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Abstract—The current wind farm control schemes qualify wind
power producers (WPPs) to provide balancing services in com-
plement to energy in modern electricity markets. Accordingly,
WPPs are responsible for real-time deviations in both energy and
reserve market floors, which are settled at different time scales.
WPPs should adjust their output to cope with fast wind variations,
which are critical in the balancing stage. In this paper, we devise
a reliable high-temporal-resolution day-ahead bidding framework
for WPPs considering the ultra-short-term wind stochasticity. To
that end, the model for the bidding strategy is enriched with a
probabilistic constraint controlling the confidence level on reserve
bids to enhance the reliability of the offered capacity. Additionally,
an original Auxiliary Classifier Wasserstein Generative Adversar-
ial Network (ACWGAN) is proposed to generate high-temporal-
resolution wind speed scenarios to be embedded into the bidding
framework. The numerical results firstly confirm the superiority
of the proposed ACWGAN over the other GAN-based alterna-
tives. For instance, ACWGAN can reach 30% higher classification
accuracy compared to conditional Wasserstein GAN. Then, the
effectiveness of the proposed data-driven method over its single-
resolution counterpart and other scenario representation methods
is verified regarding the minimization of the negative impact of
wind variability on WPPs’ profit and reliability of offered reserve
bids.

Index Terms—Wind power, probabilistic bidding, balancing
service, Auxiliary Classifier Wasserstein GAN, multi-resolution
uncertainty.

NOMENCLATURE
A. Sets and Indices
T/t
Q/w

Market time intervals.
Scenarios of hourly mean wind power.
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A/ Balancing periods in each market interval.

Vv Scenarios of minute-wise wind devia-
tions.

X and ¥ Sets of first- and second-stage variables.

B. Decision Variables of the Optimization Framework

R Revenue of a WPP in the DERM.

PFe/pke Day-ahead energy/reserve market power
bid at 7.

Apf Tt / Apfft Generation surplus/deficit regarding w
and ¢.

Apf’y(y‘ 5.t Scarcity of reserve capacity for (v, 0) at w
and t.

20, (1,6),t Binary variable for reserve control strat-
egy.

pf,(y, 5.t Reserve power at 7 regarding w and (v, 0).

pf_’t Allocated power to energy market at # w.r.t
w.

Tt Risk of reserve unavailability at 7.

C. Parameters of the Optimization Framework

Tt Probability of scenario w at 7.

Moot Probability of scenario v regarding w at ¢
AP ke Day-ahead energy/reserve price at t.
AL/ Energy imbalance price for Apf}/Apfﬁ.

¥ Reserve unavailability penalty at .

P/ P Upper/lower capacity limits of the wind
turbine.

~w7(y75)7t Available power at ¢ regarding w and
(v,0).

pw,t Available hourly power at 7 regarding w.

o Reserve market participation requirement
atr.

D. Symbols Used in Scenario Generation Model

Wy Wind speed time-trajectory at ¢

Wy Hourly mean value of ;.

€t Ultra-short-term mean deviations w.r.t ;.

Gal(s) Generator with parameters a.

Dgs(.) Discriminator or critic with parameters /3.

Pz/Z Distribution of latent space/ latent noise
vector.

P/ s Real data distribution / real samples.

Py/sq Generated data distribution/ generated
samples.

Lw(Dg,Gq) min-max loss function in WGAN.
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lers Gradient penalty coefficient.

5 Linearly interpolated data points.

0 Sample taken from uniform distribution
U[o, 1]

P./c Class labels distribution / Class label sam-
ples.

Lew (Dg,Gy) min-max loss function of CWGAN.

C.() Classifier with parameters .

Law(Ga,Ce,Dp) min-min-max loss function of ACWGAN.

log P() Log-likelihood loss.

e Hyperparameter of the weight of log ().

Hy Shared layers of ACWGAN with param-
eters h.

LR /LS Critic’s/ generator’s loss function of
ACWGAN.

E. Symbols Used in Performance Evaluation

WD(P,,Py) Wasserstein distance between P, and P,,.

o Joint distribution with marginals P, and
Py.

r Set of all joint distributions of .

RMSE [f, f] Root mean square error between f and f.

d;;/ d; Local alignment cost encoded by i and j /
L

W =w;,...,wr,  Warping path with sequence of L pairs.

DTW[, f] Dynamic time warping distance of f and
I

AR% Normalized total profit deviation

Ar% Risk of reserve unavailability deviation.

I. INTRODUCTION

HE growing share of renewable energy resources is a great
T concern for power system operators that have to contin-
uously accommodate the resulting intermittent and uncertain
power supply while ensuring system stability and security [1].
Electricity market policies are therefore emerging for integrating
such resources, which is mainly reflected by the advent of
spot energy markets and the development of efficient balancing
mechanisms (by which system operators can use the flexibility
of market actors to maintain a stable system operation). These
market opportunities are further complemented with penalty
mechanisms whereby deviations between scheduled bids and
real-time delivery are charged with an imbalance fee [2]. In
this way, the real-time deviations of energy and reserve bids are
financially penalized through energy imbalance settlement and
balancing stage mechanisms [3]. To reduce the deviation penal-
ties of a wind power producer (WPP) in the day-ahead energy
market, a stochastic wind power bidding model is proposed in
[4]. In [5], a wind speed forecast is used to identify an optimal
wind power bidding profile by minimizing the energy imbalance
penalty.

Beyond the participation of WPPs in the energy markets,
the current power electronics-based control schemes of wind
turbines (WTs) allow them to modulate their available power
and offer flexibility to the system [6], [7]. In [8], a day-ahead
energy and reserve market (DERM) framework is introduced to
motivate WPPs to participate in both energy and reserve market
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floors. However, in [8], the reserve power deviation penalty at the
balancing stage is assumed to be relatively low, so that the WPP
is encouraged to submit a riskier reserve bid to the market to
make a further profit. In [9], an analytical approach considering
hourly wind speed uncertainty and WT control technology is
presented to assess the added revenue of WPPs taking part
in the DERM. A stochastic bidding framework, considering
real-time deviation penalties regarding day-ahead energy and
reserve bids, is developed in [10] to maximize WPPs profit in
the DERM. The impact of incorporating better hourly forecast
information, close to the real-time stage, on WPPs optimal bids is
also studied. Overall, in these works, intra-hour wind variability
is mostly diverted to the reserve market [8], and thus the offered
reserve capacity may not hold high reliability. To circumvent
this problem, a stochastic chance-constrained method for wind
power scheduling is proposed in [11], where WPP integrates a
confidence level on the real-time reserve power delivery as a
probabilistic constraint in the bidding framework.

The real-time financial compensation for reserve occurs at a
much shorter time interval than the financial compensation for
energy deviations in the imbalance settlement mechanism, e.g.,
minute-wise versus hour-wise [11], [12]. However, all models
mentioned above neglect this fact. In particular, due to the dif-
ficulty of ultra-short-term wind forecast, the mentioned studies,
i.e., [8]-[12], have merely employed hourly wind uncertainty
for the remuneration of real-time energy and reserve deviation.
This strong assumption may incur opportunity losses due to the
poor representation of the wind speed dynamics [12]. More
importantly, when ultra-short-term wind variations are high,
there is a high risk that the scheduled reserves cannot be deployed
in real-time, thus exposing the WPPs to high financial penalties.

In light of this context, there is an increasing need to prop-
erly represent the quick dynamics of the wind power behavior
and feed this information in dedicated decision tools. Several
model-based scenario generation approaches such as copula and
auto-regressive moving average are presented in the literature
to characterize wind uncertainty [13]. However, the quality of
the generated scenarios in such approaches is highly limited by
modeling and statistical assumptions [13], [14]. For example,
the quality of the scenarios generated via the copula method
is extremely sensitive to the copula function chosen to capture
the dependence features [15]. As an interesting case, evidence
suggests that the 2008 housing crisis in the US was partly due
to a misspecified copula function [15]. Additionally, the use of
copulain higher dimensions is challenging [16], as it is inflexible
in defining multiple dependency structures among features [16].
Therefore, generating ultra-short-term wind scenarios using
copula is extremely challenging as each intra-period time step
appears as a new dimension.

The recent advancements in generative adversarial networks
(GANs) draw wide attention to their application regarding
model-free scenario generation for renewable energy sources
[13], [14], [17], [18]. The term “model-free” refers to methods
that are independent of any prior assumptions about the data
distribution [13], [14]. These models can return efficient sce-
narios by directly learning the diversity and stochasticity of the
historical data [14]. In [14], it is shown that conditional GAN
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(CGAN) can produce higher quality photovoltaic scenarios in
comparison with model-based methods such as copula and
Auto-regression. In [13], the Wasserstein GAN (WGAN) model,
which has higher training stability compared to GAN, is utilized
to produce scenarios for wind and solar power variations with
hourly and 5-min temporal resolutions. It is also shown that
WGAN produces more effective scenarios compared to the cop-
ula method. Additionally, the Lipschitz continuity constraint of
Wasserstein distance is imposed by the weight clipping method.
In [17], an improved technique to enforce Lipschitz continuity
constraint based on gradient penalty is employed in conditional
WGAN (CWGAN) to improve the training process. In [18],
CWGAN is used to model load forecast uncertainty based on
temperature, historical load measurements, and calendar infor-
mation. However, the performance of CWGAN can be further
improved by exploiting an auxiliary classifier ( ACWGAN) in the
network design to predict the class labels instead of feeding them
as an input to the network. It is shown in [19], [20] that such
a design can return high-quality outputs for the classification
problem of wireless signals. This advanced architecture will
be used and optimized in this paper to generate representative
forecast scenarios of wind generation with high temporal granu-
larity, which requires advanced adaptation based on wind power
expertise.

Importantly, employing the generated wind speed scenarios,
via ACWGAN, in the WPP bidding framework is not straight-
forward since the bidding framework requires wind scenarios in
the form of electrical power. Nevertheless, the transformation
of wind speed to wind power is a cumbersome task due to the
nonlinearities involved in the transfer functions of wind power
generators [21]. It is shown that modeling techniques based on
the interpolation of manufacturer data reflect the dynamics of
WTs better than the ones based on the theoretical cubic relation-
ship between wind speed and power [22]. In this regard, several
regression methods such as polynomial, weighted polynomial,
cubic B-spline, and penalized cubic B-spline are proposed in the
literature [23]. It is shown in [23] that penalized cubic B-spline
method, as employed in this paper, better controls the curvature
of the fitted power curve.

Overall, this work aims to implement a reliable framework
that incorporates the ultra-short-term wind variations into the
day-ahead bidding strategy of WPPs in a DERM. The contribu-
tions of the paper are three-fold:

1) A novel multi-resolution probabilistic bidding framework
is proposed to optimize the profit of WPPs in DERM.
Compared with existing works, the minute-level wind
power variations are also embedded in the proposed WPP
bidding strategy for the first time to precisely model the
scheduled reserve bids at the balancing stage (cleared at
minute-wise intervals). Besides, the model is enriched
with a novel probabilistic constraint controlling the con-
fidence level of the wind capacity offered to the reserve
market.

2) To tackle the difficulty faced in representing the ultra-
short-term wind uncertainty, the ACWGAN model is em-
ployed, for the first time, to generate effective scenarios for
wind deviations conditioned on wind fluctuation levels.

For this purpose, the definition of the new ACWGAN
loss function and the connection of its three agents, i.e.,
critic, classifier, and generator, are used to construct its
computational graph. Then, the architecture of each agent
of ACWGAN is carefully designed to boost the perfor-
mance of the proposed scenario generation while avoiding
any pre-processing of the input data. The performance of
the proposed scenario generation method is compared to
other GAN-based alternatives in terms of statistical and
similarity metrics.

3) The obtained wind speed trajectories with high temporal
granularity, using ACWGAN, are then converted to power
scenarios by an intermediate conversion layer comprising
a penalized cubic B-spline method. Finally, the obtained
ultra-short-term wind power scenarios are incorporated
into the proposed data-driven probabilistic bidding frame-
work. Accordingly, the proposed combinatorial contribu-
tion optimally leverages the benefits of both individual
contributions by adopting the new ACWGAN scenario
generation with the multi-resolution trading formulation.
We show that the acquired optimal bids not only enhance
the WPP profit in the market but also satisfy the required
confidence level concerning reserve availability.

Comprehensive case studies and comparisons are conducted

onreal-world datasets. In particular, we quantify the loss of profit
and deviation of the real-time reserve unavailability risk from
the reserve market participation requirement when the model
is fed by other GAN-based scenario generation techniques or
scenarios from the direct random sampling method. In addition,
the superiority of the proposed multi-resolution probabilistic
bidding framework over the classic single-resolution and the
ones without probabilistic constraint regarding reserve avail-
ability is highlighted.

The remainder of the paper is organized as follows. Section

II describes the proposed multi-resolution two-stage stochastic
WPP bidding framework with probabilistic constraint. Sec-
tion III presents the details of the proposed ACWGAN model
used to generate wind speed time trajectories with one-minute
resolution. Section IV provides the numerical results. Finally,
Section V concludes the paper.

II. PROPOSED ENERGY AND RESERVE BIDDING FRAMEWORK

This section first introduces the market mechanisms used in
the DERM and then formulates the proposed WPP bidding
strategy to obtain the optimal trade-off between reserve and
energy shares based on the scenarios of wind power production.

A. Market Assumptions

Transmission System Operator (TSO) is responsible for main-
taining the equilibrium between supply and demand to support
grid stability. In the current market design, TSO transfers part
of this responsibility to balance responsible parties (BRPs) in
terms of financial liability. In this way, each BRP is subjected to
imbalance tariffs for deviations of its actual energy delivery from
balanced schedules (reported to TSO for every settlement period
of the next day). In this study, in line with Finnish, Swedish, and
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Danish market settings, the imbalance settlement and day-ahead
market periods are considered to be one-hour [24]. The most
commonly used imbalance settlement mechanisms in real-world
electricity markets include single and dual pricing [2], [3].
Single pricing, e.g., used in Belgium and Germany, refers to the
settlement procedure in which the BRPs with energy deficit have
to pay the same imbalance price as the BRPs with generation
surplus [3]. In contrast, dual pricing, e.g., used in Denmark, and
Finland, which is applied in this study, penalizes net generation
surpluses and deficits with different prices to create a better
incentive for the BRPs to remain in balance [2].

However, in the case of real-time mismatch between supply
and demand at the system level, the TSO relies on various capac-
ity services that are purchased from balance service providers
(BSPs) in the reserve market. In line with the real-world Euro-
pean electricity markets, in this study, the energy and reserve
markets are cleared sequentially via independent day-ahead
auctions [25], [26].

The BSPs should comply with balancing rules concerning the
offered flexibility. This study focuses on frequency containment
reserve (FCR), which has the fastest time response in the balanc-
ing market. The capacity test control requires the FCR providers
to deploy the submitted capacity within one minute [27]. There-
fore, as the obligation of means entails, the TSO should have
access to the FCR provider’s measurements and control system
states to verify the availability of the offered capacity within the
one-minute resolution [27]. Consequently, the BSP should sat-
isfy the confidence level of the scheduled reserve bid. Deviations
from the offered FCR are financially settled in the balancing
stage. We consider a balancing market wherein one-directional
upward FCR bids are also acknowledged as downward reserve
provision for WPPs is not economically encouraged (since they
do not leverage fuel-saving returns as conventional units do).
Also, it is assumed that the WPPs’ bids are accepted in the
DERM due to their low marginal cost of power production [8].

B. Proposed WPP Bidding Framework

Although in this study the DERM is cleared sequentially, there
still exists a strong relationship between the contribution of WPP
in the energy-only and reserve markets [25]. This dependency is
due to the capacity constraint, hourly and minute-wise wind un-
certainty, coupling constraint of the uncertainty in different time
scales, and risk of real-time reserve unavailability. Therefore,
on account of this interdependency, and the short delay between
the clearing of day-ahead energy and reserve markets [26], as
a common approach in the dedicated literature [8]-[12], this
section formulates a single decision-making problem for WPP
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bidding to achieve the optimal trade-off between the energy and
reserve shares based on the scenarios of wind uncertainty.

The revenue of a WPP in the DERM, R, consists of its
contribution to the day-ahead market and real-time financial
liability mechanisms. The day-ahead revenue is modeled at the
first stage while real-time financial compensation is modeled at
the second stage. The objective function of the proposed WPP
bidding strategy is (1) shown at the bottom of this page.

The decision variables of the optimization problem in-
clude non-negative decision variables of the first stage
X = {PF°, PE°} , non-negative second-stage variables ¥ =

E El ET R R ;
{p%t7 Aphy APy P (0.5) 0 pr_’(w)’t, r¢} and the auxil-
iary binary variables {2, (,.s) ¢ } regarding the second stage. The
firsttermin (1), (i), presents the day-ahead profit of bidding in the
DERM. The second term (ii) obtains the financial compensation
in the energy imbalance settlement considering hourly wind
power scenarios w and corresponding energy deficits Apfﬁ and

surpluses Apf; for market periods. The last term (iii) reflects
the balancing stage penalties considering wind mean deviation
scenario (v, 9) and scarcity of the allocated capacity Apf’m 8),t
for market periods. | .| indicates the cardinality of its set ar-
gument. All instances of time-series scenario v, (v, d), have an
identical probability for a given hourly wind scenario w and
market period 1, i.e., [ty 1 ¢

At this stage, it is important to note that a forecaster is firstly
used to generate |2 hourly wind power scenarios to hedge
against the uncertainty regarding real-time energy deviations.
Then, an ACWGAN model is used to construct, around each
mean hourly scenario w € €2, |V| scenarios of wind deviations,
with length |A|, regarding each one-minute interval 6 € A,
inline with balancing stage periods.

The total submitted bids to the day-ahead market, should be
within the upper P and lower P capacity limits of the WT.

P<PF+PRP<PVteT ()
Then, (3) and (4) ensure that the allocated reserve in scenario

w and interval § of mean deviation scenario v for period %,
pf (,6),t° does not exceed P, (,5),; and Pft°, respectively.

- VteT:Vwe
R b
pw,(ll,ts),t S Pw7(1/,6),t \v (1/7 (S) S V x A (3)
VteT,VweN
R Ro ’
Puwere <Py (r,0) e VxA X

Along with (3)-(4), (5)-(6) model the absolute reserve allo-
cation control strategy of WPP, which enable it to act close
to conventional units since it prioritizes power delivery to the

X

teT weN

E E -1
maxR =3 (AR £ afOPR £ 3w (ML — xAplh — AFIAT Y o 3 Apiii(y,(;),t> M

veV dEA

@

(®) (iii)
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reserve market [9], [11].

VteT,VweQ;
R Ro ’ ?
Py = B0 = Mzy (6.1 V (r,0) eV x A )
- VteT;Vwe
R ’ ’
P .oyt = Po,we)e =M (1= 2, (00).t) YV (1,0) eV xA
(6)

When available power is adequate, ]5%(”75)7,& > PRo,
24, (1,5),t becomes zero to comply with (4) and avoid inconsistent
constraints (4)-(6). In this regard, (4) imposes an upper limit,
which is P, on pf,(w 5),+ and thus the real-time allocated

reserve power pﬁ” (.6 ¢ matches the day-ahead reserve bid.
However, when the available power is lower than the scheduled
bid, 2, (1,s),s becomes equal to one, and (3) becomes an active

constraint, thereby imposing an upper limit, i.e., pw,(u,a),t, on

pf (1,8),t° Thus, all available power is allocated to the reserve

market, so as to reduce the reserve deviation penalty.
Then, the scarcity of the allocated reserve power Apf (1,6) ¢

with respect to Pt is obtained by (7).

VteT;Vwe

Ro R R ) )

BY = Pown i S BPowor v sevxa O
Importantly, since the proposed bidding framework considers

wind uncertainty with two different time-scales, constraint (8)

links the minute-wise and hourly scenarios, as follows:

= _ VteT;
pE,=Pu. — (IV].]A)7! Z PE sy VweQ
(v,0)eV XA
(3)

Note that the mean of ultra-short-term scenarios V' re-
garding each hourly scenario w at hourly time-period ¢
(VAN 34 6)evxa Puv.s).1)isequalto P, ; asthey also
have a length of 1-hour and zero means. Accordingly, the deci-
sion variables can be separated into only two stages since scenar-
ios of {2 can be alternatively obtained by V. However, employing
hourly scenarios is still essential not only because of energy
imbalance settlement, which occurs every hour, but also due to
the fact that hourly scenarios can be obtained more accurately
than wind scenarios with ultra-short-term variations (as will be
further explained in section III). Notably, the first stage variables,
which should be decided upon before the actual realization of
the uncertainty in day-ahead, contribute to the strategic decision
of the WPP regarding P/°and P/*°. On the other hand, once
the uncertainty is realized, operational decisions are taken at
the second stage. Accordingly, since absolute reserve allocation
strategy prioritizes power delivery to the reserve market, i.e.,
enforced by (3)-(6), the operational decision initially contains
the allocation of reserve capacity regarding minute-wise wind
scenarios for multiple time horizons, |A| = 60. Concurrently,
the remaining hourly mean power, which is obtained by (8),
is then allocated to the real-time energy market. Consequently,
operational decisions considering both hourly and minute-wise
wind power uncertainties are made at the same stage (second
stage).

The deficit and surplus of allocated powers to the energy
market, used for energy imbalance settlement, are obtained by

).
PPo— pE, = Aply —ApEl VieTVwe (9

Furthermore, as the proposed framework aims to satisfy the
reliability of the offered reserve bids, the following constraint is
given to approximate the risk of reserve unavailability:

Tt = |A|71 Zﬂ-w’t Z

weN (v,0)eVxA

Hw,vt 2w, (v,8),t vteT (10)

As seen in (10), the probability-weighted average of the
instances of power scarcity, z, (,,5), = 1, with respect to the
probability of hourly =, ; and minute-wise ft, ,; scenarios,
estimates r;.

Finally, the risk behavior of the WPP is controlled by defining
an upper bound on the reserve market participation requirement,
pf, for each market time-unit, as follows:

re <pf VteT (11)

It should be noted that although it is the TSO that defines
pf regarding the probability of reserve unavailability, WPP may
take alower risk depending on market incentives and wind power
uncertainty to obtain the optimal allocation trade-off in each
market floor.

It is worth noting that the single-resolution model, i.e., classic
model, can be interpreted as a simplified version of the proposed
framework wherein the ultra-short-term wind stochasticity is
ignored. Particularly, the classic bidding model can be obtained
by setting P, (,.5)+ = Pu,¢ and [V],|A], and pig,,. to 1. Also,
by removing (10)-(11) the bidding model neglects the confidence
level of the offered reserve availability.

It should be emphasized that in this study, as in [4], [S] and
[8]-[12], WPP is considered as a price-taker market participant,
thereby market prices are not a function of its bids. Moreover,
it can be seen that market rates enter linearly into the utility
function (1). Consequently, provided that price forecast errors
follow a normal distribution or numerous samples are available,
to apply the central limit theorem, the stochasticity of market
rates can be substituted with their expected values [5], [9], [11],
[12]. It is worth noting that, as shown in [28], this simplification
is still an acceptable approximation even if the forecast errors
follow a gamma distribution and the utility function is to some
extent nonlinear. In practice, since market rates are not known
in advance, their corresponding values can be replaced by ap-
propriate forecasts [5].

The wind power inter-temporal dependency between market
periods ¢ does not appear explicitly in the formulation, since they
are already considered implicitly by the hourly scenarios fed to
the framework. Thus, for the following reasons, the proposed
framework can be decomposed into |7'| mixed-integer linear
subproblems, for each t, to enhance the tractability of the pro-
posed bidding framework. First, the paper focuses on the impact
of wind uncertainty at the short-term, e.g., hourly, and ultra-
short-term, e.g., minute-wise, resolutions on the bidding and
reliability of the reserve power. Also, the chance constraints re-
garding reserve availability (10)-(11) are considered separately
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for each individual market period 7. The advantage of employing
individual chance constraints over the joint chance constraints is
that the reserve reliability in the former one is guaranteed over
each market period, which is an important concern for TSO,
rather than just for the whole day-ahead market.

III. SCENARIO GENERATION WITH ACWGAN

A wind speed time-trajectory w; with |A| samples per hour
at a given hourly period  can be explicitly expressed via its
hourly mean value w; and ultra-short-term mean deviations ¢,
by w; = lw; + €, ; where 1 is a vector of all ones; 1 and ¢, are
both |A|x 1 dimension.

A great effort is devoted to hourly wind forecast and scenario
generation tools in the literature [29]-[33]. In general, since
hourly wind variations and the required prediction horizon are
both tractable, these methods yield acceptable performance [29],
[30]. The required hourly wind scenarios €2 for the proposed
bidding framework can be obtained by any of these effective
methods, e.g., random sampling from the empirical hourly wind
distribution [31] or probabilistic hourly wind speed forecast
[32]. In this study, without loss of generality, the distribution of
hourly wind forecast errors is used to represent the stochasticity
of wind regarding w;. Remarkably, the distribution of wind
frequency, especially in the medium- and long-term horizons,
is conventionally fitted to the Weibull distribution [33]. Also, it
can be better modeled with the non-parametric approaches [34].
In this study, the hourly wind uncertainty is represented by a
normal distribution as in the wind-related literature on stochastic
programming [31].

Nevertheless, generating efficient zero mean wind deviation
scenarios with a high temporal resolution, concerning &, is
challenging [11], [12]. This increased difficulty is primarily due
to the higher randomness and volatility of wind over ultra-short
time periods (e.g., minute-wise) compared to short-term periods
(e.g., hourly) [29], [30]. Moreover, in this study, the required
prediction horizon for the wind deviation scenarios with high
temporal granularity is |A| (i.e., = 60) times more than the
short-term scenarios.

Therefore, this section proposes a new model to capture
the time-varying and nonlinear dynamics of high-dimensional
weather data regarding ultra-short-term wind variations by
learning their distribution directly without making any mod-
eling assumptions. The proposed model for generating wind
scenarios with high temporal granularity consists of three agents,
i.e., critic, generator, and classifier. Unlike previous ACWGAN
models [19], [20], which use the trained critic for a classification
problem, we use the generator to create effective wind scenarios.
Therefore, with respect to our particular application, we explain
the relevance of the ACWGAN agents and their connections
in the computational graph so as to train the entire model with
the new learning loss feedback developed for each agent. To
provide a better perspective, in this section, we detail step by step
the advantages of the proposed scenario generation tool beyond
the state of the art by highlighting the limitations of other similar
GAN-based models used for this purpose.
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A. Wasserstein GAN With Gradient Penalty

A GAN consists of an interconnected network comprising a
generator G, () and discriminator Dg(.) which simultaneously
compete in a zero-sum game. G, () samples a latent noise vector
Z from the latent space with the probability distribution Pz, i.e.,
Z ~ Pz, as input and attempts to map it to realistic-looking
data s, e.g., scenario of wind time-series, in the output G (Z).
Notably, Z should have a relatively low dimension to facilitate
the generator’s task in mapping the latent space to P, [35]. D(.)
receives either a real sample s, ~ P, drawn from the original
dataset, e.g., actual wind dataset, or synthesized sample s, ~
Py, as input and identifies its realness or fakeness. On the other
hand, G,(.) aims to generate realistic-looking samples, e.g.,
wind time-series scenarios, to deceive Dg(.). GAN is trained
by using binary cross-entropy loss function in a zero-sum game
[18].

Remarkably, GAN’s loss function can be interpreted as min-
imizing Jensen-Shannon Divergence (JSD) between P, and P,
[36]. However, JSD fails to provide a sensible gradient in GAN
training when distributions have non-overlapping support [17].
This undesirable characteristic of JSD leads to several issues,
such as training instability and mode collapse in GAN’s training
process [36]. To circumvent these drawbacks, a Wasserstein
distance-based loss function is proposed in [37]. Also, adopting
such a loss function prevents the potential overfitting problem of
the model [37]. The improved loss function in WGAN, by con-
verting W D problem to its dual form, for better computational
tractability, is as follows [38]:

Lw (Dg,Go) = min mgux Es.p,. [Dg (sr)]

~ By, (D3 (s)
—n6rE 5 |(VsllDs ()l — 1) (12)

where s symbolizes the linearly interpolated data points belong-
ing to P, and Py, which is defined as follows:

§=0s, +(1—0)sg s, ~Prj syg~Pg 0 ~U[0,1] (13)

In WGAN, the so-called critic Dg(.) measures the discrep-
ancy between P, and Py, e.g., the discrepancy between actual
and generated wind time-series, through Wasserstein metric
W D(P,, P,) by inner maximization in (12). On the other hand,
Gy (+) tries to produce realistic-looking data by minimizing
W D(P,,P,) through the outer minimization in (12).

B. Conditional Wasserstein GAN

Despite the satisfactory performance of the discussed gener-
ative models in providing realistic-looking scenarios, they still
fail to control the features or modes, e.g., wind deviation levels,
of the generated data. Nevertheless, this limitation can be tackled
by integrating supplementary information, e.g., class labels, into
the adversarial training process of GAN variants.

Particularly, in the critic’s network Dg(.|c) of CWGAN, the
class labels ¢ ~ P, are merged with the actual s, ~ P, and gen-
erated s, ~ P, samples to obtain a joint hidden representation
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Fig. 1.  Input-output diagram of (a): CWGAN, (b): ACWGAN.

of samples and class labels. Furthermore, in the generator’s net-
work, these class labels are merged with the latent noise vectors
Z ~ Pz.Theloss function of CWGAN, Low (Dg, Gy ), is then
expressed as follows:

Lcew (Dg,Gq) = min mﬁax Es, p, [Dg (s:|c)]
~Ey,p, [Ds (5,10)

—n6rEqp [(VsllDs (Gl)l; — 1)°]
(14)

The input-output diagram of CWGAN is shown in Fig. 1(a). It
can be seen that the input of the critic in CWGAN encompasses
class labels, highlighted by a bold black arrow, along with the
joint hidden representation of class labels and input samples.
CWGAN is practically trained by sequentially updating the critic
and generator parameters, using the loss feedbacks, shown by
dashed lines, through the inner maximization and outer mini-
mization problems of (14), respectively.

C. Proposed Wasserstein GAN With Auxiliary Classifier

CWGAN learns a representation of Z that depends on class
labels as it receives them as input to the network. In other words,
CWGAN requires Dg(.|c) to return an estimate of the distance
between generated and real joint distributions of class labels
and samples, by merging c to either Z or s,, since it receives
them as input. The complicated task of Dg(.|c), measuring the
discrepancy between the real and generated joint distributions,
and G, (.|c), mapping the latent space (which is further en-
tangled by merging the class labels into Z ~ Pz) to real data
distribution, can be alleviated by incorporating a new agent into
the adversarial training process. This leads to an increase in
the learning capacity of the model and thus to more effective
scenarios, as the new agent provides for better classification
accuracy. The additional agent, which is a classifier C(.) and
cooperates with Dg(.) and G,(.), estimates the conditional

probability of the class labels given the received samples. Thus,
the critic now merely estimates the distance between real and
generated data distributions, through W D(P,, P, ), which is
independent of the class labels, e.g., wind deviation levels.

Moreover, the generator can better map Pz to P, through
G (4) asits loss function, min —Es,~p,[Dp(sg4]c)], depends on
the critic’s performance as well. Nevertheless, both the generator
and critic should still contribute to enhancing the ability of
C.(s) to predict the class labels of the samples correctly. The
proposed three-player adversarial loss function of ACWGAN,
Law (G, Ce, Dg), can be formulated as:

Law (Ga,Cc,Dg) = min minmﬁ@x Es.p,. [Dg (sr)]
& N
—Es,~p, [Dp (sglc)]
2
—n6rEqp | (Vsl|Da (1), — 1)°]

~p, [logP (Cc (s,) = ¢)]

- 770IE89~7J5 [IOgII) (C§ (sg) C)I
(15)

= ncEs,

where ¢ indicates the classifier’s trainable parameters, c is the
true class label of the received sample, and 7). is a hyperparameter
regarding the weight of the log-likelihood loss, log IP(.), of the
correct class prediction. The first three terms in (15) correspond
to the WD of the generated and real data distributions which
should be estimated by Dg(.) through the inner maximization
and minimized by G, (.) via the outer minimization problem.
The last two terms in (15) minimize the negative log-likelihood
loss of the correct class prediction through the middle minimiza-
tion problem.

In practice, the ACWGAN three-player game can be im-
plemented by two neural networks comprising a new critic,
which also embeds an auxiliary classifier layer as its secondary
output, and a generator. In this way, the auxiliary classifier
C¢(+) and critic Dg(.) in (15) share the same hidden layers Hj},,
parameterized by h, in the new critic. Importantly, by leveraging
the benefits of multi-task learning [39], such a structure improves
the three-player ACWGAN learning performance and reduces
its complexity. Particularly, the new critic receives an input
sample, either from P, or P,, and, in contrast to CWGAN,
returns two outputs [Dg(Hp(s)), Cc(Hp(s))]. The first output,
Dg(Hp(s)), obtains the WD between real and generated dis-
tributions through the inner maximization in (15). However,
the second output of the new critic in ACWGAN, C.(Hp(.)),
predicts the class label of each provided sample rather than
merely receiving it as an input (as in the case of CWGAN).
The new critic’s loss function is as follows:

L3y = mgx} Es,~p, [Dp (Hn (s1))]

h,B,s
~ Es,, [Ds (Hi (3,]0))]
~n6rEy 5 [ (Ve Ds (Ha Gl0)ll,~1)°] +1Es, o,
log P (Cc (Hn (sr)) = c)]

+ ey, p, [log P (Co (Hn (s4)) = )] (16)
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In (16), WD(P,, P, ) is estimated by the first three terms.
The last two terms in (16) optimize the auxiliary classifier layer
by inverting the sign of negative log-likelihood loss, regarding
the middle minimization problem in (15), and expressing it as a
maximization problem.

Nevertheless, in the same fashion as in CWGAN, the genera-
tor receives latent noise vectors along with class labels, e.g., wind
deviation levels, and returns synthesized samples, e.g., scenario
of wind time-series, holding desired class attributes. Accord-
ingly, the generator aims to produce quality samples to reduce the
discrepancy between the generated and real data distributions,
i.e., by solving the outer minimization problem in (15). It is
seen that only the second term in (15), —E, p, [Ds(s4]c)],
involves the generator’s parameters regarding the minimization
of WD(P,, P,y ). By inverting its sign, the minimization prob-
lem can be converted to a maximization one. Notwithstanding,
the synthesized samples by the generator should also have the
correct class attributes. It is seen that only the last term in
(15), =ncEs, ~p,[log P(C; (s4) = c)], contains the generator’s
parameters regarding the correct class prediction error. Thus, by
inverting its sign, the two mentioned contributing elements can
be combined as follows to construct a single loss function £G ;-
for training the generator:

LG =max E., -, (D (H (s,lc))]

+ neEs,p, logP (C; (Hp(sg)) = )]  (17)

The input-output diagram of ACWGAN is shown in Fig. 1(b).
It is seen that the new critic of ACWGAN, shown by a green
block, does not receive class labels as input. Nevertheless, in
contrast with the critic of CWGAN, the new critic of ACW-
GAN has two outputs, shown by green arrows. The first out-
put, Dg(H}(.)), obtains the WD between real and generated
distributions while the second output, C.(Hp,(.)), predicts the
class label of the provided sample. Finally, ACWGAN is trained
by sequentially updating the parameters of the new critic and
generator through loss feedbacks £Z};, and £G;,, (shown by
dashed lines), respectively.

The training process of ACWGAN is elaborated in detail
in Algorithm I. Importantly, as seen in Algorithm I, at each
training step, the new critic is first trained by few iterations,
typically ng = 5 [38], to estimate WD(P,, P,) and improve
the classifier’s ability to correctly predict class labels of s,. ~ P,.
and s, ~ P,. During this step, the generator’s parameters are
not updated, since Es p, [Dg(Hp(sylc))] has different signs
in the loss functions (16) and (17). Thus, after the new critic
training, the generator is trained for one iteration to minimize
the obtained W D through the first term in (17), i.e., maximizing
—WD(P,,P,), while satisfying the correct class property of
generated samples as it is also considered in Eﬁw. Notably,
the new critic’s parameters are not updated at this step, since
training the critic with £§}; results in an inaccurate estimate of
W D(P,,P,) due to their conflicting objectives. This procedure
is continued until the model is converged and desired outputs
are achieved.

Once ACWGAN is trained by labeled samples, the generator
is capable of producing plausible wind speed mean deviation
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Training Algorithm I: Proposed ACWGAN Model.

Default values: n, = 64, n; =5, ngp = 10, 1, = 1, Gradient descent op-

timizer = Adam , [, =0.00006.

Require: n,, Batch size. n;, Number of critic’s updates in ACWGAN. 7gp,
Gradient penalty. 7., Log-likelihood weight loss. Gradient descent
optimizer. [, Learning rate.

Require: Initialize model’s weights {a, h, 8, ¢}.

1: while weights have not converged do:

»Execute n, training steps for the combined discriminator

and classifier network.

2: forn = 1,...,n, do:
3: fori = 1,...,n, do:
4: Take a real sample along with its class label from P,..
syandc ~ P,
5: sample a noise vector from latent space P,.
z~P,
6: Generate fake sample using G,,.
Sq < Ga(3(c)
7: Obtain the interpolated sample $.
§ < s, + (1 - 6)s,, where 6~U[0,1]
8: Compute the combined discriminator and classifier

loss regarding s,, s, and $.

Lp(D) « Dﬁ(Hh(sr)) —Dg (Hn(5g|c))
—nop (V5105 (HRGI]], ~ 1)
+1.1log P(C,(Hy(s,)) = ¢)
+n.logP (Cc (Hh(sg)) = c)

9: end for
Update discriminator and classifier layer parameters
10: {h, B, ¢} using gradient descend algorithm.
np
(h.B,} = Adam(—Vp g™ ) Lo(0)
i=
11: end for
»Execute a single generator training step.
12: Sample a batch of noise vectors and class labels.
{z(i)}?=b1~?z 5 {C(l)}:lﬁ1 N:Pc
13: Generate a batch of fake samples using the generator network.
M . .
{5y}, « Gz He @),
14: Update generator parameters a using gradient descend algo-
rithm.

a < Adam (—Va n, t Z:: Dg (Hh(sg (i)|c(i)))
+ 7n.log P (Cc (Hh(sg(i))) = c(i)))

15: end while

scenarios with a high temporal resolution, e.g., minute-wise time
granularity, and desired class labels, e.g., deviation levels. In this
regard, the generator is fed by K noise vectors Z and desired class
label ¢ to obtain K scenarios of wind speed mean deviation with
|Al, e.g., = 60, samples per hour.

These effectively-controlled wind speed scenarios are then
converted to wind power scenarios through an intermediate con-
version layer. In this paper, a penalized cubic B-spline method
which better controls the curvature of the fitted power curve is
employed. In this method, a penalty term is added to the least
square fitting objective in order to control the smoothness of
the power curve. The details of this method are given in [23].
Nevertheless, more advanced techniques, e.g., neural networks,
can be incorporated into the proposed speed to power conversion
layer, to deal with a wind farm where its total production is
significantly affected by other factors such as wake effects.

Finally, the WPP receives K effective realistic-looking wind
power scenarios with a high temporal resolution as input to
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TABLE I
PRICES AND PENALTY RATES OF THE STUDIED DERM PERIOD

) o ) Ro AN )Cl« AR
[€/MWh] [€/MW] [€/MWh] [€/MWh] [€/MW]
33 35 31 36 40

the stochastic bidding model. These scenarios follow the actual
wind dynamics due to the employed loss based on WD. More
importantly, thanks to the embedded classifier in the ACWGAN
training, the WPP also has control over the desired properties,
e.g., deviation levels, of the generated scenarios.

IV. NUMERICAL RESULTS

This section conducts comprehensive case studies on real-
world datasets, based on the experimental setups described in
subsection IV.A. Since wind power variation scenarios are the
inputs of the proposed multi-resolution probabilistic bidding
framework, the performance of the proposed ACWGAN model
is firstly compared to the other alternatives based on statistical
and similarity metrics in subsection IV.B. Afterward, the advan-
tages of the proposed data-driven probabilistic WPP energy and
reserve scheduling framework, which models wind uncertainty
with both hourly and one-minute resolutions, via ACWGAN,
over the classic single-resolution model are investigated in
subsection IV.C. Finally, the benefits of using ACWGAN in
the presented decision tool, in contrast to the other alternative
scenario representation methods, are further investigated in sub-
section IV.D.

A. Experimental Setups

A WPP owning a 5.3 MW wind turbine with cut-in, rated
and cut-out speed of, respectively, 3, 12, and 25 m.s™! is studied
here. It should be noted that even with this limited wind power
capacity, portfolios are still able to participate at both day-ahead
energy and reserve market floors. For example, in the electricity
markets operated by EPEX-Spot and Nord Pool (which include
several countries, such as Belgium), the minimum bid size in
the day-ahead energy market is 0.1 MW [40]. Also, in many
countries, such as Belgium, Denmark, and France, the portfolios
with at least I MW of flexible power are allowed to participate
in the balancing market as BSP [41]. The hourly wind scenarios
are obtained by sampling from a normal distribution with the
mean wind speed of 9 m.s™' and standard deviation of 1.5
m.s!. Notably, this assumption does not affect our comparisons
since all benchmarks and the proposed method are fed by the
same hourly wind scenarios. Furthermore, the ultra-short-term
wind scenarios are obtained by ACWGAN and evaluated by
other benchmark algorithms including direct random sampling
from the training set, CGAN, and CWGAN. Both hourly and
ultra-short-term scenarios, employed in the proposed bidding
framework, are considered equiprobable. Market prices and
penalties for one market period are reported in Table I. These
market rates are in a similar and comparable range as in the
related literature [11], [12] and in several European electricity
markets, such as in Denmark, Norway, and Belgium [42], [43].

The reserve unavailability penalty rate during each imbalance
settlement period is constant. The proposed scheduling problem
is solved for one market period. This reduction is not limiting as
one can solve the problem for |T'| market periods by decomposi-
tion of (1)-(11) as detailed in Section II.B. Moreover, this setting
allows us to better demonstrate the effectiveness of the proposed
approach by detailing various aspects of in- and out-of-sample
results.

In this study, a sufficiently large dataset regarding minute-
wise and hourly wind variations from 2014 to 2016 is collected
from a wind site located in Frgya island [44]. Specifically, the
wind dataset contains 453600 instances regarding 7560 hours
of minute-wise wind data. The processed dataset is then divided
into training and test sets with a 4:1 ratio.

For the sake of a fair comparison, the same type of neural
network is used for the critic (discriminator) and generator of
all GAN-based methods. Specifically, the architecture of the
generator neural network involves three fully connected layers,
whereas the critic (discriminator) uses three one-dimensional
convolution layers. Moreover, the number of neurons in the
hidden layer of each network for each model is fine-tuned based
on 50 trial runs. The neural networks are trained with 362880
data instances corresponding to 6048 hours of wind data, i.e.,
each sample has ( |A| = 60)x 1 dimension (one dimension per
minute), along with their associated labels. Notably, the model
can be trained by any auxiliary information such as seasons,
ramping rate, or deviation level. In this study, wind fluctuation
level is adopted as our supplementary information, which can be
provided by a forecaster, as it has a significant impact on optimal
decisions of the bidding model. In this study, the fluctuation
levels are divided into 5 categories with respect to the distribution
of wind variability in the training set.

In particular, the fluctuation levels belonging to intervals [0,
0.5), [0.5, 1), [1, 1.5), [1.5, 2) and [2, Spax] m.s™! corresponds
to the class labels C,, Cq, Ca, Cs, and Cy, respectively. Spax
denotes the maximum wind deviation value and is 5 m.s”! in
our dataset. Notably, C,, C;, and Cq, with the probability of,
respectively, 0.37, 0.40, and 0.15, are the dominant events in
the dataset. On the other hand, C3 and C,, with the probability
of, respectively, 0.03, and 0.05 are less probable events. After
training the models, the standalone generator is fed by K =
1000 noise vectors along with desired class labels to produce
appropriate wind mean deviation scenarios in the form of time
trajectory. For the sake of method evaluation, a sufficiently large
number of samples, i.e., 5000, with K = 1000 samples for
each class, are generated. Then, the out-of-sample analysis is
performed over the expectation of 75650 instances regarding
1513 hours of wind data in the test set.

B. Evaluation of the Proposed Scenario Generation Model

Although the evaluation of GAN-based models with image
output is rather straightforward, their evaluation for non-image
data is still an open topic [45]. Therefore, various similarity
and statistical metrics, based on specific applications, are em-
ployed in the literature to assess the performance of time-series
generative models. First, Wasserstein distance, WD, between
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the probability distributions of the generated P, and test sets
‘P, instances of wind trajectories, for each label, is calculated as
follows (to compare the overall variability of two sets):

WD (P, Py )=

inf

(18)
YET(P,,Py)

E(smsg%v llsr — 59”

Then, the root-mean-square error (RMSE) of the generated
and test sets are computed. The RMSE between two temporal
sequences, f and f, is defined as follows:

RMSE [f, f} - \/|A|‘1 Y sen (f 0] — f[61)2

Finally, dynamic time-warping (DTW), a well-known time-
series similarity metric, is also used to analyze the similarity
of time-series in the generated and test sets with respect to
the optimal alignment of time warps [46]. Let’s d; ; = || f[¢] —

19)

FIll , i, € A be the local cost of alignment between the
i™ element of f and the /" element of f. A warping path
(W = (wy,...,wr) | L €|A],2|]A] + 1]), encodes a global
alignment between the two time-series, f and f , by defining a
sequence of L pairs w; = (4, j) , which assign element i of f to
element j of f . The DTW distance between two time-series is
the total cost of alignment for the optimal (i.e., minimum cost)
warping path:

L
DTW [f, ] =min > di W = (wr,...,wy 20

f.f| = mi ; < ) Q0
where d; = d; ; is the local alignment cost encoded by the /™
pair w; = (4,4) of the warping path W.

DTW and RMSE are conventionally used to evaluate the
quality of the generated signals in GAN models [46]. Two real
wind trajectories are randomly chosen from the test dataset
as shown by black lines in the first and second columns of
Fig. 2. Then, after generating a set of wind trajectories by using
ACWGAN, CWGAN, and CGAN, the most similar synthesized
wind time-series based on RMSE and DTW metrics are found.
The actual wind time-series in the first and the second columns
are used to obtain the most similar synthesized sample with
respect to RMSE and DTW metrics, respectively. The obtained
synthesized trajectories using ACWGAN, CWGAN, and CGAN
regarding RMSE metric are, respectively, shown in Fig. 2(a),
(c), and (e) by dashed blue lines. Also, the dashed blue lines
in Fig. 2(b), (d), and (f) correspond to the obtained trajectories
using ACWGAN, CWGAN, and CGAN regarding DTW, re-
spectively. It is seen that while the synthesized samples in the
left column emphasize the static time alignment, the ones in
the right column relax this assumption by using dynamic time
alignment. Additionally, the corresponding generated trajecto-
ries using ACWGAN, as shown in Fig. 2(a) and (b), are visually
similar to the ones belonging to the real dataset for both RMSE
and DTW metrics. On the other hand, the generated samples
using CWGAN are visually less similar to the ones belonging
to the real dataset, compared with the generated samples by
ACWGAN, regarding both similarity metrics. Also, the obtained
samples by CGAN even look farther than their corresponding
real samples compared with the ones obtained by ACWGAN and
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Fig. 2. Generated wind mean deviation time-series versus the actual time-
series. The first and second columns correspond to the scenarios selected
based on RMSE and DTW metrics, respectively. The generated signals using
ACWGAN, CWGAN, and CGAN are, respectively, shown in rows 1, 2, and 3.

CWGAN. In particular, the RMSE between the real signals (first
column) and the generated signals by ACWGAN, CWGAN,
and CGAN are 0.47, 0.63, 0.75, respectively. Also, the DTW
between the real signals (second column) and the generated
signals by ACWGAN, CWGAN, and CGAN are 21.70, 28.62,
30.17, respectively.

Nevertheless, DTW and RMSE merely find the distance of
two temporal sequences, which are used for qualitative visual
assessment in Fig. 2. Thus, it is required to obtain representative
scores based on these metrics for the whole generated scenarios
on the test dataset. For this purpose, a brute-force search on the
synthesized and test sets is performed to find the most similar
time-series based on the desired metric. Then, the average of the
obtained cost values, i.e., RMSE and DTW, of the corresponding
similar signals in real and generated datasets are considered to
obtain the representative RMSE and DTW distance of two sets.
The acquired results for the mentioned evaluation metrics on
the whole datasets are recorded in tuples (WD, RMSE, DTW)
in Table II. The performance of each presented method should be
compared with other methods for each class label individually.

It can be seen that CGAN performs poorly with respect to all
measures compared to CWGAN and ACWGAN. Moreover, the
performance of the proposed ACWGAN is considerably better
compared to CWGAN.

For example, as seen in the 4™ row of Table 1L, i.e., C3, WD,
RMSE and DTW of ACWGAN are 1.89, 1.55 and 1.30 times
lower than those of CWGAN method, indicating higher quality
of scenarios generated by the proposed method.
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TABLE II
COMPARISON OF THE PROPOSED SCENARIO GENERATION APPROACH WITH THE
OTHER GAN-BASED TECHNIQUES

Method

Class CGAN CWGAN ACWGAN

Co | (0.14,024,1820)  (0.04,0.11,9.33)  (0.04,0.10, 8.95)

C, | (0.07,043,2397)  (0.05,0.37,17.19)  (0.05,0.31, 16.84)

C, | (0.15,1.44,4294)  (0.07,0.95,30.22)  (0.06, 0.89, 28.75)

C; | (0.17,3.64,67.17)  (0.17,2.73,49.52)  (0.09, 1.76, 38.22)

C, (0.96, 12.61,138.50)  (0.20, 3.87,57.64)  (0.13,3.31, 55.22)
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Fig.3. Confusion matrix of CGAN, CWGAN, and ACWGAN regarding class
labels C,, C1, Co, C3, and Cy,

The ACWGAN model is further compared with the bench-
mark models in terms of classification performance. For this
purpose, the 5000 generated samples, i.e., 1000 samples for
each class, are analyzed ex-post in order to obtain their confusion
matrix, as shown in Fig. 3. The predicted classes are color-coded
in this figure. The horizontal axis shows the true class labels.
Hence, each bar segment in a given stacked bar indicates the
percentage of predicted classes for each true class label. It is
graphically seen that CGAN has poor performance compared to
the Wasserstein-based models for C,, Cq, Co, and Cs. However,
its performance regarding generating wind time-series with class
label C4 is better than the Wasserstein-based models. Its reason
can be described as below.

Notably, C4 has a much wider interval [2, S;,,x] compared to
other classes (3 m.s™' vs. 0.5 m.s™!). Meanwhile, the deviation
levels of wind time-series belonging to C4 in the real dataset
are mostly concentrated toward the beginning, and middle of
this interval. On the other hand, the deviation levels of the
generated time-series by CGAN are mostly concentrated on the
right tail of Cy4 interval (higher deviation level). Thus, although
the classification accuracy of CGAN regarding C4 seems to be
improved, as the deviation levels still fall in this wide interval,
they do not maintain the quality of the real wind signals of this
class. This can be further confirmed by the poor results of CGAN
regarding C,, with respect to the similarity metrics, as reported
in Table II.

TABLE III
THE IN- AND OUT-OF-SAMPLE RESULTS OF THE PROPOSED AND CLASSIC
BIDDING APPROACHES FOR DIFFERENT p° AND WIND DEVIATION CLASSES

In-sample Out-of-sample | Evaluation
p° Method | PEe PR RE RR | # RE RR [ AR Ar
[%] IMW] MW] €] €] | (%] (€] €] | (%] (%]

Classic  |0.54 1.42 27.84 49.79 [10.22 28.83 49.18(0.49 10.22
1.28 0.71 51.87 24.89(0.00 51.77 24.89(-0.13 0.00
0.13 1.96 13.94 64.34 [35.84 15.31 63.26[0.37 15.84
0.46 1.65 22.88 55.54 (19.71 22.70 55.62(-0.13 -0.29
0.00 2.09 11.51 66.82 |43.91 12.77 65.75{0.24 3.91
Proposed |0.14 2.02 14.35 64.31|39.54 14.12 64.45(-0.11 0.01
Classic (054 1.42 27.84 49.79 |35.15 40.95 40.71{5.19 35.15
2.33 0.00 81.30 0.00 [0.00 80.95 0.00 [-0.43 0.00
0.13 1.96 13.94 64.34 [47.89 30.43 50.54(3.44 27.89
1.55 0.88 54.91 27.70 |19.64 54.56 27.66]-0.47 -0.36
0.00 2.09 11.51 66.82 (50.18 28.10 52.55]2.96 10.18
1.26 1.27 45.37 37.39 |31.05 44.96 37.42|-0.46 -0.40

Proposed
Classic

Co| 20 Proposed

Classic
40

Proposed
Classic

Cs| 20 Proposed

Classic

0 Proposed

The Bidding Behavior of WPP with the Non-Binding Reserve Unavailability Risk
Constraint Can Be Interpreted By Noticing the Values Indicated By Underline.

Therefore, when comparing the performance of these ap-
proaches, one should be careful to look at classification accuracy
and similarity metrics together. Interestingly, it is seen that by
leveraging an auxiliary classifier, the classification performance
of ACWGAN is significantly improved for all class labels
compared to CWGAN. In particular, as shown in Fig. 3, the
accuracy of ACWGAN for class labels C,, C1, Ca, C3, and Cy,
is significantly higher than that of CWGAN by 0.8%, 27.4%,
30.5%, 24.3%, and 8.2%, respectively.

C. Advantages of the Proposed WPP Scheduling Model

The obtained results of the classic and proposed WPP energy
and reserve scheduling frameworks are summarized in Table III.
The WPP’s bidding performance with respect to three reserve
market participation requirements, p° = {0, 20, 40} %, defined
by TSO, for both classic and proposed frameworks is detailed.
The comparative results are presented for very low, C,, and
high, C4, wind fluctuation levels in Table III. The in-sample
results, including the submitted energy bid PF° and reserve
bid P to the market as well as the expected revenues from
energy R¥ and reserve R*, are provided in Table III. Moreover,
the out-of-sample results regarding the real-time risk of reserve
unavailability 7, and revenues from energy RE and reserve R?
are shown in Table III. The last column details the normalized
total profit deviation, and risk of reserve unavailability deviation,
which are calculated, respectively, by (21) and (22):

(R +RR) — (R 4+ R

AR% = (RF + RR)

x 100%

1)

A% =7 —r (22)

where ris the expected risk of reserve unavailability and dropped
from Table III for the sake of brevity. However, in the case of
the experiment with the proposed framework on p° = 40%, the
expected risk r is 39.53% and 31.45% regarding C, and Cy,
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respectively. It means that the WPP takes a risk lower than the
reserve market participation requirement, p°, in order to avoid
the negative penalties associated with reserve unavailability. For
the other experiments, the values of r and p° are identical.

As seen in Table III, the in-sample results of the classic
bidding model are invariable regarding the wind deviation levels,
i.e., C, and Cy. Its reason is that the classic model merely re-
ceives hourly wind uncertainty as input. However, the decisions
are different concerning p°. On the other hand, the proposed
bidding framework returns different and relevant decisions based
on both the wind deviation level and reserve market participation
requirement p°. For both models, as p° increases, a higher bid
is submitted to the reserve market floor, whereas a lower bid is
devoted to the energy market floor. That arises from the fact that
the incentives for reserve procurement are more encouraging for
the WPP in the presented market setting (see Table I).

Interestingly, it can be observed that Ar% for the proposed
framework is very small, i.e., its out-of-sample risk result is
close to the expected risk level. On the other hand, the classic
method fails to stay reasonably close to the expected risk level. In
particular, the maximum risk deviation for the proposed method
is -0.4%, whereas for the classic method is 35.15%. The same
pattern applies to real-time profit deviation AR% as shown in
Table III. Thus, the proposed method not only obtains higher
total profit than the classic method, but also has significantly
higher robustness, against wind power variations, compared with
the classic method.

Nevertheless, in some cases, the total profits obtained with
both methods are close (see Table III). However, this profit
is not feasible for WPP using the classic method. The reason
is that the corresponding scheduled bids obtained with classic
method lead ex-post to a violation of the market participation re-
quirement. For example, using the proposed bidding framework,
with an ex-post profit of 80.95 €, the WPP does not bid any
power quantity to the reserve market while the ultra-short-term
wind fluctuations are too high, C4, and p° is zero. In contrast,
with a slightly higher profit of 81.66 €, the classic model,
by neglecting the ultra-short-term wind fluctuations, submits a
rather high-power bid, Pfo — 1.42 MW, to the reserve market
floor. Accordingly, while Ar for the proposed method is zero,
the classic model is unable to maintain the real-time reserve
reliability leading to Ar = 35.15%. This violation may result
in exclusion or suspension of participation in the reserve market.

Furthermore, the sensitivities of Ar and AR to changes in
wind deviations are much higher in the classic method than
in the proposed method. It can be seen that for p°= {0, 20,
40} %, in the classic method, Ar is higher for C4, by {24.93,
12.05, 6.27} %, than for C,. For instance, in the classic method,
24.93% is obtained by subtracting Ar of C4 from Ar of C,,
where p°= 0, i.e., 24.93 = 35.15-10.22. The other results in this
paragraph are also obtained in a similar way. On the other hand,
the corresponding deviations in Ar for the proposed method
are only -{0.00, 0.07, 0.41}%. Moreover, AR increases by
{4.7,3.07, 2.72} %, regarding p°= {0, 20, 40} %, for the classic
method due to the changes of wind deviation level from C, to
Cy4. On the other hand, the corresponding deviations of AR in
the proposed method are only -{0.3, 0.34, 0.35}%. The reason

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 38, NO. 1, JANUARY 2023

for the lower sensitivity of the proposed method compared to
the classical method is that the proposed method implicitly
considers wind deviation levels as input to the bidding model
via the scenarios generated by ACWGAN.

Similarly, the WPP’s bidding behavior with the non-binding
reserve unavailability risk constraint in both models can be
interpreted from Table III. When p° is sufficiently high (40% in
this study), (11) becomes non-binding. Thus, both models bid in
such a way that the trade-off between the day-ahead revenue and
the real-time penalty is profitable regardless of the confidence
level of reserve availability. The values regarding the wind power
bidding, with reserve unavailability risk constraint non-binding,
are underlined in Table III. It is seen that when the wind deviation
level is low, C,, the classic model obtains the expected total profit
of 78.33 €, corresponding to R¥ + R%, and 78.52 € for the
out-of-sample analysis. Also, the proposed framework yields a
slightly higher profit of 78.66 € and 78.57 € concerning the in-
and out-of-sample analysis, respectively. In addition, for high
wind fluctuation level, Cy4, the advantage of using the proposed
method is more significant. The classic method obtains 78.33
€ and 80.65 € regarding the in- and out-of-sample analysis,
whereas the proposed framework attains a higher profit of 82.76
€ and 82.38 € for the in- and out-of-sample analysis, i.e., 2.1%
higher in the ex-post analysis.

Remarkably, by removing the probabilistic constraint (11),
the proposed framework loses the reserve provision confidence,
which has the probability of 1-39.54% = 60.46% and 1-31.05%
= 68.95% regarding C, and Cy classes, respectively. The clas-
sic model has lower reserve provision confidence levels of
1-43.91% = 56.09% and 1-50.18% = 49.82% regarding C,
and C,, respectively, which are similarly lost when (11) is
removed. In this case, in both models, the TSO is not aware of
the probability of the real-time reserve unavailability. However,
by requiring the WPPs to fulfill a confidence level regarding the
offered capacity, the proposed framework is able to respect the
reserve market participation requirement, as seen from 7 results
in Table III. On the other hand, the classic model does not have
this capability as seen from its 7 results in Table III.

Thus, adopting a metric regarding reserve unavailability in
the proposed WPP multi-resolution probabilistic bidding frame-
work enables the TSO to have reliable insight on the real-time
wind power share in reserve provision.

Meanwhile, the proposed multi-resolution bidding framework
solves, for an hourly period and a single risk threshold, between
0.07 to 3.94 seconds on a DELL hardware set with Intel Core i7
CPU 2.6 GHz and 16 GB of RAM. This is a low computation
time on a simple hardware set.

D. Advantage of Exploiting ACWGAN Compared to Other
Scenario Representation Models in WPP Bidding Framework

In this section, the superiority of employing ACWGAN in the
proposed bidding framework, in comparison with other scenario
representation methods, is illustrated. Reserve unavailability
risk deviation Ar% and normalized profit deviation AR% are
used as evaluation metrics and are illustrated in Fig. 4(a) and
(b), respectively. The horizontal categorical axis shows 5 class
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Fig. 4. Comparison of the proposed ACWGAN scenario generation method
with direct sampling, CGAN, and CWGAN using the proposed WPP multi-
resolution probabilistic bidding approach based on (a) reserve unavailability
risk deviation metric and (b) normalized profit deviation metric.

labels regarding the wind mean deviation levels, C, to Cy4, and
four scenario representation schemes.

The benchmark scenario representation methods presented
for comparison with the proposed ACWGAN approach include
direct random sampling from the training set, CGAN, and CW-
GAN. The vertical axis in Fig. 4(a) and (b) corresponds to Ar%
and AR%, respectively. Each bar segment within a stacked bar
represents the value of the evaluation metric (Ar% or AR%),
regarding p°. It should be noted that a smaller magnitude of
each stacked bar, regardless of its direction, corresponds to a
better-performing approach. In this study, a fine resolution, i.e.,
5%, concerning the reserve market participation requirement p°®
from 0 to 40% is considered.

As seen in Fig. 4(a), direct sampling from the training set
obtains a lower deviation regarding reserve unavailability risk
for all wind fluctuation levels, C, to C4, compared to CGAN.
This observation can be explained considering that CGAN has a
poor performance regarding the statistical and similarity metrics
as well as classification accuracy.

Performance of the CWGAN regarding Ar% is better than
CGAN for all wind deviation levels while is nonetheless worse
than the direct sampling method concerning C,, C;, C2, and
Cs. However, it can be seen that the CWGAN yields a lower
deviation compared to the direct sampling approach for C4 and
almost a similar deviation concerning Cs. That is because these
are less-probable classes in the training set. Thus, since enough
samples are not available, direct sampling cannot provide a good
approximation to represent the wind deviation uncertainty for

these classes. Besides, CGAN does not perform well for the
less-probable classes as it is known to suffer from mode collapse.
Remarkably, ACWGAN scenario generation method is shown
to outperform other GAN-based and direct sampling methods
in terms of the deviations of the risk of reserve unavailability in
all classes.

Regarding the normalized profit deviation, as shown in
Fig. 4(b), direct sampling performs better than CGAN for wind
deviation levels C, to C3. On the other hand, CWGAN performs
better than CGAN for C,, Cs, C3, C4 and is very close to CGAN
in the case of C;. Specifically, regarding less-probable classes,
CWGAN performs significantly better than direct sampling and
CGAN. Finally, ACWGAN outperforms direct sampling and
the other GAN-based scenario generation schemes since the
magnitude of its stacked bar corresponding to each class label
is lower than the other alternatives.

V. CONCLUSION

Participation of wind power producers (WPPs) in the day-
ahead energy and reserve market requires designing dedicated
decision tools that consider the stochastic process of the wind at
both low and high temporal resolutions. Accordingly, an efficient
scenario generation tool based on auxiliary classifier Wasser-
stein GAN is firstly proposed to produce the wind mean devi-
ation scenarios regarding the ultra-short-term wind uncertainty.
The superiority of the proposed scenario generation technique
over the conditional GAN and its Wasserstein-based counterpart
using statistical and similarity metrics is illustrated. Then, a
multi-resolution probabilistic WPP bidding framework, com-
prising a novel probabilistic constraint, regarding the reliability
of the reserve bids, and the proposed ultra-short-term scenario
generation approach, is devised. It is shown that compared to
the outcomes of the single-resolution model, the profit loss and
reserve reliability are significantly improved by the proposed
data-driven WPP decision-making framework. Finally, the sig-
nificance of the devised modules in the proposed framework
is shown by comparing deviations from the expected revenue
and reserve unavailability risk with the results obtained by
other scenario representation alternatives. Future research could
consider the impact of ultra-short-term wind variations in market
prices for possible cases where wind power producers participate
in the market as price-maker.

REFERENCES
[1

—

L. Exizidis, J. Kazempour, A. Papakonstantinou, P. Pinson, Z. De Greve,

and F. Vallée, “Incentive-compatibility in a two-stage stochastic electricity

market with high wind power penetration,” IEEE Trans. Power Syst.,

vol. 34, no. 4, pp. 28462858, Jul. 2019.

[2] M. Shamsi and P. Cuffe, “A prediction market trading strategy to hedge
financial risks of wind power producers in electricity markets,” /[EEE
Trans. Power Syst., vol. 36, no. 5, pp. 1-12, Sep. 2021.

[3] J. Bottieau, L. Hubert, Z. De Greve, F. Vallee, and J.-F. Toubeau, “Very-
short-term probabilistic forecasting for a risk-aware participation in the
single price imbalance settlement,” I[EEE Trans. Power Syst., vol. 35, no. 2,
pp. 1218-1230, Mar. 2020.

[4] J.Matevosyan and L. Soder, “Minimization of imbalance cost trading wind

power on the short-term power market,” IEEE Trans. Power Syst., vol. 21,

no. 3, pp. 1396-1404, Aug. 2006.

Authorized licensed use limited to: Olivier Deblecker. Downloaded on August 28,2023 at 13:10:56 UTC from IEEE Xplore. Restrictions apply.



98

[3]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Giannitrapani, S. Paoletti, A. Vicino, and D. Zarrilli, “Bidding wind
energy exploiting wind speed forecasts,” IEEE Trans. Power Syst., vol. 31,
no. 4, pp. 2647-2656, Jul. 2016.

J. Bottieau, F. Vallée, Z. De Greve, and J.-F. Toubeau, “Leveraging provi-
sion of frequency regulation services from wind generation by improving
day-ahead predictions using LSTM neural networks,” in Proc. IEEE Int.
Energy Conf., Limassol, Cyprus, 2018, pp. 1-6.

H. Li, Y. Qiao, Z. Lu, B. Zhang, and F. Teng, “Frequency constrained
stochastic planning towards a high renewable target considering frequency
response support from wind power,” IEEE Trans. Power Syst., vol. 36,
no. 5, pp. 1-13, Sep. 2021.

J. Liang, S. Grijalva, and R. Harley, “Increased wind revenue and system
security by trading wind power in energy and regulation reserve markets,”
IEEE Trans. Sustain. Energy, vol. 2, no. 3, pp. 340-347, Jul. 2011.

T. Soares, P. Pinson, T. Jensen, and H. Morais, “Optimal offering strategies
for wind power in energy and primary reserve markets,” /EEE Trans.
Sustain. Energy, vol. 7, no. 3, pp. 1036-1045, Jul. 2016.

T. Soares, T. Jensen, N. Mazzi, P. Pinson, and H. Morais, “Optimal offering
and allocation policies for wind power in energy and reserve markets,”
Wind Energy, vol. 20, no. 11, pp. 1851-1870, 2017.

S. A. Hosseini, J.-F. Toubeau, Z. De Greve, and F. Vallée, “An advanced
day-ahead bidding strategy for wind power producers considering confi-
dence level on the real-time reserve provision,” Appl. Energy, vol. 280,
2020, Art. no. 115973.

S. A. Hosseini et al., “Impact of fast wind fluctuations on the profit of
a wind power producer jointly trading in energy and reserve markets,”
in Proc. 9th IET Int. Conf. Renewable Power Gen., RPG 2021, Dublin,
Ireland, 2021.

Y. Chen, Y. Wang, D. Kirschen, and B. Zhang, “Model-free renewable
scenario generation using generative adversarial networks,” IEEE Trans.
Power Syst., vol. 33, no. 3, pp. 3265-3275, May 2018.

X. Yang, H. He, J. Li, and Y. Zhang, “Toward optimal risk-averse con-
figuration for HESS with CGANs-based PV scenario generation,” IEEE
Trans. Syst. Man Cybern. Syst., vol. 51, no. 3, pp. 1-15, Mar. 2021.

A. De Leon and K. Chough, Analysis of Mixed Data: Methods & Appli-
cations, 1st ed. Chapman and Hall/CRC, 2013.

Z. Liang, X. Su, and K. Feng, “Drought propagation and construction of
a comprehensive drought index based on the Soil and Water Assessment
Tool (SWAT) and empirical Kendall distribution function (K C': A case
study for the Jinta River basin in northwestern China,” Nat. Hazards Earth
Syst. Sci., vol. 21, no. 4, pp. 13231335, 2021.

C.Jiang, Y. Mao, Y. Chai, M. Yu, and S. Tao, “Scenario generation for wind
power using improved generative adversarial networks,” IEEE Access,
vol. 6, pp. 62193-62203, 2018.

Y. Wang, G. Hug, Z. Liu, and N. Zhang, “Modeling load forecast un-
certainty using generative adversarial networks,” Electr. Power Syst. Res.,
vol. 189, 2020, Art. no. 106732.

C. Zhao, C. Chen, Z. He, and Z. Wu, “Application of auxiliary classifier
wasserstein generative adversarial networks in wireless signal classifica-
tion of illegal unmanned aerial vehicles,” Appl. Sci., vol. 8, no. 12, 2018,
Art. no. 26-64.

C. Zhao, C. Chen, Z. Cai, M. Shi, X. Du, and M. Guizani, “Classification
of small UAVs based on auxiliary classifier wasserstein GANs,” in Proc.
IEEE GLOBECOM, Abu Dhabi, UAE, 2018, pp. 206-212.

M. Lydia, A. I. Selvakumar, S. S. Kumar, and G. E. P. Kumar, “Advanced
algorithms for wind turbine power curve modeling,” IEEE Trans. Sustain.
Energy, vol. 4, no. 3, pp. 827-835, Jul. 2013.

V. Thapar, G. Agnihotri, and V. Sethi, “Critical analysis of methods for
mathematical modelling of wind turbines,” Renew. Energy, vol. 36,no. 11,
pp- 3166-3177, 2011.

S. Shokrzadeh, M. Jafari Jozani, and E. Bibeau, “Wind turbine power curve
modeling using advanced parametric and nonparametric methods,” IEEE
Trans. Sustain. Energy, vol. 5, no. 4, pp. 1262-1269, Oct. 2014.

Nordic Balancing Model, “Current requirements for production
plans and imbalances, monitoring and the use of production plans
in balancing,” Nordic Balancing Model, 2020. Accessed: Mar.
8, 2022. [Online]. Available: https://nordicbalancingmodel.net/wp-
content/uploads/2020/03/Current-requirements-for- production-plans-
and-imbalances_FINAL.pdf

K. Van den Bergh and E. Delarue, “Energy and reserve markets: Interde-
pendency in electricity systems with a high share of renewables,” Electr.
Power Syst. Res., vol. 189, 2020, Art. no. 106537.

J. -F. Toubeau, J. Bottieau, Z. De Greve, F. Vallée, and K. Bruninx,
“Data-driven scheduling of energy storage in day-ahead energy and reserve
markets with probabilistic guarantees on real-time delivery,” IEEE Trans.
Power Syst., vol. 36, no. 4, pp. 2815-2828, Jul. 2021.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 38, NO. 1, JANUARY 2023

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Elia, “Public consultation on Terms and Conditions for balancing service
providers for automatic Frequency Restoration Reserve (aFRR),”
Elia, 2020. Accessed: Mar. 08, 2020. [Online]. Available: https:
//www.elia.be/-/media/project/elia/elia-site/public-consultations/2020/
20200303_consultationreport_tc_bsp-aftr---final---non-confidential _en.
pdf

I. Durbach and T. Stewart, “Using expected values to simplify deci-
sion making under uncertainty,” Omega, vol. 37, no. 2, pp. 312-330,
2009.

C. Potter and M. Negnevitsky, “Very short-term wind forecasting for
Tasmanian power generation,” /IEEE Trans. Power Syst., vol. 21, no. 2,
pp. 965-972, May 2006.

M. Hossain, R. Chakrabortty, S. Elsawah, and M. Ryan, “Very short-term
forecasting of wind power generation using hybrid deep learning model,”
J. Clean. Prod., vol. 296, 2021, Art. no. 126564.

J. Wang, M. Shahidehpour, and Z. Li, “Security-constrained unit com-
mitment with volatile wind power generation,” IEEE Trans. Power Syst.,
vol. 23, no. 3, pp. 1319-1327, Aug. 2008.

P. Pinson, H. Madsen, H. Nielsen, G. Papaefthymiou, and B. Kl6ckl, “From
probabilistic forecasts to statistical scenarios of short-term wind power
production,” Wind Energy, vol. 12, no. 1, pp. 51-62, 2009.

S. Albatran, S. Harasis, M. Ialomoush, Y. Alsmadi, and M. Awawdeh,
“Realistic optimal power flow of a wind-connected power system with
enhanced wind speed model,” IEEE Access, vol. 8, pp. 176973-176985,
2020.

S. Rahmani and N. Amjady, “A new optimal power flow approach for
wind energy integrated power systems,” Energy, vol. 134, pp. 349-359,
2017.

M. Padala, D. Das, and S. Gujar, “Effect of input noise dimension in
GANS,” Lecture Notes Comput. Sci. (LNCS), vol. 13110, pp. 558-569,
2021, doi: 10.1007/978-3-030-92238-2_46.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. 34th Int. Conf. Mach. Learn. (PMLR), Sydney,
Australia, vol. 70, 2017.

B. Adlam, C. Weill, and A. Kapoor, “Investigating under and over-
fitting in wasserstein generative adversarial networks,” in ICML Un-
derstanding Improving Generalization Deep Learn. Workshop, 2019,
arXiv:1910.14137v1.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of Wasserstein GANSs,” in Adv. Neural Inf. Process.
Syst. (NIPS), California, USA, 2017, arXiv:1803.01541.

Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Trans.
Knowl. Data Eng., to be published, doi: 10.1109/TKDE.2021.3070203.
“D3.2 definition of new/changing requirements for market designs,”
interrface.eu, 2020. Accessed: Sep. 1, 2021. [Online]. Available: http:
//www.interrface.eu/sites/default/files/publications/INTERRFACE_D3.
2_v1.0.pdf

“Frequency containment reserves (FCR),” entsoe.eu, 2021. Accessed: Sep.
1, 2021. [Online]. Available: https://www.entsoe.eu/network_codes/eb/
fer/

“Datasets,” Energinet, 2021. Accessed: Aug. 16, 2021. [Online]. Avail-
able: https://www.energidataservice.dk/search

“ENTSO-E Transparency Platform,” Transparency.entsoe.eu, 2021. [On-
line]. Available: Accessed: Aug. 16, 2021. [Online]. Available: https:
//transparency.entsoe.eu/

P. Domagalski and L. R. Satran, “Frgya wind data (1Hz),” 2019,
doi: 10.5281/ZENODO.3403362.

M. Fekri, A. Ghosh, and K. Grolinger, “Generating energy data for ma-
chine learning with recurrent generative adversarial networks,” Energies,
vol. 13, no. 1, 2019, Art. no. 130.

F. Ye, F. Zhu, Y. Fu, and B. Shen, “ECG generation with sequence
generative adversarial nets optimized by policy gradient,” IEEE Access,
vol. 7, pp. 159369-159378, 2019.

Seyyed Ahmad Hosseini (Student Member, IEEE)
received the B.S. degree in electrical engineering
from Rajaee University, Tehran, Iran, in 2011, and the
M.S. degree in electrical engineering from Semnan
University, Semnan, Iran, in 2014. He is currently
working toward the Ph.D. degree with the Power
Systems and Markets Research Group, University of
Mons, Mons, Belgium. He was a Visiting Lecturer
with Iran Technical and Vocational University. His re-
search interests include machine learning, integration
of wind power in electricity markets, decision-making

under uncertainty, and power system stability.

Authorized licensed use limited to: Olivier Deblecker. Downloaded on August 28,2023 at 13:10:56 UTC from IEEE Xplore. Restrictions apply.


https://nordicbalancingmodel.net/wp-content/uploads/2020/03/Current-requirements-for-production-plans-and-imbalances_FINAL.pdf
https://nordicbalancingmodel.net/wp-content/uploads/2020/03/Current-requirements-for-production-plans-and-imbalances_FINAL.pdf
https://nordicbalancingmodel.net/wp-content/uploads/2020/03/Current-requirements-for-production-plans-and-imbalances_FINAL.pdf
https://www.elia.be/-/media/project/elia/elia-site/public-consultations/2020/penalty -@M 20200303_consultationreport_tc_bsp-afrr---final---non-confidential_en.pdf
https://www.elia.be/-/media/project/elia/elia-site/public-consultations/2020/penalty -@M 20200303_consultationreport_tc_bsp-afrr---final---non-confidential_en.pdf
https://www.elia.be/-/media/project/elia/elia-site/public-consultations/2020/penalty -@M 20200303_consultationreport_tc_bsp-afrr---final---non-confidential_en.pdf
https://www.elia.be/-/media/project/elia/elia-site/public-consultations/2020/penalty -@M 20200303_consultationreport_tc_bsp-afrr---final---non-confidential_en.pdf
https://dx.doi.org/10.1007/978-3-030-92238-2_46
https://dx.doi.org/10.1109/TKDE.2021.3070203
http://www.interrface.eu/sites/default/files/publications/INTERRFACE_D3.2_v1.0.pdf
http://www.interrface.eu/sites/default/files/publications/INTERRFACE_D3.2_v1.0.pdf
http://www.interrface.eu/sites/default/files/publications/INTERRFACE_D3.2_v1.0.pdf
https://www.entsoe.eu/network_codes/eb/fcr/
https://www.entsoe.eu/network_codes/eb/fcr/
https://www.energidataservice.dk/search
https://transparency.entsoe.eu/
https://transparency.entsoe.eu/
https://dx.doi.org/10.5281/ZENODO.3403362

HOSSEINI et al.: DATA-DRIVEN MULTI-RESOLUTION PROBABILISTIC ENERGY AND RESERVE BIDDING

Jean-Francois Toubeau (Member, IEEE) received
the master’s and Ph.D. degrees in electrical engineer-
ing from the University of Mons, Mons, Belgium,
in 2013 and 2018, respectively. He is currently a
Postdoctoral Researcher with the Belgian Fund for
Research (F.R.S/FNRS), Power Systems and Mar-
kets Research Group, University of Mons. Since July
2021, he has been a Visiting Researcher with Imperial
College London, London, U.K. His research interests
include machine learning and decision-making in
modern power systems.

Zacharie De Gréve (Member, IEEE) received the
Electrical and Electronics Engineering degree from
the Faculty of Engineering, University of Mons,
Mons, Belgium, in 2007, and the Ph.D. degree in
electrical engineering from the University of Mons,
in 2012. He was a Research Fellow of the Belgian
Fund for Research (F.R.S/FNRS) till 2012. He is
currently an Associate Professor with the Electrical
Power Engineering Unit, University of Mons. His
main research interests include the application of
machine learning and operations research to electric

power systems, and energy systems more generally. He also develops expertise
in computational electromagnetics.

A

Yi Wang (Member, IEEE) received the B.Sc. degree
from the Huazhong University of Science and Tech-
nology, Wuhan, China, in June 2014, and the Ph.D.
degree from Tsinghua University, Beijing, China,
in January 2019. From March 2017 to April 2018,
he was a Visiting Student with the University of
Washington, Seattle, WA, USA. From February 2019
to August 2021, he was a Postdoctoral Researcher
with Power Systems Laboratory, ETH Zurich, Ziirich,
Switzerland. He is currently an Assistant Professor
with the Department of Electrical and Electronic En-

gineering, The University of Hong Kong, Hong Kong. His research interests
include data analytics in smart grids, energy forecasting, multienergy systems,
Internet of Things, and cyber-physical-social energy systems.

Q“

99

Nima Amjady (Senior Member, IEEE) received the
B.Sc.,M.Sc.,and Ph.D. degrees in electrical engineer-
ing from the Sharif University of Technology, Tehran,
Iran, in 1992, 1994, and 1997, respectively. He is
currently a Full Professor with the Department of
Electrical Engineering, Semnan University, Semnan,
Iran. He is also the Consultant of Semnan Univer-
sity President. In 2007, he was selected as an Iran’s
youngest Professor. He collaborates as a Consultant
with electric power companies in Iran. His research
interests include forecast processes and operation and

planning of power systems.

in 2010.

Francois Vallée (Member, IEEE) received the degree
in civil electrical engineering and the Ph.D. degree in
electrical engineering from the Faculty of Engineer-
ing, University of Mons, Mons, Belgium, in 2003
and 2009, respectively. He is currently a Professor
and the Leader with the Power Systems and Markets
Research Group, University of Mons. His research
interests include PV and wind generation modeling
for electrical system reliability studies in presence
of dispersed generation. His Ph.D. work has been
awarded by the SRBE/KBVE Robert Sinave Award

Authorized licensed use limited to: Olivier Deblecker. Downloaded on August 28,2023 at 13:10:56 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


