed that, by 2017, Travis usage had increased
a lot, being used in one-third of popular projects on GitHub. An analysis of
2.6M+ Java and Ruby builds revealed that CI usage was highly focused on
testing-related tasks, mainly allowing developers to test their software on dif-
ferent platforms. It was, however, not possible for CI tools to replace local
testing, due to the latency between writing the code and receiving feedback
from the test. In another study, Widder et al. (2018) analysed 8,124 GitHub
projects that had stopped using Travis. According to their findings, projects
abandon this CI primarily due to its difficulty accommodating specific project
complexity.

In a study conducted by Kinsman et al. (2021), researchers examined the
impact of adopting GitHub Actions and observed that it increases the number
of pull requests rejected and decreases the number of commits in merged pull
requests. Their manual inspection of GitHub issues shows that developers have
a positive perception of GitHub Actions. Valenzuela-Toledo & Bergel (2022)
reviewed 222 commits that pertain to workflow changes and identified 11 types
of changes. The authors identified several deficiencies in the production and
maintenance of GitHub Actions workflow files, and recommended adequate
tooling to facilitate the creation, editing, refactoring, and debugging of work-
flow files. Decan et al. (2022) analysed and characterised the use of GitHub
Actions in nearly 70K GitHub repositories, of which 43.9% were using GitHub
Actions workflows. They observed that workflows are predominantly utilized
for development purposes, as with traditional CI tools and despite the fact
that GitHub Actions could be used for large variety of automation purposes.

CI tools often serve as runners of bots, hence the presence of a bot of-
ten reflects the use of a CI tool in a project. Software developers frequently
use bots to automate continuous integration reports and run tests and qual-
ity assurance tasks (Wessel et al., 2018b). Such bots are mainly responsible
for notifying contributors of test failures in CI tools. Software engineering re-
searchers oftentimes propose continuous integration bots in order to evaluate
their new technique or approach to resolve problems in the software develop-
ment process (Alizadeh et al., 2019; Hu & Gehringer, 2019; Ahlgren et al.,
2021). Urli et al. (2018) focused on continuous integration builds and deploy-
ment aspects of using a bot. The authors proposed a bot that works as a CI
build failure repair tool-chain for projects hosted on GitHub and that serves
as a tool-chain to provide a program repair service. Danglot et al. (2019) pro-
posed an approach that detects behavioral changes in commits and proposed
a CI bot that detects behavioral changes in commits and proposes fixes to the
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developer to complement the commit.

2.2. Bots: evolution and origin

The first appearance of the term robot is credited to a 1921 science fiction play
entitled Rossum’s Universal Robots (Čapek, 1920), where the author replaced
the classical term automaton with robot. Real mechanical robots only began
to appear in the early 1970s (Kato, 1973; Mowforth & Bratko, 1987). The
term bot (short for software bot) is an abbreviation of robot. However, unlike
mechanical robots, bots are digital software experts. In the same way as robots
perform tasks by manipulating the physical world, software bots act in the
digital world, and are often used to automate repetitive tasks involving digital
artifacts (Lebeuf et al., 2019). Software that is designed to behave like humans
has been a goal since the dawn of computer science, not only to automate tasks
we humans perform, but also to collaborate with humans on intellectual tasks
that cannot be automated (Leonard, 1998).

The earliest idea of computer software imitating humans dates back to the
ideas by Alan Turing in 1950 (Turing, 1950). Turing’s test is considered by
many to spark the idea of developing computer programs to interact with hu-
mans using natural language. Such programs are now commonly referred to as
chatbots (Adamopoulou & Moussiades, 2020). Eliza was the first experience of
conversing with a computer program, created by MIT professor Joseph Weizen-
baum (1966). Since then, researchers have conducted many more studies on
the interaction between computers and humans and created a wide verity of no-
table chatbots, including: (i) PARRY, that was introduced in 1972 by Kenneth
Mark Colby, a psychiatrist and computer scientist at Stanford’s Psychiatry De-
partment (Colby et al., 1971); (ii) Racter (short for raconteur - a storyteller),
written by William Chamberlain and Thomas Etter under the Inrac Corpora-
tion in 1983 (Chamberlain & Hall, 1984); (iii) Dr. Sbaitso, created by Creative
Labs in 1992 as part of a Sound Blaster product called Sound Blasting Acting
Intelligent Text to Speech Operator (Sbaitso, 1991); (iv) TINYMUD, a real–
time multiplayer artificial player with a primary purpose of chatting (Mauldin,
1994); (v) ALICE, which stands for the Artificial Linguistic Internet Computer
Entity, originated by Wallace (1995) (Shawar & Atwell, 2015); (vi) Smarter-
Child was a real evolution in chatbot technology in 2001 as it could retrieve
information from databases to help people with practical daily tasks (Molnár
& Szüts, 2018).

Since then hundreds of different kind of software bots have been introduced
by researchers and companies. Intelligent personal assistants have been devel-
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oped by technological enterprises, such as IBM’s Watson (High, 2012), Ap-
ple’s Siri (Winarsky et al., 2012), Microsoft’s Cortana (Levy, 2014), Amazon’s
Alexa (Lunden, 2014) and Google’s Assistant (Statt, 2016). These personal
assistants automate users’ personal tasks through conversational interfaces.

Additionally, more narrowly focused bots have been developed and are
widely used in different contexts. A plethora of studies have been published
regarding their use (Motger et al., 2021; Akma et al., 2018; Ramesh et al.,
2017). For example bots that are active in e-commence (Thomas, 2016; Lim
et al., 2022; Oguntosin & Olomo, 2021), marketing (Rajaobelina & Ricard,
2021; Lin et al., 2022) and customer services (Cicco et al., 2022; Ben Mimoun
et al., 2017; Thomas, 2016; Seiler & Schär, 2021; Haruna et al., 2021; Haugeland
et al., 2022; Aattouri et al., 2021; Schanke et al., 2021; Go & Sundar, 2019;
Følstad et al., 2018; Xu et al., 2017a). Researchers also conceptualize and
analysed the use of chatbots for educational purposes (Li et al., 2021; Ranoliya
et al., 2017; Bagmar et al., 2022). For example Molnár & Szüts (2018) discuss
the issues of using chatbots as educational assistants, Colace et al. (2018)
proposed a chatbot for e-learning. Chatbots are also used in other areas such
as E-government and digital transformation (Cantador et al., 2021; Patsoulis
et al., 2021; Reier Forradellas & Garay Gallastegui, 2021), in the healthcare
sector and for medical purposes (Siedlikowski et al., 2021; Adikari et al., 2022;
Minutolo et al., 2021; Sagstad et al., 2022; Fergencs & Meier, 2021; Horn
et al., 2021), in the nutrition and food industry (Mendes Samagaio et al.,
2021; Nalini et al., 2021) and even in the domains of cryptocurrency (Lee et al.,
2021), Gaming (Allameh & Zaman, 2021) and human resources (Hillebrand &
Johannsen, 2021).

Researchers have also investigated methods to improve the user experi-
ence in the use of chatbots (Gkinko et al., 2021; Pawlik, 2022; Schanke, 2021;
Hildebrand et al., 2021; Brandtzæg & Følstad, 2017) and to benefit from more
advanced technologies like Natural Language Processing (NLP) to enhance
chatbots (Chao et al., 2021). One such technology is Generative Pre-trained
Transformer (GPT), a state of the art NLP model developed by OpenAI, which
has been shown to be effective in a wide range of NLP tasks including language
generation, machine translation, and question answering (Brown et al., 2020).
Such sophisticated bots are contributing human-readable content to peer pro-
duction communities like Wikipedia (Cosley et al., 2007; Geiger, 2013; Geiger
& Halfaker, 2017; Zheng et al., 2019; Kang et al., 2021) and Reddit (Long
et al., 2017; Hurtado et al., 2019; Cruz, 2021). Bots are also widely used in so-
cial networks both for content production and governance (Aldayel & Magdy,
2022; Mendoza et al., 2020). But in social networks their usage is often abu-



23

sive, as they are mostly aimed at spamming and sending fake news and hence
they seek to hide their true nature. Because of this, numerous studies have
focused on identifying these bots (Minnich et al., 2017; Efthimion et al., 2018;
Rodríguez-Ruiz et al., 2020; Amleshwaram et al., 2013). Lebeuf et al. be-
lieve that technological advances, the mainstream adoption of text messaging
and voice-based platforms, the move to service-oriented architectures, and the
availability of public APIs and datasets are among the factors contributing
to the widespread use of bots and the subsequent increase in new bots being
designed, deployed, and used (Lebeuf et al., 2019).

This dissertation aims to analyze software development bots, also known
as Devbots (Wessel et al., 2018a). They are designed to assist software de-
velopers when performing repetitive tasks, thereby relieving the workload of
repository maintainers (Golzadeh et al., 2021). The number of such bots is
increasing since the advent of social coding platforms. Devbots are active in
every aspect of coding in collaborative development such as: ensuring license
agreement signing, reporting continuous integration failures, analysing code
quality, automated testing, security vulnerability analysis, dependency man-
agement, reviewing code, merging or closing pull requests, triaging issues, and
refactoring the source code (Wessel et al., 2018a).

2.3. Bots: Definitions and classification schemes

Past research on software bots has led to diverse definitions and classifica-
tion schemes (Lebeuf et al., 2019). Wessel (2021) provided a comprehensive
overview of these definitions in her PhD dissertation. According to Wessel, re-
searchers have defined software bots in terms of their specific usage scenarios:

Bots as automation providers. Several researchers have defined bots
based on their ability to perform automated tasks. Storey & Zagalsky (2016);
Cosley et al. (2007); Long et al. (2017) suggested that bots are programs that
perform predefined repetitive tasks to increase the productivity of software
developers. Wyrich & Bogner (2019) defined a bot as “intelligent software that
acts autonomously toward achieving a defined goal and has the capability of
interacting with another.”

Bots with conversational skills. Dale (2016) describes the relationship
between humans and bots as “achieving some result through dialogic communi-
cation using natural language." Matthies et al. (2019); Abdellatif et al. (2020)
defined bots as being able to communicate using human language. The term
chatbot is the most frequently used term among researchers and practitioners
to describe such conversational software bots. However, engaging in conver-
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sations is not necessary for software bots according to Lebeuf et al. (2017)
and Paikari et al. (2019). In fact, chatbots are distinguished from other types
of software bots by their ability to communicate with users through natural
language.

Bots with human-like behaviors. Erlenhov et al. (2019) defined a
DevBot in the context of software development as: “an artificial software de-
veloper which is autonomous, adaptive, and has technical as well as social
competence.” In the context of social media, Maus (2017) defines bots as “au-
tomated or largely automated programs that interface with online platforms
in largely the same way that a typical human would be expected to: they hold
normal accounts, make connections, and post content.” Monperrus et al. (2019)
claim that “we are now at the beginning of an exciting era where software bots
will make contributions that are of similar nature than those by humans.”

Bots as an interface between users and services. According to Lebeuf
et al. (2019); Storey & Zagalsky (2016) a software bot is “an interface that
connects users to services.” This interface usually provides “additional value
(in the form of interaction style, automation, anthropomorphism, etc.) on top
of the software service’s basic capabilities.”

In a qualitative study, Erlenhov et al. (2020b) characterise and define from
a practitioner’s perspective software bots that are active in software devel-
opment process. They systematically identify and categorise what qualities,
characteristics, or properties turn a “Plain Old Development Tool” into a “bot”
in the eyes of practitioners. They proposed 3 different personas for software
development bots:

Chat bot persona: As the name suggests this definition covers tools
that communicate with the developer through a natural language interface
regardless of the tasks the bot is used for or how it actually implements the
tasks. These kinds of bots are commonly an interface to an existing system
and are not a system by themselves. Example of such bots are agents that
communicate through comments with developers or bots that execute team or
environment management tasks.

Autonomous bot persona: This bot persona emphasizes the highly in-
dependent nature of a bot. A bot is a tool that works autonomously (without
much input from a developer) on a task that would normally be carried out
by a human. These bots can sense automatically when their service is re-
quired after they are configured for a project. Therefore, not every scheduled
script execution is an autonomous development, but a script that closes bugs
or welcomes newcomers can be.

Smart bot persona: These bot personas are distinguished from plain old
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development tools by their smartness or ability to do sophisticated technical
tasks. Such bots are less concerned about the ability to communicate than
the ability to accomplish tasks in an unusually effective or adaptive manner.
These bots are using relatively complex heuristics or are equipped with machine
learning techniques. Agents that commit code and submit bug fixes are an
example of such bots.

2.4. Software development bots

2.4.1 Bots in software engineering

Bots supporting software development activities have attracted the attention
of software engineering researchers in the past few years. Researchers and prac-
titioners use such bots in order to automate different activities in the software
development workflow (Corti et al., 2019). In response to this emergence of
bots, the ICSE conference has started to host workshops devoted to bots in
software engineering 1. The BotSE workshop series devoted to bots in soft-
ware engineering is being held annually since 2019. This section presents an
overview of the past and current research on software bots supporting software
development activities.

Paikari & Van Der Hoek (2018) introduced a basic framework through
which we examine the current state of chatbots in software development and
identify directions for future work. Many studies have proposed conversational
agents or chatbots to assist developers in the software development process,
provide recommendations for developing such bots (Kuttal et al., 2020) and
evaluate to what extent chatbots are suitable for collaborative modelling (Ren
et al., 2020). To reduce the workload for documenting design decisions, Josephs
et al. (2022) introduced a design decision bot for Slack and Black et al. (2019)
benefited from automated speech recognition to create a bot for software
modeling. Researchers have proposed chatbots to answer programming ques-
tions (Ilić et al., 2020; Xu et al., 2017b; Subramanian et al., 2019), to answer
questions about API functions (Ed-douibi et al., 2020; Tian et al., 2017), to
assist users in recognizing and clarifying technical details missed in queries to
retrieve more relevant questions (Zhang et al., 2022a) and to answer software
developers questions based on software crowdsourcing platforms (Ni et al.,
2019). In the context of software testing Okanović et al. (2020) proposed a
chatbot that walks developers through the process of properly specifying and
performing a load test. Erlenhov et al. (2020a) conducted a study to identify

1www.botse.org
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challenges in designing test cases for test bots.
Some researchers have implemented chatbots for assisting software engi-

neering tasks (Chatterjee et al., 2021). For example Cerezo et al. (2019) im-
plemented a chatbot for recommending experts, Qasse et al. (2021) proposed
a chatbot for modeling and developing smart contracts, Paikari et al. (2019)
developed a chatbot to detect and resolve potential code conflicts. Using more
advanced technologies like NLP (Peérez-Soler et al., 2019; Matthies et al.,
2019) and natural language understanding (NLUs) (Abdellatif et al., 2021)
researchers have proposed more advanced software development chatbots.

Next to chatbots, other types of software bots are being used to auto-
mate repetitive activities in software development process. Researchers have
proposed software bots for automatic classification of dialogue acts in bug
repairing (Wood et al., 2020), domain modelling (Saini et al., 2020), facilitat-
ing information extraction from software repositories (Abdellatif et al., 2020)
and recommending software engineering tools to software developers (Brown,
2019). Kumar et al. (2019) suggests using bots to extract data from software
repositories, train models and provide information to engineers in order to in-
crease the speed and efficiency of change and bug fixing. Beschastnikh et al.
(2017) proposed a software analysis bot for research purposes that provides
an interface for developers to subscribe to new research techniques without
needing to trust the implementation.

Some software development bots submit pull requests or comments on sub-
mitted pull requests in order to suggest changes. Baudry et al. (2021) pre-
sented a bot for learning how to fix bugs based on continual training and
applying changes by submitting pull requests. Rebai et al. (2019) propose
a semi-automated refactoring documentation bot to recommend messages to
document refactorings, their locations, and the quality improvement for a pull
request if missing information is found. Wyrich & Bogner (2019) proposed a
bot to automatically perform refactorings, resolve code smells and present the
changes to a developer for asynchronous review via pull requests.

2.4.2 Bots in GitHub

In this dissertation we mainly focus on bots that are active in the GitHub social
coding platform. They are called GitHub bots by Wessel (2021). A GitHub
bot has a GitHub user profile like a human (or is associated with a GitHub
app) and can act like a developer. They can open, close, and comment on
pull requests and issues, do code reviews, commit code (Khanan et al., 2020).
GitHub bots perform well-defined tasks within a development team to support
other developers or act as an interface between developers and other tools such
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as CI tools. GitHub bots are task-oriented bots (Wessel, 2021) that connect
user and services (Storey & Zagalsky, 2016), provide new forms of interactions
with existing tools (Bradley et al., 2018) and integrate their work with human
tasks (Farooq & Grudin, 2016).

Many studies have proposed new bots to automate tasks in collaborative
development and reduce the workload of software repository maintainers. For
example, Dominic et al. (2020) proposed a bot to welcome newcomers and
onboard them. Serrano Alves et al. (2022) introduced a bot to suggest new
tasks after onboarding the new user. Serban et al. (2021) and Carvalho et al.
(2020) presented a bot that proposes fixes for static analysis warnings. Park
et al. (2022) introduced an issue labeling bot classifying issue reports into cus-
tom labels. Mohayeji Nasrabadi et al. (2022) evaluated the impact of TODO
bots on software development practices. A TODO Bot automatically creates
a GitHub issue when TODO comments are added to a repository. Nakagawa
et al. (2020) proposed a new clone modification support technique for integrat-
ing into pull request based development bot. da Silva et al. (2020) developed
a virtual teammate to help developers and teams work on projects that highly
rely on source control and issue tracking.

2.4.3 On the need for bot identification techniques

While the above examples reveal that bots play an important role in collab-
orative software development and in GitHub, bots also have downsides and
may impose problems to repositories and their contributors or change the way
they work. Therefore its important to identify the possible problems caused by
bots, and provide guidelines to bot developers to avoid these problems (Wessel,
2020; Liu et al., 2020; Wessel et al., 2019; Pinheiro et al., 2019).

Studies have investigated how the use of bots changes the way maintain-
ers work or improve the repository maintenance (Mirhosseini & Parnin, 2017;
Wessel et al., 2018b; Erlenhov et al., 2022; Rombaut et al., 2023). Studies
have also investigated how maintainers interact with human-created pull re-
quests compared to those generated by bots (Wyrich et al., 2021) and pull
requests without explanation (Monperrus, 2019). Wessel et al. (2020) studied
how project maintainers experience code review bots, how a code review bot
affects activity indicators in GitHub. In another study, they discuss six useful
bots in GitHub’s PR process Wessel & Steinmacher (2020). They analysed the
negative aspects of bots in code contributions and introduce a meta-bot that
acts as a middleman to mitigate this effect.

Despite the fact that bots can automate many tasks, they still need to
interact with humans and deal with the resulting social and cognitive chal-
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lenges (Brown & Parnin, 2019). Moharil et al. (2022) seek to understand how
the adoption of a bot impacts the discussions in the issue-trackers of projects
and Farah et al. (2022) investigate how users react to bot comments.

2.5. Bot identification

Although software bots are most often used for tasks that benefit their users
in different ways, they can also be used for malevolent purposes. In social
networks, bots are frequently spamming and sending fake news and hence
they seek to hide their true nature. As a result, numerous studies have been
conducted in order to identify them Minnich et al. (2017); Efthimion et al.
(2018); Rodríguez-Ruiz et al. (2020); Amleshwaram et al. (2013). Wikipedia
bots are active in several different tasks and make a huge amount of changes
in the content of Wikipedia in different forms Geiger (2009). This enormous
amount of activity can affect the entire Wikipedia ecosystem, so according
to Zheng et al. (2019) they must be carefully evaluated and regarded in order
to preserve the health of this online collaboration community.

While bots in social media are used for a variety of purposes, including
malicious activities, and often attempt to hide their identity, bots in software
engineering have a distinct nature, thus requiring different techniques for iden-
tification. As described in Section 2.4, bots play an important role in software
engineering and are being used in different aspects of the software develop-
ment process. While recent research regarding GitHub bots mostly focused
on the practical value of bot adoption and proposing new bots, some stud-
ies investigated the impact of the presence of bots on software development
workflows. To do so, they used very simple heuristics such as the presence of
the string “bot” in the account name (Saadat et al., 2021) or relying on a list
of bots (Wessel et al., 2018a) in order to identify bot accounts in the set of
targeted repositories.

A prerequisite for correctly studying the impact of bots on software devel-
opment processes is the ability to automatically identify such bots in a software
repository. We found very few studies trying to identify bots. Wessel et al.
(2018b) conducted a study about the prevalence and effect of bots in GitHub
repositories. Erlenhov et al. (2019) presented a taxonomy that classifies 11 ex-
isting development-related bots in GitHub and Slack. Lebeuf (2018) provided
a multi-faceted classification of bots (including many well-known examples of
bots), combining their properties and behaviour. None of these studies pro-
poses an automated approach to identify bots.

In parallel to my PhD research, Dey et al. (2020a) proposed an automatic
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method to identify bot accounts in Git projects. Each identity in their dataset
consists of an author name and on email address. They studied three different
approaches to find bots, based on (i) the presence of the string “bot” at the
end of the author name, (ii) commit messages, and (iii) features related to files
changed in commits and projects the commits are associated with. They com-
bined these three different approaches into a single ensemble bot identification
model that was validated on a dataset of 67 bots of which 58 cases (85%) were
effectively captured by the model.

The study of Dey et al. (2020a) has some limitations that we will address in
this dissertation. One limitation is that their dataset is based only on commit
data in GitHub repositories. We found many examples of bots that are not
involved in commit activity but only involved in issue and PR activities. In
Chapters 4, 5 and 6 of this dissertation we will provide classification techniques
for bot identification that cover other types of GitHub bots.
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CHAPTER 3
Workflow automation tools

“Through knowledge, we can transform
ourselves and the world around us.”

Sheykh Bahai

Workflow automation tools such as continuous integration systems and
bots are abundant in social coding platforms such as GitHub. Continuous in-
tegration, delivery and deployment (CI) tools automate the integration of code
changes from multiple contributors into a central repository where automated
builds, tests and code quality checks run. This chapter presents the results of
an empirical study that we have conducted on the use of CI tools in a dataset
of GitHub repositories containing the development history of npm packages.
We observe that more than half of the active repositories in this dataset use at
least one CI tool. We investigate the evolution of CI usage over time as well
as the simultaneous usage and migration among different available CI tools.

Bots are another type of cloud-based automation in social coding platforms.
They are used to reduce the workload of software developers by performing
repetitive tasks on their behalf. We empirically analyse the presence of bots
among the active contributors of GitHub repositories. We show that although
some of these bots are labeled as such by GitHub, most of them use normal
accounts and their activities are not tagged as belonging to bots. We explain
the implications of not signaling the presence of bots and highlight the impor-
tance of identifying bots from both a practitioner’s and a researcher’s point of
view.

31
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3.1. On the prevalence of CI in GitHub

Continuous integration, deployment and delivery have become the cornerstone
of collaborative software development and DevOps practices. CI automates the
integration of code changes from multiple contributors into a central repository
where automated builds, tests and code quality checks run. Well-known exam-
ples of CI services are Jenkins, Travis, CircleCI and AppVeyor. CI services can
also be built-in in social coding platforms such as GitHub and GitLab (Dab-
bish et al., 2012). GitLab already featured CI capabilities since November
2012. Based on popular demand, and in response to CI support integrated
in GitLab, GitHub publicly announced the beta version of GitHub Actions
(GHA) (abbreviated to GHA in the remainder of this dissertation) in October
2018. In August 2019, they officially began supporting CI through GHA, and
the product was released publicly in November 2019.

GHA allows to automate a wide range of tasks based on a variety of trig-
gers such as commits, issues, pull requests, comments and many more (Chan-
drasekara & Herath, 2021). GHA can be used to facilitate code reviews,
code quality analysis, communication, dependency and security monitoring
and management, testing, etc. GHA facilitates the integration with external
services, and can even obviate the need of using such external services alto-
gether.

GitHub is by far the largest social coding platform, hosting the development
history of millions of collaborative software repositories, and accommodating
over 56 million users in September 2020 (GitHub, 2020). Given its popularity
and the ease with which GHA allows to automate the CI workflow, we hypoth-
esise that GHA has had a significant impact on today’s CI landscape. More
particularly, we believe that it has increased the awareness of the need for CI,
it has reduced the entry barrier for projects to start using CI, and it may have
lead projects to migrate from other CI services towards GHA.

This chapter aims to quantitatively and impartially verify these hypothe-
ses, and discusses their consequences, through a longitudinal analysis of how
different CIs have been used over a nine-year period in 91,810 GitHub reposi-
tories corresponding to the software development history of reusable Node.JS
packages distributed through the npm package registry. The following four
sections explore these research questions:
RQ1 How did the CI landscape evolve? We identified 20 different CIs being
used in the considered set of repositories, some of which were considerably
more prevalent than others. Together with Travis, GHA covers more than
80% of all usages. Moreover, in only 18 months GHA has overtaken all other
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CIs in popularity.
RQ2 What are the most frequent combinations of CIs? We observed that
many repositories have used multiple CIs during their lifetime. AppVeyor is
nearly always used in combination with some other CI. If a repository uses a
CI simultaneously with another one, it is mostly in combination with Travis,
GHA or CircleCI.
RQ3 How frequently are CIs being replaced by an alternative? We observed a
non-negligible amount of CI migrations. GHA attracted most of these migra-
tions. The majority of migrations were moving away from Travis and towards
GHA.
RQ4 How has the CI landscape changed since GHA was introduced? Based on
a regression discontinuity design, we found that the usage of Travis, Azure and
CircleCI has been negatively affected by the introduction of GHA.

3.1.1 Data extraction

In order to analyse the use of CIs in software development repositories on
GitHub, we need a large dataset containing thousands of GitHub repositories
for a wide range of software programming projects serving different purposes
and exhibiting variations in longevity and size. The dataset should exclude
repositories that have been created merely for experimental or personal reasons,
or that only show sporadic traces of commit activity (Kalliamvakou et al.,
2014b). Registries of reusable software packages (e.g., npm for JavaScript
or Maven for Java) are good candidates to find such large datasets, as they
typically host thousands of software packages at different levels of maturity
and popularity. However, not all packages belonging to such registries have an
associated Git repository on GitHub.

According to the libraries.io open source monitoring service, npm is by far
the largest of all listed package registries (Katz, 2020). We used the public API
of npm to list all 1.6M+ scoped packages. We downloaded the metadata of each
package on 23 May 2021 and found that 803K packages mention an associated
git repository hosted on GitHub. We cloned 676K of these repositories, the
remaining ones corresponding to repositories that were no longer available.
Since one of our goals is to study how the CIv landscape has evolved these
recent years, we excluded repositories that were not active during the last
year of the observation period (i.e., they had no commit between 24 May
2020 and 23 May 2021). We also excluded 11,557 forks, since part of their
history duplicates the one of the forked repository. This left us with 201,403
repositories.

CI usage in a repository is typically visible through the presence of some
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specific CI-related configuration files. For example, the presence of a .travis.y(a)ml
file indicates that Travis CICI has been configured for this repository while a
.y(a)ml file in the .github/workflow/ folder triggers GHA. Based on an explo-
ration of scientific publications, blog posts and developer websites, we estab-
lished an initial list of 28 candidate CI tools and services to consider. We
carefully went through their documentation to determine the file paths that
must be considered to detect the presence of each CI. We excluded CI that
are mostly configured through a dedicated UI and not a configuration file, or
CIs whose configuration file cannot be detected (e.g., because the file path
and file name can be freely chosen by the users). After such exclusion 20
CIs remained: Travis, GHA, CircleCI, AppVeyor, Azure, Jenkins, GitLab CI,
Drone CI, Hound CI, Bitbucket CI, Wercker, Golang CI, CodeBuild, Buildkite,
Semaphore, Cirrus, CloudBees, Amplify, Buddy and Bitrise.

We then checked every commit of all 201,403 cloned repositories for the
presence of CI-related configuration files. We found 179,535 distinct CI-related
file paths in 95,035 repositories. We relied on these file paths as a proxy to
detect if and when a CI was used by a repository.

Working with Git histories can be quite challenging (Bird et al., 2009) and
leads to a range of data quality issues that need to be dealt with. A first issue
is that Git is revisionist, allowing one to rewrite the history of a repository.
Unfortunately, there is no way to detect such rewritings, except when it leads
to inconsistencies (e.g., commits referring to files that were not yet created or
that were already removed, commits with invalid dates, etc.). We identified
and removed 60 repositories for which we found such inconsistencies for CI-
related files. We contacted the maintainers of two of such repositories, who
confirmed the inconsistencies, explaining that it was the consequence of an
earlier migration to Git and a merge of different repositories into a single one.

Another issue stems from the presence of implicit branches and the fact
that the history of a Git repository is represented by a directed acyclic graph,
as opposed to a tree-like structure in svn. As a result, chronological sequences
of commits may originate from distinct branches, and may contain a priori
contradictory changes (e.g., a file that is added and removed multiple times
over relatively short periods of time). Since we determine the use of a CI
based on the presence of specific file paths, we are particularly exposed to
this issue. We found several cases of chronological sequences of CI-related files
being added and removed multiple times in a row. Since such file removals did
not correspond to a deliberate intent to remove the corresponding CI service,
we ignored all removals of CI-related files for which the same file was found to
be reintroduced within 30 days. We empirically found that this value allows
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to capture 98.1% of the cases we found, while preserving actual cases of re-
introductions of a CI.

After this data cleaning step, we used the presence of CI-related files to
determine when a CI was added and (possibly) removed from a project. One
should note that a particular CI can be added and removed more than once
during a project’s lifetime. By manually inspecting CI usages in repositories,
we noticed several cases of repositories experimenting with the integration of
a CI for a few days only. We excluded such cases by removing 6,910 usages
(found in 6,586 repositories) whose duration did not exceed 30 days. We also
found and excluded 3 cases of repositories making use of a high number of
different CIs at the same time. We manually inspected these repositories and
found that their purpose was to showcase integration of an app with various
CIs. An example of such a repository is cypress-io/cypress-example-kitchensink.

The final dataset contains 119,033 CI usages spread across 91,810 repos-
itories. The higher number of usages than repositories signals that there are
many repositories that use multiple CIs. Table 3.3 at the end of this chapter
provides an overview of the CIs found in repositories, along with the number of
usages and the number of repositories in which they were found at least once
through time. Travis and GHA are by far the most popular CIs, being used
each by more than half of the repositories with a CI and together covering
more than 90% of all repositories with a CI. This may be expected for Travis,
since it has existed since 2011 and thus repositories have had more time to use
this service. It is surprising to find GHA as the secondmost popular CI, given
that its first usage is observed in 2019 only, making it the most recent of the
considered CIs. The five next popular CIs, following at quite a distance, are
CircleCI, AppVeyor, Azure, GitLab CI and Jenkins. The remainder of this
chapter exclusively focuses on these seven CIs since, together, they represent
99% of all CI usages, and cover 99.6% (91,426) of all repositories having used
a CI.

The data and code to replicate the analysis in this chapter are available on
https://doi.org/10.5281/zenodo.5815352.

3.1.2 How did the CI landscape evolve?

RQ1 is exploratory in nature, aiming to obtain a better understanding of which
CIs are found in the repositories of our dataset, how prevalent these CIs are,
and how this has been changing over time. This will provide the necessary
context to interpret the results of the subsequent research questions.

Obviously, not all repositories make use of a CI. Fig. 3.1 shows the evolution

https://doi.org/10.5281/zenodo.5815352
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Figure 3.1: Evolution of the number of repositories (green line) and number of
repositories using a CI (blue line).

of the number of repositories in our dataset that use a CI compared against
the total number of repositories we considered at that time. We observe that
the number of repositories using a CI has a tendency to increase over time.
Proportionally to the number of considered repositories, it went from 56.7% in
January 2015 to 63% in January 2020. At the end of the observation period
(i.e., in May 2021), the proportion of repositories with a CI is 53.6%. This lower
proportion is likely to be a consequence of the fact that recent repositories did
not have enough time yet to adopt a CI. According to Hilton et al. (Hilton
et al., 2016b), the median time to adopt a CI is one year.

These observations are in line with the ones of Hilton et al. (Hilton et al.,
2016b), and confirm that CIs are widely used in practice nowadays. However,
that does not mean that all CIs are equally used. Fig. 3.2 breaks down the blue
curve of Fig. 3.1 for the seven most popular CIs, showing the evolution of the
number of repositories using each CI. Since the number of repositories using
Travis and GHA has a different order of magnitude than for the other CIs, we
used a different y-axis scale starting from 10,000 repositories (illustrated by
the horizontal dashed line).

We observe that Travis, the oldest CI has dominated the landscape since its
introduction in 2011. This is not surprising since Travis was the only available
CI for the first two years of the observation period (at least in our dataset).
This explains why Travis accounts for the highest number and proportion of
repositories in Table 3.3. Other popular CIs have entered the CI landscape only
more recently: CircleCI and AppVeyor emerged in 2014, GitLab CI in 2015,
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Figure 3.2: Number of repositories using a specific CI.

and Jenkins in 2018. Since their introduction in the first half of 2014, CircleCI
and AppVeyor were successful in attracting developers and obtained a good
share of repositories using these CIs. Even GitLab CI, originally introduced
as an integrated CI service for GitLab, started to attract a small share of
GitHub repositories since September 2015. Although Jenkins was one of the
earlier CI tools for Java applications, it only shows up in our data as of April
2016, and it has a small share of repositories using it. This can be explained
by two phenomena. First of all, our dataset focuses on npm packages, hence
they are less likely to contain Java development. Secondly, the pipelines-as-
code feature1 only became available in Jenkins in April 2016, implying that we
were only able to track repositories using this feature as of that date. Finally,
we found evidence of a rapid growth of repositories using Azure following its
introduction in 2018, but after a short period of time the number of repositories
using Azure stagnated.

Probably the most surprising phenomenon that can be observed in Fig. 3.2
is the very rapid growth of GHA usage. Despite the fact that GHA was only
introduced in 2019, it has become the second most popular CI in our dataset
just 18 months after its introduction, even overtaking the dominant position
of Travis! At the end of the observation period, GHA covers 51.7% of the
repositories with a CI, followed by Travis (42.5%), CircleCI (10.2%) and Ap-
pVeyor (2.2%). The remaining CIs together (Azure, GitLab CI and Jenkins)
do not exceed 2.3%. This suggests that GHA has changed the CI landscape
dramatically, fuelling the need to carry out a deeper empirical analysis.

1https://developers.redhat.com/blog/2016/08/24/whats-new-in-jenkins-2-0-2

https://developers.redhat.com/blog/2016/08/24/whats-new-in-jenkins-2-0-2
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Figure 3.3: Monthly number of repositories adopting and discontinuing a CI.

From Fig. 3.2, we observed for most CIs either a slight recent decrease in
the number of repositories using it (Travis and AppVeyor) or a reduced growth
in this number (CircleCI, Azure and GitLab CI). These observations can be
the consequence of less repositories adopting the CIs, of more repositories
discontinuing them, or a combination of both. Fig. 3.3 shows the monthly
churn in CI usage for the last three years of the observation period, computed
as the monthly number of repositories that adopted and discontinued each CI.

We observe that the recent decrease in the number of repositories using
Travis is due to a combination of less repositories adopting Travis (from July
2020 onwards) and of many repositories that discontinued using them. This
is especially visible from late 2020 onwards, where the monthly number of
repositories that discontinued using Travis went from 508 in October to 1,520
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in November 2020.
We also observe that the reduced growth of CircleCI, AppVeyor and Azure

is mostly a consequence of less repositories adopting these CIs. For instance,
the number of monthly adoptions of CircleCI went from an annual average of
308 in 2019 to 253 in 2020, and only 173 in 2021. Similarly, the number of
adoptions of Azure dropped from 90 in May 2019 to only 17 in February 2020,
reaching the number of discontinuations. In AppVeyor, there are even more
discontinuations than adoptions since July 2019.

Interestingly, most of the churn we observed for these CIs started a few
months after the introduction of GHA. GHA is the only considered CI that
exhibits a steadily increasing adoption rate, and nearly no discontinuations
(only 374 compared to 46,416 adoptions during the observation period). We
will therefore analyse and discuss the impact of GHA on the CI landscape in
detail in RQ4.

3.1.3 What are the most frequent combinations of CIs?

Table 3.3 revealed that there are more CI usages than repositories. This im-
plies that some repositories use more than one CI (either simultaneously or at
different points in time). Table 3.1 shows the number of repositories in function
of the number of distinct CIs they have used during their observed lifetime.
While three out of four repositories have only used a single CI throughout
their lifetime, there is still a large proportion that have used 2 different CIs
(21.7%) or even more than two (3.3%). This confirms that it is not unusual
for a repository to use multiple CIs throughout its lifetime.

Fig. 3.4 shows the proportion of repositories having used a given pair of
CIs A and B. Since we found that most repositories having used multiple
CIs involved Travis (86.2%), GHA (83.7%) and CircleCI (22.3%), and to avoid
the analysis to be biased by these most frequently used CIs, we computed
the proportions relative to the number of repositories having used a given CI

Table 3.1: Number and proportion of repositories having used different CIs
during their lifetime.

# CIs → 1 2 3 4 5

# repositories 68,549 19,799 2,647 371 60
% repositories 75.0% 21.7% 2.9% 0.4% 0.07%



40 Workflow automation tools

Exclusive Travis GHA CircleCIAppVeyor Azure GitLabCI Jenkins

Travis
53,401

GHA
46,416

CircleCI
11,431

AppVeyor
3,553
Azure
1,045

GitLabCI
1,018

Jenkins
1,008

63.1% 30.5% 4.8% 5.5% 0.8% 0.7% 0.7%
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39.5% 35.0% 28.8% 19.3% 9.0% 0.8% 3.8%
A B

Figure 3.4: Proportion of repositories having used CIs A and B relative to all
repositories having used A.

(this is, the proportion of repositories having used CIs A and B relative to all
repositories having used A). For example, 30.5% of the repositories with Travis
have used GHA, 5.5% have used AppVeyor and 4.8% CircleCI. Note that the
sum may exceed 100% (e.g., for AppVeyor) since repositories may have used
more than two CIs.

We also report in the first column of Fig. 3.4 the proportion of reposito-
ries in which a CI has been exclusively used. We observe that a majority of
the repositories have exclusively used Travis (63.1%), GHA (58.7%) or Cir-
cleCI (55.4%). The opposite can be observed for AppVeyor, Azure, GitLab
CI and Jenkins. Out of the 1,045 repositories having used Azure, more than
half of them (50.6%) also have used GHA. This is even more pronounced for
AppVeyor: only 4.6% of the 3,553 repositories have used it exclusively, while
82.4% of the repositories have also used Travis, 47.0% have also used GHA,
and 23.2% have also used CircleCI.

So far, we considered pairs of CIs, disregarding whether the CIs were used
simultaneously. Let us therefore consider the co-usage of CI pairs in a given
repository, defined as those situations where the repository uses both CIs for a
common period of at least 30 days. If a repository would simultaneously use 3
different CIs A, B and C, this will be counted as 3 co-usages, namely for each
pair (A,B), (B,C) and (A,C).
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Figure 3.5: Proportion of co-usages of CIs A and B relative to all repositories
using A.

We found 14,335 co-usages in 11,049 distinct repositories out of 22,877
repositories having used multiple CIs during their lifetime. Travis, AppVeyor,
GHA and CircleCI are involved in most co-usages, together covering 86.7% of
all co-usages and 92.1% of all repositories with co-usage.

Fig. 3.5 shows the proportion of co-usages we found for each pair of CIs
A and B, relative to all repositories involving A. We also report in the first
column the proportion of cases with no co-usage. For all CIs except AppVeyor,
more than half of the repositories using them do not use another CI at the
same time. Travis, GHA and CircleCI are considerably less frequently used in
combination with another CI than the others CIs. At the other extreme, only
6.2% of the usages of AppVeyor do not involve another CI at the same time.

Focusing on the actual cases of co-usage (i.e., all but the first column), Ap-
pVeyor is mostly co-used with Travis (80.5%), and to a lesser extent with Cir-
cleCI (19.3%) and GHA (17.9%). Travis is the most frequent complementary
CI for GHA, AppVeyor, GitLab CI and Jenkins, and GHA is most frequently
complemented by Travis, CircleCI and Azure.
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3.1.4 How frequently are CIs being replaced by an alternative?

The findings of RQ2 revealed a considerable amount of combinations of multi-
ple CIs within repositories. Part of these combinations were due to co-usages.
Another likely scenario is that a repository has used multiple CIs during its
lifetime, but not necessarily simultaneously. This could be the case, for exam-
ple, when a repository maintainer is unsatisfied with its current CI and decides
to replace it with another CI that offers solutions that better meet the needs
of the team or the project.

We consider that a repository migrated from some CI A to another CI
B if the repository stopped using A and started using B at “around the same
time”, i.e., within a time window of 30 days either before or after B started
to be used by the repository. The rationale behind this time window is to
accommodate for a possible transition period during which either both CIs
were being used together (i.e., time needed to remove A after the introduction
of B) or where none of them was being used (i.e., time needed to introduce B
after the removal of A).

We detected 14,219 such cases of migration in 13,083 different repositories.
Table 3.2 reports on the number of repositories involved in a migration away
from or towards a given CI. It also reports on their proportion relative to the
total number of repositories using a given CI. We observe that most migra-
tions (11K+) are due to repositories migrating away from Travis and, to a
lesser extent, from CircleCI. On the other hand, we see that most migrations
(12K+) target GHA and, to a lesser extent, again CircleCI. For most of the
CIs, we observe there are more migrations away from them than migrations
towards them, with the notable exceptions of GHA that attracted far more
repositories, and of CircleCI and Azure, both having roughly the same number
of repositories that migrated from and to them. Looking at the proportions
of repositories relative to the total number of repositories using a given CI,
we see that around one out of five repositories using Travis, AppVeyor, Azure
or GitLab CI migrated to another CI. On the other hand, only 29 out of the
46,416 repositories using GHA migrated away from it. The last column reveals
that migrations explain more than one out of four repositories using GHA or
Azure. In contrast, less than 1% of the repositories using Travis or AppVeyor
are due to a migration.

Going into the details of these migrations between CIs, Fig. 3.6 shows the
proportion of migrations from CI A to CI B relative to the total number of
migrations away from A. This allows to see the distributions of the target
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Table 3.2: Number of repositories that migrated away from and towards a CI,
and their relative proportion.

migrated away from migrated towards
CI repo. # % # %

Travis 53,401 11,591 21.7% 218 0.4%
GHA 46,416 29 0.06% 12,269 26.4%

CircleCI 11,431 1,382 12.1% 1,323 11.6%
AppVeyor 3,553 698 19.6% 30 0.8%

Azure 1,045 222 21.2% 282 27.0%
GitLab CI 1,018 192 18.7% 53 5.2%
Jenkins 1,008 105 10.4% 44 4.4%

CIs for migrations originating from A. We observe that GHA proportionally
represents the vast majority of the targets of a migration, regardless of the
considered source CI. GHA attracted up to 96.8% of all migrations away from
Azure. The only notable exception is Jenkins: even if GHA still accounts for
41.0% of the migrations from Jenkins, more than half of the migrations are
towards Travis and CircleCI. Travis is also the second most frequent target for
migrations originating from CircleCI and GitLab CI.

Fig. 3.6 provided insights about the target of CI migrations. To provide
insights about the source of CI migrations, Fig. 3.7 reports on the propor-
tion of migrations from CI A to CI B, this time relative to the total number of
migrations towards B. We observe that Travis provided the overwhelming ma-
jority of the repositories that migrated to another CI, regardless of the target
CI. It represents up to 93.0% of all migrations towards CircleCI, accounting
for 1,230 migrations. On the other hand, even if CircleCI accounts for more
than half of the migrations towards Travis, this corresponds to 119 migrations
only. CircleCI is also the secondmost frequent source of migrations for all CIs,
except for Azure whose secondmost frequent source of migrations is AppVeyor.
Nearly one third of all migrations towards Azure originate from AppVeyor.

3.1.5 How has the CI landscape changed since GitHub Actions
was introduced?

RQ1 revealed that, since the public release of GHA in November 2019, its
market share has been increasing very fast, becoming the dominating CI in
less than 18 months time! GHA hence seems to have played a major role in
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Figure 3.6: Proportion of migrations from CI A to CI B, relative to the total
number of migrations away from A.

how the CI landscape had changed, with many repositories co-using GHA with
some other CI (RQ2), or even migrating towards GHA (RQ3). The increase
in popularity of GHA seems to have had a diminishing effect on the share of
repositories using Travis and other CIs. RQ4 therefore aims to scrutinise to
which extent GHA has altered the CI landscape.

To study the effect of the introduction of GHA on the usage of other CIs,
we use the statistical technique of (linear) Regression Discontinuity Design
(RDD) (Thistlethwaite & Campbell, 1960; Cook & Campbell, 1979). This
technique allows to model the effect of a particular important event by com-
paring the situation during a given time window before and after the event. In
our case, we intend to use RDD to model the effect of the introduction of GHA
on CI usage of repositories before and after this event. We consider August 8,
2019 as the event date since it corresponds to the day at which GHA announced
the availability of a CI/CD service. RDD assumes that one would be able to
observe a discontinuity in the data if the event affects the outcome (here, CI
usage). Such a discontinuity would reveal itself as a perceptible difference in
the intercept and/or slope of the (linear) regression model before and after the
event. The RDD model is formulated as:

yi = α+ β × timei + γ × eventi + σ × time_afteri + ϵi
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Figure 3.7: Proportion of migrations from CI A to CI B, relative to the total
number of migrations towards B.

where i corresponds to an observation related to a given CI before and af-
ter the event. In order to incorporate the passage of time into the model, three
parameters are used: timei, eventi and time_afteri. The time parameter is
the number of months that have passed from the beginning of the observation
window. We use two observation windows of 12 months each, respectively until
1 month before and starting from 1 month after the event. We purposefully
ignore what happened between 30 days before and 30 days after the event to
account for possible instabilities close to the event date. The binary event
parameter specifies whether an observation is measured before (event = 0) or
after the event (event = 1). The time_after parameter indicates elapsed time
(expressed in number of months in our case) since the event and it is set to 0
before the event. ϵi is the residual error. The two resulting linear regression
lines have a slope of β before the event, and β + γ after it. The difference be-
tween the two regression values of yi indicates the size of the effect of the event.
The accuracy of the RDD model is estimated using R2, a common method for
assessing the goodness of fit of a regression model. We implemented the RDD
model based on the ordinary least square method using the statsmodels library
in Python.

Given our aim to determine the effect of the public release of GHA on
the usage of other CIs, we computed for each CI the monthly variation of
CI usage, measured as the number of repositories adopting the CI minus the
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number of repositories discontinuing the CI. We fit 7 different RDD models:
one for assessing the global effect of the event on the CI landscape, and one
for the individual effect on each of the 6 most popular CIs (excluding GHA
itself). The results are reported in Table 3.4 (at the end of this chapter). We
provide the R2 goodness of fit of each model, the coefficients of each model
parameter, and the statistical significance of the coefficients in terms of their
p-value. We consider three levels of significance, reflecting the strength of the
effect induced by the event: p < 0.001 for strongly significant (***), p < 0.01
for highly significant (**), and p < 0.05 for moderately significant (*).

Only 4 out of the 7 computed RDD models provide a sufficiently high
goodness of fit: CI landscape, Travis, Azure and CircleCI (in decreasing order
of goodness of fit, with R2 ranging from 0.94 to 0.57). We will therefore only
discuss these 4 models in more detail. Only for Travis (p < 0.001), Azure
(p < 0.001) and CircleCI (p < 0.01) we observe a statistically significant
effect of the event. The coefficients of time and time_after are significant for
CircleCI and Azure. These coefficients indicate that the introduction of GHA
had a significant impact on Travis, Azure and CircleCI usage.

To observe the effects of the introduction of GHA, Fig. 3.8 provides a
visualisation of the RDD models for Travis, CircleCI and Azure. The figure
confirms the observations of the statistical analysis, revealing a decline in the
monthly variation of CI usage for each of them. We also observe a change in
the direction of the slope (from positive to negative), suggesting that after the
event the growth rate of CI usage decreases. Still, for Travis and CircleCI,
the number of adoptions remains higher than the number of discontinuations.
For Azure, however, the monthly CI usage variation start to become negative
after the event, implying that more repositories discontinue Azure compared
to those repositories adopting it.

In the realm of software development, the utilization of CI tools as runners
of bots is quite common, with the presence of a bot often indicative of the
employment of a CI tool in a project. These bots, which can be seen as the
visible manifestations of automation within the software development process,
serve as essential components in automating various tasks. They play a crucial
role in streamlining the CI workflow by automating tasks such as generating
reports, running tests, and ensuring quality assurance (Wessel et al., 2018b).

Notably, the presence of bots within a project signifies their active involve-
ment in executing these vital functions. Bots can be considered as the tip of
the iceberg when it comes to automation in the software development process.
They represent the visible and tangible outcomes of the underlying automation
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Figure 3.8: RDD analysis on the monthly variation of repositories making use
of each CI (= adoptions - discontinuations) before and after introduction of
GHA.

efforts. Thus, by examining the prevalence of bots, we gain insights into the
extent of automation and its impact on the software engineering landscape. In
Section 3.2, we delve into an analysis of the prevalence of bots, shedding light
on their significance for software development automation practices.

3.2. On the prevalence of bots in GitHub

Distributed software development is, by definition, a collaborative effort in-
volving many different persons, teams, organizations and companies. This
highly collaborative software development process has led to the creation and
widespread use of distributed versioning systems such as git, social coding plat-
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forms such as GitHub and GitLab, issue tracking tools such as Bugzilla, code
reviewing tools such as Gerrit, and a plethora of CI services.

As witnessed by initiatives such as the CHAOSS Linux Foundation Project
(https://chaoss.community) and associated software development analytics tools
such as GrimoireLab (https://chaoss.github.io/grimoirelab/), it is important
to assess the health of software communities by considering the activity of each
contributor. Such information is also highly relevant to credit and recognise
project contributors based on their activity (Hann et al., 2002), and to allow
employers to identify appropriate new team members (Hauff & Gousios, 2015).

An important challenge in doing so is the presence of development robots
that automate repetitive tasks to help software project contributors in their
day-to-day activities. Not properly taking into account these bots may lead to
incorrect or misleading conclusions, especially if such bots belong to the top
contributors in software projects. This is likely to be the case, since bots are
increasingly used to automate a wide range of activities, such as welcoming
newcomers, reporting test coverage, updating dependencies, detecting vulner-
abilities, supporting code review, submitting pull requests, verifying licensing
issues, and so on (Wessel et al., 2018a).

In the following sections, we provide evidence that bots are regularly among
the most active contributors in popular GitHub projects, even though GitHub
does not explicitly indicate these contributors as being bots. This can be
problematic for tools that aim to credit human project contributors for their
activity.

3.2.1 Acknowledging contributions in collaborative develop-
ment

Being able to accurately assess the contributions of project participants is valu-
able for many purposes. Software engineering researchers involved in empirical
analyses of socio-technical activity and productivity in software projects need
such data in order to understand and improve the development processes (Liao
et al., 2020). Prospective employers may want to analyze developer activity
profiles in order to identify skilled developers that match their job openings
as closely as possible (Hauff & Gousios, 2015). Individual contributors may
desire to get proper credit and visibility for their –often significant– contribu-
tions in the software projects they are involved in. They may want to use this
recognition for career promotion or even to get some kind of financial support
for the –often voluntary– work they spend on a project (Hann et al., 2002).

The way in which recognition is credited can differ a lot depending on the
considered community. For example, OpenStack recognizes unsung heroes by
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discerning community contributor awards. GitHub has a similar GitHub Stars
program. Initiatives such as GitHub Sponsors allow companies to sponsor
open-source projects in order to help the project contributors get the recogni-
tion they deserve. Tools such as SourceCred2 aim to support communities in
measuring and rewarding value creation.

It is challenging to correctly determine the contributions of each project
member (Kalliamvakou et al., 2009). A first challenge concerns which types of
contributions should be considered (Cheng & Guo, 2019; Cánovas Izquierdo &
Cabot, 2021). Typically, automated tools for identifying contributions (such
as octohattrack3 or auto add contributors4) provide only an impartial picture,
as they tend to focus only on the types of activity that are discernible from the
social coding platform (e.g., commits, pull requests, or code reviews). Other
types of important contributions (e.g., finance, infrastructure, community man-
agement) are therefore often ignored (Young et al., 2021). A second challenge
concerns how to identify contributors. If the same contributor uses multiple
distinct accounts, or if the same account is shared by multiple contributors,
identity merging and matching techniques are needed (Goeminne & Mens,
2013). Another challenge concerns how to measure activity. The real effort
of contributors can only be approximated. For example, the number and size
of code commits could be used as a proxy of the coding effort, but does not
reflect the time required to produce such a commit, since this may depend on
many external factors. Moreover, such a proxy is unable to distinguish between
manual or automated activity.

Last but not least, contributors may, and regularly do, use (some of) their
social coding accounts to allow automated tools (i.e., bots) to carry out repet-
itive activity on their behalf. Whether this is intentional or not, such usage of
bots that carry out tasks on behalf of their owner can disrupt the aforemen-
tioned accreditation and recognition need. Indeed, it would be unfair to give
the same recognition to a contributor whose contributions are primarily due to
a bot that is committing on his/her behalf, as compared to a contributor that
has invested a similar effort manually. On the other hand, there is nothing
wrong with contributors that try to increase their productivity by automating
some of their repetitive tasks, as long as this is not intentionally done to arti-
ficially inflate one’s activity. Whether and how to give proper recognition to
project contributors remains an open and difficult question.

2https://sourcecred.io
3https://github.com/LABHR/octohatrack
4https://github.com/marketplace/actions/auto-add-contributors

https://github.com/LABHR/octohatrack
https://github.com/marketplace/actions/auto-add-contributors
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3.2.2 Distinguishing bots from humans

A first and important step to give proper recognition to project contributors
consists of distinguishing human activity from bot activity. GitHub allows
project contributors to discern whether certain types of activity are automated,
specifically for GitHub Apps and GitHub Actions. According to the GitHub
terms of service, bots are not permitted to register new GitHub accounts. How-
ever, things get more complex, since humans are permitted to set up machine
accounts to perform automated tasks (such as a continuous integration bot),
provided that a human owning the account accepts the responsibility for its
actions. The problem is that the GitHub Application Programming Interface
(API) does not allow to distinguish all such machine accounts from ordinary
user accounts corresponding to real human activity. As a consequence, tools
that want to benefit from distinguishing human users from machine users (i.e.,
bots) have a hard time doing so. For example, among the available tools to
accredit and acknowledge contributors, SourceCred and contributors-list5 are
limited in separating human and bot contributors by relying on the GitHub
API and on a user-defined list of machine accounts to do so.

This is where bot identification tools could come to the rescue. Such tools
aim to distinguish bots from humans in GitHub accounts on the basis of their
behaviour. The way of doing so can be quite diverse: it can be based on
differences in the commenting patterns made by bots (Chapter 4), on naming
conventions, or on commit activity patterns (Dey et al., 2020a). Examples
of such tools are BoDeGHa6 (Chapter 5) that relies on comments made in
pull requests and issues, and BoDeGiC 7 (Chapter 6) that relies on git commit
messages.

Using bot identification tools makes it easier to dissociate bot accounts from
human accounts, but can still lead to incorrect detections, notably when ac-
counts are involved in a mix of manual human activity and automated machine-
generated activity (Cassee et al., 2021). Although there is still room for im-
proving bot identification tools (Chapter 6), they can already be very helpful
in identifying bots, especially in large repositories.

3.2.3 Evidence of bot contributions i n popular software projects

In order to justify the need for properly identifying bot activity in collaborative
software development projects, we provide some evidence of the presence of

5https://giters.com/wow-actions/contributors-list
6https://github.com/mehdigolzadeh/BoDeGHa
7https://github.com/mehdigolzadeh/BoDeGiC

https://giters.com/wow-actions/contributors-list
https://github.com/mehdigolzadeh/BoDeGHa
https://github.com/mehdigolzadeh/BoDeGiC
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bots among the top contributors in popular open-source projects on GitHub.
We selected 10 large and active open-source projects for popular programming
languages (e.g., JavaScript, Java, Python, Rust). The list notably includes:
VueJS 8, a very popular front-end framework for JavaScript with more than
40K dependent projects on NPM; Servo9, an experimental browser engine
written in Rust that has more than 1K contributors and nearly 40K commits;
and Cucumber-JVM, a Java implementation of the popular test framework
that has more than 53K dependent projects on GitHub.

We relied on the GitHub API to retrieve the contributors with the highest
number of commits in these 10 projects, as well as their account type (i.e.,
user or bot) as reported by the GitHub API on 9 November 2021. This section
examines the potential impact of bots that are not explicitly identified by the
GitHub API on the attribution of contributors.

Fig. 3.9 depicts the top 20 contributors to these 10 popular software projects,
ranked in decreasing order of activity. Contributors that are responsible for
at least 1% of all commits are highlighted. We classified the contributors into
three categories: human users, labeled bots as reported by the GitHub API,
and unidentified bots that were not reported as bots by GitHub. This classi-
fication was confirmed through a manual inspection of their activities by two
authors of the paper (Golzadeh et al., 2022b).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Figure 3.9: Bots observed in the top 20 most active committers in 10 popular
open-source projects.

8https://github.com/vuejs/vue
9https://github.com/servo/servo

https://github.com/vuejs/vue
https://github.com/servo/servo
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The figure shows that the considered projects have between one and three
bots among the top 20 contributors. However, only less than half of the bots (9
out of 21) are reported as such by the GitHub API. The results are even more
striking if we focus on the subset of contributors responsible for at least 1%
of all commits: the overwhelming majority of the bots (18 out of 21) belong
to those contributors and most of them (10 out of 18) are not labeled as bots
by GitHub. On average, the bots are responsible for nearly one fifth of all
commits in these projects.

Interestingly, we also found that some projects had explicitly credited and
acknowledged bots in the list of “people that contributed to the project”. While
explicitly crediting and acknowledging contributors may encourage them to
continue to contribute, the presence of bots in the contributor list may be
perceived as a lack of consideration or respect towards human contributors.

3.3. Summary and conclusions

In this chapter, we explored how CI/CD systems have been used to automate
development-related activities in GitHub repositories over time. We also in-
vestigated the presence of bots as another means of automation in GitHub
projects. We revealed that in terms of automation many interesting observa-
tions can be made with respect to collaborative software development. Re-
garding continuous integration, we observed CI co-usage and migrations and
witnessed how the introduction of a new competitor is changing the CI land-
scape. Therefore, there is a good opportunity to explore the reasons behind
such CI co-usages and migrations as a future research objective.

We also showed that bots are among active contributors to projects even
though they are not necessarily reported as such. This motivates the need for
techniques and tools to identify bots. My thesis statement focuses on providing
techniques and tools to identify bots in software development repositories. In
the next chapter, we will explain how we characterize bots based on their
behavior in order to develop a technique to automatically identify bot accounts.

The results of our analysis revealed that bots play an undeniable role in
large collaborative software development projects. These bots seem to carry
out a significant amount of work, as many of them belong to the most active
project contributors. Nevertheless, many bot accounts are not labeled as such
by GitHub. Understanding why they are not labeled as bots remains an open
question.

Having unidentified bots among the most active contributors may be prob-
lematic. For example, the presence of such bots in a contributor list may
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cause difficulties when changes in the project’s Contributor License Agree-
ment (CLA) are required, since such changes require the explicit approval of
all human contributors. It also becomes more difficult to give due credit to
human contributors for their activities, and could even lead to bots (or rather
the human owners of the associated machine accounts) receiving financial com-
pensation for their effort.

Currently, maintainers have no choice but to manually maintain a list of
active bots in their repository, by manually inspecting contributors’ activities
on a regular basis. While this option is feasible for smaller repositories, it is
impractical to do such a manual inspection in repositories with a large number
of contributors and activities. This highlights the need to rely on automatic bot
identification and in turn calls for more research on accurate bot identification
techniques.

Moreover, since we expect bots to become more complex and more so-
phisticated in the range of development activities they support and automate,
there is also a need for exploiting machine learning and artificial intelligence
techniques to properly detect and acknowledge the presence of bots and their
specific activity patterns.
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CHAPTER 4
Distinguishing characteristics of bots

“The truth is always in harmony with
herself, and is not at variance with herself,
nor can she ever be.”

Zoroasters

In Chapter 3, we showed that CIs and bots are an important part of col-
laborative software development and that there is a need for an automatic
technique to identify bots in GitHub repositories. To validate such a tech-
nique, we need to have a ground-truth dataset of bots and humans active in
collaborative development. Given that such a dataset was not available at
the time we conducted the study, we had to create it ourselves. To do so, we
randomly selected a large set of GitHub repositories and extracted the data
of accounts active in these repositories and their corresponding PR and issue
comments. In order to be able to identify the type of these accounts, we devel-
oped a rating application that allowed us to tag these accounts as humans and
bots. Using this rating application, we created a dataset composed of 5,000
accounts, including 527 bot accounts and 4,473 human accounts.

The dataset allows us to study the behavior of bot accounts and human
accounts. The goal is to identify bots by analysing their behavior and activi-
ties in a way that helps us recognize them. As an example, we show that bot
accounts tend to communicate with other accounts using very similar com-
ments or a small set of similar comments, and bots are less likely to submit
empty comments since they are expected to generate informative messages.
We characterize bots based on such distinctive behaviors.

55
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4.1. Terminology

In the context of this chapter, we will consistently use the following terminol-
ogy. We use the term bot to refer to a GitHub bot, defined by Wessel (Wessel
et al., 2018b) as “a task-oriented bot, responsible for automating well-defined
tasks on GitHub repositories. A GitHub bot behaves like a human user, serving
as an interface between users and services.”

Since our study focuses on distributed software development on GitHub,
we use the term repository to refer to a GitHub repository. Contributors to a
repository can be identified by their unique (GitHub) account . Contributions
to a repository can take different forms, such as code commits, issues and
pull requests (PR). The focus of this chapter will be on issues and PRs.

Contributors can add (uniquely identifiable) comments to PRs and issues
in a repository. We use the term commenter to refer to the GitHub account
having provided this comment. We also use the term comment to refer to its
actual textual content. Since a commenter can be either a bot or a human con-
tributor, we will refer to them as bot commenter and human commenter ,
which we will abbreviate to bot and human , respectively.

4.2. Data extraction

In order to be able to evaluate an automated algorithm to detect bots based on
their commenting activity in GitHub issues and pull requests, a ground truth
dataset is required. Such a ground truth dataset indicates, given a contributor
commenting in an issue or a pull request, whether this contributor is a human
or a bot. To be effective and representative, the ground truth dataset should be
large enough, i.e., it should cover a considerable number of GitHub repositories,
contributors, issues and pull requests.

Since we did not encounter any such representative ground truth dataset
in the research literature, we set out to create it ourselves. To do so, we down-
loaded and manually examined comments from thousands of issues and pull
requests, labelling each contributor either as a bot or a human commenter.
Despite the considerable effort needed to create such a dataset, it was a worth-
while endeavour, since it will be a valuable resource for other researchers as
well.

This section explains how we proceeded to create and validate our ground
truth dataset, from the raw data we downloaded to the process of rating and
labelling each contributor.

A common starting point to download data from GitHub is GitHub public
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event endpoint1 which allows researchers to access the most recent activities
on the entire GitHub repositories. Our goal is to identify bot and human
commenters based on the comments they made in issues and pull requests of
collaborative software development repositories on GitHub.

GitHub is one of the leading online collaborative development platform.
As of November 2020, GitHub reported having over 48 million users and more
than 195 million repositories (including at least 37 million public repositories).

Following the guidelines provided by Kalliamvakou et al. (2014b), we want
to avoid repositories that have been created merely for experimental or per-
sonal reasons, or that only show sporadic traces of issue and PR comments.
Moreover, since our focus is on software development repositories, we want to
exclude repositories that are not related to software development. To com-
ply with these constraints, we relied on libraries.io (Katz, 2020), a monitor-
ing service indexing information for several million packages being distributed
through 37 software package registries, such as npm, PyPI, etc.

We downloaded the data dump of January 20202 containing, among others,
links to the GitHub repositories related to these distributed software packages.
Since it contains more than 3.3 million GitHub repositories, we randomly se-
lected around 136K of them as the starting point of our dataset creation pro-
cess. For each of these repositories, we extracted on 16 February 2020 the last
100 comments of the last 100 issues and pull requests using GitHub’s GraphQL
API. This resulted in over 10 million comments covering a period of more than
10 years (ranging from 17 December 2009 to 15 February 2020). These com-
ments were made by more than 837K distinct contributors, corresponding to
more than 3.5 million issues and pull requests. The extracted comments also
include the textual description of each considered PR. While the GitHub API
does not consider PR descriptions as comments, we do, since the GitHub web
interface does not visually distinguish them from other comments.

Since our goal is to distinguish between bots and human contributors based
on their comments, we require a sufficiently large number of comments for each
commenter. Hence, we decided to exclude commenters who made fewer than 10
comments based on a threshold we identified in one of our studies (Golzadeh
et al., 2020). At this stage of the process, the dataset contains 6,307,489
comments belonging to 79,342 contributors, spanning 42,492 repositories.

Since this is too much data to process manually, we extracted a subset
covering 5,082 commenters. This subset was composed of 4,644 randomly
selected commenters to which we manually added 438 extra commenters that

1https://docs.github.com/en/graphql
2Version 1.6 on http://doi.org/10.5281/zenodo.3626071

https://docs.github.com/en/graphql
http://doi.org/10.5281/zenodo.3626071
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Table 4.1: Summary of the dataset characteristics.

raw dataset number

GitHub repositories 136,529
↪→ from # distinct owners 84,983

issues 1,588,363
pull requests (PR) 1,951,705
issue and PR comments 10,874,611
↪→ from # distinct commenters 873,489

selected subset

GitHub repositories 3,975
↪→ from # distinct owners 3,425

issues 50,241
pull requests (PR) 136,750
issue and PR comments 301,557
↪→ from # distinct commenters 5,082

are more likely to correspond to bots based on previous studies (Golzadeh
et al., 2020; Wessel et al., 2018b) (52 cases), or because they contained a
specific substring in their GitHub account name (386 cases). The substrings
we considered were “bot”, “ci”, “cla”, “auto”, “logic”, “code”, “io” and “assist”. By
doing so, we increased the likelihood of having a sufficient number of bots in
the dataset.

The resulting subset contains 5,082 commenters and covers 3,975 reposi-
tories, 186,991 issues and pull requests, and contains 301,557 comments. Ta-
ble 4.1 summarizes the main characteristics of the considered datasets.

4.3. Data labelling and rating process

The next step to create a ground truth dataset is to manually identify bots and
humans. To ease this process, we developed a web application through which
the list of comments of each commenter was presented to at least two raters
among the four authors of the paper (Golzadeh et al., 2021). Comments were
displayed by batches of 20, starting with the most recent comments first, and
the rater had an option to display more comments if needed. The account name
of the commenter was not revealed to avoid bias, as the goal was to classify
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Figure 4.1: Anonymised screenshot of the rating application in action.

commenters based on their comments only. The rater could select whether
the commenter is considered as a “Bot” or a “Human”. In case a rater was
uncertain whether the commenter was a bot of a human being, a third option
could be selected: “I don’t know”. Furthermore, the rater was asked to select
a difficulty level among “Very easy”, “Easy”, “Difficult” and “Very difficult” for
his decision.

Fig. 4.1 shows a screenshot of the rating application in action. For the
specific example being shown, raters could easily decide that the commenter
is a bot based on the content and repetitiveness of all visible comments.

In total, 5,082 commenters were rated, ending up with exactly 5,000 com-
menters after having filtered out 82 commenters during the following process.
We considered this amount as more than sufficient for our empirical study, es-
pecially because of the very time-consuming manual effort that was involved in
the rating process. The rating process was performed in two steps to come with
an optimal inter-rater agreement, relying on Landis agreement levels (Landis
& Koch, 1977). The rating process is summarized in Fig. 4.2. Each commenter
was initially rated by two distinct raters. All cases that were agreed either as
bot or human were included in the ground-truth dataset. In order to assess the



60 Distinguishing characteristics of bots

Select an account

Rate (by 2nd rater)Rate (by 1st rater)

Discussion

Rate (3rd rater)

[disagreement]

[difficult case]

[disagreement]

[agreement][agreement]
[include account]

[exclude account]

Figure 4.2: Workflow of the rating process.

reliability of the ground-truth dataset, we computed the inter-rater reliability
(IRR) (Campbell et al., 2013) between each pair of ratings based on Cohen’s
kappa κ (McHugh, 2012). The results are presented in Table 4.2.

The first step of the rating process ended up with 472 bots and 4,364
humans, with a “substantial ” agreement (κ = 0.84) between raters. At the
end of this step, there were 246 cases because they were either not agreed (177
cases) or agreed as “I don’t know” (69 cases). Additionally, 91 cases evaluated
as “difficult” or “very difficult”, leading to a total of 268 cases for the second
step.

In a second step, a third rater was involved for the cases that were identified
as “difficult” or “very difficult” during the first step. All raters then discussed
together all cases for which an agreement could not be achieved, or the cases
where the third rater disagreed with one of the two former ones. During these
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Table 4.2: Summary of two-step rating process.

first step second step

commenters agreed as bot 472 527
↪→ from # repositories 457 505

commenters agreed as human 4,364 4,473
↪→ from # repositories 3,425 3,515

proportion of bots 9.8% 10.5%

commenters agreed as “I don’t know” 69 –
commenters without agreement 177 4
commenters agreed as “mixed” – 78

κ agreement score 0.84 0.96

discussions, the raters sometimes relied on additional information (e.g., they
looked at the GitHub account of the commenter, at time intervals between
comments, the overall activity of the account, etc.) to come to a decision.

The large majority of discussed cases were resolved on the basis of an
unanimous decision between raters, leading to a very high inter-rater reliability
(κ = 0.96). At the end of the second step, only 82 cases were left out of
the ground-truth dataset, either because no agreement could be reached (4
cases), or because the raters agreed on the “mixed” nature of these commenters.
These “mixed” commenters correspond to human commenters that relied on
automatic tools to generate comments, therefore “mixing” the behaviour of a
human and a bot at the same time.

For example, some of these accounts rely on an automated tool to facili-
tate code review by sending PRs to Reviewer, a code review tool for GitHub.
Other examples include the use of tools such as StyleCI to improve code style,
or semantic-release to automatically determine the next version number of a
release, generate release notes and publish a package. We will discuss these
“mixed” commenters in more details in Section 5.5.

This left us with 5,000 commenters, of which 527 (i.e., 10.5%) are bots.
Table 4.3 summarizes the characteristics of final ground-truth dataset. Since
we believe such a ground-truth dataset is valuable for the research community
(e.g., to have a list of known bots, to study their characteristics or to train other
models), we shared it publicly on http://doi.org/10.5281/zenodo.4000388.
This dataset contains the name of the repository, the name of the commenter
and whether it is a bot or a human. Due to GDPR regulations and in order to

http://doi.org/10.5281/zenodo.4000388
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Table 4.3: Summary characteristics of final ground truth dataset.

number of... bot human total

commenters 527 4,473 5,000
repositories with at least 1 commenter 505 3,515 3,909
comments 28,287 268,504 296,791
issues with at least 1 commenter 2,749 46,959 49,623
PRs with at least 1 commenter 16,937 118,896 134,208

protect GitHub users’ privacy, we did not provide additional information (e.g.,
their comments).

4.4. Characteristics of bots

In this section, we explain the features that will be used by the classification
model to distinguish bots from human commenters. These features include
the number of comment patterns, the number of (empty) comments, and the
number of comments within each pattern. The following subsections explain
these features and the rationale behind their selection.

4.4.1 Text distance between comments

Based on the assumption that bots perform more repetitive and automated
tasks, we hypothesise that bot commenters exhibit more repetitive comments
than human commenters. Consequently, we expect comments belonging to
a bot to exhibit more similarity than comments belonging to a human com-
menter. In order to measure the similarity between comments of each com-
menter, both in terms of content and structure, we rely on text distance metrics
that are commonly used for this purpose in natural language processing. The
two metrics we consider are the Jaccard (Jaccard, 1912) and Levenshtein (Lev-
enshtein, 1966) distances. The first one aims to quantify the similarity of two
texts based on its content, and the second one captures the structural difference
by counting single character edits.

More precisely, the Jaccard distance J(C1, C2) measures the distance be-
tween two texts C1 and C2 by comparing the number of distinct common
words in C1 and C2 with the total number of distinct words in C1 and C2. If
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words(C) denotes the set of words in C, then J(C1, C2) is computed as:

J (C1, C2) = 1− | words(C1) ∩ words(C2) |
| words(C1) ∪ words(C2) |

The second distance we consider is the Levenshtein edit distance lev(C1, C2)
that measures the difference between two character sequences C1 and C2 by
counting the minimum number of single-character edits (insertion, deletion,
or substitution) required to convert C1 into C2. We rely on its normalized
version, computed as:

L(C1, C2) =
lev(C1, C2)

max(|C1|, |C2|)
To support our assumption that comments made by a bot have higher

similarity than comments made by a human, we computed for each commenter
in the ground truth dataset the Jaccard and Levenshtein distances between all
pairs of comments belonging to that commenter. In order to compute the
Jaccard distance, we first needed to split comments into words, a process also
known as tokenization. To do so, we relied on spaCy, an “industrial-strength
natural language processing library”3 that notably offers a fast but robust
tokenization algorithm, among others.
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Figure 4.3: Mean Levenshtein and Jaccard distances between pairs of com-
ments, per commenter.

Fig. 4.3 shows the mean Levenshtein and Jaccard distances for each com-
menter, distinguishing between bots (blue triangles) and humans (orange tri-
angles).

3https://spacy.io

https://spacy.io
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We observe that many humans are grouped in the top right part of the
figure, i.e., they have high mean values for both distances. On the other hand,
most bots have lower values for their mean distances. For instance, 91.6%
of all bots have mean Jaccard and Levenshtein distances below 0.75. For
comparison, only 7.2% of all human commenters exhibit mean Jaccard and
Levenshtein distances below 0.75.

Despite this, there is still a lot of overlap between bots and humans in
Fig. 4.3, indicating that the mean distances are not enough to properly dis-
tinguish between bots from humans. By manually inspecting the comments
belonging to bots having high mean distances, we found that their comments
usually form sets of similar comments. Even if the distance between comments
in a set (i.e., intra-set distance) is low, the distance between comments be-
longing to different sets (i.e., inter-set distance) is high. As a consequence, the
overall mean distances between all comments tends to remain high, rivalling
the distances observed for most human commenters.

We found many of these cases. One example is the bot that was identified
in Fig. 4.1. We observe that it has two different sets of similar comments. The
first set consists of comments of the form “You did it @. . . ! Thank you for
signing the . . .Contribution License Agreement. We will have a look at your
contribution! ”. The second set consists of comments of the form “Hi @. . . ,
many thanks for your contribution! In order for us to evaluate and accept
your PR, we ask that you [sign a contribution license agreement] . . . It’s all
electronic and will take just minutes.”. The mean distance between pairs of all
20 comments belonging to the first set (i.e., intra-set distance) is very low (0.06
and 0.08 for Levenshtein and Jaccard distance respectively) and even lower
(0.04 and 0.05 respectively) for the second set of 27 comments. However, the
intra-set distance (i.e., the distance obtained by comparing comments from the
first pattern with comments for the second pattern) is much much higher (0.70
and 0.81 for Levenshtein and Jaccard distance respectively). Consequently, the
overall mean distances between all pairs of comments are 0.37 for Levenshtein
and 0.43 for Jaccard distance. These distances are usually observed for human
commenters, not for bots.

After scrutinizing the comments, we came to the conclusion that bots follow
some patterns in their comments. Assume that all comments produced by a bot
belong to a limited set of comment patterns. Within each cluster of comments
corresponding to the same comment pattern, the mean distance will be low.
Yet, when considering all comments together, the mean distance can remain
high, since the distance between comments belonging to different clusters can
be high. Hence, to obtain a better way to distinguish bots from humans, we
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decided to compute the similarity between sets of comments instead of all
comments for each commenter.

4.4.2 Repetitive comment patterns

Since high mean distances between comments of a commenter could correspond
to either a human or, in many cases, to a bot having sets of similar comments,
we cannot exclusively rely on these mean distances to distinguish between
bots and humans. However, we observed that bots tend to have sets of many
similar comments (i.e., they follow comment patterns), while we found that
most comments from humans are unique and only a few of them seem to follow
a pattern (e.g., “Thank you! ”, “LGTM ”4 or “+1 ”5). Based on this observation,
we expect bots to have a lower number of comment patterns than humans. In
order to capture these comment patterns, we rely on a clustering algorithm.
Clustering aims to group items into sets (“clusters”), in such a way that items
belonging to the same cluster are more similar than items belonging to different
clusters.

We selected DBSCAN (Density Based Spatial Clustering of Applications
with Noise) (Ester et al., 1996), a well-known density-based clustering algo-
rithm that notably has the ability (i) to generate clusters of unequal size (i.e.,
we can have patterns with unequal numbers of comments), (ii) to generate a
single cluster if needed (e.g., a commenter whose comments are all the same),
and (iii) to generate single item clusters (e.g., a commenter whose comments
are all very different). Additionally, DBSCAN permits not to specify the num-
ber of clusters in advance, fitting our use case wherein we do not know the
number of patterns of each commenter in advance.

Since we aim to capture both the structural and content distance between
comments, we rely on a combination of the Levenshtein and Jaccard distance,
defined as follows:

D(c1, c2) =
L(c1, c2) + J (c1, c2)

2

For each commenter, we computed D(ci, cj) for each pair (ci, cj) of com-
ments. The resulting distance matrix, one per commenter, is then passed to
DBSCAN to group the comments based on their similarity. Fig. 4.4 reports
on the number of patterns (i.e., clusters), distinguishing between bot and hu-

4Shorthand for “Looks Good To Me”, a common way among GitHub users to agree with
what is proposed in a pull request.

5This is another common way of expressing agreement with what was proposed in the
previous comment or in the issue or PR description.
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Figure 4.4: Number of comment patterns (clusters) and number of considered
comments per commenter.

man commenters. Since the number of patterns could depend on the number
of comments, we report on the number of patterns relative to the number of
considered comments.

Compared to Fig. 4.3 we can observe a much clearer separation between
bots and humans based on the number of comment patterns and the number of
comments, although it is not perfect. We observe that most humans are along
the diagonal line which indicates that the number of patterns is close to the
number of comments, and that almost all bots are along the horizontal axis.
This means that the number of comment patterns for bots remains stable,
and low, regardless of the number of comments they made. This confirms our
assumption that bots have a limited set of comment patterns, contrarily to
humans that seems to make much more varied comments.

4.4.3 Inequality between comments in patterns

Although we expected human comments to be mostly non-repetitive (i.e., each
comment corresponds to a different pattern), we found instances in which a
human commenter had a non-negligible number of repetitive comments (e.g.,
“Thank you! ”, “LGTM ” or “+1 ”) alongside other messages. This leads to
having human commenters whose number of comment patterns is much lower
than the number of comments, which is exactly the assumption we had for
bots due to their repetitive comments. However, we found that those human
commenters correspond to cases having at the same time a few patterns with
many comments and many patterns with a few (mostly single) comments. On
the other hand, bots exhibit single comment patterns less often. For instance,
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among the 2,431 patterns corresponding to bots, 50% are composed of a single
comment, while this proportion is much higher (95.9%) for the 230,711 patterns
we have for humans.

This observation lead us to consider the inequality in the number of com-
ments in each pattern as a supplementary feature to distinguish between bots
and humans. The Gini coefficient (Dorfman, 1979) provides a way to quan-
tify the inequality (i.e., the distribution) of the number of comments for each
pattern. A value of 0 expresses perfect equality (i.e., each comment pattern
consists of the same number of comments). A value of 1 expresses maximal
inequality among values (i.e., a few patterns capture many comments, and the
remaining comments are spread into many single-comment patterns).

Let us consider the example of a specific human commenter in our dataset.
This human made 73 comments belonging to 12 patterns. 9 of these patterns
have exactly one comment. The other ones correspond to “LGTM ” (37 com-
ments), “##Fixes{Number}” (22 comments) and “ lgtm” (5 comments). As
a result, the Gini coefficient for this commenter is very low 0.04, since most
patterns (9 out 12) have the same number of comments. Let us compare this
to a bot in our dataset with a similar number of comments (61) and comment
patterns (10). The number of comments in each pattern is more unequally dis-
tributed, ranging from 1 to 49 comments per pattern, a consequence of much
more repetitive messages. As a result, its Gini coefficient is much higher,
namely 0.52.

bot human
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Figure 4.5: Distribution of Gini coefficient for bot and human commenters.

Fig. 4.5 shows the distribution of the Gini coefficient for all bots and hu-
mans in our dataset, by means of boxen plots (Hofmann et al., 2011). We
observe that humans exhibit a lower inequality than bots with respect to
the spread of comments within patterns. We statistically compared these
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distributions using a Mann-Whitney-U test (Mann & Whitney, 1947). The
null hypothesis, stating that the two distributions are the same was rejected
(p < 0.001), indicating a statistically significant difference between the two dis-
tributions. The effect size turned out to be large (Cliff’s delta |d| = 0.58) (Cliff,
1993; Romano et al., 2006). This confirms that humans tend to have a lower in-
equality than bots, a consequence of many of their patterns containing a single
comment. Therefore, the Gini coefficient can help in distinguishing between
bots and humans.

4.4.4 Number of comments

In addition to the number of patterns and the unequal distribution of com-
ments within patterns, we also consider the number of comments made by
each commenter as a feature for our model. This feature makes it possible to
distinguish between commenters having a similar number of patterns. Indeed,
consider for example two commenters having exactly 10 patterns. Assume they
have respectively 10 and 100 comments. The first commenter is likely to be a
human (since it has 10 patterns each containing exactly one comment, i.e., all
comments are different), while the second one is more likely to be a bot.

4.4.5 Number of empty comments

We also consider the number of empty comments as a feature for our model.
Indeed, during the rating process we found that a non-negligible proportion
(6.5%) of the considered comments were empty. The presence of such com-
ments in the dataset may seem strange. Even if the GitHub user interface does
not allow empty comments in a discussion, it does not prevent comments to
be composed of white characters. Moreover, the GitHub user interface allows
the creation of pull requests whose description is empty. Since this description
is the very first comment of a pull request, it explains why we found empty
comments in the dataset.

Interestingly, we found that empty comments are mostly created by human
commenters and not by bots. For instance, only 7% of all bots generated at
least one such comment, whereas this proportion reaches 41.2% for human
commenters. This should not come as a surprise, since one could expect bots
mainly to generate informative comments and, by definition, empty comments
are uninformative. Consequently, we decided to consider the number of empty
comments as a feature of our classification model.
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4.5. Summary and conclusions

This chapter examined the commenting activity of bots in GitHub issue and
pull requests, and identified four main features that characterize their behavior.
Based on the analysis in Section 4.4 we decided to use four distinct features
for commenters to train the classification model: (i) the number of comment
patterns; (ii) the inequality between comments in patterns; (iii) the total num-
ber of comments for the commenter; and (iv) the number of empty comments.
Compared to human accounts, (i) bots were found to have fewer comment
patterns, (ii) they tend to make more informed comments, so they rarely leave
empty comments, (iii) while bots have diverse numbers of comments in each
pattern, humans mostly have comment patterns with single item, and (iv) the
number of comments is linked to the number of comment patterns. These
parameters can be used to distinguish bots from human accounts.

In order to detect bots in social coding platforms it is important to charac-
terize bots based on their behaviour. Yet, such characterization is not sufficient
for an automatic method of identifying bots. The development of an automatic
technique to detect bots based on such characteristics requires the development
of a classification model. To train and evaluate a classification model in the
next chapter, we will use the ground truth dataset we prepared in this chapter.
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CHAPTER 5
A classification model for bot

detection

“Science is the most reliable guide in life.”

Avicenna

Chapter 4 identified features that can help to distinguish bots from human
accounts. We provided visual and statistical evidence of the distinction be-
tween humans and bots but this is not sufficient since we need an automatic
method to identify bots. Thus in this chapter we implement a classification
model to identify bots on top of these features.

We employed machine learning algorithms in order to classify accounts
based on the numerical features that we identified in the previous chapter. The
output of the classifier should be either “bot” or “human”, therefore we need
a binary classification technique. Among the classifiers having the ability to
perform binary classification, we evaluated 5 different well-known classifiers, we
follow a grid-search cross-validation to evaluate these classifiers with different
parameters in order to select the best classifier. We evaluate the accuracy of
the classification model based on a test set of unseen data and we provide the
model accuracy based on common machine learning accuracy metrics. In order
to make the classification model more usable for practitioners and researchers,
we implemented a command-line tool based on it. We present the structure
and how BoDeGHa (Bot Detector for GitHub accounts) works in classifying
accounts of a given GitHub repository.

71
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5.1. A classification model to identify bot accounts

A wide variety of algorithms can be used to construct a classification model. In
this section we compare different classification algorithms to determine which
one is the most appropriate to distinguish between bot and human commenters.
Machine learning algorithms fall under three categories: supervised learning,
unsupervised learning, and reinforcement learning (Mitchell, 1997). In this
work, we compare different supervised learning algorithms to determine which
algorithm is the most appropriate. We do not use unsupervised models because
we have classes of commenters and we want to predict the labels based on
historical data. We do not use reinforcement learning either as this technique
focuses on learning as events happen, whereas we investigate learning from
historical data. Among the classifiers having the ability to perform binary
classification, we consider Decision Trees (DT) (Safavian & Landgrebe, 1991),
Random Forest (RF) (Breiman, 2001; Frank & Hall, 2001), Support Vector
Machines (SVM) (Gunn, 1998), Logistic Regression (LR) (Burridge, 1991), and
k-Nearest Neighbours (kNN) (Aha et al., 1991). Since the performance of these
classifiers could depend on the input parameters, we follow a standard workflow
of hyper-parameter tuning using a grid-search cross-validation process (Witten
et al., 2011) (see Fig. 5.1). To do so, we rely on scikit-learn (Pedregosa et al.,
2011), a well-known machine learning library for Python.

We first divided the ground-truth dataset into two disjoint sets: a training
set containing 60% of the data that will be used in a grid-search cross-validation
process to determine the best input parameters and the best classifier, and a
test set composed of the remaining 40% that will be used to evaluate the
performance of the selected classifier and parameters on new data. Since we
have many more humans than bots in our datasets, we relied on a stratified
train-test split method to create these two sets with the same ratio of bots and
humans.

Selecting an appropriate model with the best possible parameters requires
hyper-parameter tuning. Based on the supported parameters of each classifier,
we implemented a grid-search process based on a limited set of values for
each parameter. For example, DT and RF were evaluated by setting the split
criterion to Gini and entropy, among others. Doing so resulted in 91 different
classifiers. To address the class imbalance problem (He & Garcia, 2009) and
avoid affecting the performance of the classifiers (Grbac et al., 2013), we rely
on a cost-sensitive learning approach (Elkan, 2001). Practically, this means
we set the class weight parameter in scikit-learn to balanced for each supported
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Split data

: Training data : Test dataCross validation

: Parameters

: Best parameters Retrain model Final evaluation

Figure 5.1: Standard workflow for grid-search cross-validation

classifier.
We then trained and evaluated the performance of all classifiers using a 10-

fold cross-validation process. This approach splits the dataset into 10 subsets
of equal size, and for each fold a model is trained using 9 subsets and is
evaluated on the remaining one. The overall performance of the model is
averaged from the performance of these 10 models. To ensure that the created
subsets preserve the same proportion of bots and humans as in the complete
training set, we relied on a stratified shuffle split to create them.

The performance of the resulting models is measured using the classical
metrics of precision P , recall R and F1-score. We use these metrics for the
population of each class (i.e., for bots B and humans H). For the entire popu-
lation we computed the weighted version of these metrics to take into account
the class imbalance. We aim to achieve an as high F1-score as possible. Since
our goal is to identify bots, we also strive to keep bot recall R(B) high enough,
given that the population of bots is significantly smaller than the population of
humans, and that it is much easier and faster to recover from humans misclas-
sified as bots than the opposite. All these metrics are summarized in Table 5.1,
and are defined in terms of the number of true positives TP (the number of
bots that are correctly classified as such by the model), true negatives TN (the
number of humans that are correctly classified as such by the model), false pos-
itives FP (humans that are wrongly classified as bots), and false negatives FN
(bots that are wrongly classified as humans).
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Table 5.1: Definitions of precision, recall and F1-score.

population precision P recall R F1-score

bots B TP
TP+FP

TP
TP+FN

2×P (B)×R(B)
P (B)+R(B)

humans H TN
TN+FN

TN
TN+FP

2×P (H)×R(H)
P (H)+R(H)

B ∪H P (B)×|B|+P (H)×|H|
|B|+|H|

R(B)×|B|+R(H)×|H|
|B|+|H|

2×P×R
P+R

Table 5.2: Precision, recall and F1-score of the best classifiers per family of
classifiers (in descending order of F1-score).

bots humans overall (B ∪H)
classifier P (B) R(B) P (H) R(H) P R F1

RF 0.932 0.916 0.990 0.992 0.984 0.984 0.984
kNN 0.943 0.853 0.983 0.994 0.978 0.979 0.978
SVM 0.876 0.925 0.991 0.984 0.979 0.978 0.978

DT 0.882 0.884 0.986 0.985 0.975 0.974 0.974
LR 0.839 0.931 0.992 0.978 0.975 0.973 0.974

ZeroR - 0.000 0.893 1.000 0.798 0.893 0.843

Following the grid-search cross-validation process described above, we trained
and obtained 91 classifiers. For each of them, we computed the resulting bot,
human and overall precision, recall and F1-score. Table 5.2 reports on these
metrics, in descending F1-score order. To ease readability, rather than re-
porting on all 91 classifiers, we selected for each classifier category (e.g., DT,
RF, ...) the instance whose parameters resulted in the highest F1-score. We
also compared the precision, recall and F1-score of these classifiers against a
baseline classifier, ZeroR. ZeroR is a very simple classifier that has no predic-
tive power: it ignores the features and always predicts the majority class (i.e.,
“human” in our case). We observe that all classifiers exhibit a high overall per-
formance (in terms of precision, recall and F1) and surpass ZeroR by a wide
margin.

The overall scores for R, P and F1 of all classifiers are consistently higher
than the ZeroR baseline, and range between 0.974 and 0.984. Even though the
best SVM and LR classifiers have higher bot recall R(B) than the best RF
classifier (0.925 and 0.931 compared to 0.916, respectively), the overall R, P
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and F1 scores are highest for the RF classifier. We therefore decided to use
the best RF classifier, which was obtained with the entropy split criterion, 10
estimators (i.e., trees) and a maximum depth of 10 for these trees.

5.2. Evaluation of the model

In this subsection, we aim to evaluate the actual performance of that model on
data that were not used to train the model, i.e., on new data contained in the
test set. Following the workflow presented in Fig. 5.1, we start by constructing
a new classification model instance based on the selected RF classifier, its
parameters, and the training set containing 60% of the ground-truth dataset.

We evaluate and report the accuracy of the model based on the test set,
corresponding to the remaining 40% of the ground-truth dataset. This test set
includes 2,000 commenters, of which 1,789 are humans and 211 are bots. The
evaluation results are reported in Table 5.3.

Table 5.3: Evaluation of the classification model using the test set.

classified classified Precision Recall F1
as bot as human

Bot TP: 192 FN: 19 0.94 0.91 0.92
Human FP: 13 TN: 1776 0.99 0.99 0.99

weighted avg 0.98 0.98 0.98

We see that most bots and humans are correctly classified by the model. For
instance, only 19 out of 211 bots were misclassified as humans (FN), and only
13 out of 1789 humans were misclassified as bots (FP). The overall F1-score
is very high (0.98), a consequence of the high precision (0.98) and high recall
(0.98) of the model. Thanks to the fact that we have taken into account class
imbalance during the training phase, these high scores can also be observed
individually for each class, even if the precision and recall for bots is slightly
lower than for humans. These results confirm what we already observed in
previous section, that is, the model is effective in identifying bots and humans.

Scrutinising all 19 misclassified bots (FN) we found that ten of them were
already problematic during the first step of the manual rating process, where
they were rated as either “Human” or “I don’t know” by one of the raters.
Moreover, the final decision to classify them as bots during the discussion
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Figure 5.2: F1-score of the model when applied on commenters, grouped by
their number of non-empty comments. The colour indicates the number of
commenters in each bin.

session among raters was based on additional information that is not available
in the comments themselves, explaining why the model is not able to classify
them correctly.

The model also misclassified 13 humans. The fact that the model misclas-
sified these humans as bots is not surprising given that, during the first step of
the rating process, 10 out of 13 cases were manually rated as difficult or very
difficult, 2 cases as “I don’t know” by both raters and one case was even rated
as a bot by one of the raters. Section 5.4 provides a detailed analysis of these
misclassified commenters.

Since the model relies on features computed on comments to distinguish
bots from humans, it is worthwhile to consider and measure the impact of
the number of considered comments on the performance of the model. In
particular, we aim to identify the minimal number of non-empty comments
required to reliably classify bots and humans. To this end, we evaluated our
model and computed the F1-score for commenters in the test set, grouped by
their number of non-empty comments.

Fig. 5.2 shows the resulting F1-scores of the model grouped by bins based
on the number of non-empty comments. The colour of a bin indicates how
many commenters there are in that bin. The bins with 10 to 24 and 30 to 34
non-empty comments have the highest number of commenters, while bins be-
tween 85 to 94 have the lowest number of commenters. The F1-score increases
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from 0.87 (bin 0-4) and becomes stable around 0.96 to 1.00 after 10 non-empty
comments are reached (from bin 10-14). This suggests that having at least 10
non-empty comments is enough to achieve good performance with the model.

5.3. The BoDeGHa bot detection tool

Since the classifier we trained to identify bots presents very good performance,
we implemented it as part of a tool. The tool is called BoDeGHa (Bot Detec-
tor for GitHub activity), is developed for Python 3.7 and is easily installable
through pip, the official package manager for Python.1 BoDeGHa can be used by
any researcher or practitioner to classify accounts of a given GitHub repository
either as bot or as human based on their issue and PR comments.

In its simplest form, BoDeGHa accepts the name of a GitHub repository and
a GitHub API key. BoDeGHa computes its output in three steps, summarized
in Fig. 5.3. The first step consists of downloading all comments from the
specified repository thanks to GitHub’s GraphQL API. This step results in
a list of commenters and their corresponding comments. The second step
consists of computing the number of comments, empty comments, comment
pattern and inequality between number of comments within patterns (i.e., the
features of the classification model). The third step simply applies the pre-
trained model on these examples, and outputs the prediction made by the
model.

BoDeGHa supports several additional parameters. The minimum and max-
imum number of comments to download and to consider can be specified, as
well as the start date from which to consider comments. It is also possible to
provide a list of specific accounts for the tool to consider. To ease its reuse by
other tools, it is also possible to export the results either as comma-separated
values or JSON. The command-line interface of BoDeGHa is summarized in
Fig. 5.4.

Fig. 5.5 presents the output of BoDeGHa for a randomly chosen GitHub
repository. The output shows, for each GitHub account (first column), the
number of extracted comments (second column), the number of empty com-
ments (third column), the number of computed comment patterns (fourth col-
umn), and the inequality among them (fifth column). The last column provides
the predicted class of each account. This example shows that three commenters
are identified as bots, and all remaining commenters as humans.

1Using pip install git+https://github.com/mehdigolzadeh/BoDeGHa
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Figure 5.3: The BoDeGHa architecture.

Figure 5.4: List of command-line arguments for BoDeGHa 1.0.1.
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Figure 5.5: Example of running BoDeGHa.
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5.4. Limitations of the bot detection model

The evaluation of the classifier revealed several commenters that the model
was not able to properly classify. We specifically look at the commenters that
have been misclassified by the model. During the evaluation of the model on
the test set, we found 19 bots and 13 humans that were misclassified. In order
to have a more complete categorisation of misclassified commenters, we also
applied the model on the training set and obtained 4 additional bots and 12
additional humans that are misclassified.

Starting with the 24 (19+5) bots, we found that in most cases they cor-
respond to bots that use, convert or copy text that was initially produced by
humans. Even if these bots perform repetitive tasks (i.e., copy information)
and even if some of these bots use templates to transfer or copy comments that
are recognizable to the human eye (e.g., “Jira issue originally created by user
{username}: {content of the issue}”), it is difficult for an automated algorithm
to detect such cases.

Copy from humans (9 bots): We found some instances of bots whose com-
ments were generated based on content made by humans (e.g., taskcat-ci, trax-
robot). Since our model solely relies on features derived from comments, bot
comments originating from human messages increase the likelihood of an in-
correct classification. Among these cases, we found several bots that transfer
data (including issues, PRs and their associated comments) to GitHub from
issue trackers, code review support tools, email etc. For example, neos-bot
transfers all issues from a Jira issue tracker, suchabot duplicates comments
and issues from another system to GitHub, and wallabag-bot migration from
email content to GitHub.

Insufficient comments (9 bots): We found 9 bots (e.g., devtools-bot and
egg-bot) that were wrongly identified as humans due to the lack of a sufficient
number of non-empty comments. Since our model relies on comment contents,
bots with too few non-empty comments may lead to incorrect predictions even
if these comments have similar comment patterns. We do not see any direct
way to overcome this, since bots are expected to provide relevant information
about what they are doing, and as such, one can expect their comments to be
informative and non-empty.

Diverse comments (6 bots): We found 6 cases of bots that are used for
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the purpose of reporting, logging, or proposing code changes. The variation
of comments in these bots increases the number of comment patterns, which
prevents the model from identifying these bots. The source of the comment
diversity comes from the reports they send for each task. For example sentry-io
creates an issue each time an error occurs in the software project, along with
the details of this error (e.g., stack trace). Another example is violinist-bot that
submits a PR to update outdated dependencies and to report about the changes
of this update. Despite these comments starting with a similar sentence (e.g.,
“Sentry Issue:” or “If you have a high test coverage index, and your tests for
this pull request are passing, it should be both safe and recommended to merge
this update. Here is a list of changes between the version you use, and the
version this pull request updates to:”), they mainly consist of details related to
the submitted issue or PR (i.e., stack traces for sentry-io and list of issues for
violinist-bot) and are considered as different comment patterns. This prompts
the classifier to consider these comments as belonging to distinct comment
patterns. Misclassification of such bots could potentially be avoided by parsing
the content of comments to find a template or structure.

We also looked at 17 (13+4) humans that were misclassified as bots, and
created the following categories:2

Repetitive comments (8 humans): We found 8 instances of human com-
menters whose comments are mostly composed of repetitive messages, such as
thank you or LGTM and that have nearly no other comments. Since repetitive
messages are usually indicative of the presence of a bot, the model failed to
correctly classify these commenters.

Insufficient comments (3 humans): We found 3 humans with few com-
ments, most of them being empty. Most of these comments were created in the
context of a pull request whose title was already sufficiently informative. Since
these empty comments are grouped in a single comment pattern, and since they
form the large majority of the comments made by these commenters, they were
wrongly considered as being generated by a bot due to their repetitive nature.
We also found instances where the comment content is too short or there are
too few non-empty comments. This prompts our algorithm to group them into
a small number of patterns and consequently provide wrong predictions.

Mostly unfilled issue templates (3 humans): It is not unusual in GitHub
repositories to require commenters to follow a comment template or a check-

2To comply with GDPR regulations, we cannot provide the account names for these cases.
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list when creating issues or pull requests.3 We found 3 commenters whose
comments were mostly composed of unfilled or barely filled templates, leading
these comments to be considered as a single pattern, and leading the model
to misclassify them as bots. Relying on an analysis of the content of such
comments could prevent them from being misclassified, by taking into account
the presence of such templates.

Others (3 humans): These cases do not fall into any of the above categories,
and we have found no specific reason to explain their misclassification. Some of
them have a small number of comments, while others only have a few patterns
(e.g., due to the presence of similar long URLs in comments) despite the fact
that they do not seem to have duplicated or similar comments.

Most commenters that were misclassified by the classification model were
also hard to recognize by the raters during the process of creating the ground-
truth dataset. In the test set, about 84.6% (11 out of 13) of the humans that
were misclassified as bots and about 63.1% (12 out of 19) of the bots that were
misclassified as humans were originally rated as “I don’t know”, “difficult”, or
“very difficult” by at least one of the raters. In contrast, among the correctly
classified commenters, a much lower percentage of bots (12.5%, 24 out of 192)
and humans (9.5%, 169 out of 1772) were rated as such.

Furthermore, during the creation of the ground-truth dataset, we encoun-
tered several examples of commenters whose features and comments were rem-
iniscent of both humans and bots. Such so-called “mixed” commenters are the
result of GitHub accounts belonging to humans allowing automatic tools to use
their account for carrying out certain specific tasks. Hence, the comments of
such commenters include both human-like and bot-like behaviour. We identi-
fied 78 such commenters out of 5,082 commenters (i.e., 1.5%) during the rating
phase and we consistently excluded them from the ground-truth dataset since
we could not decide whether these commenters should be classified as bots or
humans.

Nevertheless, it is interesting to report how our model behaves when ex-
posed to these specific “mixed” cases. Out of these 78 identified “mixed” com-
menters, 21 were classified as bots (26.9%) and 57 as humans (73.1%). The
fact that the proportion of “mixed” commenters classified as bots is higher than
the one in the training set (10.3%) suggests that their behaviour is perceived
to be closer to that of a bot than a human by the classification model.

The presence of mixed accounts as well as the categories of bots that have
3See https://docs.github.com/en/github/building-a-strong-community/

about-issue-and-pull-request-templates

https://docs.github.com/en/github/building-a-strong-community/about-issue-and-pull-request-templates
https://docs.github.com/en/github/building-a-strong-community/about-issue-and-pull-request-templates
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been misclassified as humans suggests that it is not easy to come up with a
single definition for a bot. Two persons could easily disagree on whether a given
account is a bot or a human if they have a different interpretation of what it
means to be bot. This calls for a more precise definition of bots. Erlenhov
et al. (Erlenhov et al., 2020b) started doing so based on qualitative interviews
with developers. This enabled them to identify three distinct DevBot personas
that differ in terms of features like autonomy, chat interfaces, and smartness.
This more fine-grained classification of DevBots and their characteristics paves
the way for more sophisticated classification models.

The approach presented in this chapter is not the first one to have been
proposed in the literature to detect bots in social coding platforms. Dey et
al. (Dey et al., 2020a) proposed three different approaches for identifying bot
accounts in GitHub projects, mostly based on their commit messages. One of
them consists of checking for the presence of the string “bot” in the account
name of the committer. We partially relied on this heuristic to add more
potential bot candidates during our data collection. However, solely relying
on it to identify bots is likely to lead to a large number of both false positives
and false negatives. To confirm this, we applied their approach on our ground-
truth dataset. We found 169 humans out of 4,473 (3.8%) containing the string
“bot” in their account name, either at the end (46 cases) or in the middle (123
cases). Out of the 527 bots we have in the dataset, 394 of them (i.e., 74.7%)
actually contained “bot” in their account name, usually at the end of the name
(378 cases). Although this may seem high for such a simple heuristic, it still
implies that more than one out of four bots is missed with this method, and
about one out of 25 humans is mistakenly considered a bot. For comparison,
around only one out of 25 (3.8%) bots have been misclassified as humans by
our model, and around only one out of 100 humans (1.1%).

5.5. Threats to validity

Based on the structure recommended by Wohlin et al. (Wohlin et al., 2012) we
discuss the threats that might call into question the validity of our findings,
their potential impact and how we have tried to mitigate them.

Construct validity examines the relationship between the theory behind
the experiments performed and the observations found. This threat is mainly
related to correctness of the dataset used in the experiments. The results of our
study are strongly dependent on the correctness of the ground-truth dataset.
We are confident that the ground truth contains very few errors, since we
achieved an almost perfect agreement (κ = 0.96) based on an iterative rating
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process involving all authors of the paper. One of the most likely threats
is the existence of “mixed” commenters in the dataset. Such commenters are
difficult to classify, even by human raters, since they combine both bot-like and
human-like behaviour. Mixed commenters constitutes a very small proportion
of our dataset (78 cases, corresponding to 1.5% of all considered accounts). We
excluded all these cases from the dataset since we could not agree on them.
However, it is possible that the dataset still contains such cases that were not
identified by the raters. Given the very low ratio of such mixed accounts, it is
however unlikely to affect our findings.

Internal validity concerns choices and parameters of the experimental setup
that could affect the results of the observations. Given that our classification
method is fully based on features computed from comments, we required each
commenter included in the dataset to have contributed at least 10 (possible
empty) comments. This threshold is based on the analysis in Chapter 4. As
such, we cannot claim that our model applies on commenters who made fewer
than 10 comments. Similarly, we considered at most 100 comments for each
commenter but, as explained in Section 5.2, this upper limit on the number
of comments is unlikely to have biased our results, since we already achieved
high F1-score starting from 10 non-empty comments.

Conclusion validity concerns whether the conclusions derived from the anal-
ysis are reasonable. Our conclusions are based on the evaluation and applica-
tion of the classification model on the test set. Given that we properly followed
a standard grid-search cross-validation method to identify the best classifier,
and that we evaluated the model on the test set (i.e., examples that have
not been used to train or select the classifier), the results we obtained and
conclusions we reached are unlikely to be affected.

External validity concerns the degree to which the conclusions we derived
are generalisable outside the scope of this study. The main threat to exter-
nal validity is related to the construction of the ground-truth dataset. To
avoid any potential bias, we randomly selected a large collection of GitHub
repositories related to software development and corresponding to actual pack-
ages being officially distributed, following the guidelines of Kalliamvakou et
al. (Kalliamvakou et al., 2014b).

While this dataset can be regarded as representative of bots contributing
to GitHub repositories through PR and issue comments, we do not make any
claim about its generalisability to other activities (e.g., commit messages) or
other social coding platforms (e.g., BitBucket or GitLab). Nevertheless, the
underlying approach could be made applicable to such activities or platforms.
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5.6. Summary and conclusions

This chapter described our novel approach to distinguish between bots and
humans in collaborative software development repositories on GitHub, based
on the comments they made in issues and pull requests. We developed a
classification model to identify bots based on four features: the total number
of comments of a commenter; its number of non-empty comments; its number of
comment patterns; and the inequality between the number of comments in each
pattern. The chosen features align with behavioural differences we observed
between bots and humans. Indeed, we found that most human commenters
tend to have diverse sets of comments with little repetition, while bots tend to
frequently use a limited set of comment patterns.

The accuracy achieved by our classification model is very promising, how-
ever, there are still some limitations that must be addressed. One of the
limitations is that the model only works with pull request comments and is-
sue comments and it is not able to identify bots that are active in commit
activities. Considering that the proposed model relies on message patterns,
the model cannot distinguish mixed accounts, nor can it identify accounts that
have had few comments in a repository. Additionally, the model and the asso-
ciated tool only analyse an account in a single repository and does not consider
the activities of accounts in multiple repositories. Chapter 6 will therefore pro-
pose several improvements to the classification model and its associated bot
identification tool to reduce some of its shortcomings.
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CHAPTER 6
Improving and extending bot

detection techniques

“Knowledge is not what is memorized.
Knowledge is what benefits.”

Ali ibn Abi Talibs

Chapter 5 introduced a new classification model and associated tool to
identify bots in GitHub repositories. While the results of the evaluation of the
classification model are promising, it does have some limitations and short-
comings. This chapter describes our efforts to address some of the limitations
of our classification model.

In order to overcome the limitation of only working with pull request and
issue comments, we applied the model on a dataset of commit messages and
trained a new model based on the same set of features. Using the new model,
we developed a tool called BoDeGiC, which we present in this chapter. Since
our method is based on message similarity, it can fail in the presence of mixed
accounts that combine both human and bot activities in a single account.
Therefore, we propose a more fine-grained machine learning model for classify-
ing individual issue and pull request comments using NLP techniques in order
to distinguish between human and automated activities.

Building on the wisdom of the crowd principle, we propose an extension to
the classification model proposed in Chapter 5 that incorporates diverging pre-
dictions from accounts active in multiple repositories, thereby leveraging data
from a broader range of sources to improve the model’s accuracy. Lastly, we
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make a comparison of different bot identification techniques that researchers
have utilized in the literature and combine all of these methods to generate an
ensemble classification model. We use a small set of active GitHub reposito-
ries to train and evaluate this ensemble model. The results indicate a better
performance than individual methods.

6.1. A classification model based on commit messages

In Chapter 5, we developed and proposed a classification model and associated
tool, called BoDeGHa to identify bots in GitHub repositories based on the
comments they made in PRs and issues. To train and evaluate this model,
we created a ground-truth dataset of GitHub contributors that were manually
labeled as bots and humans by three raters. The evaluation of the model on
the test set achieved a very high overall accuracy.

In parallel to our research, Dey et al. (Dey et al., 2020a) conducted a
similar study aiming to identify bots in git repositories based on git commit
data. They created a ground-truth dataset based on the World of Code (WoC)
dataset (Ma et al., 2019) containing 73M Git repositories. Their ground-truth
dataset is composed of 13,150 bots and 13,150 humans that were identified
using BIN (for Bot Identification by Name), a technique relying on the presence
of some keywords (e.g., “bot”) to identify bots. This ground-truth dataset only
includes true positive cases, and does not account for false negatives. Based
on this ground-truth dataset, they proposed BIMAN (for Bot Identification by
commit Message, commit Association, and contributor Name) to detect bots
based on commit activities. BIMAN achieves an AUC-ROC of 0.90. The AUC-
ROC is short for Area Under the Receiver Operating Characteristic Curve. It is
a widely used performance metric in machine learning classification tasks that
measures the ability of a model to distinguish between positive and negative
classes. A value of 1 indicates perfect classification while a value of 0.5 indicates
random classification (Fawcett, 2006).

Dey et al. used an ensemble technique composed of three methods to
consider different aspects of commits made by authors. They used commit
messages to identify whether a commit message generated from a template
(approximately similar to our idea) called BIM. This technique achieved a pre-
cision of 0.57 and a recall of 0.67 in detecting bots. As the second method,
they trained a random forest classifier to detect bots from characteristics of
commits like the total number of files changed in each commit, file extensions,
average file per commit, and the median number of projects the commit asso-
ciated with (i.e., BICA). Applying the technique on the dataset they obtained
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an AUC-ROC of 0.89. And finally, they matched the author’s name and email
to common bot patterns (e.g., presence of the string “bot” in the author name)
called BIN. This technique revealed a very high precision of 0.99 but a very
low recall of 0.36.

Although both aforementioned studies pursue the same goal, they are dif-
ferent in essence. The most prominent difference is the type of data on the
basis of which bots are being identified. PR and issue comments are mes-
sages that are being used to explain or discuss issues or PRs. Such comments
are not limited in size, in contrast to commit messages that aim to provide
one-liners that summarise the changes made in a commit. In Chapter 5 we
identified bots based on PR and issue comments, while BIMAN relies on git
commit information to distinguish bots from humans. As a consequence, the
set of contributors considered in both cases is different, since contributors ac-
tive in PR or issue comments are not necessarily active in code commits, and
vice versa. Another difference is that we restricted our dataset to contributors
active in GitHub while BIMAN works on all types of git repositories, even if
they are not hosted on GitHub. Moreover, when a contributor is active in more
than one repository, we considered each repository individually while BIMAN
aggregates the activity from multiple repositories for each contributor.

6.1.1 Initial classification model

In Chapters 4 and 5, we proposed an approach to distinguish bots from humans
based on their PR and issue commenting activities in GitHub repositories. We
developed a model (and associated command-line tool) with a high precision
to predict whether a contributor is a bot or human based on the comments
made in issues and PRs. The underlying idea was that bots perform automated
tasks, therefore, they are assumed to have more repetitive comments than hu-
mans. To capture this repetition of comments the model was trained using four
features related to the comments associated to a contributor: (i) we measured
the number of comment patterns on the basis of a compound comment similar-
ity metric. We hypothesized that the less comment patterns a contributor has,
the more likely a contributor is a bot; (ii) we computed the Gini coefficient to
capture the inequality of the number of comments in patterns; (iii) we counted
the number of comments since it allows to distinguish between contributors
having a similar number of comment patterns; (iv) and we counted the num-
ber of empty comments, driven by the assumption that bots are supposed to
have meaningful non-empty messages. The rationale behind these features and
how we computed them are the same as what we described in Chapter 4.

To evaluate the performance of the model, we relied on a ground-truth
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dataset composed of 5,000 distinct GitHub contributors. To create such a
ground-truth dataset, we manually labeled each contributor as bot or human
with high inter-rater agreement. The final dataset contains 527 bots and 4,473
humans. We trained and compared various classification models, and achieved
the highest results (F1-score = 0.98) with a random forest classifier. Not only
does the model perform well in general, it also achieves high precision and
recall for both classes: bots achieved a precision of 0.94, a recall of 0.94 and
F1 score of 0.92, and humans achieved a precision of 0.99, recall of 0.99 and
F1 score of 0.99. Only 19 out of 211 bots and 13 out of 1,789 humans were
misclassified by the model.

6.1.2 Data extraction

The model we introduced in Chapter 5 performed very well to identify bots
based on the repetitiveness of their comments, a text-based activity. Since git
commit messages are also text-based, and since we can expect that bots active
in commits exhibit a similar kind of behaviour, it seems promising to apply
our model to git commit messages as well.

In this section, we will first evaluate how well our model (trained on PR and
issue comments) performs when applied as-is to git commit messages. Then,
we will evaluate the approach we developed in Chapter 5 applied on git commit
messages, by training a new model. To do so, we need a labeled dataset of
contributors and their commit messages. We rely on the dataset of git commit
messages that was used by Dey et al. (2020a) and has been made publicly
available.1

We transformed the dataset to conform to the input format required by our
classification model. First of all, as explained in previous section, our model
expects a set of features related to comments of a contributor in a specific
repository. Therefore, if a contributor is active in more than one repository,
we split its activity by repository. Our approach being based on the assumption
that bots exhibit more repetitive activities, it cannot be applied for contribu-
tors that do not have enough activities. In Chapter 4, we observed that the
performance of the model decreased when the number of comments was below
10. Similarly, in this classification model, we will only consider contributors
that have at least 10 commit messages. We rely on 100 commit messages to
compute the set of features. This upper bound significantly reduces the com-
putational cost, and has been shown to be more than sufficient to achieve a
very high precision in Chapter 5. Not imposing an upper bound would re-

1https://zenodo.org/record/4042126

https://zenodo.org/record/4042126
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Table 6.1: Summary of the dataset characteristics.

original commit dataset from (Dey et al., 2020a) number

# Git repositories 6,394
# commits 311,622
# distinct contributors 6,922
↪→ # bots 3,380
↪→ # humans 3,542

quire to consider all commits for each contributor-repository pair, and some
pairs have more than 20,000 commit messages. Even for pairs with over 1,000
commit messages the performance begins to slow down considerably.

After having performed these steps, the resulting dataset contains 311,622
commit messages from 6,922 contributors, 3,380 whom have been labeled as
bots and 3,542 as humans. This accounts for around 25% of the original
dataset. The dataset characteristics are summarized in Table 6.1.

6.1.3 Model and evaluation

In this section, we will first evaluate how the classification model trained on
PR and issue comments performs when applied as-is to git commit messages.
Then, we will evaluate how the approach developed in Chapter 5 applies to git
commit messages, by training a new classification model.

We start by applying the existing model to see how it performs when ap-
plied on a new kind of data (i.e., on git commit messages). For each of the
6,922 contributors in the dataset, we computed the features required by the
model, and we asked the model to predict whether the contributor is a bot or
a human. We then compared the predictions with the ground-truth, enabling
us to compute the precision P of the model, its recall R and its F1-score. The
results are reported in Table 6.2.

The model achieved a precision of 0.77, with about 22.1% (749 out of
3,380) false negatives (FN) of bots misclassified as humans, and about 23.9%
(848 out of 3,542) false positives (FP) of humans misclassified as bots. Most
contributors are correctly classified as bot or human by the existing model
even though it was not trained on git commit messages but on PR and issue
comments. A possible explanation for this result is that even though the
model was originally trained on issue and PR comments, it mostly captures
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Table 6.2: Evaluation of the classification model of Chapter 5.

classified classified P R F1
as bot as human

Bot 2,631 (TP) 749 (FN) 0.76 0.78 0.77
Human 848 (FP) 2,694 (TN) 0.78 0.76 0.77

weighted avg 0.77 0.77 0.77

the repetitive nature of tasks. Therefore, it shouldn’t be that surprising that
it also works on commit messages, where we can also expect bots to have
repetitive behaviour.

To see how the approach developed in Chapter 5 behaves on git commit
messages, we trained a new model on git commit messages as opposed to the
previous model that was trained on PR and issue comments. To do so, we
divided the ground-truth dataset into two disjoint subsets. 60% of the data
are used to perform grid-search cross-validation to select the best classifier and
its parameters. A test set composed of the remaining 40% is used to evaluate
the selected classifier on unseen data. At the end of the cross-validation set,
we obtained 91 different classifiers. The performance of these classifiers was
measured using traditional performance metrics of precision P , recall R, and
F1-score for the population of each class (i.e., for bots B and human H). We
report the highest F1-score for each classifier in Table 6.3, in descending order.
We retained the random forest (RF) classifier, as it slightly outperforms the
other classifiers. Its score was obtained with the entropy split criterion, 20
estimators (i.e., trees) and a tree depth of 8.

Table 6.3: Precision, recall and F1 of the best-performing classifiers per clas-
sifier family (in descending order of F1).

bots humans overall (B ∪H)
classifier family P (B) R(B) P (H) R(H) P R F1

random forest (RF) 0.817 0.748 0.775 0.837 0.817 0.748 0.793
decision trees 0.845 0.698 0.750 0.876 0.845 0.698 0.787

SVM 0.798 0.735 0.762 0.819 0.798 0.735 0.777
logistic regression 0.807 0.720 0.755 0.832 0.807 0.720 0.776

k-nearest neighbours 0.831 0.653 0.722 0.872 0.831 0.653 0.761
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We evaluated the selected classifier on the test set containing the remaining
40% data. This test set includes 2,769 identities, of which 1,417 correspond to
humans and 1,352 correspond to bots. The evaluation results are reported in
Table 6.4. With this retrained model about 24.6% of bots (333 out of 1,352)
are misclassified as humans (FN), and about 15.9% of humans (226 out of
1,417) are misclassified as bots (FP). Compared to the previous model, the
model trained on commit messages detects humans more accurately, while the
converse can be observed for bots. With a value of 0.80, the precision of the
retrained model is slightly higher than the previous one.

Table 6.4: Evaluation of the retrained classification model.

classified classified P R F1
as bot as human

Bot 1,019 (TP) 226 (FP) 0.82 0.75 0.78
Human 333 (FN) 1,191 (TN) 0.78 0.84 0.81

weighted avg 0.80 0.80 0.80

6.1.4 The BoDeGiC bot detection tool

In order to enable practitioners to use the classification model, we implemented
it through BoDeGiC (Bot Detector for Git Commits),2 a command-line tool to
detect bots in given git repositories. The tool analyses the commit messages
of each contributor in the specified git repositories and predicts whether the
contributor is a bot or a human. BoDeGiC is implemented in Python 3.7 and
is easily installable through pip, the official package manager for Python.

BoDeGiC works in three steps. The first step consists of extracting all
commit information from the specified Git repository using git log. This step
results in a list of commits, authors and their corresponding commit messages.
The second step consists of computing the features to feed the classification
model. Features consists of the total number of messages, the number of empty
messages, the number of message patterns and the inequality between the
number of messages within patterns. In the third step, we apply the classifier
that was trained on commit messages to the extracted data. The tool outputs
the prediction made by the model for each contributor.

2https://github.com/mehdigolzadeh/BoDeGiC

https://github.com/mehdigolzadeh/BoDeGiC


94 Improving and extending bot detection techniques

Listing 6.1: List of command-line arguments for BoDeGiC 0.2.0.
$ bodegic -h
usage: bodegic [-h] [--include [NAME [NAME ...]]]
[--start-date START_DATE][--mapping [MAPPING]][--verbose]
[--min-commits MIN_COMMITS][--committer][--max-commits MAX_COMMITS][--text |

--csv | --json][REPOSITORY [REPOSITORY ...]][--only-predicted]

The command-line interface of BoDeGiC is summarized in Listing 6.1.
The output and the behaviour of BoDeGiC can be adapted by many optional
command-line arguments in several different ways. By default, BoDeGiC relies
on the author names in git commits, but the committer names can be used
instead by specifying –committer. The list of names to consider can be ex-
plicitly specified with –include. BoDeGiC also supports identity merging (i.e.,
when a contributor uses multiple names) through the –mapping parameter.
This parameter expects a path to a CSV file specifying how to map names
to identities. This file can also be used to ignore specific names, by mapping
them to the special “IGNORE” identity. Since the model (and by extension,
the tool) requires at least 10 commits for a contributor to generate a pre-
diction, contributors that have commits less than this number are predicted
as “Unknown”. These cases can be excluded from the output by means of
the –only-predicted parameter. Additionally, The minimum and maximum
number of commits to consider can be changed respectively with –min-commits
and –max-commits. By default, BoDeGiC outputs one line per author with the
predicted class. The set of computed features can be included in this output
by adding the –verbose parameter. Finally, the output of BoDeGiC can be
exported in text (by default) or in JSON or as a CSV.

Fig. 6.1 presents the output of BoDeGiC on a randomly chosen Git reposi-
tory that was analysed on 2020-10-14. The first column shows the contributor
name, the second column the number of extracted commit messages, the third
column the number of computed message patterns, and the fourth column the
statistical dispersion of the number of comments per pattern as computed by
the Gini inequality index. The last column provides the predicted class of each
contributor.

6.1.5 Discussion

The main threats to validity and mitigation strategies mentioned in Section
5.5 also apply to the current study.

A distinct threat to construct validity stems from the ground-truth dataset
that has been used to train and evaluate the models. The dataset was created
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by other researchers and we have assumed it was correctly built and validated.
Any presence of mislabeled items in that dataset could negatively affect the
results of applying our original classification model (i.e., that was trained on PR
and issue comments) as well as the retrained model that was directly trained
on this dataset.

In order to assess to what extent this threat holds, we selected a subset of
contributors from the dataset and manually verified whether they are actually
humans or bots. We randomly selected 25 contributors from each category
of correctly and incorrectly classified contributors (i.e., from TP, TN, FP and
FN). Each of these cases was independently evaluated and labeled by the three
authors of the paper. At the end of this process, we compared the labelings
and observed agreement on all 100 cases. We then compared our own labelings
with the actual labels found in the dataset, and observed a disagreement for 19
out of 100 cases. Among these cases, 13 corresponded to bots and 6 to human
contributors. The prediction made by our classification model for these 19
cases matched our own labeling, i.e., the model was able to correctly predict
them.

While manually looking at some other contributors in the dataset, we en-
countered a few cases we could not agree on because they combine both bot-like
and human-like behaviours. We already encountered such “mixed” contribu-
tors in Chapter 5 where we found that some contributors were occasionally
relying on tools or bots to automate part of their activities. The presence of
such mixed cases in git commit messages reinforces our belief that a better
definition of “what a bot is” is required, with a clearer boundary between hu-
mans and bots. We also believe, in view of these mixed cases, that it might be
interesting to identify bots not at the level of a contributor but at the level of
its activities. In other words, the question “Is this contributor a bot?” would
become “Is this contributor activity produced by a bot?”.

Figure 6.1: Example of running BoDeGiC (version 0.2.0).
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6.2. A classification model to identify bot activities

Although the previously mentioned approaches are useful to identify bots at
the account level, an account-level classification does not always suffice. Such
a classification can fail in the presence of mixed accounts. While creating the
ground-truth that we introduced in the previous chapter, we identified 78 ac-
counts out of 5,082 GitHub accounts combining both activities. This happens
when users grant bots access to post comments on their behalf (e.g., semantic-
release bot). The granularity of account-level classifications is insufficient to
differentiate between human and bot activity at the level of individual com-
ments.

Even in cases where an account is predominantly producing bot (or hu-
man) comments, mixed activity may still be observed. For example, human
developers may manually produce comments on behalf of a bot when testing
this bot in its early stages of adoption. The above observations call for the
need for a more fine-grained classification that is able to identify bot or human
activity at the level of individual comments as opposed to the account level.

In this section we propose a classification model to identify bot activity
at the level of individual comments. To achieve this, we first transform raw
text into machine-understandable features using natural language preprocess-
ing and encoding. Next, we select among a list of machine learning binary
classifiers the best performing one in order to classify each comment as bot
or human. The main value of this approach is the ability to classify comment
as originating from a bot or a human without requiring to analyse the entire
account’s commenting activity. This means that comments can be classified
fast, and large datasets can be analysed efficiently.

6.2.1 Data extraction

In order to train and evaluate a model aiming at distinguishing GitHub com-
ments created by bots from comments created by humans, we need a large
dataset of such pre-labelled comments. In Chapter 4, we created a ground-
truth dataset of 5,000 accounts that were manually identified by at least two
raters as bot or human based on their PR and issue comments. This dataset3

contains 28,287 comments made by 527 bots and 268,504 comments made by
4,473 humans, from which mixed accounts were excluded.

For this study, we extracted from this dataset a random, balanced subset
of 19,282 comments, composed of 9,641 comments created by 519 bots, and

3The dataset is available on http://doi.org/10.5281/zenodo.4000388.

http://doi.org/10.5281/zenodo.4000388
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9,641 comments created by 4,090 humans.

6.2.2 Model construction

In this section, we propose a machine learning model for classifying GitHub
PR and issue comments. The preprocessing part of the model combines two
widely used techniques in natural language processing for encoding the com-
ment text into machine-understandable features. The classification part of the
model takes as input the preprocessed text to perform the classification task.
In the following paragraphs, we will explain how we constructed the model,
which classifier we selected, and how we tuned the parameters to get the best
performance and accuracy.

Since human-written texts have no direct meaning for machine learning
algorithms, natural language processing (NLP) is needed to convert such texts
into a numerical representation that can be analysed by machines. A range of
different methods can be used to convert raw texts into numerical vectors, such
as bag-of-words (Manning et al., 2008), Term Frequency - Inverse Document
Frequency (TF-IDF) (Sparck Jones, 1972), Word2Vec (Mikolov et al., 2013),
and Bert (Devlin et al., 2019).

We tested all these preprocessing techniques and their variants and we
achieved the highest accuracy with bag-of-words and TF-IDF. The bag of
words technique creates a vector that has as many dimensions as the text
corpus has unique words. If a text contains a specific word from the corpus, it
will be marked as 1 in the corresponding position of the vector, and 0 otherwise.
TF-IDF is similar except that it assigns a higher weight to both high and low-
frequency terms in the document, and the frequency of each term is considered
as the indicator of its importance. Given a comment, we pull out only the
unigram words to create an unordered list of words using the bag-of-words
method. Then, TF-IDF is used to form a feature vector, where each feature is
a term (i.e., word) and the value of the feature is the weight of the term.

For the classification part of our model, we restrict ourselves to binary
classifiers since the goal is to classify comments as being produced either by a
bot or a human. We evaluated a range of binary classifiers: the ZeroR baseline
classifier, Support Vector Machines (SVM) (Gunn, 1998), multinomial Naive
Bayes (NB) (Lindley, 1990), Random Forest (RF) (Breiman, 2001) and k-
Nearest Neighbours (kNN) (Aha et al., 1991). Since the effectiveness depends
on specific input parameters, we followed a standard hyper-parameter tuning
process using grid-search cross-validation (Witten et al., 2011).

We split the comment dataset of Section 6.2.1 into a training and a test
set (see Table 6.5). The training set will be used as a validation set in a
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grid-search cross-validation process to determine the best input parameters,
the best classifier and to train the selected model. The test set will be used
to evaluate the performance of the selected model on new data. We created
both sets so that approximately half of all bot comments (respectively human
comments) belong to the training set and the other half belong to the test set.

Table 6.5: Number of bot comments and human comments in the training and
test set.

# human comments # bot comments total

training set 4,789 4,791 9,580
test set 4,852 4,850 9,702

total 9,641 9,641 19,282

While creating both sets, we ensured that comments belonging to the same
account were not spread in both sets. The rationale is that, since comments
produced by the same account are more likely to be similar or related, dis-
tributing such comments over both sets might lead to unrealistic evaluation
results. More precisely, it could lead the model to be trained on specific words
or combinations of words used by a commenter, hence artificially improving
the evaluation results if these combinations are also present in the test set.

The performance of the resulting models is measured using the precision P ,
recall R and F1 score for the population of each class (i.e., for bot comments
B and human comments H). We aim to achieve an as high overall F1 score as
possible.

We rely on the default parameters for the preprocessing and encoding steps.
We use grid-search cross-validation to find the best classifier and its parameters.
We follow a stratified group k-fold cross-validation process to ensure that each
fold preserves the proportion of bot and human comments, and that comments
by the same account are not spread across folds.

Table 6.6 reports on the performance for each of the classifiers, in descend-
ing order of F1. Only the classifier instances whose parameters resulted in the
highest F1 score within each family of classifiers are shown in the table.

We observe that all classifiers substantially outperform the ZeroR baseline
classifier; this is a sanity check as this classifier is merely used as a benchmark
for other classification methods. In terms of overall performance, NB and
SVM appear to be the most promising classifiers. The SVM, RF, and KNN
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Table 6.6: Precision, recall and F1 score of the best classifiers per family of
classifiers (in descending order of F1).

bot comments human comments overall (B ∪H)
classifier P (B) R(B) P (H) R(H) P R F1

NB 0.864 0.883 0.881 0.861 0.873 0.872 0.872
SVM 0.971 0.718 0.777 0.979 0.874 0.848 0.845

RF 0.898 0.542 0.672 0.935 0.785 0.739 0.727
kNN 0.993 0.369 0.613 0.997 0.803 0.683 0.648

ZeroR 0.200 0.400 0.299 0.600 0.249 0.499 0.332

classifier have high recall R(H) for human comments (0.979, 0.935 and 0.997,
respectively) but a rather low recall R(B) for bot comments (0.718, 0.542 and
0.369, respectively). The NB classifier, which was obtained using α = 1.5
and uniform class prior probabilities, has the highest recall for bot comments
R(B) = 0.883 and its overall precision, recall and F1 score is the highest of all
considered classifiers.

6.2.3 Model evaluation

We selected the best classifier NB with the parameters explained in the previous
section, and trained it on the 9,580 comments of the training set. We evaluated
this classification model on the 9,702 new and unseen comments of the test
set, of which 4,852 are human comments and 4,850 are bot comments (cf.
Table 6.5). Table 6.7 reports the evaluation results.

Table 6.7: Evaluation of the Naive Bayes classification model on the test set.

comments classified as
bot human P R F1

bot TP: 4,382 FN: 468 0.866 0.904 0.884
human FP: 680 TN: 4,172 0.900 0.860 0.880

average 0.882 0.882 0.882

The results show that around 90% of bot comments (4,382 out of 4,802)
and 86% of human comments (4,172 out of 4,713) are classified correctly. The
overall F1 score is notably good (0.882), indicating that the model generalizes
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well on unseen data. The higher recall of bot comments (0.904) and higher
precision of human comments (0.900) indicate that the model performs better
in detecting bot comments. Nevertheless, we observe a decent F1 score for
both classes (F1(B) = 0.884 and F1(H) = 0.880), indicating the overall good
performance of the model.

Manual inspection of a sample of misclassified comments revealed that these
comments are difficult to classify, even for a human evaluator. For example, the
following human comment was misclassified as a bot comment: “Closing this as
resolved by #72”. Conversely, the following bot comments were misclassified as
human comments: “Here are some suggestions: At index: 33, offset: 6, reason:
“it was” is wordy or unneeded” and “If the machine has enough cores, then the
work done by the babel loaders can be parallelized to run much faster.”

The selected multinomial Naive Bayes classifier has proven to show a good
performance in text classification problems (Mccallum & Nigam, 2001). The
decision function in this classifier predicts based on the probability computed
for each case (i.e., each considered comment). If the probability value is above
0.5, then the corresponding case belongs to the target class (in our study, a bot
comment) otherwise, it belongs to the complement class (in our study, a human
comment). We gain deeper insight into the predictions made by the model by
looking at the associated probabilities. To do so, we extracted the associated
probability for test cases. To some degree, these probabilities correspond to a
confidence score: a probability close to 1 indicates that there is a high level of
confidence in classifying the comment as bot comment. Conversely, a probabil-
ity close to 0 indicates high confidence in classifying the comment as a human
comment. A probability close to 0.5 indicates low confidence in the prediction.

Fig. 6.2 shows the probability of each prediction, distinguishing between bot
and human comments, by means of boxen plots (Hofmann et al., 2011). The
misclassified cases correspond to those bot comments for which the probability
is below 0.5 (upper left of the figure) and those human comments for which
the probability is above 0.5 (lower right of the figure).

We observe that most comments have an associated probability close to 0
for human comments and close to 1 for bot comments, indicating high con-
fidence in the prediction. Distinguishing between correctly and incorrectly
classified cases, we found that bot comments that were correctly classified as
such exhibit a median probability of 0.97 (i.e., closer to 1 than 0.5, high confi-
dence), while bot comments that were misclassified as human comments have
a median probability of 0.37 (i.e., closer to 0.5 than 0, low confidence). A sim-
ilar observation can be made for human comments: correctly classified human
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Figure 6.2: Distribution of the prediction probability for bot comments and
human comments

comments have a median probability of 0.20 (i.e., closer to 0 than 0.5, high
confidence), while the misclassified ones have a median probability of 0.61 (i.e.,
closer to 0.5 than 1, low confidence). This indicates a higher confidence for the
correctly classified comments than for the misclassified ones, suggesting that
a probabilistic model is more informative than a simple binary classification
model to decide whether a specific comment is produced by a bot or a human.

6.2.4 Discussion

One of the main motivations of the classification model we introduced in Sec-
tion 6.2 is to identify comments as having been produced by bots or human. For
accounts with mixed activity, such a classification model will be able to split the
bot activity from the human activity of the account. To see whether our model
is able to split the bot activity from the human activity of mixed accounts, we
applied it on a small dataset provided by a research group from the Eindhoven
University of Technology who were investigating mixed accounts (Cassee et al.,
2021). Each mixed account comment was labelled as human or bot by at least
two researchers of the group, and the dataset consists of 177 bot comments
and 203 human comments with full agreement. Our model was able to cor-
rectly classify about 80% of the cases. Only 3 out of 177 bot comments were
misclassified as human comments and 76 out of 203 human comments were
misclassified as bot comments. The model achieved an overall F1 = 0.78 with
an overall recall R = 0.79.

The performance of the model on mixed account comments is promising
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for future work, but the identification of human comments in mixed accounts
needs to be improved. One possibility would be to train the model on a dataset
that includes mixed accounts as well. Indeed, the activity of mixed accounts
can be different from the one in human-only and bot-only accounts. However,
this would require a substantially larger dataset than the one we have.

In Chapter 5 we also encountered bots whose comments were partly copied
from humans and vice versa. For example, a translator bot followed a pattern
like “Translation from: <translation of some text>" in their comments. We
refer to these comments as mixed comments since they are composed of both
human text and bot text. As a follow-up study, it would be interesting to
explore how we can use or adapt the classification model to detect these mixed
comments and to extract the human and bot parts of these comments.

The presence of mixed accounts and mixed comments indicates that it is not
easy to characterise exactly what a bot comment is. Two different individuals
could disagree on the interpretation of comments as being produced by bots.
As a consequence, a more fine-grained classification of (types of) bots would
be needed, building further on the work by Erlenhov et al. (Erlenhov et al.,
2020a) who identified three types of bot personas based on their autonomy, chat
interface, and smartness. It would be definitely interesting to explore how the
binary classifier we propose can be generalised to detect these different types
of bot personas.

6.3. A classification model based on multiple reposi-
tories

Identifying the presence of bots is not only useful for researchers conducting
socio-technical studies but also for practitioners and funding organizations to
identify contributors and to accredit them. The research literature already
lists a few approaches to identify bots in software repositories, such as BI-
MAN (Dey et al., 2020a), BoDeGHa (Section 5.3) or BoDeGiC (Section 6.1.4).
BIMAN (Dey et al., 2020a) combines three different approaches to recognize
bots in commits: (i) the presence of the string “bot” at the end of the au-
thor name, (ii) repetitive commit messages, and (iii) features related to files
changed in commits. BoDeGHa analyses comments posted in issues and pull
requests to detect bots, based on the assumption that bots tend to frequently
use a limited set of comment patterns. BoDeGic transposes this approach to
commit messages, assuming that bots tend to have a limited set of commit
message patterns. In Section 6.2 we proposed a probabilistic model based on
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NLP techniques to detect bot activity at the level of individual comment in
issues and pull requests.

In this section, our goal is to enhance the detection of bots active in is-
sue and pull request comments, building on BoDeGHa that was introduced in
Chapter 5. BoDeGHa predicts for each contributor with enough activity in the
repository whether this contributor corresponds to a bot or a human contrib-
utor. If a contributor has not made enough comments, BoDeGHa classifies it
as unknown.

Although BoDeGHa has been shown to perform well in detecting bots, it
may still wrongly classify some contributors. Because BoDeGHa works at the
repository level, this means that a same contributor active in multiple repos-
itories may lead to diverging predictions, this is, it may be classified as bot
in some repositories and as human in some other ones. For example, while
BoDeGHa identifies the well-known dependabot bot correctly in many differ-
ent repositories, it identifies it as a human contributor in artichoke/rand_mt
because the 24 comments made by dependabot in this repository exhibit 10
different comment patterns, corresponding to the behaviour usually observed
for human contributors. At the same time, BoDeGHa classifies the same bot as
unknown in cossacklabs/themis because it only has 9 comments in this reposi-
tory. Similarly, a human contributor can be sometimes classified as a bot. For
example, in the GitHub repository rust-lang/libc we found a human contribu-
tor4 that is detected as bot because most of his/her comments follow a single
comment pattern of the form “bors r+”. On the other hand, this contributor
is correctly classified as human in crossbeam-rs/crossbeam and rust-lang/rust
for example.

In this section, we investigate how frequently such situations occur in
GitHub repositories. We quantify how frequently do contributors have diverg-
ing predictions (that is, predicted as bot and human by BoDeGHa), and how
frequently they have incomplete predictions (that is, predicted as unknown by
BoDeGHa). We provide preliminary insights on a novel approach to improve
the accuracy of BoDeGHa by leveraging predictions from multiple repositories.
We evaluate to which extent diverging and incomplete predictions can be fixed
based on the wisdom of the crowd principle. More specifically, we address the
following research questions:
RQ0: How frequently are contributors active in multiple repositories? We
observe that one third of the contributors are active in multiple repositories.
RQ1: How frequently do contributors have diverging or incomplete predictions?
More than half of the contributors identified at least once as bots have diverging

4Name is hidden to comply with GDPR regulations.
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or incomplete predictions.
RQ2: To which extent can we fix diverging predictions? We show that an
approach based on the wisdom of the crowd principle is effective at fixing
diverging predictions.
RQ3: To which extent can we complete predictions? We show that the same
approach is promising to address incomplete predictions.

6.3.1 Data extraction

The BoDeGHa bot identification tool takes as input a GitHub repository and
outputs whether the contributors in this repository correspond to bot or hu-
man contributors. Since our goal is to improve the performance of BoDeGHa
by leveraging predictions from multiple repositories, we need a large collection
of GitHub repositories having their contributors active in multiple reposito-
ries. Following the advice of Kalliamvakou et al. (Kalliamvakou et al., 2014b)
we need to avoid repositories that have been created merely for experimen-
tal or personal reasons, or that only show sporadic traces of activity. Good
candidate datasets are collections of repositories associated to the collabora-
tive development of open-source software packages for specific programming
languages.

We collected the GitHub repositories associated with the software pack-
ages that are distributed through the Cargo package manager, for the Rust
programming language. In October 2021, 68,621 Rust packages were available
on Cargo and 38,886 of them (i.e., 56.7%) have an associated repository on
GitHub. Since we need bots to be active in the repositories to conduct our
empirical study, and since bots are more likely to be present in larger and more
mature projects, we excluded packages that do not even refer to their home-
page or to their documentation. This left us with 22,156 packages. Given that
BoDeGHa relies on the comments made in issues and pull requests to identify
bot contributors, we excluded repositories having less than 100 issues or pull
requests. At the end of the data extraction process, the dataset contains 1,039
GitHub repositories accounting for 147,426 pairs of contributor/repository.

6.3.2 How frequently are contributors active in multiple repos-
itories?

Since we aim to improve bot detection by leveraging predictions made on
multiple repositories, we need contributors to be active in more than a single
repository. This question aims to quantify how frequently contributors are
active in multiple repositories. The 147,426 pairs of contributor/repository in
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Table 6.8: Number and proportion of contributors in function of the number
of repositories they are active in

# repositories → 1 2 3 4 or 5 6 - 9 10+
# contributors 5,671 1,530 496 385 239 211
% contributors 66.5% 17.9% 5.8% 4.5% 2.8% 2.5%

our dataset correspond to 57,757 distinct GitHub accounts, already indicating
that some contributors are active in more than one repository. Only 8,532
contributors out of these 57K (14.8%) have enough commenting activity in
at least one repository for BoDeGHa to be applied. For each of these 8,532
contributors (i.e., each distinct GitHub account), we counted the number of
repositories that each contributor was active in. Table 6.8 reports on the
number and proportion of contributors in function of the number of repositories
they are active in.

We observe that while most contributors (5,671 out of 8,532, 66.5%) are
active in a single repository only, around one third of the contributors (2,861,
i.e., 33.5%) are active in multiple repositories. We will focus on those 2,861
contributors since they correspond to those for which BoDeGHa will produce
several, potentially diverging (i.e., bot and human) or incomplete (i.e., un-
known) predictions. These 2,861 contributors are active in a total of 1,010
distinct repositories.

6.3.3 How frequently do contributors have diverging or incom-
plete predictions?

We applied BoDeGHa on each of the 1,010 repositories identified in RQ0 in
order to get the predictions for each of the 2,861 contributors active in two
or more repositories. Under the hood, BoDeGHa downloads up to 100 pull
request or issue comments for each contributor active in the repository. Only
the comments made during the last five years (i.e., after December 2016) are
considered. BoDeGHa then analyses these comments and predicts whether
the contributor corresponds to a bot or a human contributor based on several
features including the repetitiveness of comments and the number of comment
patterns. If a contributor has less than 10 comments, BoDeGHa classifies it as
unknown. At the end of this process, we have a total of 41,542 predictions of
which 1,146 correspond to bot, 10,227 to human and 30,169 to unknown. The
high proportion of unknown predictions (73%) indicates that most contributors
have less than 10 comments in the considered repositories.
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Since our focus is on improving bot detection, we select contributors that
were classified bot at least once. Out of the initial 2,861 distinct contributors
active in at least two repositories, 229 (8%) were classified bot at least once.
Among them, 106 (46%) were consistently classified bot in all the repositories
they were active in. Out of the 123 remaining contributors having been pre-
dicted as bot at least once, 60 have diverging predictions (i.e., they were also
classified as human) and 63 have consistent but incomplete predictions (i.e.,
they were also classified as unknown).

To assess to which extent bot detection can be improved by leveraging pre-
dictions from multiple repositories, we need to determine the correct type (i.e.,
bot or human) of each account. Two co-authors of the paper (Chidambaram
et al., 2022) manually and independently checked the 3,086 predictions for the
229 contributors that were at least once predicted as bot to determine their
actual type, following an inter-rater agreement process. The first step of this
process ended up with an agreement on 95% of the cases. The remaining ones
were discussed together, ending up with an agreement on all of them. With
this process, we found that BoDeGHa incorrectly predicted bot in 110 cases and
incorrectly predicted human in 31 cases. Table 6.9 summarizes the number of
actual bot and human contributors we found, as well as the number of bot,
human and unknown predictions obtained for them.

Table 6.9: Number of actual bot and human contributors, and their number
of bot, human and unknown predictions

predictions
contributors # bot # human # unknown

actual bot 142 1,110 31 413
actual human 87 110 288 1,134

total 229 1,220 319 1,547

6.3.4 To which extent can we fix diverging predictions?

Our result in Sections 6.3.2 and 6.3.3 revealed that many contributors have
different predictions depending on the repository BoDeGHa is applied on. In
this section, we propose an approach based on the wisdom of the crowd prin-
ciple to fix these diverging predictions. More specifically, if one assumes that
BoDeGHa is more often correct than wrong in predictions, then, given a con-
tributor having multiple predictions, we can assume that the most frequent
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prediction (either bot or human) is correct, while the less frequent one is not.
Let WoC-P be such bot detection model. WoC-P stands for Wisdom of the
Crowd principle for Predictions and works on top of BoDeGHa by automat-
ically replacing the less frequent predictions of a contributor with the most
frequent ones. Ties are arbitrarily resolved as human.

We applied both BoDeGHa and WoC-P on the 84 contributors that have at
least two predictions of which one is bot. Figure 6.3 shows, for each contributor,
the number of human predictions, the number of bot predictions, and whether it
is an actual bot or human. To permit distinguish overlapping points, we added
a jitter of 0.25 on both axes. The diagonal line illustrates the WoC-P model:
any contributor above the line will be consistently predicted as a bot (i.e.,
the human predictions are replaced by bot predictions), while any contributor
below will be consistently predicted as a human (i.e., the bot predictions are
replaced by human predictions).
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Figure 6.3: Number of bot and human predictions, each point is a contributor

As can be observed from the figure, the approach proposed by WoC-P seems
promising, most of the contributors having mostly predictions corresponding
to their actual type. Only five human contributors have a higher number of bot
predictions than human predictions. These contributors will be consistently
but wrongly predicted as bot by WoC-P.

To assess to which extent BoDeGHa can be improved by WoC-P, we eval-
uated both models on the 84 contributors. Table 6.10 reports on the resulting
number of true positives (TP), true negatives (TN), false positives (FP), false
negatives (FN) as well as on the accuracy (Acc), precision (Prec), recall and
F1 scores of the two models.
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Table 6.10: Score comparison between BoDeGHa and WoC-P

TP TN FP FN Acc Prec Recall F1
BoDeGHa 928 288 79 31 91.7 92.2 96.8 94.4

WoC-P 959 348 19 0 98.6 98.1 100.0 99.0

We observe that WoC-P actually improves the predictions made by BoDeGHa.
WoC-P replaced a total of 101 predictions out of 1,326 (i.e., 7.6%): 65 bot
predictions were correctly converted to human predictions, while 36 human
predictions were converted to bot predictions, among which 31 correspond to
actual bots. This leads the number of false negatives to drop from 31 to 0,
and the number of false positives to decrease from 79 to 19. These 19 incorrect
predictions correspond to the five human contributors above the diagonal line
in Figure 6.3. As a consequence, WoC-P has higher accuracy, precision, recall
and F1 scores compared to BoDeGHa.

6.3.5 To which extent can we complete predictions?

So far, we relied on the wisdom of the crowd principle, using the most frequent
prediction to fix the less frequent predictions. This section aims to determine
whether a similar approach can be followed to fix unknown predictions as well.
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Figure 6.4: Accounts predicted as bot/unknown vs ground truth
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Figure 6.4 shows the number of unknown and bot predictions for the 63
contributors that were either predicted bot or unknown (i.e., that have no hu-
man predictions). We observe that the situation is more delicate than for RQ2.
Indeed, many actual human contributors are among the contributors having
only bot and unknown predictions. Converting the unknown predictions to bot
predictions for these 33 human contributors would only increase the number
of incorrect predictions for them. For instance, while converting the 184 un-
known predictions of the 30 bots increases the number of correct predictions
from 336 to 520, doing the same for the 158 unknown predictions of the 33
human contributors increases the number of incorrect predictions from 35 to
193.

Nevertheless, we observe that most of these human contributors have a
low number of bot predictions compared to the actual bot contributors. For
instance, there are 17 bots and no human having three or more bot predic-
tions. On the other hand, all human contributors and “only” 13 bots have
one or two bot predictions. Converting only the unknown predictions of con-
tributors having three or more bot predictions would increase the number of
correct predictions from 318 to 460, without increasing the number of incorrect
predictions. However, since this threshold of “3+ bot predictions” is obtained
by observation, it cannot be integrated into the WoC-P model without prior
validation on another dataset.

6.4. Accuracy of bot detection techniques

The increasing presence and activity of bots in software repositories makes it
challenging for software engineering researchers to study socio-technical aspects
of software development since their findings may be biased by not explicitly
considering the presence of bots among the contributors. Similarly, it may
be important for contributors that their contributions are properly recognized
and rewarded since collaborative software development activities are often con-
sidered as a criterion for employers when hiring developers (Hauff & Gousios,
2015). This is especially important when funding or donations are awarded
to contributors based on their contributions. While there are tools such as
SourceCred5 to support communities in automatically measuring and reward-
ing value creation, they do not automatically identify bots and their activities
so far.

This is where bot identification tools come to the rescue. Such tools aim

5https://sourcecred.io

https://sourcecred.io
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to distinguish bots from humans in GitHub accounts on the basis of their
behaviour. Dey et al. (Dey et al., 2020b) proposed an automatic method to
identify bot accounts in git projects based on (i) the presence of the string
“bot” at the end of the author name, (ii) commit messages, and (iii) features
related to files changed in commits and projects the commits are associated
with. In Chapter 5 we proposed an approach and tool to detect bots in GitHub
repositories based on the repetitiveness of their comments in issues and pull
requests. The approach was further extended to git commit messages in Section
6.1.

This section presents an exploratory study on the accuracy of 5 bot detec-
tion techniques on a set of 540 accounts from 27 GitHub projects. We show
how prevalent bots and their activities are, and that none of the bot detection
techniques are accurate enough to detect bots even among the most active con-
tributors. This highlights the importance of considering them when conducting
socio-technical studies or when attributing contributions, and underlines the
need for improved bot detection techniques.

In addition, we propose an ensemble model that combines these techniques
to enhance the accuracy and recall of bot detection. This new model, which we
refer to as EnsBoD, utilizes a decision tree that integrates multiple classification
algorithms and leverages the strengths of each individual method. We also
demonstrate that EnsBoD is able to identify bots in this dataset with higher
accuracy and recall than any of the individual models alone.

In particular, we focus on the following research questions:
RQ1: How accurate are bot detection techniques?
RQ2: How prevalent are bots among the most active contributors?
RQ3: How active are bots in terms of commits?

Bot detection techniques. In this section, we evaluate the accuracy of
the following five bot detection techniques:

1. GitHub account type. This technique relies on the GitHub API to de-
termine whether a given GitHub account is a bot or not. The GitHub
API offers an endpoint6 to retrieve various metadata for a given GitHub
username. Among other, these metadata includes a “type” field that is
either “Bot” or “User” depending on whether the corresponding account
had been registered as a bot or as a human contributor.

2. “bot” suffix. This technique relies on the presence of the string “bot” at
the end of the author’s name. It has been proposed by Dey et al. (Dey

6https://docs.github.com/en/rest/reference/users
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et al., 2020b) as part of an ensemble model, and has notably been used
by other researchers (Saadat et al., 2021).

3. BoDeGHa. In Section 5.3 we proposed a classification model to identify
bots in GitHub pull request and issue activity. Their method measures
the similarity of comments and groups them into patterns of similar com-
ments. Bots are then detected based on their lower number of comments
patterns. The model has been implemented as part of a tool named
BoDeGHa.7

4. BoDeGiC. In Section 6.1.4 we further extended the above approach to
support git commit messages, and implemented the resulting model as
part of a tool named BoDeGiC.8

5. List of bots. This last technique relies on a predefined list of bots. The list
contains the names of 527 known GitHub bot accounts that we manually
identified among 5,000 GitHub accounts (explained in Chapter 4).9

6.4.1 Data extraction

To carry out our empirical investigation, we selected projects from active soft-
ware development repositories with a large number of commits and contrib-
utors. We relied on the SEART GitHub search tool (Dabic et al., 2021) to
filter a set of repositories. We queried repositories that have at least 100 con-
tributors and were not forked and had been active in the last 2 months (i.e.,
in October and December 2021). From these, we randomly selected 27 large
and active projects. The selected projects have at least 1,200 commits and 200
contributors. In total, the 27 selected projects account for 175,499 commits
from 9,426 contributors and cover a wide variety of programming languages
(e.g., Javascript, Python, Java, PHP, Ruby, Rust, Go) and software domains
such as software development packages, plugins, and tools.

For each project, we queried the GitHub API to retrieve the 20 most active
GitHub accounts in terms of commits, and their respective number of commits.
The resulting dataset consists of 540 accounts. Since one of our goals is to
evaluate the accuracy of bot detection techniques, we need to determine the
correct type (i.e., bot or human) of these accounts. We manually checked
these accounts to determine their type, looking for evidence in their profile,
their commit activity and their commenting activity. During this process, we
found 50 bots out of the 540 considered accounts.

7https://github.com/mehdigolzadeh/BoDeGHa
8https://github.com/mehdigolzadeh/BoDeGiC
9https://doi.org/10.5281/zenodo.4000388

https://github.com/mehdigolzadeh/BoDeGHa
https://github.com/mehdigolzadeh/BoDeGiC
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6.4.2 How accurate are bot detection techniques?

We applied the five bot detection techniques on our dataset of 540 contributors.
Fig. 6.5 at the end of this chapter, shows the classifications provided by these
techniques. For readability, we only report on the 87 contributors that either
correspond to actual bots, or that were classified as bot by at least one of the
techniques. Actual bots are shown on the left side of the vertical blue line while
actual human contributors are shown on its right. An orange cell indicates that
the contributor was identified as a bot by the corresponding technique, while
a blue cell indicates that it was identified as a human contributor. Grey cells
correspond to cases where there is not enough information for the technique
to determine the account type. In the case of BoDeGHa, this corresponds to
contributors with less than 10 comments in pull requests or issues. In the case
of BoDeGiC, this corresponds to contributors having less than 10 commits
made with a committer name matching their GitHub account name.

From this figure, we observe that list of bots, “bot” suffix and GitHub ac-
count type are safer techniques, in the sense they do not wrongly classify human
contributors as bots. At the same time, they missed many actual bots: from 19
for list of bots to 32 for GitHub account type. We also observe that BoDeGiC
effectively captures most bots, but at the same time, wrongly considers several
human contributors as bots. BoDeGHa exhibits a similar behaviour: it is able
to capture 25 out of 50 bots, but wrongly classifies much more humans as bots
than BoDeGiC (30 versus 9). We note that none of the techniques is perfectly
effective in detecting bots. Except for a few cases, the five techniques do not
even agree on whether a given account is a bot or not. However, only 4 of
the actual bots are not detected as such by any of the techniques, suggesting
that a combination of the techniques could lead to an improved bot detection
model.

Table 6.11 reports on the precision, recall and F1-score of the aforemen-
tioned techniques applied on the whole dataset of 540 contributors, distin-
guishing these scores between bot and human contributors. For completeness,
we also report on the overall weighted scores. Given there are far more human
contributors than bot contributors in the dataset, these high scores (between
0.898 and 0.966) are mostly driven by the scores obtained for human contrib-
utors. To ease the interpretation of these scores, we also provide the scores
for a ZeroR model classifying all contributors as human contributors (i.e., the
majority class).

The observations that can be made from this table match the ones we made
from Fig. 6.5. In particular, we observe that some techniques (namely GitHub
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account type, “bot” suffix and list of bots) have a perfect precision but are not
able to capture as many bots as BoDeGiC. This should not come as a surprise.
For example, it is expected that GitHub account type has no false positive
since it is unlikely that a human contributor would decide to flag his/her own
account as a bot. Similarly, list of bots relies on a predefined list of bot names
that were manually validated by a group of researchers. On the other hand,
the precision reached by “bot” suffix is surprisingly high since in Chapter 4,
we found that only around 4% of the contributors having “bot” in their name
actually correspond to human contributors.

As observed from Fig. 6.5, only four of the actual bots are not detected as
such by any of the techniques. This suggests that an improved bot detection
model can be created by combining the five aforementioned techniques. We
build such a model by training a decision tree classifier taking as input the
classifications made by each of the five techniques and outputting whether the
corresponding contributor is a bot or a human contributor. Since our dataset
has a fairly imbalanced number of human and bot contributors, we attributed
a class weight inversely proportional to the number of cases. The resulting
model is called EnsBoD. We trained and validated it following a 10-fold cross-
validation process. The mean scores we obtained are reported on the last row of
Table 6.11. Even if it was trained and validated on a small dataset, the EnsBoD
model already outperforms any of the five other techniques, with an average
recall of 0.9 and an average precision of 0.865 for bots. In the remaining of this
section, we will rely on EnsBoD to separate bots that are correctly identified
as bots by a bot detection technique and those that were not, providing an
overly optimistic view of the ability to detect bots automatically.

6.4.3 How prevalent are bots among active contributors?

In Section 3.2 we underlined the importance of detecting bots in software
repositories, not only for researchers aiming at quantifying and understanding
their impact on the development process, but also for properly recognizing and
rewarding contributions made by human contributors. This question aims to
quantify the prevalence of bots among the 20 most active contributors in the
27 considered projects.

We applied EnsBoD on each of the 540 contributors of our dataset to
quantify how many of them can be captured by the bot detection technique.
Fig. 6.6 shows the output of EnsBoD for each project (x-axis) and each con-
tributor (y-axis) sorted by the number of commits they made in the project.
In complement to the output of EnsBoD (i.e., “bot” or “human”), we indicate
whether the output is correct (“human user” and “correctly classified bot”) or
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not (“human classified as bot” and “missed bot”).

We observe that all the considered projects are making use of bots, some
of them even having 4 different bots among their 20 most active contributors.
Interestingly, many of these bots are responsible for most of the activity in the
projects. For instance, the most active contributor of 6 projects is a bot, while
18 out of 27 projects have a bot in the top 3 contributors.

We also observe that a non-negligible amount of bots are missed even by
our overly optimistic EnsBoD model. For instance, 5 bots are missed and 3
of them are among the 5 most active contributors of the projects. Similarly, a
non-negligible amount of actual human contributors are wrongly classified by
EnsBoD: there are 7 human contributors that are detected as bots, of which 1
is the most active contributor in the corresponding project, and 5 others are
within the 10 most active contributors.

These findings show the importance of considering bots and their activity in
software repositories, not only for conducting empirical research but also when
acknowledging or rewarding contributors. While bot detection techniques can
help in doing so, even an optimistic combination of them still misses some bots,
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Figure 6.6: Rank of top 20 most active contributors in 27 popular open-source
software projects.
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and still wrongly considers some human contributors as bots.

6.4.4 How active are bots in terms of commits?

This question aims to quantify the number of commits made by bots in their re-
spective projects. This is especially important given that tools such as Source-
Cred reward contributors based on their activity, including their commit ac-
tivity. For each project, we counted the commits made by each of the 20
most active contributors, distinguishing between bot and human contributors.
Fig. 6.7 reports on the proportion of commits made in each project. As for
Fig. 6.6, we distinguish between human contributors, human contributors clas-
sified as bots, bot contributors and bot contributors missed by EnsBoD.

The figure shows that the commits made by bots represent up to 69.7% of
the commit activity in one of the projects. On average, approximately 16% of
the commits in these projects are made by bots (median is 12%), even if bots
only account for 9% of the top 20 contributors on average (median is 10%)

While, as observed in previous research question, EnsBoD is able to detect
most of the bots, it still misses some of them, and the missed ones are respon-
sible for 8%, 7.3%, 4.2%, 2.5% and 1.7% of the commits in their respective
projects (i.e., 4.7% on average). On the other hand, EnsBoD wrongly classi-
fied seven human contributors as bots, and these contributors were responsible
for 38.4%, 11.5%, 4.8%, 1.5% and 1.2% of the commits (i.e., 10.4% on average).

This again underlines the importance of considering bots when analysing
commit activity in software repositories, and highlights the need for better bot
detection techniques to do so.

6.5. Summary and conclusions

This chapter reported on how we extended the bot identification technique of
Chapter 5 in different ways and directions in order to mitigate its limitations.
In Section 6.1, we introduced a different classification model and corresponding
tool based on commit messages. This addresses the limitation of the model of
Chapter 5 that is only based on pull request and issue comments.

As another limitation, the initial model relied on the fact that bots produce
similar messages, therefore limiting us in situations where the bots did not (yet)
provide a sufficient number of comments. To address this limitation, in Section
6.2 we explored a different technique based on the content of the messages
and Natural Language Processing. This more fine-grained classification model
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Figure 6.7: Proportion of commits made by the 20 most active contributors in
each project

detects bots at the level of individual activities rather than at the level of the
entire account. The model also opens the door to identify mixed accounts in
GitHub. We also addressed in Section 6.3 the lack of sufficient comments by
considering that accounts can be active in multiple repositories. Therefore,
we introduced a technique to improve the results using divergent predictions
from multiple repositories. Less active accounts are more likely to be predicted
correctly using this technique.

Finally in Section 6.4, we compared existing bot identification techniques
based on a small dataset of repositories. This comparison revealed that none
of the techniques can be used to identify and cover all the existing types of
bots. Therefore, we developed an ensemble model that incorporates all these
techniques. Although most of the bots have been correctly identified by the
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ensemble model, there are still a few that could not be identified. Our bot
identification technique has been utilized in various studies, serving as a valu-
able tool or dataset for identifying and studying bots. Researchers have used
it to analyze and remove bots from datasets, ensuring unbiased results in their
investigations.
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CHAPTER 7
Conclusions

“"The true worth of a man is to be
measured by the objects he pursues.”

Avicenna

The advent of social coding platforms and accordingly workflow automa-
tion tools has significantly changed the way developers contribute to software
projects, especially in open-source development. As we described in detail in
Chapter 2, many studies have been conducted in order to better understand
the social coding platforms and development automation tools such as CIs and
bots. Studies in this area provide models, frameworks and tools and investigate
different aspects of software development automation tools. However, further
research is needed as there are still many unknowns.

Existing methods to detect automation tools in social coding platforms
often relied on simple heuristics or manual inspection. We therefore explored
the evolution of such tools and proposed techniques to detect them in social and
technical aspect of social coding platforms. The present dissertation provided
evidence and support for the following thesis statement:
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Development bots are increasingly used to automate more and more
aspects of collaborative open-source software development. This raises
the need to accurately identify bots and their automated activities in
social coding platforms.

Thesis statementThesis statement

This concluding chapter summarizes our goals and contributions and explains
how they contribute to the body of software engineering knowledge and prac-
tice. We discuss the limitations and shortcomings of the proposed techniques
and tools and the provided solutions. Finally, we shed light on how these bot
identification techniques can be exploited in empirical research, we discuss the
perspectives we envision for the next generation of development automation
detection techniques and how the research presented in this dissertation could
be continued.

7.1. Contributions

This dissertation presented a series of studies that were conducted through-
out my PhD. It contains empirical studies, developed classification models and
tools that are described from Chapter 3 to Chapter 6. This section summa-
rizes the contributions, explaining how each contribution supports the thesis
statement. Section 7.3 discusses how others researchers can benefit from the
contributions as well as future perspectives.

7.1.1 Created datasets

In order to study CI usage, we created a dataset of GitHub development repos-
itories of npm packages containing 201,403 active repositories and we identified
evidence of the presence of CI tool usage in those repositories. This dataset
includes longitudinal usage histories of 20 different CI tools in these reposito-
ries. We used this dataset to investigate the usage, migration and co-usage of
CI tools in the npm ecosystem.

In order to train and evaluate a bot classification model we created a
ground-truth dataset of human and bot accounts. To create this ground-truth
dataset, we downloaded issue and pull request commenting activities from a
large number of GitHub accounts. We designed and developed a rating ap-
plication that allowed us to classify 5,000 GitHub accounts. The resulting
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dataset consists of 527 bot accounts and 4,473 human accounts. The dataset
constitutes an important contribution of our work since at the time we started
our research there was no such dataset of GitHub bots available.

7.1.2 Classification models to identify bot accounts

The ground-truth dataset that we created allowed us to characterize bots based
on their commenting activity in GitHub issue and pull requests. We measured
the pairwise similarity of comments using two well-known similarity metrics,
Jaccard and Levenshtein. We created clusters of comments using the DBSCAN
clustering algorithm to find the number of comment patterns of an account. To
be able to compare the inequality in comment distribution in comment patterns
we used the Gini inequality metric. In total, we found four distinguishing
features to separate bot accounts from human accounts including: the number
of comment patterns, the number of comments, the number of empty comments
and the distribution of comments within patterns.

The identified features along with the ground truth dataset of human and
bot accounts allowed us to train a classification model to identify bots. To
be able to select an appropriate classifier we compared five well-known binary
classifiers including random forest classifier, support vector machine, logistic re-
gression, k-nearest neighbours and decision trees. The random forest classifier
showed the best performance and was chosen as the final model. This classifi-
cation model was evaluated based on the remaining 40% of the dataset. Our
classification model was able to detect most bots as well as human accounts.
However, it had some false positives and false negatives that we examined
carefully to recategorize the types of accounts that were incorrectly classified.

The classification model we developed was only able to identify bots ac-
tive in pull requests and issue comments. However, bots may also be active
in other aspects of the software development process such as code contribu-
tion. To address this shortcoming we developed a new classification model to
identify bots in commit activities. We used the same features to detect bots
using commit messages. To train and evaluate the new classification model we
created a dataset of commits associated with a set of repositories and their cor-
responding commit messages. Comparing the five binary classifiers, we found
that random forest was the most effective.

In view of the presence of mixed accounts, we also created another classi-
fication model to identify bots not at the level of an account but at the level
of their individual activities. In other words, the question “Is this account a
bot?” would become "Is this specific activity produced by a bot?”. Based on
NLP techniques, we generated a probabilistic classification model to identify
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the type of activities instead of the type of accounts. The new classification
model also provides a probabilistic prediction that makes it possible to iden-
tify accounts that are shared between a human contributor and a bot (Mixed
accounts).

Another contribution of this dissertation is a classification model based
on multiple repositories. To improve the predictions of our classifier we used
predictions of our bot identification tool provided for a single account that
is active across multiple repositories. We created a dataset of accounts from
development repositories associated with the Cargo ecosystem to investigate
the accuracy of this classification model. The resulting model called WoC-P
is relying on the wisdom of the crowd. WoC-P improved the bot detection
accuracy in the considered set of accounts. This suggests that relying on the
wisdom of the crowd principle is a promising approach to improve bot detection
models across repositories. Additionally, we demonstrated that incomplete
predictions, where the model failed to predict an account type, can be rectified
by combining predictions from multiple repositories.

The last contribution of this dissertation is a comparison between five ex-
isting bot detection techniques. We conducted an exploratory study on the
accuracy of five bot detection techniques on a dataset containing the top 20
most active contributors of a set of 27 large projects. The result of the analysis
revealed that none of the compared techniques is perfectly effective in detect-
ing bots. For this reason, we combined these five bot detection techniques in
an ensemble classifier, called EnsBoD, that incorporates the capability of all
individual techniques in order to improve the bot detection accuracy. We eval-
uated EnsBoD through a 10-fold cross-validation process, and we found that
EnsBoD exhibits more accurate predictions.

7.1.3 Bot detection tools

Another contribution of this dissertation are the tools that we developed and
published based on the above-mentioned classifiers. We implemented the clas-
sification model that we developed for bot identification in GitHub pull request
and issues, into a Python command-line tool called BoDeGHa. This open-source
tool is made freely available to allow practitioners and researchers to analyse
GitHub repositories and to identify which accounts correspond to bots and
which correspond to humans. The tool makes the classification model easily
available and usable. BoDeGHa downloads the required information from the
GitHub API and predicts the type of accounts and produces the output in
different formats. The tool is available on GitHub at the following address:
https://github.com/mehdigolzadeh/BoDeGHa

https://github.com/mehdigolzadeh/BoDeGHa
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We also used the classification model we built to identify bots in com-
mit activities to develop a second bot identification tool. The open-source
command-line tool is called BoDeGiC. It requires as input a git repository and
extracts commit information to classify human and bot authors in the reposi-
tory. The tool is available on GitHub at the following address:
https://github.com/mehdigolzadeh/BoDeGiC

7.2. The Impact of the Contributions

In this section, we delve into the impact of the contributions presented in
Section 7.1 by examining cases where our bot identification technique, bot
identification tools (BoDeGHa and BoDeGiC), and the ground-truth dataset of
bots have been utilized for bot identification purposes. These studies not only
validate the effectiveness of our approaches but also demonstrate the wider
applicability and usefulness of the techniques, tools, and datasets developed
throughout this research. By analyzing the adoption and integration of these
resources in various third-party studies, we gain insights in the influence and
significance of our contributions in the field of bot identification and its impli-
cations for collaborative software development on social coding platforms such
as GitHub.

In the past few years, several studies have been conducted to explore the
different aspects of GitHub and collaborative software development. Studies
focusing on socio-technical analysis have eliminated bot activities (Foundjem
et al., 2022) in order to avoid wrong conclusions. Among these studies, we
analysed cases where either our bot identification technique, bot identifica-
tion tool, or the ground-truth dataset of bots were used for bot identification
purposes (Gao et al., 2022; Abdellatif et al., 2022; Cassee et al., 2021).

Abdellatif et al. (2022) developed a technique to identify bots that are
active in both commit and issue activities. They have compared our bot iden-
tification technique to with theirs. Cassee et al. (2021) used our method of
identifying bots (presented in Chapter 6) as one of the techniques for identi-
fying so-called mixed accounts in GitHub. Their methodology for classifying
GitHub pull requests and issue comments consists of three different methods,
and they use two of the techniques described in Chapter 4 and 6 for bot iden-
tification.

In addition to studies focused on introducing a new bot identification
method, there are also studies that utilize our tools and techniques to identify
bot activities. Some of these studies have used our publicly available ground-
truth dataset of bot accounts in order to identify bot activities. Schueller

https://github.com/mehdigolzadeh/BoDeGiC
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et al. (2022) have compiled a dataset of collaboration and dependency repos-
itory maintainers within the rust open-source programming ecosystem. In
order to clean bot activities from GitHub artifacts they used our ground-truth
dataset of bot accounts (presented in Chapter 4). This dataset is also used
in other studies to create a methodological framework to measure risk in soft-
ware ecosystems (Schueller & Wachs, 2022) and to understand how software
engineers react to bots’ actions (Cassee, 2022).

Furthermore, some studies have used our bot identification tool BoDeGHa
to identify bots. Some researchers examined the impact of the presence of
bots. For example, Zhang et al. (2022b) have investigated the effect of the
presence of bots in pull request evaluation, Wang et al. (2022) identified how
open-source software projects adopt bot services from a diverse set of available
bots and Wu et al. (2022) used our tool to automatically identify bots and
characterize the current usage of bots in practices.

Other studies ave removed bot activities to avoid potential biases of having
bots in their datasets. For instance, in the study conducted by Joblin et al.
(2022) about the organizational structure of open-source projects, BoDeGHa
was used to remove bot comments where the authors intended to create a
developer network through comments. Enache et al. (2021) evaluated the
impact of adopting a “code of conduct” on women’s participation in open-
source communities in GitHub. To do so they used BoDeGHa to remove bot
accounts from their dataset.

7.3. Future research perspectives

7.3.1 Bot identificaton and dataset improvement

While the bot classification models presented in this dissertation show a promis-
ing result in identifying bots, there is still room for improvement. For example,
researchers can explore to what extent it is possible to go beyond comments
and incorporate temporal information, account specifications and other tech-
nical information, type of activities and in general other types of metadata in
GitHub repositories to identify bots. In fact, this is what already happening.
Recently Abdellatif et al. (2022) have proposed a classification model that ex-
tends our model with additional information from account specifications such
as account name, account bio, number of followings and followers and account
activity such as total number of activities in a repository, number of pull re-
quests and issues, median activity per day and median response time.
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Moreover, extracting additional types of information from GitHub, such as
code review activities and GitHub discussions, can provide valuable insights for
bot identification. Factors like the frequency of activity, the number of activity
types, and engagement in multiple repositories can be considered as features in
a classification model. Additionally, analyzing the temporal aspect such as time
between consecutive activities, which is currently being explored by one of the
researchers in our lab (Chidambaram et al., 2023a,b,c), can further contribute
to distinguishing between bot and human accounts. By incorporating these
additional features, the classification model can gain a more comprehensive
understanding of bot behavior and improve its ability to differentiate between
bot accounts and human accounts.

In addition to the data available on GitHub, researchers can explore the
utilization of data from other software engineering resources. Software devel-
opers rely on various issue tracking, code revewing and bug tracking tools like
Gerrit, JIRA, and Bugzilla throughout the development process, each with
its own unique data sources. These tools can provide valuable information for
identifying bot activity. Integrating bot activity data from these different tools
into existing bot identification models can offer a more comprehensive under-
standing of bot behavior. This integration can also enhance the accuracy of
bot detection models, as they would be able to capture a broader range of bot
behaviors. As bots continue to evolve and become more sophisticated, it is
crucial to collect data from diverse sources to ensure that bot detection mod-
els remain effective. By considering data from various software engineering
resources, researchers can stay up-to-date with the latest bot behaviors and
adapt their models accordingly. This multi-source approach will contribute to
a more comprehensive and accurate understanding of bot activity in software
development.

Expanding the scope of bot identification research beyond GitHub to other
social coding platforms such as GitLab and Bitbucket presents an intriguing
avenue for future investigation. While this dissertation has primarily focused
on bot identification in GitHub, it is essential to recognize that bots are ac-
tive across various social coding platforms, each potentially exhibiting unique
behaviors. Therefore, developing techniques tailored to identify bots in these
platforms would contribute to a more comprehensive understanding of soft-
ware development bots and foster improved bot detection mechanisms across
the social coding ecosystem.

In this dissertation, we also presented a classification model based on di-
verging predictions of BoDeGHa. Although the model shows promising results,
it has not been integrated into the BoDeGHa tool itself. Integrating the model
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into BoDeGHa would be an interesting next step, as it could eliminate the
limitations faced by BoDeGHa in predicting accounts with few comments. Be-
ing a flexible open-source tool, Bodegha has the potential to incorporate more
advanced models, as discussed earlier by considering additional data sources,
activity types, and characteristics. Furthermore, it can compute a broader
range of features to enhance its bot identification capabilities. Integrating the
new classification model into BoDeGHa would further increase the value of the
tool for both researchers and practitioners.

Although we trained our models on a dataset comprising both bot and hu-
man accounts, the rapidly-evolving nature of bots means that our model may
not be able to accurately predict bots in the future. Therefore, having a clas-
sification model that can retrain itself incrementally and adapt to the new set
of bots would be a very interesting future perspective. This becomes increas-
ingly important as we observe that bot developers use more advanced machine
learning techniques, such as GPT, to create software development bots. Such
powerful language models have demonstrated their ability to generate human-
like text and engage in conversations that are difficult to distinguish from those
of human users. As these sophisticated bots generate more human-like com-
ments, they become less distinguishable for the classification models that rely
solely on comment patterns. The traditional approach of analyzing comment
content may be less effective in identifying these advanced bots. To tackle this
challenge effectively, integrating language models capable of distinguishing text
generated by such models into our classification framework could enhance the
accuracy of bot identification. By leveraging the capabilities of advanced lan-
guage models, we can develop more robust algorithms that consider not only
comment patterns but also the semantic meaning and contextual understand-
ing of the text. Continuous retraining and improvement of the classification
model with a diverse range of bot behaviors, including those exhibited by mod-
els like GPT, would be crucial to stay ahead of emerging bot developments and
ensure effective bot detection in the future.

Aside from being used by other studies and by practitioners, the datasets
can be extended with more information and continuously updated. Given that
the process of rating the accounts and labeling them was very time-consuming,
we limited ourselves to 5,000 accounts. Considering that we detected these bots
in a limited set of repositories, we are confident that thousands of others could
be added to the dataset. In addition, more and more use-cases are defined for
bots in social coding platforms, and so new bots will definitely be developed to
handle these tasks. Therefore, updating the dataset with emerging bots would
be definitely beneficial to have a more complete list of active bots in GitHub. It
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would be interesting to include the types of GitHub activities of each account
and also mixed accounts in the dataset. One can go beyond GitHub and add
bots that are active in other platforms (likewise CIs active in other platforms
to CI dataset).

The study by Erlenhov et al. (Erlenhov et al., 2020b) revealed that a more
fine-grained characterization of development bots would be needed. They came
up with three DevBot personas based on their autonomy, chat interface, and
smartness. Such a more fine-grained classification could be used to refine our
ground-truth dataset. This dataset can be used for other study purposes,
including the identification of bots in a dataset related to the study of the
history of GitHub repositories. Researchers can also use this collection to
develop better models for account classification.

7.3.2 Enhance software development processes

Another research track enabled by bot classification models is the empirical
investigation of the impact of bots on software development processes. Ac-
curately identifying bots allows researchers to delve into how bot activities
influence the collaborative software development process. This opens up op-
portunities to examine the specific ways in which bots contribute to, and im-
prove various aspects of software development, such as project management,
dependency management, bug tracking, and code review. By studying the en-
gagement of bots in these domains, researchers can acquire valuable insights
into the efficiency, effectiveness, and potential challenges associated with bot
involvement (Rombaut et al., 2023). For instance, they can analyze how bots
streamline project management tasks by automating certain actions or how
they facilitate bug tracking through automated testing and reporting. Addi-
tionally, researchers can explore the impact of bots on code review processes,
investigating their role in identifying issues, providing feedback, and improving
code quality.

Examining the social dynamics of software development in the presence of
bots is another valuable avenue for research. Understanding how bots interact
with human contributors and how they affect collaboration and communication
is essential for optimizing team dynamics. Researchers can investigate the ways
in which bots facilitate or hinder collaboration among developers, as well as the
implications for knowledge sharing, decision-making, and overall productivity.
Leveraging bot classification models researchers can conduct empirical studies
to uncover the multifaceted impact of bots on software development processes.
This research not only enhances our understanding of the role of bots but also
provides insights into how to effectively integrate and leverage bot capabilities
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to drive innovation in collaborative software development.

7.3.3 Bot behavior optimization

Bot behavior optimization is a compelling research area within collaborative
software development. Researchers can explore how to design bots that work
effectively in different types of projects and prevent their negative impacts
on the development process. This involves customizing bot behavior based
on project requirements and specific workflows. By tailoring bot capabilities
and functionalities to align with project objectives, researchers can develop
more efficient bots. They can also investigate methods to ensure bots comply
with ethical and legal standards, preventing disruptions and conflicts within
the social codding environment. Establishing mechanisms for monitoring and
regulating bot activities can foster a harmonious collaboration between bots
and human contributors.

The interactions between bots and human contributors present another
intriguing area for exploration. Researchers can optimize collaboration and
communication between bots and humans, aiming for seamless integration and
streamlined knowledge exchange. This involves studying the dynamics of bot-
human interactions, identifying challenges, and proposing strategies to enhance
collaboration and teamwork. By understanding the strengths and limitations
of bot-human partnerships, researchers can develop guidelines and best prac-
tices to foster a productive and supportive working environment. The findings
from this research will ultimately contribute to the development of more effi-
cient, ethical, and productive software development processes, while simulta-
neously advancing collaborative practices through the continued improvement
and refinement of bot capabilities.
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