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Abstract—Considering the increasing proportion of offshore
wind generation in the energy mix, it becomes essential to
properly account for aerodynamic effects that impact the power
extracted from the wind. Indeed, due to computational con-
straints, offshore wind energy is currently modelled in a very
simple and approximate way in adequacy studies, neglecting
important factors such as wake effects. Hence, in this paper,
data-driven proxy models are developed for learning the complex
relation between free flow wind information and the resulting ag-
gregated output power of wind farms. Those supervised Machine
Learning-based models are used as fast and reliable surrogates of
wake models, embedding their ability to describe the wind and
turbines behavior, but with much lower computational times.
These models are then included in an adequacy study built
upon sequential Monte-Carlo simulations. The collected results
are compared with those obtained with the current simplified
modelling approach for offshore generation. We observe the
importance of accurately representing intra-farm aerodynamic
effects since reliability indices can be significantly underesti-
mated when using the simplified modelling, thus hiding potential
stressed conditions within the power system.

Index Terms—Adequacy, Machine Learning, Offshore Wind,
VARMA, Wake effects

I. INTRODUCTION

OFFSHORE wind energy is an essential component for
a large-scale energy transition: it greatly contributes to

our carbon neutral future by generating clean electricity at a
price competitive with conventional generation technologies
[2]. However, offshore wind is intrinsically intermittent and
uncertain. Growing concerns are thus expressed regarding
the reliability of future power systems. One part of the
power system reliability assessment lies in its adequacy
computation, i.e., the evaluation of the long-term ability to
cover the load in steady-state conditions. In other words, the
power systems adequacy is a way to analyse whether sufficient
generation capacity is available to satisfy current and future
consumer demand and/or system operational constraints
[3]. Such adequacy studies are traditionally carried out by
transmission system operators and policy-makers in order to
evaluate the risk of generation shortage, thus evaluating the
need for investment in additional production technologies.
Currently, the most reliable adequacy calculations are
performed using a probabilistic iterative method relying on
(sequential) Monte-Carlo simulations [4]. This method is
easy to implement and thus well suited for large-scale system
adequacy evaluation, even though their iterative nature is
computationally demanding, which may prevent the use
of advanced models to represent the different generation

technologies. In particular, the current way of modelling
offshore wind generation consists in generating free-flow
wind speeds and converting them into power through the use
of a single wind turbine power curve. This power output
is then multiplied by the number of turbines to assess the
global power generated by the wind farm [5]. Such strategies
are undermined by the fact that they neglect important
factors, such as wind shear, turbulence and wake effects.
Those effects, which depend on parameters such as the
wind farm (WF) layout or the distance between turbines,
clearly influence the aggregated power output, and they must
not be disregarded. However, in the current literature, this
aspect is either neglected or modeled in a highly simplified
fashion through an efficiency coefficient (typically assumed
to be equal to around 90% of the nominal WF power [6] or
computed using the approximated Jensen velocity deficit wake
model [7], [8]). Wake effects, which occur in both onshore
and offshore farms, are amplified by the lower ambient
turbulence in offshore sea since the wind speed in the wake
of a turbine tends to recover more slowly to its initial value
[9]. Therefore, wake losses are a major issue for offshore
wind farms, which motivates this work of incorporating them
into power system adequacy studies. This paper therefore
focuses on the consideration of intra-farm aerodynamic effects
in offshore wind generation models, which are embedded
in sequential Monte-Carlo-based adequacy computations.
The challenge is to have accurate wind farm models while
avoiding high computational costs. This is achieved by
using the recent developments in Machine Learning (ML),
which can be used to capture the complex characteristics of
wind generation in a fast and reliable way [10]. Modelling
offshore wind generation using Machine Learning has already
been accomplished in the literature for other applications
such as layout optimization, online monitoring or annual
energy assessment. In [11]–[13], data (power measurements
of individual wind turbines and/or wind information from
meteorological masts) are collected at onshore wind farms
to develop a Machine Learning based prediction of power
produced by each turbine. [11], [12] use neural networks to
estimate wind turbine power generation, while [13] makes use
of adaptive neuro-fuzzy interference system, cluster center
fuzzy logic, k-nearest neighbor and neural networks. While
these models exhibit relatively good performance, they rely
on measurements, which are rarely available for offshore wind
farms. In [14], simulation data of a single wind turbine are
used to train regression trees that predict the turbine response
for any combination of wind speed, turbulence intensity, and
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wind shear that might be expected at a turbine site. However,
as one model for each turbine is needed, this method is hardly
applicable for large wind farms with numerous turbines. [15]
trains two neural networks (wake and turbulence field) with
a database built on standalone wind turbine simulations.
The developed model is capable of establishing the complex
spatial relationship between inflow conditions and the wake
fields. However, the power computations for an entire wind
farm need the propagation of the wake field, which requires
the neural network to be run several times, thus increasing
the computation time for large wind farms. In the proposed
contribution, to the best of the authors’ knowledge, it is the
first time that ML-based models are developed with the goal
of accurately capturing complex aerodynamic effects while
remaining applicable (e.g. computation time) in the context
of adequacy computations. Practically, this paper has three
main contributions.

Firstly, data-driven proxy models are developed based on
supervised ML techniques to improve the representation of off-
shore wind farms within adequacy tools. However, instead of
using measurements, which are inherently limited for newly-
installed wind parks and otherwise very difficult to obtain,
data are collected using an engineering modelling tool that
performs wind farm simulations. The resulting ML models use
free-flow wind speed and direction as inputs to generate the
output power of the WF. The obtained power is then integrated
in Monte-Carlo simulations for adequacy assessment. In this
paper, we consider 3 actual Belgian wind farms (with different
layouts), each one having its own database and ML model.

Secondly, a new methodology for generating representative
yearly time series of correlated wind speeds and wind direc-
tions is presented. The procedure is based on vector auto-
regressive moving average (VARMA) models, which are able
to capture time and space dependencies among dependent
uncertain variables. These scenarios are then fed into the ML
models to identify the corresponding output power of offshore
wind farms.

Thirdly, the scenarios are embedded into an adequacy
study, which is performed on a modified IEEE Reliability
Test System in order to evaluate the impact of an improved
offshore wind generation modelling on adequacy results.
Outcomes reveal that gradient boosting trees are efficient in
representing the behavior of wind farms, and that the offshore
annual energy production is overestimated when neglecting
aerodynamic intra-farm effects. As a consequence, it appears
that the reliability indices are significantly underestimated by
the commonly used approach for offshore generation, which
ultimately mislead system operators into believing that the
grid adequacy is higher (and thus more favourable) than its
true value.

The remainder of this paper is organized as follows. Sec-
tion II shows how databases are created from wind farm
simulations. In section III, several Machine Learning models
are presented and compared based on three complementary
criteria, i.e., modelling complexity, accuracy and (operational)
computational time. Section IV shows how to combine those

Offshore 

wind farm 

power

Atmospheric 

data

Database

Wind farm 

simulations

Machine 

Learning proxy

Wind 

scenarios

Trained Machine Learning proxy 

(surrogate of Floris simulations)

Adequacy 

assessment

VARMA

After

training

Fig. 1. Methodology scheme to integrate fast and reliable machine learning
models of offshore wind generation into adequacy studies.

wind farm models within adequacy studies. A case study
is then presented in section V. Finally, main findings and
perspectives are summarized in the last section.

II. CREATION OF DATABASE FROM WIND FARM
SIMULATIONS

Wind farm simulations (e.g., based on advanced computa-
tional fluid dynamics models) cannot be directly integrated
in Monte-Carlo simulations wherein millions of simulated
power system states are needed to converge towards reliable
outcomes. However, a database can be generated from wind
farm simulations, which can thereafter be used to train fast
Machine Learning models (to be embedded in the Monte-Carlo
framework). The methodology is summarized in Fig. 1

A. Floris: a wake modelling engineering tool

For the training stage of those ML models, a database
for each wind farm of the power system is created through
multiple simulations run with Floris (FLOw Redirection and
Induction in Steady state), developed by the National Re-
newable Energy Lab [16]. This open-source code provides
a modeling tool of the steady-state wake characteristics in
a wind farm that integrates turbine interactions in wind
power plants. Floris implements several wake models: in this
study, gaussian models [17] for wake deflection and velocity
deficit are chosen. Those models use an analytical solution of
the simplified linearized Navier-Stokes equations, which are
appropriate for normal turbine operation [18]. Furthermore,
different turbulence models are proposed since wake expan-
sion is dependent on ambient turbulence intensity. Here, the
Crespo-Hernandez approach is selected for modelling added
turbulence arising from turbine operation. Overlapping wakes
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are combined using a sum-of-squares approach. In practice, the
inputs needed by Floris simulations are the wind farm layout,
the wind turbines characteristics (diameter and hub height),
and a list of wind speeds and directions. It is assumed that
the wind turbine is actively controlled in order to optimize
the extracted power without exceeding the maximum allowed
power and maximum rotor speed (i.e., maximum power point
tracking mode) and that the nacelle is always perfectly aligned
with the main wind direction. This is usually called the
”greedy” strategy, where each wind turbine is controlled so
that its own power is maximized, and it is used in practice in
most wind farms [19]. Methods for decreasing wake losses
have been proposed in the literature: the main ones being
wake steering and axial induction control [20]. However, when
used in the context of power maximization, these techniques
are associated with an increase on loads and fatigue on the
turbine blades [21]. The wind industry has recognized the
potential of an improved wind farm control but the actual
implementation is still difficult because of the inherent system
complexities of wind farms and the aerodynamic interactions
among wind turbines. However, if such wind farm controls are
to be implemented in the future, it could be taken into account
by the proposed surrogate. To that end, new simulations where
wind turbines are controlled with yaw steering or induction
control could be run, as Floris allows to do so [22].

B. Validation with measurements

In order to validate the utilization of Floris, benchmarks
are set up regarding two existing offshore wind farms, for
which SCADA (Supervisory Control And Data Acquisition)
measurements are available for a limited time period. The
output of Floris simulations are compared with the processed
SCADA data in terms of normalized power for a given wind
speed over a wide range of wind directions. A single turbine
is used for the first validation (as individual powers will
be the output of the ML model, see section III) while the
second validation is for the aggregated power (practically
implemented in adequacy studies).

The first validation wind farm is Alpha Ventus, Germany’s
first offshore wind farm located in the North Sea and built in
2009 [23]. It consists of 12 wind turbines equally spaced, for
a total capacity of 60 MW. Measurements have been collected
in the scope of the ”Research at Alpha Ventus” project
(RAVE), which provides data from a multitude of sensors
since 2009. In particular, the 100-m-high measuring meteo
mast Fino 1 is located directly alongside the wind farm,
allowing to record meteorological data such as wind data.
Times series from 2011 to 2014 of wind speeds and wind
directions from Fino 1 as well as SCADA measurements of
electrical power output for one wind turbine were used as a
reference for benchmarking. The chosen wind turbine for the
validation process is the AV6 turbine (see the Alpha Ventus
layout of Fig. 2a). The measurements were pre-processed and
filtered before being used to assess the accuracy of the Floris
simulations. The normalized power for the wind turbine is
plotted against the wind direction, for a wind speed between
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Fig. 2. Layout of the offshore wind farms used for validation (a) Alpha
Ventus, (b) Lillgrund
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Fig. 3. Comparison of normalized power for a wide sector of wind directions,
wind turbine AV6 of the Alpha Ventus wind farm

9 and 10 m/s and the wind sector [170° - 350°] (where the
mast is not waked by the wind farm). It can be seen in Fig. 3
that the Floris simulations (dashed curve) exhibit a good fit
with respect to the measurements (full curve): they are able
to predict the width and depth of the power deficits. The
mean absolute error is 4.62% and the maximum error reaches
13.17%. The slight discrepancies could be explained not only
by Floris modelling inaccuracies, but also by measurement
noise. The power curve approach does not consider wake
effects and the power output of the wind turbine is constant for
a given wind speed, independently of the wind direction. For
the power curve method, the maximum absolute error reaches
38.61% in full-wake conditions, and the mean absolute error
is 11.93%. This clearly emphasizes the limitations of such an
approach.

The second validation farm is the Lillgrund offshore wind
farm, located near the coast of Sweden. It has a total rated
capacity of 110 MW and consists of 48 pitch-controlled,
variable speed wind turbines. The layout of the wind farm
is presented in Fig. 2b. The SCADA data were extracted from
the Lillgrund power assessment report [24]. The normalized
total power of the entire wind farm is plotted against the
wind direction, for a wind speed of 8 m/s. Again, the Floris
simulations (dashed curve in Fig. 4) show a good agreement
with the measurements (full curve), whereas the power curve
approach (straight dotted line) is always overestimating the
produced power. Indeed, in the case of Lillgrund, wake effects
occur for every wind direction. The absolute error can reach
55% when using the power curve, and the minimum value is
22%. The mean absolute error rises to 35% in the case of the
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Fig. 4. Comparison of normalized power for a wide sector of wind directions,
Lillgrund wind farm

power curve approach, while it only amounts to 5.6% for the
Floris computed powers.

Therefore, it can be concluded that Floris simulations offer a
good representation of reality when assessing the hourly mean
power output of a wind turbine or an entire wind farm.

C. Data generation through wind farm simulations

Three real-life Belgian offshore wind farms (Nobelwind,
Norther and Northwind) have been chosen for the database
generation. They can be visualized in Fig. 5. For each farm,
the layout (wind turbine coordinates) is publicly available
on the Royal Belgian Institute of Natural Science website
[25] and the wind turbine characteristics are extracted from
manufacturers datasheets. As for the list of wind speeds and
directions, we use the ERA5 dataset provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF) [26].
ERA5 uses reanalysis to generate atmospheric time series
covering the period from 1959 to 2021, with an hourly
temporal resolution and a spatial resolution of 31 km.
Reanalysis combines model data with observations from
across the world into a globally complete and consistent
dataset using the laws of physics. It provides a comprehensive
description of the observed climate as it has evolved during
recent decades, on 3D grids at sub-daily intervals. For each
wind farm, 3 years of wind (2019 to 2021) as well as extreme
scenarios (very high wind speeds) at the location of the
offshore wind farms were used as atmospheric input. Hence,
a total of 26,311 simulations per wind farm were run with
Floris. Interestingly, the resulting database consists not only
in the power output of the entire wind farm for a given set of
wind speed and direction, but also integrates individual wind
turbine power outputs.

Moreover, Floris also allows to run simulations with the
option to ignore aerodynamic losses. This method is thus
equivalent to the traditional way of modelling wind farms in
adequacy studies, where a simple aggregated power curve is
used to match free-flow wind speeds to the power output. It
is then possible to assess the wake losses, by comparing the
annual energy generation with and without taking into account
wake effects. This comparison is presented in Table I, where
the mean annual energy is computed and averaged for the
years 2019-2021 of the ERA5 dataset. It can be seen that
although wake losses are similar for the wind farms Nobelwind

TABLE I
COMPARISON OF MEAN ANNUAL ENERGY PRODUCTION WITH AND

WITHOUT AERODYNAMIC LOSSES, BASED ON FLORIS SIMULATIONS

Nobelwind Norther Northwind

Annual E with wake 0.697 TWh 1.489 TWh 0.87 TWh
Annual E without wake 0.753 TWh 1.62 TWh 1.028 TWh
Wake losses 7.42 % 8.09 % 15.36 %

and Norther (around 7.5-8%), they are significantly higher
(15.4%) for Northwind. This can be explained by the different
layout and distances between wind turbines. Indeed, as can
be seen in Fig. 5, the layout of Northwind is more compact,
thus leading to higher losses as the distance between wind
turbines is not large enough to allow for wake recovery. Those
results clearly emphasize the need to integrate site-specific
aerodynamic effects in the offshore wind generation models
used in Monte-Carlo adequacy tools, if one wants to have a
reliable estimation of the real contribution of offshore wind
farms within power system adequacy.

III. MACHINE LEARNING PROXY

For each wind farm, a data-driven Machine Learning
model is developed. It is trained using the database produced
by Floris (see section II). The dataset used for the training
stage of the Machine Learning models consists of 17,551
data samples from the years 2019 and 2020, along with some
extreme scenarios. Each data sample represents an hourly
value of wind speed and its associated wind direction, with
the corresponding hourly power of all wind turbines within
the farm as output. The data are divided into a training set
(13,163 samples) used to fit the model, and a validation
set (4,388 samples) to select the best hyperparameters. To
quantify the performances of the model and assess its ability
to generalize, the model is evaluated on an unknown dataset.
This test set (8,760 samples) consists of data for the year 2021.

The output of the ML model is defined as the power of a
wind turbine. Indeed, if the total wind farm power is directly
predicted, it prevents the possibility to consider single wind
turbine power outages in Monte-Carlo simulations (see section
IV-A2). To avoid having one ML model per wind turbine,
cross-series learning is used so to have only one model per
wind farm. Cross-learning consists in building a (single) global
model from multiple series, which is then able to accurately
predict individual ones. It allows for various common patterns
observed along related series to be effectively learned [27].
Learning from related series not only allows to obtain cross-
series information, but also to multiply the number of data.
Moreover, only one model is built for multiple series, allowing
to save time and computational costs for model selection
and hyperparameters tuning. Practically, each sample consists
in the free-flow wind speed and wind direction, as well as
the power of one wind turbine within the wind farm. An
identifying feature is added to each sample, to relate the wind
turbine to the corresponding power. The additional features
are the wind turbine coordinates within the wind farm (from a
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Fig. 5. Floris simulations for a wind speed of 8 m/s and a direction of 270◦, for wind farms (a) Nobelwind, (b) Norther and (c) Northwind
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prior conversion in cartesian grid from longitude and latitude
information). The number of samples is thus multiplied by
NWT (the number of wind turbines within the considered
wind farm). The samples are correlated, as the power produced
by a wind turbine depends on the wake (and thus the power)
generated by the neighbouring turbines. The ML model should
be able to learn from these correlations in order to understand
the interactions between wind turbines.
For a given set of wind conditions, the powers are predicted
one by one, and regrouped afterward to form the total wind
farm generation: the process is summarized in Fig. 6

The inputs (features) of the Machine Learning model
are thus the wind speed, the wind direction, but also the
wind turbine coordinates. The output is the power of the
corresponding wind turbine in such wind conditions. The
wind farm total power is then obtained by regrouping the
single turbine outputs.

The relationship between the wind power output and
raw wind information is highly non-linear, which motivates
the use of the four following supervised ML algorithms:
Decision tree, Random forest, Gradient Boosting Regression
Tree (GBRT) and Neural network (more specifically, Multi-
layer Perceptron, NN-MLP). Decisions trees can be easily

interpreted if their size is reasonable, and they are able to
work with features of different scale without a cumbersome
data pre-processing. However they tend to overfit and offer
thus poor generalization performance. To overcome this
problem, multiple decision trees can be combined in order to
decrease the variability of the resulting model. Random forests
are a collection of independant decision trees, where each
tree is built on a random subset of features, using a random
sub-sample of the training data set. By averaging the results
of all trees, the overall overfitting will be highly reduced.
However, random forests performance generally increases
with the number of trees in the forest, which inherently
increases the computational time and memory requirement.
Another ensemble method combining multiple trees is the
gradient boosting regression trees algorithm. Unlike random
forests, gradient boosting aims at constructing trees in a
sequential fashion, where each new tree attempts to rectify
the mistakes made by the previous one. As the trees used in
this method are not deep, the model needs less memory than
random forests. The main drawback of the GBRT method
is its high sensitivity to the calibration of hyperparameters,
which therefore leads to a complicated fine tuning. The fourth
algorithm used in this article involves the use of multi-layer
perceptrons (MLP) or feed-forward neural networks. A neural
network is composed of several processing units (or neurons),
connected to each other by learnable weighted connections
with the goal of mathematically representing any relationship
between inputs and outputs. Data should be scaled before
being used as inputs for a neural network.

The hyperparameters of each algorithm are selected based
on a compromise between model complexity, prediction accu-
racy and computational time [28]. In this study, the model ac-
curacy is assessed using the root mean squared error (RMSE),
and the mean absolute error (MAE). RMSE is more sensitive
to outliers and penalises large errors, whereas MAE is simply
the average of all errors. Lower RMSE and MAE values are
associated with more accurate models, and should thus be
targeted.

IV. ADEQUACY STUDY

Currently, the more accurate adequacy calculations rely
on sequential Monte-Carlo simulations. In practice, Monte
Carlo simulations can be used to estimate reliability indices
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by simulating the actual process and random behavior of
the considered electrical system [29]. Sequential simulations
allow the use of detailed hourly generation and load models,
which makes them ideally suited to the analysis of intermittent
generating sources such as offshore wind generation. The prin-
ciple is to sample successive system states while maintaining
the time correlation between consecutive steps. In this work,
scenarios of wind speed and direction are generated (and then
converted into power using the trained ML models), along
with scenarios of load and possible failures of conventional
generation units. Overall, the Monte-Carlo sampling process
is sequential, i.e., it models all contingencies and operating
characteristics inherent to the power system in a chronological
time-consistent way.

A. Offshore wind generation

The offshore generation model is composed of two main
parts, i.e., the wind model and the wind turbine generator
model. These two parts are described as follows.

1) Wind model: Usually, only a wind speed model is
needed for adequacy assessment. However, when taking the
wake effects into account, the wind direction also has an
important influence on the power output of wind turbines.
Moreover, when generating wind data, it is important to
maintain the correlation between wind speeds and wind
directions at different locations. To that end, we use a Vector
Auto-Regressive Moving Average (VARMA) model, which
augments the ability of ARMA models (that accurately
represent time dependencies) with a representation of cross-
variables correlations.

In ARMA models, each value in the simulated time series
depends on its own lagged values (AR part) but also on
current and various past values of a stochastic term (MA part).
The model is usually referred to as a ARMA(p, q) model
where p and q are respectively the order of the AR and the
MA part. First, the series yt is normalized as follows (to
ensure stationarity, as the hourly wind speed distribution is
non stationary due to the daily cycle and seasonality) :

yt =
OWt − µτ

στ
(1)

where t spans over the dataset, τ = t mod 8760, OWt is the
observed wind speed at hour t, µτ is the mean of all observed
wind speed at hour τ , and στ is the standard deviation of all
observed wind speed at hour τ .

Then, the data series yt can be used to build the following
ARMA(p, q) wind speed time series model [30]:

yt = ϕ1 ∗ yt−1 + ϕ2 ∗ yt−2 + ...+ ϕp ∗ yt−p

+ αt − θ1 ∗ αt−1 − θ2 ∗ αt−2 − ...− θq ∗ αt−q (2)

where ϕi (i = 1, 2, ..., p) and θj (j = 1, 2, ..., q) are the
auto-regressive and moving average parameters of the model
respectively, αt is a normal white noise process with zero
mean and variance σ2

a, i.e., αt ∈ NID(0, σ2
a) with NID

denoting Normally Independently Distributed. The maximum

likelihood approach is adopted to estimate the values of ϕi,
θj and σ2

a. A grid search procedure based on the F-criterion
is used to determine the order of the ARMA(p, q) model.

Once the wind speed time series model is established, the
simulated wind speed can be calculated as:

SWt = µτ + στ ∗ yt (3)

VARMA(p, q) models for simulating correlated wind speeds
and wind directions are just a generalization of ARMA(p, q)
models, where the wind speed not only depends on its own
lagged values, but also on the lagged values of wind directions.
The same goes for the wind direction time series, and the wind
vector is written as:

yt = Φ1 ∗ yt−1 +Φ2 ∗ yt−2 + ...+Φp ∗ yt−p

+ αt −Θ1 ∗ αt−1 − ...−Θq ∗ αt−q (4)

where yt = [ys, yw]
t contains the data series corresponding to

wind speed and wind direction and Φi and Θj are matrices
of dimensions [2x2]. The methodology for estimating the
parameters and for choosing the (p, q) order is the same as
for ARMA models.
As the goal of the wind model is to generate possible scenarios
for future wind data, no wind speed correction is needed (as
it would the case for, e.g., forecasting).

2) Wind turbine generator output: A wind turbine is also
subject to outages. In order to consider this aspect, the
operating cycle of a wind turbine is simulated using a similar
procedure as for conventional generation (see section IV-C).
In particular, the failures are modelled using a probabilistic
model, which provides time steps during which wind turbines
are unavailable. For offshore wind turbines, the mean time to
failure is 1060 hours and the mean time to repair is 290 hours
[31]. It should be noted that several works have been done in
order to improve the reliability of wind turbines, e.g., through
condition monitoring [32] and fault diagnosis [33]. Enhancing
the reliability of offshore wind turbines (i.e., increase the mean
time to failure and/or decrease the mean time to repair) would
surely lead to an increased power output of offshore wind
farms, which in turn would involve a more adequate power
system.

B. Load

Since the simulations are sequential, an hourly load profile
describing the evolution of load throughout an entire year
is needed. This profile incorporates seasonal trends, diurnal
cycle as well as weekday/weekend patterns, and is used for
all simulated years of the Monte Carlo analysis.

C. Conventional units

Conventional generation units are represented using a two-
state model (up state or down state). The up-down-up cycle
for a yearly sequence can be generated using a random
sampling technique from the corresponding state residence
time probability distributions. Here, the time to failure (TTF )
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and time to repair (TTR) are assumed to be exponentially
distributed and can be computed as follows:

TTF = −MTTF ∗ ln U (5)

TTR = −MTTR ∗ ln U ′ (6)

where MTTF is the mean time to failure, MTTR is the
mean time to repair, U and U ′ are two uniformly distributed
random number sequences between 0 and 1.

D. Sequential Monte-Carlo

The simulation procedure for adequacy assessment is briefly
described as follows:

1) Create a model for the availability of conventional
generating units using chronological simulations.

2) Construct a model for the wind power output of each
wind farm using the time-series VARMA models and
the Machine Learning proxies.

3) Compute the total generation capacity of the system
(by summing conventional and wind power levels), and
compare it with the total load.

4) Compute the reliability indices, which are averaged over
all generated scenarios (until convergence is achieved).

This process is carried out on a yearly basis (8,736 hours),
and repeated until a specified degree of confidence has been
reached. Once the convergence is achieved, the simulation can
be terminated. The stopping criterion used in this work is:

σ(X)√
N ∗ E(X)

< ϵ (7)

where X is the reliability index, N is the number of sampling
years, E(X) is the mean value, σ(X) is the standard
deviation and ϵ is a convergence threshold (0.01 in this
paper). The reliability indices used in this work are the
Loss Of Load Expectation (LOLE) [h/year] and the Loss
Of Energy Expectation (LOEE) [MWh/year]. The LOLE is
defined as the number of hours in the year during which the
electricity consumption exceeds the production, whereas the
LOEE computes the energy not served.

V. NUMERICAL RESULTS

A. Test case description

The IEEE Reliability Test System (IEEE-RTS) is used for
the simulations. The detailed data for the IEEE-RTS are
presented in [34]. The base system is modified with the
addition of 3 offshore wind farms.

1) Load modelling: The IEEE-RTS chronological load pro-
file consists of 8,736 load points. The annual peak load is
2,850 MW for the IEEE-RTS.

2) Modelling conventional generation: The IEEE-RTS con-
sists of 32 conventional generating units, ranging from 12 MW
to 400 MW, with a total capacity of 3,405 MW. The time to
failure and time to repair of conventional units are assumed
to follow exponential distributions.

TABLE II
HYPERPARAMETERS OF THE ML MODELS

Nobelwind Norther Northwind

Tree

Depth 8 6 14

Random forest

Number of trees 30 20 30
Depth 8 6 12

Gradient boosting regression tree

Number of trees 100 100 120
Depth 6 5 6

Learning rate 0.5 0.4 0.5

MLP neural network

Hidden layers [40, 40] [30, 30] [60, 60]
Activation function tanh tanh tanh

3) Modelling offshore wind generation: The IEEE-RTS
system is modified with the addition of 3 offshore wind
farms, connected to bus 17. Their characteristics are based
on existing wind farms in Belgium: Nobelwind (165 MW),
Norther (369.6 MW) and Northwind (216 MW), for a total
amount of 750.6 MW. The wind database used to construct
the VARMA model is the same as the one described in
section II (ERA5). For this database, the F-criterion leads
to a VARMA(3, 2) model for the generation of correlated
wind speed and wind direction time series. It is important
to note that it is assumed that the 3 offshore wind farms are
totally uncorrelated, and the wind time series are therefore
independently produced. While we fully account for intra-
farm effects, we suppose that the wind farms are located far
enough from each other so that interactions between them can
be safely ignored.

B. Performance of Machine Learning models

For each wind farm, the four ML models are trained
using the database produced with Floris simulations. After a
parametric grid search and a dedicated sensitivity analysis, the
hyperparameters selected for each algorithm and each wind
farm are presented in Table II.

The performances of each ML model, for each of the three
studied wind farms, are given in Table III. The RMSE and
MAE are computed on the test set and are given in MW
but also in percentage of the wind farm total capacity. The
computation times needed by the trained models to predict
a yearly power output (8,736 samples) for each wind farm
is also presented (inference time). For comparison, the time
necessary to produce such an output using Floris simulations is
3775.83 s for Nobelwind, 3121.40 s for Norther and 6449.48 s
for Northwind. The enormous difference in computation time
between Floris and the ML models clearly proves the relevance
of using such ML models as surrogates of wind farm simu-
lations in Monte-Carlo runs, which usually need to simulate
hundreds of years to reach convergence.

Every ML algorithm shows strong performance in terms
of prediction accuracy and inference time (needed in the
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TABLE III
MACHINE LEARNING MODELS PERFORMANCE

Tree RF GBRT NN-MLP

Nobelwind

RMSE [MW] 3.74 3.55 1.17 2.93
RMSE [%] 2.49 2.37 0.78 1.95
MAE [MW] 2.23 2.12 0.73 1.91
MAE [%] 1.49 1.41 0.48 1.27

Inference time [s] 0.06 0.12 0.19 0.54

Norther

RMSE [MW] 4.71 4.22 2.02 3.14
RMSE [%] 1.28 1.14 0.55 0.85
MAE [MW] 3.20 2.91 1.49 2.22
MAE [%] 0.86 0.79 0.40 0.60

Inference time [s] 0.04 0.08 0.15 0.39

Northwind

RMSE [MW] 5.17 5.66 2.42 5.03
RMSE [%] 2.17 2.38 1.02 2.12
MAE [MW] 2.85 3.28 1.44 3.13
MAE [%] 1.20 1.38 0.60 1.32

Inference time [s] 0.08 0.21 0.26 1.05

Monte Carlo simulations). The decision tree is the fastest
algorithm but the accuracy is the lowest. Random forests
slightly improve the error metrics, but at the cost of a higher
prediction time. GBRT exhibits a promising accuracy and a
reasonable inference time. For this algorithm, the RMSE and
MAE represent less than 1% of the total wind farm installed
capacity. The MLP takes more time to give predictions and
is less accurate than GBRT. Based on those observations,
a GBRT model is selected to convert the wind speed and
direction (generated by the VARMA model) into wind power
at each time step of the Monte-Carlo simulations.

C. Impact of aerodynamic losses on adequacy indices

Sequential Monte-Carlo simulations were run using the
methodology described in section IV. The wind farms are
gradually added to the test system, to assess the influence
of an increase of offshore installed capacity. In order to
quantify the impacts of disregarding aerodynamic effects, the
offshore wind generation is computed using both the GBRT
model and the simple aggregated power curve. The results
are presented in Table IV. It can be seen that the reliability
indices change significantly, depending on how the offshore
generation is modelled. With only one wind farm in the
system (Norther, 369.6 MW), the difference in reliability
indices when incorporating aerodynamic losses is rather low
(7.75% for the LOLE and 8.28% for the LOEE). In particular,
ignoring the aerodynamic losses caused by wake effects leads
to an overestimation of annual offshore energy production
of 8.12%. For the power system including two wind farms
(Norther and Nobelwind, 534.6 MW in total), the difference
increases, meaning that the traditional power curves approach
for offshore wind modelling overestimates even more the
actual adequacy of the power system. Finally, with 3 wind
farms (750.6 MW), the reliability indices further diverge,

TABLE IV
RELIABILITY INDICES, WIITH OFFSHORE GENERATION COMPUTED WITH

ML PROXIES AND POWER CURVES

LOLE LOEE Annual E

With 1 wind farm (Norther)

ML proxies 3.99 h/year 465.20 MWh/year 1.19 TWh
Power curves 3.71 h/year 429.66 MWh/year 1.30 TWh

Absolute difference 0.29 h/year 35.54 MWh/year 0.11 TWh
Relative difference 7.75 % 8.28 % 8.12 %

With 2 wind farms (Norther and Nobelwind)

ML proxies 2.49 h/year 262.46 MWh/year 1.76 TWh
Power curves 2.18 h/year 225.90 MWh/year 1.93 TWh

Absolute difference 0.31 h/year 36.56 MWh/year 0.18 TWh
Relative difference 14.05 % 16.22 % 9.12 %

With 3 wind farms (Nobelwind, Norther and Northwind)

ML proxies 1.31 h/year 139.02 MWh/year 2.46 TWh
Power curves 0.97 h/year 101.97 MWh/year 2.81 TWh

Absolute difference 0.34 h/year 37.05 MWh/year 0.36 TWh
Relative difference 35.09 % 37.18 % 12.67 %

with a relative difference reaching 35.09% for the LOLE
and 37.18% for the LOEE. The annual offshore energy is
overestimated by 12.67% when ignoring the wake effects.
When the installed offshore generation increases, the annual
energy of wind farms (both computed with the ML model
and the power curve approach) increases as well, while the
reliability indices decrease. Indeed, as the installed generation
is enlarged while keeping the load identical, the adequacy
of the system is improved. However, while the difference in
annual energy increases as well, the difference in reliability
indices remains stable. This explains why a 12.67% difference
in offshore wind translates into a 35% difference in adequacy
indices.

The relative difference in energy with 3 wind farms added
to the power system is well aligned with the current literature,
where average power losses due to wind turbine wakes are
of the order of 10 to 20% of the total power output in large
offshore wind farms [35].

Therefore, it becomes clear that modelling the offshore
generation in a more accurate way becomes necessary. Oth-
erwise, reliability indices can be significantly underestimated,
especially when the number of offshore wind farms, i.e. the
installed capacity, increases.

D. Sensibility analysis to the peak load

The peak load, initially 2,850 MW in the IEEE-RTS, is
gradually increased to account for the addition of the 3 off-
shore wind farms. Increasing the load peak value results in the
profile load being higher throughout the year. The reliability
indices as well as the annual energy production, computed
using both the GBRT model and the simple aggregated power
curve, are compared. This comparison is made by studying
the difference in computed LOLE, LOEE and annual energy
when using the ML proxy on the one hand and the power curve
method on the other hand. The relative difference in annual
offshore energy production remains around 11% to 12%, for
annual peak loads varying from 2,850 MW to 3,575 MW.
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Fig. 7. Difference in reliability indices when annual peak load is increased

However, it can be seen in Fig. 7 that the difference for both
the LOLE and the LOEE increases along with the annual
peak load. Indeed, for low values of the annual peak load, the
reliability indices mainly depend on the conventional genera-
tion scenario because the total conventional generation is high
enough to cover the load. In that case, the offshore generation
does not have a large influence on the adequacy. However,
when the level of consumption increases, the offshore gen-
eration becomes then essential to cover the missing power
when conventional units are down. It increasingly determines
whether or not the total generation is enough to cover the
load for the considered power system state. Therefore, in case
of important contribution of offshore wind generation in the
generation system, it is essential that the losses arising from
aerodynamic phenomena are taken into full consideration.
Otherwise, reliability indices are underestimated, which may
hide important adequacy issues, thereby preventing to take the
necessary planning actions to improve the reliability of the
system.

E. Addition of energy storage system

Energy Storage Systems (ESS) are often coupled with
wind generation, as the intermittency of wind power creates
operational uncertainty for power systems [36]. Based on [37],
a battery storage device with a maximum charge and discharge
rate of 50 MW, a round trip efficiency of 85%, and a usable
energy storage capacity of up to 150 MWh (i.e., energy-to-
power ratio of 3) has been added to the test system. The
device has unbounded ramp rates and no other operational
constraints. The storage operation is optimized such that the
battery is charged as soon as there is enough production,
and discharged during scarcity events. With the Machine
Learning model (considering wake effects), the LOLE de-
creases from 1.31 h/year to 0.90 h/year and the LOEE from
139.02 MWh/year to 96.05 MWh/year. With the power curve
approach, the LOLE goes from 0.97 h/year to 0.75 h/year,
and the LOEE from 101.97 MWh/year to 80.95 MWh/year.
To reach a LOEE target (e.g., 50 MWh/year), the considered
battery is duplicated and progressively added to the test
system (see TableV). When ignoring wake effects, 150 MW
of batteries are enough to reach the arbitrary LOEE target.
However, with the Machine Learning model that considers

TABLE V
RELIABILITY INDICES WHEN ADDING BATTERY STORAGE, WITH

OFFSHORE GENERATION FROM ML PROXIES (ML) AND POWER CURVES
(PC)

Batteries
Power/Capacity

ML proxy Power curve
LOLE
[h/y]

LOEE
[MWh/y]

LOLE
[h/y]

LOEE
[MWh/y]

50 MW/150 MWh 0.90 96.05 0.75 80.95
100 MW/300 MWh 0.64 70.17 0.55 70.27
150 MW/450 MWh 0.53 80.65 0.38 58.06
200 MW/600 MWh 0.49 77.48 0.33 52.28
250 MW/750 MWh 0.37 61.88 0.31 52.75
300 MW/900 MWh 0.28 48.26 0.19 30.13

aerodynamic losses, 300 MW of batteries are necessary.
This proves that considering wake effects is not only crucial
for obtaining more realistic adequacy results, but also to
size possible energy storage systems needed to accommodate
excessive wind energy. Indeed, ignoring wake effects leads to
an overestimation of the produced offshore energy, which in
turn involves an under sizing of storage devices.

VI. CONCLUSION

In this paper, a new methodology is presented to model the
offshore wind generation in a fast and accurate way, in the
context of adequacy assessment. In particular, aerodynamic
phenomena arising from wake effects are considered in the
power output of wind farms by training a dedicated machine
learning model for each wind farm. These models are inte-
grated in sequential Monte-Carlo simulations. The proposed
methodology can be applied to any wind farm, even if it is
not yet built. Indeed, the methodology requires the knowledge
of the layout of wind farm, wind turbine characteristics as well
as correlated hourly wind speeds and wind directions, at the
location of the wind farm. These data can be easily gathered, as
datasets of wind data are widely available as well (as opposed
to wind farm output power data) and characteristics of existing
wind farms are easily found online.

The results of the test case show that improving the
offshore wind energy modelling has a large impact on the
reliability indices. Indeed, when compared to our method, the
traditional offshore modelling approach, where aerodynamic
phenomena are ignored, leads to an underestimation of LOLE
and LOEE values. The annual offshore energy production is
overestimated by more than 12% when using the traditional
approximate modelling. This proves that in the current energy
transition context, where offshore wind generation plays an
increasing role, it is important to improve the way it is
considered when assessing the adequacy of power systems.

As a perspective to this work, one may consider inter-farm
effects. Indeed, if the considered wind farms are located close
to each other, some wind turbines of one farm could affect the
closest wind turbines of a neighboring wind farm. Moreover,
the reliability of the medium voltage network that collects
power from wind turbines could also be taken into account.
Moreover, wind farm control strategies such as wake steering
or induction control should be taken into account when these
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methods will be implemented by the wind industry. Finally, the
optimal configuration of the energy storage system in the case
of power systems with a high penetration of offshore wind
generation (sizing, type of storage, ...), taking wake effects
into account, could be the object of a dedicated study.
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