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Abstract
In two-player zero-sum games on graphs, the pro-
tagonist tries to achieve an objective while the an-
tagonist aims to prevent it. Objectives for which
both players do not need to use memory to play op-
timally are well-understood and characterized both
in finite and infinite graphs. Less is known about
the larger class of half-positional objectives, i.e.,
those for which the protagonist does not need mem-
ory (but for which the antagonist might). In par-
ticular, no characterization of half-positionality is
known for the central class of ω-regular objectives.
Here, we characterize objectives recognizable by
deterministic Büchi automata (a class of ω-regular
objectives) that are half-positional, both over fi-
nite and infinite graphs. This characterization
yields a polynomial-time algorithm to decide half-
positionality of an objective recognized by a given
deterministic Büchi automaton.

1 Introduction
Graph Games and Reactive Synthesis. We study zero-
sum turn-based games on graphs [Fijalkow et al., 2023] con-
fronting two players, P1 and P2. They interact by moving
a pebble in turns through the edges of a graph, ad infinitum.
Each vertex belongs to a player, and the owner of the cur-
rent vertex decides where to go next. Edges of the graph are
labeled with colors, and this interaction thus produces an infi-
nite sequence of colors. The objective of the game is specified
by a subset of infinite sequences of colors, and P1 wins if the
produced sequence is in this set. We are interested in finding
a winning strategy for P1, i.e., a function indicating how P1

should move in any situation, guaranteeing the achievement
of the objective, whatever the strategy of P2.

∗Extended abstract of the eponymous paper from the proceed-
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ControlleRS). Mickael Randour is an F.R.S.-FNRS Research Asso-
ciate and a member of the TRAIL Institute. Pierre Vandenhove is an
F.R.S.-FNRS Research Fellow.

This game-theoretic model is particularly fitted to study the
reactive synthesis problem [Bloem et al., 2018], which aims
at the automated construction of a provably-correct controller
for a system (P1) trying to satisfy a specification (the objec-
tive) while interacting continuously with an uncontrollable
environment (P2). This comes down to finding a winning
strategy for P1 in the derived game.

In general, in a graph game, a strategy may need memory
in order to be winning. This means that only observing the
current graph vertex may not yield sufficient information to
make an optimal decision; additional information about the
past of the interaction is also required. For instance, if there
are two colors a and b, and the objective of P1 is to see twice
the color a in a row, memory is needed to win in some game
graphs, such as the one in Figure 1. From vertex v, P1 has
a choice among ab and ba, and it is possible to win by play-
ing any infinite word starting with baab. However, a strategy
without memory (called positional) from v can only achieve
the infinite words baba . . . or abab . . ., both losing.

v

a

b

b

a

Figure 1: Memory is needed to see a twice in a row from v.

Some objectives do not need memory, no matter the game
graph. This is for instance the case of the Büchi objective [Fi-
jalkow et al., 2023]: if the goal is to see a color infinitely often
and there is a winning strategy for P1 in some game graph,
then there is also a positional winning strategy for P1. This is
a beneficial property to obtain a controller for the system that
is as simple as possible to implement.
Half-Positionality. We intend to understand for which ob-
jectives positional (also called memoryless) strategies suffice
for P1 to play optimally (i.e., to win whenever it is possi-
ble) — we call these objectives half-positional. We distin-
guish half-positionality from bipositionality (or memoryless-
determinacy), which refers to objectives for which positional
strategies suffice to play optimally for both players.

Many natural objectives have been shown to be biposi-
tional over games on finite and sometimes infinite graphs:
e.g., discounted sum [Shapley, 1953], mean-payoff [Ehren-
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feucht and Mycielski, 1979], parity [Emerson and Jutla,
1991], total payoff [Gimbert and Zielonka, 2004], en-
ergy [Bouyer et al., 2008], or average-energy games [Bouyer
et al., 2018]. Bipositionality can be established using gen-
eral criteria and characterizations, over games on both finite
graphs [Gimbert and Zielonka, 2004; Gimbert and Zielonka,
2005; Aminof and Rubin, 2017] and infinite graphs [Colcom-
bet and Niwiński, 2006]. Yet, there exist many objectives
and combinations thereof for which one player, but not both,
has positional optimal strategies (Rabin conditions [Klarlund
and Kozen, 1991; Klarlund, 1994], mean-payoff parity [Chat-
terjee et al., 2005], energy parity [Chatterjee and Doyen,
2012]. . . ), and to which these results do not apply.

Various attempts have been made to understand common
underlying properties of half-positional objectives and pro-
vide sufficient conditions [Kopczyński, 2006; Kopczyński,
2007; Kopczyński, 2008; Bianco et al., 2011]. These suf-
ficient conditions are not general enough to prove half-
positionality of some very simple objectives, even in the
well-studied class of ω-regular objectives [Bianco et al.,
2011, Lemma 13]. An interesting characterization uses uni-
versal graphs [Ohlmann, 2023]; although it brings insight
into the structure of half-positional objectives, showing half-
positionality through the use of universal graphs is not always
straightforward, and has not yet been applied in a systematic
way to ω-regular objectives. The proof of our characteriza-
tion makes use of this novel tool.

Furthermore, multiple questions concerning half-
positionality remain open [Kopczyński, 2008]. For instance,
it is still unclear how to decide half-positionality, even for
ω-regular objectives in general. A result in this direction
is given by Kopczyński [Kopczyński, 2007], who showed
that half-positionality over finite graphs is decidable in
exponential time for a subclass of the ω-regular objectives
(incomparable to the one considered in this article). It is
unknown whether this is doable in polynomial time, and no
algorithm is known for half-positionality over infinite graphs.

Half-Positionality in RL. Reinforcement learning (RL)
shares goals similar to synthesis, in that a strategy achiev-
ing some specification must be built. While it is common that
synthesis considers strategies with memory, half-positionality
of the objective is typically a requirement to apply RL algo-
rithms, as decisions are usually taken simply based on the
current state of the game [Sutton and Barto, 2018]. Given an
objective and a graph, two steps can be taken to apply RL
algorithms [Hahn et al., 2022a]: (i) inject sufficient informa-
tion in the graph to guarantee that positional strategies suffice,
and (ii) label vertices/edges with rewards such that strate-
gies winning for the objective correspond to optimal strate-
gies w.r.t. RL. Half-positional objectives correspond to the
objectives for which no information must be added in step (i).
Given step (i) (on which we focus in this article), note that
step (ii) is not always straightforward [Hahn et al., 2022b].

Omega-Regular Objectives and Deterministic Büchi
Automata. A central class of objectives, whose half-
positionality is not yet completely understood, is the class
of ω-regular objectives. There are multiple equivalent def-
initions for them: they are the objectives defined, e.g.,

by ω-regular expressions, by non-deterministic Büchi au-
tomata [McNaughton, 1966], and by deterministic parity au-
tomata [Mostowski, 1984]. These objectives coincide with
the class of objectives defined by monadic second-order for-
mulas [Büchi, 1962], and they encompass linear-time tem-
poral logic (LTL) specifications [Pnueli, 1977]. Part of their
interest is due to the landmark result that finite-state machines
are sufficient to implement optimal strategies in ω-regular
games [Büchi and Landweber, 1969; Gurevich and Harring-
ton, 1982], implying the decidability of related problems.

Here, we focus on the subclass of ω-regular objectives
recognized by deterministic Büchi automata (DBA), that we
call DBA-recognizable. The winner of a game with a DBA-
recognizable objective can be decided in polynomial time in
the size of the graph and the DBA by solving a Büchi game
on their product [Bloem et al., 2018], but this does not yield
the smallest possible strategies in general.

Contributions. Our main contribution is a characterization
(Theorem 1) of half-positionality for DBA-recognizable ob-
jectives through a conjunction of three easy-to-check condi-
tions, presented in Section 3.

A few examples of simple DBA-recognizable objec-
tives not encompassed by previous half-positionality crite-
ria [Kopczyński, 2006; Bianco et al., 2011] are, e.g., reach-
ing a color twice [Bianco et al., 2011, Lemma 13] and
weak parity [Thomas, 2008]. We also refer to Example 3,
which is half-positional but not bipositional, and whose half-
positionality is straightforward using our characterization.

Various corollaries with practical and theoretical interest
follow from our characterization. In particular, we obtain a
painless path to show that given a DBA, the half-positionality
(over both finite and infinite graphs) of the objective it recog-
nizes is decidable in timeO(k ·n4), where k is the number of
colors and n is the number of states of the DBA.

For additional technical discussions, examples, and com-
plete proofs, we direct the interested reader to the conference
version of this paper [Bouyer et al., 2022a].

Other Related Works. We have discussed relevant litera-
ture on half-positionality and bipositionality. A more gen-
eral quest is to understand memory requirements when posi-
tional strategies are not powerful enough: e.g., [Le Roux et
al., 2018; Bouyer et al., 2022c].

Memory requirements have been precisely characterized
for some classes of ω-regular objectives (not encompass-
ing DBA-recognizable objectives), such as Muller condi-
tions [Dziembowski et al., 1997; Zielonka, 1998; Casares,
2022; Casares et al., 2022] and general safety and reachabil-
ity objectives [Colcombet et al., 2014; Bouyer et al., 2023a].

2 Preliminaries
Letter C refers to a finite non-empty set of colors. Given a
set A, we write respectively A∗, A+, and Aω for the set of
finite, non-empty finite, and infinite sequences of elements
of A. We denote by ε the empty word.

Arenas. We consider two players P1 and P2. An arena
is a tuple A = (V, V1, V2, E) such that V is a non-empty
set of vertices (of any cardinality), E ⊆ V × C × V is
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a set of colored edges, and V is the disjoint union of V1
and V2. Vertices in V1 are controlled by P1 and vertices
in V2 are controlled by P2. We assume arenas to be non-
blocking: for all v ∈ V , there exists some (v, c, v′) ∈
E. For v0 ∈ V , a play of A from v0 is an infinite se-
quence of edges π = (v0, c1, v1)(v1, c2, v2)(v2, c3, v3) . . . ∈
Eω . A history is a finite prefix of a play. For conve-
nience, we define an empty path λv for every v ∈ V . If
γ = (v0, c1, v1) . . . (vn−1, cn, vn) is a non-empty history,
we define last(γ) = vn. For an empty path λv , we define
last(λv) = v. For i ∈ {1, 2}, we denote by Histsi(A) the set
of histories γ of A such that last(γ) ∈ Vi.
Strategies. Let i ∈ {1, 2}. A strategy of Pi on A is a func-
tion σi : Histsi(A) → E such that for all γ ∈ Histsi(A),
the first component of σi(γ) coincides with last(γ). Given a
strategy σi of Pi, we say that a play π = e1e2 . . . is consis-
tent with σi if for all finite prefixes γ = e1 . . . en of π such
that last(γ) ∈ Vi, σi(γ) = en+1. A strategy σi is positional
if its outputs only depend on the current vertex and not on the
whole history, i.e., if there exists a function f : Vi → E such
that for γ ∈ Histsi(A), σi(γ) = f(last(γ)).

Objectives. An objective is a set W ⊆ Cω . An infinite
word w ∈ Cω is winning if w ∈ W , and losing if w /∈ W . A
game is a tuple (A,W ) of an arena A and an objective W .

Optimality and Half-Positionality. Let A =
(V, V1, V2, E) be an arena, (A,W ) be a game, and v ∈ V .
A strategy σ1 of P1 is winning from v if all plays consistent
with σ1 induce a sequence of colors in W . A strategy of
P1 is optimal for P1 in (A,W ) if it is winning from all the
vertices from which P1 has a winning strategy. We stress
that this notion of optimality requires a single strategy to be
winning from all the winning vertices (a property sometimes
called uniformity).

An objective W is half-positional if for all arenas A, there
exists an optimal strategy of P1 that is positional.

Deterministic Automata. A deterministic Büchi automa-
ton (DBA) is a tuple B = (Q,C, qinit, δ, α) whereQ is a finite
set of states, qinit ∈ Q is an initial state, δ : Q×C → Q is an
update function, and α ⊆ Q×C is a set of Büchi transitions.1
We denote by δ∗ the natural extension of δ to finite words.

A word c1c2 . . . ∈ Cω is in the language of a DBA B if,
when read from qinit following δ, it sees infinitely many Büchi
transitions. The language of a DBA is denoted L(B). An
objective W is DBA-recognizable if there exists a DBA B
such that W = L(B).
Example 1. We give two examples of DBA in Figure 2. The
language of the one on the left is the set of infinite words
seeing a infinitely often; for the one on the right, it is the set
of words seeing a infinitely often, or aa at some point.

Remark 1. The language of a DBA is always an ω-regular
language. However, unlike their nondeterministic counter-
parts, DBA recognize only a proper subset of the ω-regular
languages [Wagner, 1979].

1We use transition-based acceptance conditions, and it is techni-
cally important in our approach.

qinit a•b qinit qa qaa

a•

b
•

a•b a, b•

Figure 2: Two DBA using colors C = {a, b}. The Büchi transitions
(transitions in α) are marked with a •.

Right Congruence and Prefix Preorder. Let W ⊆ Cω be
an objective. For a finite word w ∈ C∗, we write w−1W =
{w′ ∈ Cω | ww′ ∈ W} for the set of winning continuations
of w. We define the right congruence ∼W ⊆ C∗ × C∗ of W
as w1 ∼W w2 if w−11 W = w−12 W (meaning that w1 and w2

have the same winning continuations). It is an equivalence
relation. When the context is clear, we simply write ∼. For
w ∈ C∗, we denote by [w] ⊆ C∗ its equivalence class of ∼.

When ∼ has finitely many equivalence classes, we can as-
sociate a natural deterministic “automaton structure” S∼ =
(Q∼, C, q̃init, δ∼) to ∼ such that Q∼ is the set of equivalence
classes of ∼, q̃init = [ε], and δ∼([w], c) = [wc] [Staiger,
1983]. The transition function δ∼ is well-defined since if
w1 ∼ w2, then for all c ∈ C, w1c ∼ w2c. We call S∼
the prefix-classifier of W .

We define the prefix preorder �W of W : for w1, w2 ∈
C∗, we write w1 �W w2 if w−11 W ⊆ w−12 W . Intuitively,
w1 �W w2 means that a game starting with w2 is always
preferable to a game starting with w1 for P1, as there are
more ways to win after w2. When the context is clear, we
simply write �. It is a (partial) preorder. Notice that ∼ is
equal to�∩�. We also define the strict preorder≺ = �\∼.

Given a DBA B = (Q,C, qinit, δ, α) recognizing the objec-
tive W , observe that for w,w′ ∈ C∗ such that δ∗(qinit, w) =
δ∗(qinit, w

′), we have w ∼ w′. In this case, equivalence re-
lation ∼ has at most |Q| equivalence classes. For q ∈ Q,
we write abusively q−1W for the objective recognized by the
DBA (Q,C, q, δ, α). Objective q−1W equals w−1W for any
word w ∈ C∗ such that δ∗(qinit, w) = q. We extend the
equivalence relation ∼ and preorder � to elements of Q.

3 Half-Positionality Characterization
Conditions. We first establish concepts at the core of our
upcoming characterization.
Definition 1 (Progress-consistency). An objective W is
progress-consistent if for all w1 ∈ C∗ and w2 ∈ C+ such
that w1 ≺ w1w2, we have w1(w2)

ω ∈W .
Intuitively, this means that whenever a wordw2 can be used

to make progress after seeing a word w1 (in the sense of get-
ting to a position in which more continuations are winning),
then repeating this word has to be winning.
Example 2 (Non-progress-consistent objective). Let C =
{a, b}. We consider the objective W = C∗aaCω recog-
nized by the DBA with three states in Figure 3. This objective
contains the words seeing, at some point, twice the color a
in a row. This objective was discussed in the introduction
and shown not to be half-positional. In particular, it is not
progress-consistent: we have ε ≺ ba, but (ba)ω /∈W .

Example 3 (Progress-consistent objective). We go back to a
slightly different example by adding two Büchi transitions:
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qinit qa qaa

a

b
a•b a, b•

Figure 3: DBA recognizing the set of words seeing aa at some point.

see the DBA in Figure 2 (right). This DBA recognizes the
objective W asking to see a infinitely often, or a twice in
a row at some point. The equivalence classes of ∼W are
q−1initW = W , q−1a W = aCω ∪W and q−1aaW = Cω . This
objective is progress-consistent: any word reaching qaa is ac-
cepted when repeated infinitely often, and any word w such
that δ∗(qinit, w) = qa necessarily contains at least one a, and
thus is accepted when repeated infinitely often.

Objective W is half-positional; it will be readily shown
with Theorem 1. Half-positionality of W cannot be shown
using previous half-positionality [Kopczyński, 2006; Bianco
et al., 2011] or bipositionality criteria (it is not bipositional).
Definition 2 (Recognizability by the prefix-classifier). For
an objective W ⊆ Cω and its prefix-classifier S∼ =
(Q∼, C, q̃init, δ∼), being recognized by a DBA built on top of
the prefix-classifier requires that there exists α∼ ⊆ Q∼ × C
such that W is recognized by DBA (Q∼, C, q̃init, δ∼, α∼).

In the case of languages of finite words, a straightfor-
ward adaptation of the right congruence recovers the known
Myhill-Nerode congruence. This equivalence relation char-
acterizes the regular languages (a language is regular if and
only if its congruence has finitely many equivalence classes),
and the prefix-classifier is exactly the smallest deterministic
finite automaton recognizing a language — this is the cele-
brated Myhill-Nerode theorem [Nerode, 1958].

Objectives are languages of infinite words, for which the
situation is not so clear-cut. In particular, an ω-regular ob-
jective may not always be recognized by its prefix-classifier
along with a natural acceptance condition [Maler and Staiger,
1997; Angluin and Fisman, 2021]. We show an example be-
low for the Büchi acceptance condition.
Example 4 (Not recognizable by the prefix-classifier). Let
C = {a, b}. Consider the objective W recognized by the
DBA in Figure 4: it asks to see both a and b infinitely often.
There is only one equivalence class for ∼: the winning con-
tinuations of all finite words coincide (and are actually equal
to W ). Therefore, its prefix-classifier S∼ has only one state;
however, any DBA recognizing this objective needs at least
two states. This objective is not half-positional, as witnessed
by the arena in Figure 4 (right): P1 has a winning strategy
from v, but it needs to take infinitely often both a and b.
Characterization. Our characterization consists of the
conjunction of three conditions. The first one requires that
the prefix preorder is total, and the other two correspond to
the two definitions above.
Theorem 1. Let W ⊆ Cω be a DBA-recognizable objective.
Objective W is half-positional if and only if

• its prefix preorder � is a total preorder,
• it is progress-consistent, and
• it is recognized by a DBA built on top of its prefix-

classifier.

q1 q2

b•

a
•

a b va b

Figure 4: Left: DBA recognizing the objective of Example 4. Right:
arena in which positional strategies do not suffice for P1 to play
optimally for this objective.

This characterization is valuable to prove (and disprove)
half-positionality of DBA-recognizable objectives. Exam-
ples 2 and 4 are not half-positional, and each of them falsifies
exactly one of the three conditions from the statement. On the
other hand, Example 3 is half-positional. We have discussed
its progress-consistency, and it is also straightforward to ver-
ify that its prefix preorder is total ([ε] ≺ [a] ≺ [aa]) and that
it is recognizable by a DBA built on top of its prefix-classifier
(as shown with the DBA in Figure 2, right).

The first two conditions are necessary for half-positionality
of all objectives. Being recognized by a DBA built on top
of the prefix-classifier is necessary for half-positionality of
DBA-recognizable objectives, but not for arbitrary objectives
in general, including objectives recognized by other stan-
dard classes of automata over infinite words. The first con-
dition turns out to be equivalent to earlier properties used
to study bipositionality and half-positionality [Gimbert and
Zielonka, 2005; Bianco et al., 2011]. The third condition has
been studied multiple times in the language-theoretic liter-
ature, both for itself and for minimization and learning al-
gorithms [Staiger, 1983; Le Saëc, 1990; Maler and Staiger,
1997; Angluin and Fisman, 2021]. As an example, all de-
terministic weak automata (a restriction on DBA) satisfy
it [Staiger, 1983; Angluin and Fisman, 2021].

We state two notable consequences of Theorem 1.
Lifting Result. We showed that half-positionality of DBA-
recognizable objectives can be reduced to half-positionality
over the restricted class of finite, one-player arenas. A one-
player arena of P1 is an arena in which P1 controls all ver-
tices (i.e., V2 = ∅). Results reducing strategy complex-
ity in two-player arenas to the easier question of strategy
complexity in one-player arenas are sometimes called one-
to-two-player lifts and appear in multiple places in the lit-
erature [Gimbert and Zielonka, 2005; Bouyer et al., 2022b;
Kozachinskiy, 2022; Bouyer et al., 2023b].
Proposition 1 (One-to-two-player and finite-to-infinite lift).
Let W ⊆ Cω be a DBA-recognizable objective. If objective
W is half-positional over the class of finite one-player arenas,
then it is half-positional (over all arenas of any cardinality).

Decidability of Half-Positionality. Given a DBA B, decid-
ing if L(B) is half-positional can be done in polynomial time.
Proposition 2. Given a DBA B = (Q,C, qinit, δ, α), the half-
positionality of L(B) can be decided in time O(|C| · |Q|4).

The algorithm checks every condition separately. It re-
duces each one to the inclusion of multiple pairs of languages
recognized by DBA (language containment queries). Such a
problem is standard: given two DBA B (with states Q) and
B′ (with states Q′) on the same set C of colors, the inclusion
L(B) ⊆ L(B′) can be decided in time O(|C| · |Q| · |Q′|).
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