
Université de Mons
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retical Physics, the École polytechnique and especially the University of Edinburgh

for their kind hospitality.

My gratitude goes first and foremost to Andrea Campoleoni, who was always

present during these four years. Under his supervision, I was able to make my first

steps in research, along with its successes and its failures, but always under his

benevolent watch. This research project was his idea and he invested invaluable

time and effort in it, sometimes at the expense of his own rest. Very early on, he

trusted me with the task of developing this project on my own, for which I feel

very honoured. As a supervisor, he taught me how to stay rigorous in the most

abstract of speculations, joyful in the most grueling of calculations, and he fueled

passion into our discussions which transpired into my own work and, I hope, also

this manuscript. I was also fortunate enough to be able to engage with him on a

more personal level, which made me discover an endearing and charming character.

I am also grateful towards the people in – or gravitating around – the Service de

Physique de l’Univers, Champs et Gravitation at the University of Mons, starting

with Nicolas Boulanger, with whom I had a stimulating collaboration, not only

scientifically but also artistically. His always cheerful mood was a nice addition

to our Young-tableaux doodling sessions on the blackboard, and the collaboration

with Andrea Campoleoni that ensued, as well as our (too rare, alas) discussions

on classical music were a good occasion to discover his playful and adventurous

personality. I thank Evgeny Skvortsov, who enlightened me as much by his sharp

sense of humour as by his knowledge of Physics. I thank Ivano Basile for the gift of

his friendship, Ismael Ahlouche Lahlali and Thomas Basile for their generosity and

sharing with me the sense of awe coming from the contemplation of the beauty of

Mathematics. Finally, I would like to thank the people who contributed to create an

overall atmosphere of hard work and scientific emulation, and with whom I shared

part or all of these four years.

i



ii

I would also like to thank the friends and collaborators I was able to make

along the way, in particular Marc Henneaux, Alfredo Pérez and Patricio Salgado-
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Chapter 1

Introduction

1.1 An invitation

Einstein’s theory of general relativity and the standard model of particle physics

constitute our best understanding of the physical laws of Nature so far. They

describe respectively the classical evolution of space and time in the presence of

matter, and the quantum interactions of matter with itself. While still not within

our experimental grasp, a description of gravity in the quantum regime would allow

for a more solid ground towards a unified description of the fundamental forces,

and thus constitutes a challenge in theoretical physics. Unfortunately, applying the

tools of quantum field theory to gravity, viewed as the classical field theory of a

massless spin-two particle, the graviton, leads to technical, as well as conceptual

problems. At two-loop level, general relativity displays divergences [1] which can

only be regularised in the ultra-violet regime by the addition of an infinite amount

of counter-terms, thereby losing predictive power. This result tells us that general

relativity should be considered, at best, as a remarkably accurate effective field

theory, whose high-energy behaviour is still unknown.

A candidate, high-energy-finite theory of quantum gravity is provided by string

theory, which identifies elementary particles with the vibrating modes of a fun-

damental string, including the graviton itself. As observed by Veneziano [2], this

change of paradigm has the astonishing feature of softening the divergences of grav-

itational scattering. This can be partly explained by the inclusion of an infinite

tower of excitations in the spectrum of the theory with increasing mass, dictated

by the famous formula

M2 =
4

α′ (N − 1) , (1.1.1)

whereM2 is the mass-squared of the state at excitation level N , and α
′
is a constant

with dimension of length squared, parameterising the inverse string tension. The

integer N also represents the maximal spin of the state in question, so that this

1
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process can be understood as the exchange of massive higher-spin states. These

states are organised in so-called Regge trajectories, which are straight lines in the

spin/mass-squared plane, whose slopes are given by 4
α′ , the string tension.

As the center-of-mass energy rises or, equivalently, as α
′ → ∞ , the masses of the

higher-spin states become smaller and smaller, which means that these higher-spin

excitations become increasingly more relevant in the effective description of string

theory. In the limit of ultra-high energy, higher-spin excitations would become

massless and one should in theory take all of them into account. The full treatment

of string theory in the ultra-high energy regime is far from being an easy task, but

some observations can nevertheless be made.

Firstly, Gross and Mende [3] proved a series of relations among the scattering

amplitudes of string theory for excitations of different spins, in the high-energy,

or low-tension, limit α
′ → ∞ , pointing at the existence of a hidden underlying

symmetry, see also [4, 5]. This led to the conjecture that string theory could be

the broken phase of a higher-spin theory [6], whose gauge symmetry is restored

in the ultra-high energy limit α
′
= ∞ (for a review, see, e.g., [7]). Although the

appearance of ‘extra’ symmetries, broken by a dimensionful constant is a perfectly

reasonable statement, which is encountered e.g. in Proca or massive Fierz-Pauli

theories where the mass term breaks gauge invariance, or in massive scalar field

theory where the mass term breaks conformal invariance, the situation of string

theory is more delicate due to the yet unclear status of the putative theory at

α
′
= ∞ . More on the status of string theory in the tensionless limit can be found

in [8, 9, 10, 11, 12].

Secondly, it was found in [13], see also [14, 15, 16, 17], that the bosonic part of

the leading Regge trajectory in the limit α
′ → ∞ of string field theory is composed

only of symmetric fields propagating representations of spins s , s − 2 , s − 4 , . . .

down to zero or one, and which are called triplets due to their particular description

using a triple of gauge fields of rank s , s−1 and s−2 . This constitutes a first step

in the understanding of string field theory in the tensionless limit. Still, a careful

treatment of all excitations, including the ones with mixed symmetry, is required to

know what such gauge theory could look like, and its link, if any, with higher-spin

theory, see, for instance, [18, 19, 7]. For the moment, the tensionless limit is only

well-understood in AdS3, see for instance [20], while other approaches to tensionless

strings include, e.g., [21, 22, 23].

The question that arises at this stage is if the key to the understanding of the

renormalisation mechanism at play in string theory could be contained in the ex-

change of higher-spin particles, or if this feature will only be achieved by describing

Nature in terms of strings. If the first is true then one should be in position

to propose a modification of general relativity based on the inclusion of massless

higher-spin particles, that is finite in the high-energy regime and amenable to being
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described at the quantum level. This approach has the added benefit of not needing

to introduce strings, and therefore avoiding all undesirable features that are neces-

sary for the consistency of string theory, to wit the existence of extended objects,

the necessity of increasing the number of space-time dimensions or the background-

dependence of the formulation. The class of theories proposing such a modification

fall under the name of ‘higher-spin gravity’, and are the subject of this thesis.

The story of higher-spin particles begins much earlier than the inception of string

theory itself, with Majorana’s proposal [24] of a Lorentz-covariant, relativistic equa-

tion of motion for particles of arbitrary integer spin, which was refined by Dirac

a few years later [25] to the case of an irreducible spectrum and in the language

of spinors. Eventually, Wigner’s correspondence between elementary particles and

the classification of the Unitary Irreducible Representations (UIR) of the Poincaré

group of isometries of Minkowski space-time [26] provided a concrete group-theoretic

framework to characterise particles of arbitrary spin. In order to find UIR of the

Poincaré group, Wigner’s classification instructs us to start by fixing the action

of the translation generators on a given state. In the case of massless represen-

tations, this is equivalent to fixing a space-time vector with zero norm, and the

‘little group’ of residual transformations preserving this vector is (after quotient-

ing out unphysical translations in two-dimensional Euclidean space, see, e.g., [27])

SO(2) , the Euclidean rotation group in two dimensions. The irreducible represen-

tations of the latter, using the isomorphism SO(2) ≃ U(1) , are characterised by

an integer representing the winding mode. Therefore, massless representations of

the four-dimensional Poincaré group are characterised by a single number, which

means that only one type of higher-spin fields propagate, that we will call symmet-

ric because they correspond to symmetric representations of the little group. Note

however that this does not preclude the description of these symmetric higher-spin

degrees of freedom by Lorentz tensors of SO(1, 3) of a more complicated, mixed

symmetry type, since there can be multiple ways in which one can embed degrees

of freedom into a Lorentz-covariant space-time tensor, see e.g., the off-shell duali-

sation procedure of [28].

At around the same time as Wigner’s discovery, the Lagrangian formulation of

Fierz and Pauli [29] describing the propagation of free spin-2 and spin-3/2 particles,

the latter also found by Rarita and Schwinger [30], was proposed. It was already

considered to be generalisable to any spin, though a full proposal was still lacking

at this stage. Some years later, the Bargmann-Wigner equations1 [32] were consid-

ered for this role, but eventually abandoned due to their problematic coupling to

electromagnetism. Although some progress was made in [33] on the construction

of Lagrangians for particles with spin s ≤ 4 , the general spin-s case would only be

1Although the Bargmann-Wigner equations are first-order equations formulated in D = 4 ,

they were generalised in [31] where it was proven that they are equivalent to higher-derivative

equations in terms of symmetric fields.
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completed much later thanks to the work of Fronsdal [34]. The way that the Frons-

dal equations were brought about is actually by considering the limit of vanishing

mass of massive higher-spin field equations built in [35, 36], and showing that at

the massless point, the theory acquires a novel gauge symmetry.

Fronsdal’s equations are two-derivative, and use a completely symmetric tensor

field with s indices φµ1 ···µs which is doubly traceless and transforms with a traceless

gauge parameter ξµ1 ···µs−1

φµ1 ···µs−4νρ
νρ = 0 , δφµ1 ···µs = ∂(µ1 ξµ2 ···µs) , ξµ1 ···µs−3ν

ν = 0 , (1.1.2)

where indices are raised and lowered thanks to the Minkowski metric ηµν with sig-

nature (−,+,+,+) , and where our conventions for symmetrisation are displayed

in section 1.3. This gauge symmetry is Abelian since the successive action of two

gauge transformations automatically vanishes, and one can reconstruct the result

of Fronsdal by starting from a two-derivative wave equation on the field φµ1 ···µs and

reconstructing the rest of the terms by imposing gauge invariance [37, 38]. This the-

ory closely resembles the linearised regime of gravity, save for the trace constraints

which start to appear at spin three, and admits a Lagrangian description.

In D ≥ 5 space-time dimensions, the previous picture is qualitatively the same,

although the classification of the UIR of the Poincaré group somewhat complicates,

due to the representations of the ‘little group’ SO(D − 2) being richer. Symmet-

ric representations exist and can still be described by Fronsdal’s formulation, but

there are also mixed-symmetry representations when D ≥ 6 , whose first covariant

description is due to Labastida [39]. The latter are important in string theory, since

mixed-symmetry fields always arise in the spectrum of higher excitations of the

string, as can already be seen at the first excited level of the closed bosonic string

which contains, in addition to the usual dilaton and graviton fields, a massless

anti-symmetric field called the Kalb-Ramond two-form. Given the links between

higher-spin theory and string theory, it is an interesting problem to try to formu-

late an interacting gauge theory of higher-spin gravity in flat space-time including

fields of arbitrary mixed symmetry. However, from the vantage point of higher-spin

gravity, being the minimal modification of general relativity potentially able to be

described at a quantum scale, one is led to adopt a simplifying stance and work

only with symmetric fields.

Although the description of free massless symmetric higher-spin fields poses little

obstacle, problems start to emerge at the level of interactions. It was already noticed

in [40] that a spin-three field cannot give rise to a consistent self-coupling2 cubic

term, as opposed to the case e.g. of the spin-two self-coupling in Einstein theory.

This problem could potentially be solved by adding other higher-spin fields to the

theory, but it was observed that this problem will always arise for any higher-spin

2In general, self-coupling terms for fields of odd spin are problematic, even for spin one. A way

out consists in introducing colour factors, like in Yang-Mills theory.
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theory containing a finite set of fields and in dimension at least four, and can have

a chance to be solved only if all spins are introduced (one can eventually reduce

this infinity by half by working with fields of even spin only). This makes the task

of finding a consistent theory much harder, since one has to deal with all spins at

once.3

Another unconventional feature of higher-spin interactions is related to the cou-

pling of higher-spin fields to gravity. Indeed, it was already noticed by Weinberg

[41] that the low-energy limit of scattering amplitudes involving a ‘soft’ particle (i.e.

on-shell with vanishing momentum) with spin s > 2 yields, under the hypothesis

of minimal coupling to gravity, conservation laws that have no non-trivial solution

unless the corresponding coupling constant is zero. Along the same lines, it was

found still for s > 2 that any cubic two-derivative vertex linear in the graviton

and quadratic in the spin-s field will never be gauge-invariant [42], leading to the

conclusion that in flat space-time, one has to forego the usual notion of minimal

coupling to gravity. Further theorems constraining the form of higher-spin interac-

tions, most of them using arguments on the form of the S-matrix, were presented

for instance in [43, 44].

Higher-spin interactions preserving a deformation of the free gauge symmetry at

the cubic level were eventually constructed in [40] and fully classified in [45, 46, 47,

48, 49, 50, 51, 52]. Crucially, it was remarked that some of the previous peculiarities

disappear when the background space-time is not Minkowski but (Anti-) de Sitter.

As an example, the presence of the cosmological constant, which has the dimension

of an inverse length squared, allows for the existence a two-derivative term in the

cubic coupling of higher-spin fields with gravity [53, 54] (see also, e.g. [55] or the

review [56]), thereby recovering a notion of minimal coupling. The other usual no-

go arguments revolving around the S-matrix are also not directly applicable since

the latter is only properly defined in flat space-time.4

Eventually, the free theory of Fronsdal and the problem of constructing higher-

spin interactions and checking their consistency at higher orders in perturbation

theory was reformulated in algebraic terms [57, 58] as the existence of a non-Abelian

algebra encoding higher-spin symmetry and satisfying some conditions, dictated

by the need to reproduce the free theory. This approach uses a ‘frame-like’ field

eµ
a1 ··· as−1 , which is a space-time one-form with frame indices ai (to be contracted

with the corresponding generatorMa1 ··· as−1 of a putative higher-spin algebra) which

3Although one can build theories up to cubic order with only a finite number of fields, the

necessity of closing of the algebra of gauge transformations at cubic level, or the consistency of

interactions at quartic level, forces us to consider the full spectrum. This problem of an infinite

spectrum is distinct from the potentially infinite number of interactions with increasing derivatives

in a perturbative expansion, which is also present in the case of higher-spin gravity.
4The S-matrix measures the scattering amplitudes in an asymptotically far region of Minkowski

space, and has to be replaced in Anti de Sitter by correlation functions of the boundary theory,

while no direct equivalent seems to exist in de Sitter space-time.
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are symmetrised and traceless. The Fronsdal field φµ1 ···µs can then be recovered

as the completely symmetric projection of eµ
a1 ··· as−1 , including both frame and

form indices. This frame-like field verifies a first-order equation of motion, which

is similar to the torsion constraint in Cartan’s formulation. Additional fields, or

‘spin connections’ in the language of Cartan, ωµ
a1 ··· as−1,b1 , ωµ

a1 ··· as−1,b1b2 , etc. need

to be introduced, which are of mixed symmetry type and are identified with the

successive derivatives of the frame-like field upon imposing structure equations.

In fact, this whole procedure can be thought of as a higher-spin extension of

linearised general relativity à la Cartan, with torsion equation (here and in the

following, we will use
!
= to denote when we impose an equation of motion)

∂[µ eν]
a + ηb[µ ων]

ab !
= 0 , (1.1.3)

where eµ
a is the frame, or vielbein field gauging the space-time translation generator

Pa , and ωµ
ab is the spin-connection field gauging Lorentz transformations Jab . We

chose as a background the Minkowski space-time with vielbein δµ
a , and brackets

denote an anti-symmetrisation. The equation of motion for the propagation of the

spin-two excitation encoded in the symmetric part of eµ
a can be written as

∂[µ ων]
ab !
= ηµc ηνdC

ac,bd , (1.1.4)

where Cab,cd has the symmetries of the Weyl tensor in general relativity, i.e. sym-

metric in the first two and the last two indices, symmetric under the exchange of

the two groups of indices and completely traceless. The previous equations can be

shown to be equivalent to the Fierz-Pauli equations of motion of linearised grav-

ity, since the unique non-zero component of the Riemann tensor upon imposing

Einstein’s equations is the Weyl tensor. The identification of Cab,cd with the Weyl

tensor is then completed by the integrability condition of the previous equation,

that imposes Bianchi identities on Cab,cd .

A unique candidate higher-spin algebra in AdS4 which reproduces the equations

[58] was identified in [59], constructed using higher products of the isometry gener-

ators of AdS4 in an oscillator realisation [60]. The equations of motion up to first

order in curvature bringing about its gauging were constructed in [61]. Although

this algebra exists and is unique in (A)dS4, it was shown that, starting from the

Poincaré algebra, no such symmetry algebra can be constructed under the same set

of assumptions, which resounded as another no-go theorem for higher-spin theories

in flat space-time. The four-dimensional construction was then generalised to higher

dimensions5 in [63, 64, 65, 66] and was an important milestone in the quest for the

interacting theory of higher-spin gravity of [67], which is reviewed, e.g. in [68]. Its

5It was proven, much later after the original construction of Fradkin and Vasiliev, that this

algebra is the unique one that satisfies the Jacobi identity (which is a necessary requirement if

one hopes to push the deformation procedure to the next, quartic, order) and reproduces known

cubic interactions [62] in any dimensions D ≥ 4 , save for a one-parameter deformation in D = 5 .
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main ingredient is undoubtedly the higher-spin symmetry algebra in AdSD space-

time, that we shall dub hsD in the following, which is in more modern language

given by the quotient of the universal enveloping algebra of space-time isometries

so(2, D − 1) by a certain two-sided ideal I that we shall detail in section 2.2

hsD :=
U(so(2, D − 1))

⟨I⟩
. (1.1.5)

In this thesis, we will see how this construction, and the steps that led to it, can

nevertheless be repeated in the case of flat space-time. More specifically, we will

construct a flat higher-spin algebra, that we shall call ihsD , from the quotient of the

universal enveloping algebra of the isometries of Minkowski space by a two-sided

ideal I♭ whose definition will be given in eqs. (2.3.16). The algebra can also be

recovered from a İnönü-Wigner contraction of the algebra hsD . The ideal will be

identified as the unique one allowing to reproduce the same spectrum of generators

as in the AdS case, and the gauging of this algebra at the linearised level will

give rise to equations that describe the correct free dynamics. A peculiar feature

of this algebra is the factoring out of the product of higher-translation generators

Pa1 · · · Pas−1 , that one would naively associate to the frame-like field eµ
a1 ··· as−1 .

Indeed, we will see that the fundamental gauge field of our construction will not

be the frame-like field, but rather one of the usually auxiliary ‘spin-connections’,

ωµ
a1 ··· as−1,b1 ··· bs−2 . In turn, this will suggest why the only gauge-invariant vertices

coupling higher-spin to gravity in flat space are necessarily higher-derivative.

In the construction of hsD , the set of relations in I that one has to quotient plays

an important role. This ideal was identified in [65, 69, 70] as the annihilator of a

particular representation of the conformal algebra, the singleton, and as a conse-

quence the full higher-spin algebra is isomorphic to the associative algebra of higher

differential symmetries of this module. The latter is associated to the on-shell non-

trivial isometries of a Klein-Gordon equation in one dimension less and constitutes,

alongside other pieces of evidence [71], a first element in the characterisation of the

holographic dual of higher-spin theory in AdS, which we will attempt to summarise.

A free, massless scalar field ϕ in (D− 1) dimensions has higher symmetries asso-

ciated to differential operators of higher arbitrary order, which provide a differential

realisation of the algebra hsD , according to the argument of Eastwood [65]. The free

scalar theory also displays conserved higher-spin currents of spins s = 1, 2, . . . , ∞
[72], schematically given by

Jµ1 ···µs = ϕ̄
↔
∂µ1 · · ·

↔
∂µs ϕ− traces , (1.1.6)

such that Jµ1 ···µs are traceless and transverse when the field ϕ satisfies the massless

Klein-Gordon equation. These currents couple to massless bulk fields reaching the

conformal boundary of AdS space-time through the usual
∫
dD−1x Jµ1 ···µs φ̃

µ1 ···µs

term, where φ̃µ1 ···µs has to be understood as the boundary value of a Fronsdal
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field in the bulk of AdS space-time. These kinematical considerations, backed by

the AdS/CFT correspondence6 of Maldacena [73], has led to the idea that gauge

higher-spin symmetry in the bulk should correspond to rigid higher-spin symmetry

on the boundary. Following the work of Klebanov, Polyakov [74], Sezgin and Sundell

[75], the holographic dual of the theory of interacting massless higher-spin fields in

AdS4 of [76] was identified to be the large-N limit of the critical three-dimensional

O(N) vector model, where N massless scalars interact via a quartic term with fine-

tuned coupling constant. Maldacena and Zhiboedov [77] then classified conformal

field theories with exact higher-spin symmetry in dimensions three and greater, and

found that higher-spin symmetry can unambiguously fix the form of all correlators

of the theory to be those of a free theory. This result is somehow the AdS/CFT

equivalent of the theorems constraining the form of the S-matrix in flat space.

Although not explicitly forbidden by these theorems, the existence of a higher-

spin symmetry algebra in flat space, and its holographic reformulation are much

less understood. This would be interesting for a number of reasons. First of

all, it would allow to bridge the gap between higher-spin gravity in AdS and in

flat-space.7 Second, this would ever so slightly bring us closer to a description of

string theory in the tensionless regime, which is formulated around the Minkowski

background. Lastly, instances of a holographic correspondence including gravity in

asymptotically flat space-time are scarce and the subject of an active investigation

[87, 88, 89, 90, 91, 92, 93, 94, 95]. The relative simplicity of the holographic dual

of AdS higher-spin gravity constitutes an ideal playground to develop such a corre-

spondence in flat space.8 Let us spend the rest of this introduction elaborating on

this last point.

In asymptotically flat space-times, the symmetries of general relativity are en-

larged when approaching null infinity. The Poincaré group of transformations en-

hances to the BMS group of Bondi, van der Burg, Metzner and Sachs [97, 98],

which can be seen as the set of large diffeomorphisms preserving a certain class

of solutions of Einstein’s equations, characterised by boundary conditions, up to

terms that are sub-leading in an asymptotic expansion. The new generators of

symmetry are called ‘super-translations’, as they asymptotically perform a shift in

the retarded time by an arbitrary function of the remaining coordinates, the angles

x parameterising the two-dimensional ‘celestial’ sphere. This symmetry group can

6The original formulation of the AdS/CFT correspondence postulated the equivalence between

type-IIB super-string theory on AdS5 × S5 and a dual N = 4 super-conformal Yang-Mill theory

on four-dimensional Minkowski space, the boundary of AdS5 .
7Interacting higher-spin theories in flat space are known to exist only in lower dimensions

[78, 79, 80, 81], while tentative definitions of a higher-spin algebra in flat space were considered in

[82, 83]. Another promising route is to formulate the theory on the light-cone, where additional

types of interactions exist, and a quantum theory was explicitly constructed [45, 84, 85, 86].
8One can also wonder about the status of higher-spin symmetry and holography in other types

of situations, such as near the horizon of a black hole [96].
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be enlarged even more, by including transformations that modify the geometry of

the sphere at infinity, and called ‘super-rotations’, leading to the extended [89] or

generalised [99] BMS group depending on the allowed set of transformations. The

fact that symmetries on the boundary are greatly enhanced compared to rigid sym-

metries in the bulk is a sign that flat-space holography, if such a theory exists, may

not work in the same way as it does in AdS.

This enhancement of symmetries is also observed in other field theories, such as

Maxwell or Yang-Mills [100], and even free spin-s fields [101, 102, 103]. In the latter

case, under the most permissive boundary conditions, asymptotic symmetry gener-

ators are characterised by s arbitrary symmetric and traceless tensors, depending

only on the coordinates on the celestial sphere

T (x) , ρi(x) , . . . , Ki1 ··· is−1(x) . (1.1.7)

A promising route to flat-space holography can be found in the framework of

Carrollian physics [94]. Its inception can be traced back to the work of Duval,

Gibbons and Horvathy [104], who showed that the group of isometries of a Carrol-

lian9 manifold, that is a smooth manifold equipped with a degenerate metric and a

nowhere-vanishing vector field (see appendix A), is isomorphic to the BMS group.

The null manifold in question is identified with (past or future) null infinity I ± ,

whose metric is degenerate in the direction of (advanced or retarded) time. The

holographic dual of a gravitational theory in the bulk of asymptotically Minkowski

space-time would then be encoded in a Carrollian conformal field theory. This idea

already finds a concrete realisation in the case of the fluid-gravity correspondence

[92, 105, 106], where the speed of light of the boundary fluid is directly proportional

to the cosmological constant in the bulk.

We will argue in this thesis that the correspondence between the generators of

the higher-spin algebra ihsD in the bulk and the higher differential symmetries of a

certain free field living at the (D−1)-dimensional boundary of space-time, of which

the ideal I♭ is the annihilator, also holds. Moreover, the full set of symmetries

is actually much bigger, and includes generators that can be assimilated with the

asymptotic symmetry generators described in eq. (1.1.7) and which form a sub-

algebra. More specifically, we will consider two candidate theories of free Carrollian

scalar fields, namely the ‘electric’ (or ‘time-like’)∫
du ddx

√
γ
(
ϕ̄ ∂u

2ϕ
)
, (1.1.8)

9The name Carrollian was inspired by Lewis Carroll’s book Through the looking glass, where

the protagonist Alice is puzzled by the Queen’s remark ‘it takes all the running you can do, to

keep in the same place’. In Carrollian space-time, the speed of light is sent to zero, creating this

sense of ‘static motion’.
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and the ‘magnetic’ (or ‘space-like’)∫
du ddx

√
γ
(
π̄∂uϕ+ π∂uϕ̄+ ϕ̄∇̂2ϕ

)
, (1.1.9)

where d = D − 2 is the dimension of the celestial sphere, u is the null (retarded or

advanced) time, ∇̂2 := ∇2 − (d−1)2

4
and ∇2 is the Laplace-Beltrami operator on the

d-dimensional round sphere with metric γ .

Both theories realise the higher-spin symmetry algebra ihsd+2 , and we will argue

that the first is adapted for the holographic description of higher-spin symmetry

in AdS-Carrolld+2 space-time, while the latter is a candidate starting point for a

holographic theory of higher-spin gravity in Minkowskid+2 space-time.

In conclusion, the algebraic approach towards the construction of an interacting

theory of higher-spin gravity in AdS has lead to the identification of a unique can-

didate algebra underlying higher-spin symmetry, which admits a co-dimension one

realisation in terms of differential operators of a relativistic conformal field theory.

A contraction of this algebra (also unique under certain considerations) admits a co-

dimension one realisation in terms of differential operators of a Carrollian conformal

field theory, and is shown to reproduce free equations of motion that propagate the

correct number of degrees of freedom at the linear level. Any non-linear deforma-

tion of our free equations of motion will therefore provide a candidate gravitational

dual of the simplest Carrollian field theory, thus fitting within the urgent quest

for concrete dual pairs in flat-space holography, that is currently mainly driven by

symmetry considerations.

1.2 Structure of this thesis

In this thesis, we bridge the gap between the gauge description of higher-spin grav-

ity in AdS and in flat space by proving the existence of a higher-spin algebra with

a Poincaré sub-algebra in any dimensions at least three, and prove that its gauging

at the linearised level brings about equations that are equivalent to the ones of

Fronsdal. The main advantage of our construction relies in the non-Abelian char-

acter of the algebra, translating into the possible existence of interaction terms for

fields of every spin, including gravity. The explicit construction of an interacting

theory based on this algebra will be addressed in a future work. We then present

the first steps in the elaboration of a holographic dual, relying on a Carrollian, i.e.

ultra-relativistic, scalar field theory, by showing that this higher-spin algebra can be

realised as a subset of the higher symmetries of this scalar field. Extra symmetries

are also uncovered, playing the role of putative asymptotic higher-spin symmetries.

This thesis is divided as follows.

In chapter 2, the construction of non-Abelian symmetry algebras for higher-spin

fields in Minkowski space-time is discussed in details. We begin with some reminders
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of the global symmetries of free higher-spin fields in the formulation of Fronsdal [34]

presented in section 2.1, while the construction of the higher-spin algebra in AdS

space-time is reviewed in section 2.2. We then present the İnönü-Wigner contraction

leading to the flat-space higher-spin algebras in three and higher dimensions first

presented in [107], and recover them from quotients of the universal enveloping

algebras of space-time isometries in section 2.3. Lastly, section 2.4 is devoted to the

study of the curvatures gauging the algebras found in the previous section, and we

prove there how to reproduce the dynamics of Lopatin and Vasiliev [64], equivalent

to the one of Fronsdal, from equations of motion, as presented in [108].

In chapter 3, we explore a potential holographic dual of that theory. Following

the standard observation that higher-spin algebras are associative algebras of higher

differential symmetries of free field theories [65] reviewed in section 3.1, we will focus

on the realisation of the higher-spin algebra identified in the previous chapter as the

algebra of symmetries of a Carrollian field theory, identified as the ultra-relativistic

limit c → 0 of a relativistic free scalar field. More precisely, we will study the

two possible limits (electric and magnetic) of the free scalar field identified in the

literature [109, 110, 111] in sections 3.2 and 3.3. The latter, magnetic theory, admits

an extension as a field in Minkowski space which we show to be the direct flat limit

of its AdS parent, the singleton [112, 71, 113].

Finally, chapter 4 closes this thesis with a summary of the results and a discussion

of possible research directions.

The results of this thesis were obtained in collaboration with Xavier Bekaert,

Nicolas Boulanger and Andrea Campoleoni, and were presented in [107, 114, 108].

The first reference also contains the construction of a different contraction of the

higher-spin algebra hsD to a Galilean conformal algebra, not discussed in this thesis,

as well as the construction of higher-spin algebras for theories with the same set of

generators as the ones relevant for partially-massless higher-spin gravity which are

briefly mentioned in section 2. This thesis also contains original material, which

will be presented in [115]. Other original works not directly related to the subject

of this thesis were presented in [116, 117] and lecture notes in [118].

1.3 Conventions

Throughout this thesis, the AdS radius will be denoted by R and the dimension of

space-time by D . We will also use in chapter 3 the dimension of the celestial sphere

d = D − 2 . Our conventions for tensors will be as follow:

• A covariant and a contravariant index denoted by the same letter are meant

to be contracted and thus summed, following the Einstein summation con-

vention ;



12 CHAPTER 1. INTRODUCTION

• Repeated indices that are not contracted are symmetrised. For instance, φµ
µ

denotes a trace, but

φµµ stands for φµ1µ2 ; (1.3.1)

• A group of symmetrised indices will be replaced by a single index, with the

multiplicity indicated with brackets. As an example

φµ(s) stands for φµ1 ···µs , (1.3.2)

where φµ1 ···µs is symmetric under the exchange of any two indices ;

• Divergences of symmetric tensors will simply be denoted by a dot, e.g.

∇ · φµ(s−1) stands for ∇ν φνµ2 ···µs ; (1.3.3)

• The trace of a symmetric tensor with respect to a (non-degenerate) metric

gµν will be denoted by a prime, e.g

φ′
µ(s−2) stands for gνρ φνρµ3 ···µs ; (1.3.4)

• Symmetrisation (and anti-symmetrisation) are performed with unit weight,

meaning that they are projections. For instance

∂µ ξµ(s−1) stands for ∂(µ1 ξµ2 ···µs) =
1

s

s∑
k=1

∂µk
ξµ1 ··· µ̂k ···µs ; (1.3.5)

• Unless otherwise specified, any tensor Ta(s1),b(s2), ··· , d(sn) is in an irreducible

representation of the Lorentz group characterised by the corresponding Young

tableau of SO(D) , represented by the symbol YD(s1, s2, . . . , sn) . We are

working in the symmetric convention, so repeated indices are symmetrised

YD(s1, s2, . . . , sn) ∼

s1
s2

· · ·
sn

(1.3.6)

where n ≤
⌊
D−2
2

⌋
and s1 ≥ s2 ≥ · · · ≥ sn > 0 . Such tensors are completely

irreducible and traceless, meaning that

Ta(s1),ab(s2−1), ··· , d(sn) = 0 ,

Ta(s1),b(s2),b ··· , d(sn) = 0 ,

. . .

Ta(s1), ··· , c(sn−1),cd(sn−1) = 0 ,

(1.3.7)

and ηaaTa(s1),b(s2), ··· , d(sn) = 0 (the vanishing of the trace in the first row and

the irreducibility conditions imply the vanishing of all traces) .



Chapter 2

Higher-spin symmetry in

Minkowski space

We start this chapter with a review of the global symmetries of massless higher-spin

fields, putting a particular emphasis on the case of Minkowski space-time. Even

though it has already been discussed at length in various reviews, see for example

[119, 120, 121, 122, 123, 118], we will emphasise some key features that will allow

us to comment on the construction of an interacting theory.

The starting point is the covariant description of the propagation of free massless

higher-spin particles on a flat (or constantly curved) background, which we review

in section 2.1. Fronsdal’s formulation of the dynamics [34, 124], which is a set of

second order equations of motion for a field φµ(s) which is a completely symmetric

and doubly-traceless tensor, fits this role while keeping the analogy with lower-spin

theories, such as electromagnetism or (linearised) general relativity. This ‘Fronsdal’

field enjoys a gauge invariance δφµ(s) = ∂µξµ(s−1) under a completely symmetric and

traceless tensor ξµ(s−1) which is to the Fronsdal field what linearised diffeomorphisms

are to the linearised graviton. Upon a partial gauge fixing, Fronsdal’s equations

resolve into a Fierz system, which can be shown to describe unitary irreducible

representations of the Lorentz group. This formulation can be thought of as a direct

extension of linearised gravity to higher spins and is often called ‘metric-like’ by

analogy with linearised Einstein theory and is reviewed in section 2.1.1. By contrast,

the ‘frame-like’ approach which we will come to in section 2.1.2 uses a generalisation

of the vielbein and is more akin to an extension of Cartan’s formulation of general

relativity.

The metric-like formulation is accompanied with a Lagrangian formulation, and

constitutes a natural basis upon which one can try to build interactions. Although

many examples of interaction vertices of higher-spin fields in the Fronsdal approach

are known [45, 49], gravitational interactions have been pointed out long ago to be

problematic [125, 126, 40]. This result was somehow to be anticipated because of

13
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Weinberg’s low-energy theorem [41], the Weinberg-Witten theorem [127] or its gen-

eralisation [44], all stating in a way that higher-spin fields cannot couple minimally

to gravity, that is with a two-derivative cubic vertex, unlike lower-spin theories such

as Yang-Mills or the graviton itself.

This obstruction did not prevent the explicit construction of higher-derivative

vertices in Minkowski space-time in the light-cone formulation [45, 128, 49, 50], in

a covariant manner [129] or using the BV-BRST approach [130, 55, 131]. While

not completely ruled out, an interacting theory in Minkowski space-time seemed

increasingly exotic. Fortunately, a way out emerged in the 80’s, corresponding to

a shift of paradigm from flat to constantly curved background. It was realised

in [59] that one can construct a two-derivative cubic vertex coupling higher-spin

Fronsdal fields to gravity in (A)dS, which is necessarily accompanied by a tower of

higher-derivative pieces.

A few years earlier, it was realised that the free dynamics could also be described

in a similar way to the gauge (or Cartan’s) formulation of gravity, not using Fronsdal

fields but space-time one-forms taking value in a putative Lie algebra, understood

as connections on a specific fibre bundle. This frame-like formulation of the dy-

namics started with the results of Vasiliev [57, 58] and was setting the stage for

the construction of the interacting theory in (A)dS space-time by Fradkin, Vasiliev

and collaborators [60, 54, 59, 64, 61, 76, 67, 66, 68]. Not only does the frame-like

formulation reproduce the same linearised dynamics as the one of Fronsdal, treat-

ing the different connection one-forms in a more balanced way, but it also allows to

reformulate the problem of finding an interacting theory into an algebraic one. This

step will prove to be of crucial importance in our construction, so we will spend

some time on it.

The main star of the construction of Fradkin and Vasiliev is the algebra of higher-

spin symmetry hsD , first constructed for D = 4 in [60] and generalised to higher

dimensions in [132, 133, 65, 66], that we review in section 2.2. This algebra plays

the same role as the (A)dS isometry algebra does for linearised general relativity:

it encodes the isometries of the background, and one can recover perturbatively

interacting equations of motion from its gauging [61, 76]. This algebra can be

thought of as a non-Abelian completion of the algebra of global isometries of the

free theory. Historically, the generators of this algebra were realised in D = 4 by

products of space-time isometries [60], which leads to the modern picture of using

a construction based on a Universal Enveloping Algebra (UEA). Specifically, hs4
will be the UEA of so(2, 3) quotiented by an appropriate two-sided ideal, which is

automatically factored out in the oscillator representation. The whole construction

can be generalised to any dimensions. However, it was noticed in [60] that the

algebra hs4 does not seem to admit any reasonable flat contraction that one could

use to repeat the same steps as in the (A)dS case, that is to impose equations on
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the curvatures of the fields gauging1 this algebra, reproducing the free dynamics of

Fronsdal upon linearisation around the Minkowski background.

A version of the higher-spin algebra hsD inD = 3 was also independently found as

the algebra of area-preserving diffeomorphisms [134, 135] or from an oscillator con-

struction [136]. They both represent an analytic continuation of sl(N,R)⊕ sl(N,R)
when N is sent to infinity. The N = 3 instance was analysed in [137, 138, 139, 140],

where it was proven that the linearised equations of motion obtained from its gaug-

ing are equivalent to the three-dimensional Fronsdal theory. Moreover, one can

build a fully-interacting theory using a Chern-Simons action, extending the usual

construction for gravity [141, 142, 143, 144, 145] to an arbitrary (finite or infinite)

number of higher-spin fields [134], and the asymptotic symmetry algebra of the

non-linear theory falls into a class of algebras known as W-algebras [146, 147], also

studied in the context of string theory in [148, 149, 150].

A one-parameter family of deformation of the hs3 algebra, that we shall call

hs3[λ] , was also found in [134], see also e.g. [150, 151, 152] and references therein.

This three-dimensional higher-spin algebra has a particular status, since it is the

only known case where a flat counterpart, that we shall denote as ihs3[λ] has been

explicitly constructed [78, 79, 80], until recently [107].

The idea for this part of the thesis will be to build a higher-spin algebra extending

the Poincaré algebra in any dimensions, following the UEA approach. The no-

go results in the metric- and frame-like formulations somehow force us to think

backwards: our main focus in section 2.3 will be to see if one can construct any

algebra at all, while deferring a detailed analysis of the dynamics that can be

described by its gauging to section 2.4.

Starting from the three-dimensional case, we show how to reproduce the flat-

space higher-spin family of algebras ihs3[λ] . We will show that it can be built from

the same considerations that allows one to build the higher-spin algebra hs3[λ]

from the UEA of the AdS3 isometry algebra. This places both algebras on a similar

footing and provides us with some key insights in order to generalise the construction

to higher dimensions. We will then show how to build such a flat algebra in any

dimensions, starting from an İnönü-Wigner contraction and then reconstructing

the result from a UEA of the Poincaré algebra. We also provide arguments for the

1The word gauging is perhaps too vague to be used without an accompanying explanation. In

the Cartan formulation of linearised gravity, gauge transformations of the vielbein and spin con-

nection correspond to linearised diffeomorphisms and local Lorentz transformations respectively.

They leave the curvatures of the fields built upon the Poincaré or (A)dS algebra invariant. In

the non-linear setting, gauge transformations correspond only to local Lorentz transformations

(interpreted as a change of frame), while linearised diffeomorphism invariance is promoted to full

diffeomorphism invariance of the action (interpreted as a coordinate redefinition), and the cur-

vatures transform covariantly under local Lorentz transformations. In general, it should always

be clear that a non-linear gauge theory is the given of an algebra of global symmetries and its

sub-algebra of local gauge transformations.
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unicity of the UEA construction.

The resulting algebra, that we will call ihsD , does not reproduce upon gaug-

ing the usual linearised curvatures employed in the unfolded formulation of the

dynamics in the flat case [64], in accordance with the observation of [60]. Notwith-

standing, we show that in spite of this mismatch, one can still define equations of

motion that indeed describe the propagation of massless fields of arbitrary spin on

a Minkowski background. This new formulation of the dynamics opens the way to a

new paradigm for a putative interacting higher-spin theory in flat space-time, with

the algebra ihsD at its centre.

2.1 Global symmetries of free massless higher-

spin fields

2.1.1 Metric-like formulation

Our starting point is the Fronsdal theory in D-dimensional Minkowski space-time,

which is the unique two-derivative equation of motion for completely symmetric,

doubly-traceless fields φµ(s) , where, as seen in section 1.3 of the introductory chap-

ter, repeated indices denote a symmetrisation with weight one. It can be built

as the unique gauge-invariant completion of the d’Alembertian operator acting on

φµ(s) , which is given by the Fronsdal tensor Fµ(s)[φ]

Fµ(s)[φ] := ∂2 φµ(s) − s ∂µDµ(s−1)[φ] , (2.1.1)

where we defined the spin-s De Donder tensor Dµ(s−1)[φ] as

Dµ(s−1)[φ] := ∂ · φµ(s−1) − s−1
2
∂µ φ

′
µ(s−2) . (2.1.2)

The Fronsdal tensor is invariant under the gauge transformations

δφµ(s) = ∂µξµ(s−1) , (2.1.3)

where the parameter ξµ(s−1) is traceless. The equations of motion are

Fµ(s)[φ]
!
= 0 . (2.1.4)

The AdSD version of Fronsdal theory is given by transforming the partial deriva-

tives ∂ into the AdS background covariant derivatives ∇ and adding some linear

terms to Fµ(s)[φ] so that it becomes

∇2φµ(s) − s∇µDµ(s−1)[φ]− 1
R2

[
(Rms)

2 φµ(s) + s(s− 1) ḡµµ φ
′
µ(s−2)

]
, (2.1.5)

where R denotes the radius of AdS with metric ḡµµ , the De Donder tensor takes

the form ∇ · φµ(s−1) − s−1
2
∇µ φ

′
µ(s−2) and (Rms)

2 = (s− 2)(s+D − 3)− s .
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Going back to Minkowski background, we can follow the same steps that allow

one to extract the physical degrees of freedom from the Fierz-Pauli equations of

motion (going ‘on-shell’), by asking the field φµ(s) be transverse and traceless, so

that Dµ(s−1)[φ] = 0 , and check that the new equations of motion enjoy a residual

gauge symmetry with the parameter ξµ(s−1) being now also transverse and harmonic

∂2 φµ(s) = 0 , ∂ · φµ(s−1) = 0 , φ′
µ(s−2) = 0 , (2.1.6a)

∂2 ξµ(s−1) = 0 , ∂ · ξµ(s−2) = 0 , ξ′µ(s−3) = 0 . (2.1.6b)

This last system takes the form of a Fierz system and from there, one can use

for instance a light-cone parameterisation to obtain the equations of motion in the

little group SO(D−2) , and realise that they describe the propagation of a massless

spin-s UIR of the Poincaré group.

One can find the rigid symmetries of the Fronsdal field by classifying the isome-

tries preserving the vacuum solution φµ(s) = 0

∂µξµ(s−1)
!
= 0 ⇔ ξµ(s−1) =

s−1∑
t=0

Λµ(s−1),ν(t) x
ν · · · xν︸ ︷︷ ︸

t

, (2.1.7)

where the constant tensors Λµ(s−1),ν(t) span irreducible representations of the Lorentz

group SO(1, D − 1) , parameterised by two-row Young tableaux with symmetry

YD(s−1, t) . The difference of lengths between the two rows (s−t−1) is often called

the depth. The parameters Λµ(s−1),ν(t) are often called the reducibility parameters

of the theory, and there are as many in (A)dS space-time as there are in Minkowski

space-time [153, 154].

Note that, even though we started with gauge parameters that we only required

to be traceless (so that the double trace of ∂µξµ(s−1) has to vanish), we found that

the parameters of rigid isometries are also transverse

∂ · ξµ(s−2) =
s−1∑
t=1

tΛµ(s−1),µν(t−1) x
ν · · · xν︸ ︷︷ ︸

t−1

= 0 , (2.1.8)

and harmonic

∂2 ξµ(s−1) =
s−1∑
t=2

t(t− 1)Λµ(s−1),ν(t−2)α
α xν · · · xν︸ ︷︷ ︸

t−2

= 0 , (2.1.9)

because the parameters Λµ(s−1),ν(t) are completely irreducible and traceless. Thus,

these parameters act also as the reducibility parameters of the Fierz system (2.1.6).

This observation signals that the reducibility parameters are somewhat insensitive

to the formulation we started with. Indeed, we could have started with a partially
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gauged-fixed version of Fronsdal’s formulation [155, 17, 156] and still get the same

reducibility parameters.2 The spectrum of isometries

s−1⊕
t=0

YD(s− 1, t) , (2.1.10)

will appear again in section 2.1.2 from different considerations.

For s = 2 , the reducibility parameters are the Killing vectors of Minkowski

space ζ = ζµ∂µ , taking the canonical form of the differential representation for

the generators of translations parameterised by Λµ and Lorentz transformations

parameterised by Λµ,ν

ζµ = Λµ + Λµ,ν x
ν . (2.1.11)

One can extract from it the algebra of isometries, realised as the Lie bracket of

vectors ζ1 and ζ2
(Lζ1ζ2)

µ = [ζ1, ζ2]
µ = ζν1∂νζ

µ
2 − ζν2∂νζ

µ
1 , (2.1.12)

and can be seen to represent the Poincaré algebra.

In this representation, one can then have a look at the action of the Poincaré

algebra on the spin-s gauge parameters, given by the Lie derivative of the tensors

ξµ(s−1) with s ≥ 1 along the vectors ζ

(Lζξ)
µ(s−1) = ζν∂νξ

µ(s−1) − (s− 1)ξνµ(s−2)∂νζ
µ . (2.1.13)

This gives a tentative definition for the Lie bracket on an algebra whose spectrum,

as a vector space, is composed of generators with Young symmetries YD(s− 1, t) .

In order to have access to the full set of structure constants, however, one has to

generalise the notion of a Lie bracket to include the action of Killing tensors with

s > 2 on themselves. One possibility is given by the Schouten-Nijenhuis bracket

[162, 163, 164], which was already studied in [125] in the context of higher-spin (see

also [82, 107] for a discussion)

[ξ1, ξ2]S
µ(s1+s2−3) := k(s1, s2)

(
(s1 − 1) ξ1

λµ(s1−2) ∂λξ2
µ(s2−1)

−(s2 − 1) ξ2
λµ(s2−2) ∂λξ1

µ(s1−1)
)
,

(2.1.14)

with k(s1, s2) =
(s1+s2−3)!

(s1−1)!(s2−1)!
.

The Schouten bracket has the advantage of preserving the property of being a

Killing tensor, since

k(s1, s2)
−1 ∂µ [ξ1, ξ2]S

µ(s1+s2−3) =

(s1 − 1) ∂µ ξ1
λµ(s1−2)∂λ ξ2

µ(s2−1) − (s2 − 1) ∂µ ξ2
λµ(s2−2) ∂λ ξ1

µ(s1−1)

= −∂λ ξ1µ(s1−1) ∂λ ξ2
µ(s2−1) + ∂λ ξ2

µ(s2−1) ∂λ ξ1
µ(s1−1) = 0 ,

(2.1.15)

2However, unconstrained and geometric theories [38, 157, 14, 158, 159, 160, 161] are placed on

a different footing from the get-go, since they require traceful gauge parameters to start with.



2.1. GLOBAL SYMMETRIES OF FREE MASSLESS HS FIELDS 19

where we used (s1 − 1) ∂µ ξ1
λµ(s1−2) + ∂λ ξ1

µ(s1−1) = s1 ∂
(µ ξ1

λµ(s1−2)) = 0 .

However, in general, the Schouten bracket of traceless Killing tensors is not

traceless, nor can it be decomposed into a sum of traceless Killing tensors. The

failure of the Schouten bracket to define a Lie algebra with the desired spectrum

does not make it a good candidate for our purpose. However, it makes it a natural

candidate in the case of unconstrained theories [157, 14, 159, 160, 161], whose

reducibility parameters are given by all Killing tensors, without any constraint on

their trace, see, e.g., [107] for the construction of such algebras, as well as candidate

non-unitary theories in flat space exhibiting this spectrum of rigid symmetries.

Even though the previous analysis was performed purely in terms of Fronsdal

fields, one can learn many things regarding the global isometries of the theory and

the structure of a putative Lie algebra playing the role of higher-spin symmetry.

Drawing a parallel with the Cartan formulation of general relativity, the gauge field

associated with the generator of translations – the vielbein – carries with it the

metric tensor, while the one associated with Lorentz transformations – the spin

connection – can be expressed in terms of the former through a torsion equation.

Non-linear general relativity can then be obtained by constructing objects invariant

under gauge transformations given by local Lorentz transformations. This is the

spirit of the frame-like formulation that we will present now.

2.1.2 Frame-like formulation

Following Cartan’s formulation of general relativity, we can try to reformulate the

free higher-spin theory using one-forms. This is known as the frame-like formulation

of higher-spin gravity and was originally developed in [57, 58]. The idea is to

realise the free higher-spin theory using a gauge potential eµ
a(s−1) and an associated

parameter of gauge transformations ξa(s−1) such that

δeµ
a(s−1) = ∂µξ

a(s−1) , (2.1.1)

which are both in an irreducible Lorentz representation in the fibre, i.e. it is sym-

metric and traceless. The field eµ
a(s−1) is a generalisation of the vielbein for s = 2 .

It is easy to see how to recover a Fronsdal field from eµ
a(s−1) by converting frame

indices into space-time indices using the background vielbein hµ
a , and completely

symmetrising over the indices µ

φµ(s) = hµ
a · · · hµa eµa(s−1) . (2.1.2)

We will work in a coordinate system such that hµ
a = δµ

a (and therefore the back-

ground spin connection is zero) so that the background Lorentz-covariant derivative

is simply the exterior derivative d = ∂µdx
µ . The same argument can be repeated in

an arbitrary coordinate system, upon replacing d by the nilpotent Lorentz-covariant

derivative ∇.
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The field eµ
a(s−1) being traceless in the fibre indices, the field φµ(s) defined in

eq. (2.1.2) is naturally doubly-traceless because any double trace would necessarily

involve a trace in the fibre. Moreover, the gauge variation of ea(s−1) imposes

δφµ(s) = ∂µξµ(s−1) . (2.1.3)

Pure-gauge components

There is however an extra component in eµ
a(s−1) corresponding to the ‘hook’ pro-

jection YD(s − 1, 1) in the decomposition of the tensor product between a vector

and a completely symmetric, traceless tensor of rank (s − 1) , involving the anti-

symmetrisation

hµb eµ
a(s−1) − hµa eµ

ba(s−2) − traces . (2.1.4)

Note that we are still working in the manifestly symmetric convention, so that the

a indices are symmetrised and the mixed-symmetry tensor defined in eq. (2.1.4)

verifies the property that a complete symmetrisation of the indices gives zero.

In order for the frame-like field eµ
a(s−1) not to contain extra degrees of freedom

as compared to a Fronsdal field, it is necessary that this component be gauged away

algebraically, i.e. we impose the gauge transformation

δea(s−1) = hb λ
a(s−1),b , (2.1.5)

where the gauge parameter λa(s−1),b has the same symmetries as the tensor of

eq. (2.1.4). Here and in the following, we omit the one-form index µ .

The gauge parameter λa(s−1),b is associated with a new gauge field ωa(s−1),b which

is a space-time one-form with the same symmetries as eq. (2.1.4) in its frame indices.

By analogy with the Cartan formulation of general relativity, this field is expressed

in terms of derivatives of the generalised frame field through a torsion-like equation

of motion

T a(s−1) := dea(s−1) + hb ∧ ωa(s−1),b , T a(s−1) !
= 0 , (2.1.6)

where d is the exterior derivative and T a(s−1) is a space-time two-form which is

invariant under the set of gauge transformations

δea(s−1) = dξa(s−1) + hb λ
a(s−1),b , δωa(s−1),b = dλa(s−1),b . (2.1.7)

Extra fields

Contrary to the spin-two case, not all of the irreducible components of ωa(s−1),b are

fixed by eq. (2.1.6). One can see that the components that are not fixed have the

symmetry of the Young tableau YD(s− 1, 2), and can be gauged away algebraically

using a new gauge parameter

δωa(s−1),b = hc λ
a(s−1),bc . (2.1.8)
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The torsion constraint (2.1.6) is invariant under the transformations (2.1.8), so

that the previous discussion is not affected. In turn, this new gauge parameter is

associated to a one-form ωa(s−1),b(2) and one imposes

T a(s−1),b := dωa(s−1),b + hc ∧ ωa(s−1),bc , T a(s−1),b !
= 0 . (2.1.9)

The second term in the definition of T a(s−1),b manifestly has the same symmetries as

the first one, since ωa(s−1),ab = 0. This time, the expressions that make up T a(s−1),b

in eq. (2.1.9) can be decomposed into three categories:

• The components that are shared by both dωa(s−1),b and ωa(s−1),b(2), and allow

to express ωa(s−1),b(2) as the derivative of ωa(s−1),b and therefore as the second

derivative of ea(s−1) , that are given by

YD(s− 1, 2, 1)⊕ YD(s, 2)⊕ YD(s− 1, 1)⊕ YD(s− 2, 2) ; (2.1.10)

• The components of dωa(s−1),b that are absent from ωa(s−1),b(2), and impose

a first-order equation on ωa(s−1),b and therefore a second-order equation on

ea(s−1) , that are given by

YD(s− 1, 1, 1, 1) ⊕ YD(s, 1, 1) ⊕ YD(s− 1, 1)⊕ YD(s− 2, 1, 1)

⊕ YD(s)⊕ YD(s− 2) ;
(2.1.11)

• The component of ωa(s−1),b(2) that is not in dωa(s−1),b , that is given by

YD(s− 1, 3) . (2.1.12)

The components of the second kind precisely contain the contributions of a sym-

metric tensor of rank s and s−2, and impose Fronsdal’s equation on the field φµ(s),

while the components of the third kind have to be gauged away algebraically for the

same reason as before. This will involve a series of additional gauge parameters and

one-forms, starting with the ones that have the symmetry of the Young diagram

YD(s− 1, 3) in their frame indices.

Action principle

An action [58] reproducing eq. (2.1.6) as well as all the components of eq. (2.1.9)

save for the ones that are given in eq. (2.1.12) can be written, which generalises the

linearised Einstein-Cartan action∫
dDx

(
dea1a(s−2) + 1

2
hb ∧ ωa1a(s−2),b

)
∧ ωa2

a(s−2)
,a3 ∧Ka1a2a3 , (2.1.13)

where Ka1a2a3 := ha4 ∧ · · · ∧ haDεa1 ··· aD is a background (D − 3)-form. The extra

components of ωa(s−1),b given by the irreducible representation YD(s− 1, 2) are not

present in this action, hence the origin of the gauge variation (2.1.8).
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Complete set of fields and curvatures

The procedure of finding the extra fields necessary to gauge away all spurious com-

ponents repeats recursively, by introducing the gauge parameters λa(s−1),b(t+1) , con-

nections ωa(s−1),b(t+1) and torsion constraints T a(s−1),b(t) defined as

T a(s−1),b(t) := dωa(s−1),b(t) + hc ∧ ωa(s−1),b(t)c , T a(s−1),b(t) !
= 0 , (2.1.14)

for 2 ≤ t ≤ s− 2 , invariant under the transformations

δωa(s−1),b(t) = dλa(s−1),b(t) + hc λ
a(s−1),b(t)c , (2.1.15)

until the final spin-connection is eventually reached, corresponding to a field whose

symmetry in the frame indices is encoded by the rectangular Young diagram YD(s−
1, s− 1) . This yields the following complete set of one-forms

ea(s−1) , ωa(s−1),b , · · · , ωa(s−1),b(s−2) , ωa(s−1),b(s−1) , (2.1.16)

and gauge parameters

ξa(s−1) , λa(s−1),b , · · · , λa(s−1),b(s−2) , λa(s−1),b(s−1) . (2.1.17)

Note the perfect matching with the spectrum identified in eq. (2.1.10). The last

field is identified (on-shell) with (s − 1) derivatives of the Fronsdal field, and one

can impose an equation encoding the vanishing of the trace of its curvature, or

equivalently by projection onto its purely traceless two-row component

Ra(s−1),b(s−1) := dωa(s−1),b(s−1) , Ra(s−1),b(s−1) !
= hc ∧ hdCa(s−1)c,b(s−1)d , (2.1.18)

where the zero-form Ca(s),b(s) represents the spin-s Weyl tensor, is completely ir-

reducible and gauge-invariant. This is similar to the rewriting of the linearised

Einstein’s equations by equating the curvature of the spin-connection (on-shell the

Riemann tensor) to its Weyl part as explained near eq. (1.1.4).

For completeness, we recall the complete form of the linearised equations

T a(s−1),b(t) = dωa(s−1),b(t) + hc ∧ ωa(s−1),b(t)c !
= 0 , (2.1.19a)

Ra(s−1),b(s−1) = dωa(s−1),b(s−1) !
= hc ∧ hdCa(s−1)c,b(s−1)d , (2.1.19b)

which are a cornerstone of the procedure known as unfolding (for a review as well as

applications to other systems see, e.g. [64, 165, 166, 167]). Note that integrability

of the previous set of equations yields the Bianchi identities

dT a(s−1),b(t) = −hc ∧ T a(s−1),b(t)c , (2.1.20)

for t ∈ {0, . . . , s−3} , where we used d2 = 0 , dha = 0 and hc ∧ hd ∧ ωa(s−1),b(t−1)cd = 0

due to the anti-symmetry of hc ∧ hd . For t = s− 2, we get

dT a(s−1),b(s−2) = −hc ∧Ra(s−1),b(s−2)c . (2.1.21)
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The equations (2.1.19a) and (2.1.19b) are compatible with the Bianchi identi-

ties, since hd ∧ he ∧ hcC
a(s−1)d,b(s−2)ce = 0 . The compatibility of the equation

Ra(s−1),b(s−1) = hc ∧ hdCa(s−1)c,b(s−1)d has to be studied separately and extends into

the ‘zero-form’ sector as

dRa(s−1),b(s−1) = 0 =⇒ dCa(s),b(s) = hc ∧ Ca(s)c,b(s) , (2.1.22)

with Ca(s+1),b(s) another Lorentz-irreducible zero-form.3 The unfolding of the dy-

namics then continues in the zero-form sector, whose description goes beyond the

scope of this thesis.

AdS space-time

In the presence of a non-zero cosmological constant, the previous discussion is

slightly modified by the introduction of extra terms. Like in the case of linearised

(A)dS gravity, these terms are necessary to ensure gauge invariance of the equa-

tions of motion and their integrability, due to the fact that the (A)dS background

covariant derivative, defined as

∇ := d +ϖ , i.e. ∇Xa
b = dXa

b +ϖc
a ∧Xc

b −ϖc
b ∧Xa

c , (2.1.23)

for an arbitrary p-form Xa
b , does not commute with itself. The background AdS

vielbein and spin connection ϖ takes the local expression through the definition

∇ha = 0 . (2.1.24)

For instance

∇2ea(s−1) = −s− 1

R2
ha ∧ hb ∧ ea(s−2)b , (2.1.25)

with R the AdS radius. All in all, the definitions of eqs. (2.1.14) and eq. (2.1.18)

become

T a(s−1),b(t) := ∇ωa(s−1),b(t) + hc ∧ ωa(s−1),b(t)c + βs,t

R2 h
{b ∧ ωa(s−1),b(t−1)} , (2.1.26)

for 0 ≤ t ≤ s − 1, where ωa(s−1) has to be understood as ea(s−1) and T a(s−1),b(s−1)

has to be understood as Ra(s−1),b(s−1) . Eq. (2.1.26) involves a certain coefficient βs,t
and the braces denote a Young projection (valid for D ≥ 4) such that the new term

has the same symmetries as the other ones

(s− t+ 1)h{b ∧ ωa(s−1),b(t−1)}

:= (s− t)hb ∧ ωa(s−1),b(t−1) − (s− 1)ha ∧ ωa(s−2)b,b(t−1)

− (s−1)(t−1)
D+s+t−5

ηab hc ∧
(
s−t−1
t−1

ωa(s−2)c,b(t−1) − D+2s−6
D+2t−6

ωa(s−2)b,b(t−2)c
)

+ (s−1)(s−2)
D+s+t−5

ηaa hc ∧
(
ωa(s−3)bc,b(t−1) − t−1

D+2t−6
ωa(s−3)b(2),b(t−2)c

)
+ (s−t)(t−1)

D+2t−6
ηbbhc ∧ ωa(s−1),b(t−2)c .

(2.1.27)

3As explained in e.g. [121], the component of dCa(s),b(s) whose Young diagram has three rows

is killed as a consequence of eq. (2.1.19b), which is also the case of its trace, so that the only

surviving component is a Lorentz-irreducible tensor Ca(s+1),b(s) with two rows of length (s + 1)

and s .
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This unpalatable expression is referred to in the literature as σ+ , since it performs

the necessary projection to add an index b in the second row. Similarly, the term

hc ∧ ωa(s−1),b(t)c removes one index in the second row and is therefore called σ− .

The coefficient βs,t is such that βs,0 = 0 and βs,1 = s D+s−4
D−2

. The precise expres-

sion of βs,t for general t is rather tedious to obtain and not strictly necessary here

so we shall refrain from giving it, but it is completely fixed by the requirement of

gauge invariance in AdS and can be found, e.g. in [64] for D = 4 .

Initial data for a gauge algebra

This is the full description of the linearised dynamics. We now want to reformulate

the problem of adding interactions into an algebraic one. The first step is to identify

the set of ‘initial data’ that a higher-spin algebra must satisfy in order to reproduce

the free dynamics in the way that we explained above. More explicitly, we wish to

interpret the previous torsions and curvatures (2.1.26) as the different components

of the field strength of a linearised Yang-Mills connection taking value in a Lie

algebra that is yet to be determined.

From the form of the field strengths (torsions and curvature), one can read off

some structure constants of the putative higher-spin symmetry algebra. These

correspond to the Lie brackets of the Poincaré or (A)dS sub-algebra spanned by Jab
and Pa with the higher-spin generators Ma(s−1),b(t) with s ≥ 3 and 0 ≤ t ≤ s− 1

[Jcd,Ma(s−1),b(t)] = (s− 1)
(
ηdaMca(s−2),b(t) − ηcaMda(s−2),b(t)

)
+ t
(
ηdbMa(s−1),cb(t−1) − ηcbMa(s−1),db(t−1)

)
, (2.1.28a)

[Pc,Ma(s−1),b(t)] = ηc{bMa(s−1),b(t−1)} +
βs,t+1

R2 Ma(s−1),b(t)c , (2.1.28b)

where the shift βs,t → βs,t+1 in the last term between eq. (2.1.26) and eq. (2.1.28b)

is a consequence of the transition from curvature to structure constant, and where

braces also denote a Young projection similar to the one of eq. (2.1.27)

(s− t+ 1) ηc{bMa(s−1),b(t−1)}

:= (s− t) ηcbMa(s−1),b(t−1) − (s− 1) ηcaMa(s−2)b,b(t−1)

− (s−1)(t−1)
D+s+t−5

ηab
(
s−t−1
t−1

Ma(s−2)c,b(t−1) − D+2s−6
D+2t−6

Ma(s−2)b,b(t−2)c

)
+ (s−1)(s−2)

D+s+t−5
ηaa
(
Ma(s−3)bc,b(t−1) − t−1

D+2t−6
Ma(s−3)b(2),b(t−2)c

)
+ (s−t)(t−1)

D+2t−6
ηbbMa(s−1),b(t−2)c .

(2.1.29)

Note that this time, the limit R → ∞ in the Lie brackets takes away the simplest

term, while the only remaining term is the one involving a trace and a Young

projection. There is a slight abuse of language when talking about the limit of a

dimensionful parameter such as the AdS radius. The correct way to present things,

which we will adopt in the following, is to define the AdS radius as R = ϵ−1R̂ with
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a dimensionless parameter ϵ and to send ϵ to 0 while keeping R̂ fixed. We will

see that this distinction will become of capital importance when discussing the flat

contraction of the AdS higher-spin algebra, since the contraction parameter ϵ will

not appear with the AdS radius R in a pairwise manner.

The commutation relations (2.1.28) define in themselves a Lie algebra satisfying

the Jacobi identity, albeit one that does not give rise to an interacting theory beyond

the coupling of higher-spin fields to gravity. However, it is interesting to note

that the Lie derivative of the traceless Killing tensors of AdS (or Minkowski space

when R → ∞) along the corresponding Killing vectors is a tensor representation of

this Lie algebra. Although handy, this representation is not suited to our goal of

constructing a non-Abelian algebra satisfying the initial conditions of (2.1.28), so we

will bypass the representation given in terms of Killing tensors and Lie derivatives

and work directly with the generators and the Lie bracket.

2.2 Higher-spin algebras for massless theories in

(A)dS

In the metric-like formulation, one can introduce interactions perturbatively starting

from the free theory. This is usually called Nœther procedure, and is reviewed for

higher-spin fields e.g. in [168]. As an example, a self-interaction term for a spin-s

field φµ(s) deforms the free equations of motion by terms quadratic in φµ(s)

Fµ(s)[φ]
!
= gO(φ2)µ(s) , (2.2.1)

and deforms the gauge transformations as well by terms linear in φµ(s) and ξµ(s−1)

δφµ(s) = ∂µξµ(s−1) + gO(φ, ξ)µ(s) . (2.2.2)

Still on the example of the self-interacting spin-s field, performing two gauge varia-

tions and commuting the order, one remarks that the deformed gauge transforma-

tions can become non-Abelian, in the sense that the right-hand side of

[δξ1 , δξ2 ]φµ(s) = gO(δξ2φ, ξ1)µ(s) − (1 ↔ 2) , (2.2.3)

can be non-zero. In the case of spin-one, non-Abelian deformations can arise only

if the fields take value in a matrix group like SU(N) . Given this group, one can

reconstruct full Yang-Mills theory in an unequivocal way. In the case of spin-two

self interactions, asking that the deformation of gauge transformations at cubic,

quartic etc. levels close on the Poincaré or (A)dS algebra leads to a non-empty set of

vertices. At each order, interactions are fully determined and the whole procedure

re-sums to the Einstein-Hilbert theory of gravity [169, 170, 171, 172, 173]. The

application of this philosophy to higher-spin fields can be broadly denominated as
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the ‘gauge’ approach to interacting higher-spin theories and is reviewed, e.g., in

[174, 175, 69, 56, 121, 176, 123]. The classification of allowed cubic vertices and the

associated gauge transformations in Minkowski space-time shows that interactions

involving Fronsdal fields are higher-derivative4 (for instance, s− s− 2 vertices have

2s − 2 derivatives), and that some gauge transformations are indeed non-Abelian.

All of this hints at the existence of a non-Abelian higher-spin algebra underlying

the whole construction.5

In (A)dS space, we will recall the conditions under which the cubic gravitational

vertex of Fradkin and Vasiliev defines a unique Lie algebra which satisfies the Ja-

cobi identity. Moreover, this Lie algebra was shown to be associative (therefore it

automatically satisfies the Jacobi identity), and which is unique except in D = 5

[62] and up to deformations.

The hypotheses that we will work with are the following:

• the higher-spin algebra should have a spectrum which, as a vector space,

is given by a set of generators whose Young symmetry was identified in

eq. (2.1.10) and that we will denote by Ma(s−1),b(t) , representing the rigid

isometries of massless fields of every spin ;

• the algebra should be a non-Abelian extension of the Poincaré (or (A)dS)

algebra, meaning that gauge transformations are deformed at every spin ;

• the action of the Lorentz sub-algebra is the usual adjoint one: generators

transform under the action of the Lorentz group as is specified by their ten-

sorial representation, see eq. (2.1.28a) ;

• it should contain the isometries of the vacuum (i.e. Poincaré or (A)dS) as a

sub-algebra .

To this set of hypotheses, we will add a couple more:

• the Lie bracket of translations with higher-spin generators in AdS is given by

eq. (2.1.28b) ;

• there should be at least one Lie bracket
[
Ma(s−1),b(t1),Mc(s−1),d(t2)

]
such that

the right-hand side contains a generator Jab or Pa for every value of s .

4A complete classification of cubic vertices in light-cone was performed in [49] which exhibits

(2s−2), (2s+2) and 2-derivative couplings with gravity. The latter class can not be seen within the

Fronsdal formulation and only the first leads to a deformation of gauge transformations [130, 55]
5A Lagrangian formulation is not strictly necessary to construct an interacting theory, but if

one wants to quantise it using the Feynman rules, it is a desirable feature. However, an under-

lying algebra is always necessary to have a consistent theory. Indeed, in order to build quartic

interactions, the cubic vertices must satisfy a consistency condition which is that the structure

constants of the algebra they define satisfy the Jacobi identity.
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This first extra hypothesis seems reasonable to be able to reproduce the free dy-

namics as explained in section 2.1.2, while the second one is more of a technical

nature. In mathematical terms, we want to make sure that we define a filtered

algebra and not a graded one. From a filtered algebra, one can always perform a

contraction that makes it graded, and inversely, from a graded algebra one may

introduce deformations that will make it filtered. The physical interpretation is to

insist on the fact that higher-spin fields have a back-reaction on the graviton.

In the original paper of Fradkin and Vasiliev [60], such an algebra was constructed

in dS4, in spinor language, by classifying all the structure constants that satisfy the

Jacobi identity. This construction gives a unique result in (A)dS4, but none in flat

space. Moreover, it was remarked that all İnönü-Wigner contractions of the algebra

hs4 admitting a Poincaré sub-algebra violate the hypothesis on the form of the Lie

brackets with Pa .

In [65, 67, 70], the construction in generic D was performed. In [82, 168], the

problem of finding an algebra in the flat case was performed again using different

techniques, and again no solution was found. In [62], it was proven that the (A)dSD

algebra hsD is essentially unique in any D = 4 and D ≥ 6, while the case D = 5

brings an extra parameter.

Before showing the explicit construction of the algebra per se, let us point out a

certain number of properties that it satisfies:

• it verifies the usual rules for the addition of angular momenta

|s⟩ ⊗ |s′⟩ = |smax⟩ ⊕ |smax − 2⟩ ⊕ · · · ⊕ |smin + 2⟩ ⊕ |smin⟩ , (2.2.4)

with smax = s+s′ and smin = |s−s′| , where the spin of a higher-spin generator

(i.e. the representation of the Lorentz group that it carries) is shifted by one

with respect to the spin of the corresponding field. In practice, this means

that the Lie brackets of generators of spin s with generators of spin s′ can be

decomposed into generators of spin smax− 2, smax− 4, . . . , smin+4, smin+2 ;

• it admits super-symmetric generalisations, see e.g. [177, 66, 178], which are

non-Abelian algebras for the rigid symmetries of fermionic higher-spin fields

described by the equations of motion of Fang and Fronsdal [179, 180] ;

• it is associative .

This last point is non-trivial. The fact that the algebra is associative is some-

thing extra that we did not ask for. It signals the existence of an extra structure

whose origin can be traced back to the higher-spin algebra being an algebra of

non-Abelian gauge transformations, which is always associative under composition

of gauge transformations. Moreover, as we will see in section 3.1.2, this higher-

spin algebra (like all known higher-spin algebras) can be realised as the algebra of
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higher symmetries of a differential equation, which is also always associative under

composition of differential operators.

In the following, we will present the construction of the AdS higher-spin algebra

hsD in arbitrary dimension D , and then focus on the case of D = 3 separately. Even

though massless higher-spin fields in three space-time dimensions propagate no de-

grees of freedom, this case is interesting for multiple reasons. Firstly, the higher-spin

algebra admitting a one-parameter extension hs3[λ] is substantially simpler than the

case of generic dimension, because it contains only two types of generators at each

spin. Secondly, it admits finite-dimensional truncations to the double copy of the

well-known matrix algebras sl(N,R) , which makes their structure constants more

tractable. Thirdly, it remains the best-understood case yet where a flat contraction

of the algebra exists and successfully led to the construction of interacting, albeit

topological, higher-spin theories in three-dimensional Minkowski space-time.

Let us also note that the method of employing the quotient of a UEA to construct

interacting higher-spin algebra has also proven useful for other theories than the

one of massless fields: algebras for partially-massless higher-spin theories [181] and

theories with mixed-symmetry fields [182] can be defined along the same lines.

2.2.1 Any dimensions

The algebra of Fradkin and Vasiliev was built by exploiting the special isomorphism

between the universal cover of the Lorentz group and SL(2,C) , allowing one to

use spinorial language and picking a particular oscillator representation for the

(A)dS4 algebra. Indeed, the oscillator representation used in [60] provides a simple

way of building higher-spin generators which reproduces automatically the desired

spectrum. We will not reproduce its construction here, preferring instead to present

the general case. In modern language, we are representing the Universal Enveloping

Algebra of AdS4 thanks to a particular module.

One can understand the idea of the UEA construction as follows: there is a one-

to-one correspondence between Killing tensors on constantly curved manifolds and

higher products of Killing vectors [183] (the conformal version of this statement

can be found in [65]). In other words, Killing tensors solutions of eq. (2.1.7) can be

expressed as products of Killing vectors with the appropriate Young projection.

Rather than picking a particular representation for the generators of the higher-

spin algebra, this can be formulated in algebraic terms by defining the higher-spin

algebra as a suitable quotient of the UEA of the algebra of space-time isometries.

The UEA of a Lie algebra g, called here U(g) is constructed by introducing an

associative product ⋆ that will be omitted in the following, asking that

[a, b] = a ⋆ b− b ⋆ a , (2.2.1)
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for any a, b ∈ g . Since the ⋆-product of two elements in U(g) can be written as a

symmetrised product and a commutator, elements of U(g) can be represented by

symmetrised products using the anti-commutator

a⊙ b = a ⋆ b+ b ⋆ a , (2.2.2)

which is also a consequence of the Poincaré-Birkhoff-Witt theorem, see, e.g., the

review part in [182].

We will resort to ambient space in order to simplify this construction. From

now on, we will also work in AdSD as it will be more convenient than dSD to talk

about holography in the later parts, and the dSD case can be recovered by a Wick

rotation. One may view the bulk of AdSD space-time with radius R as embedded

in an ambient space of one dimension more R2,D−1

AdSD :=
{
X2 = −R2

∣∣ X ∈ R2,D−1
}
, (2.2.3)

where the metric ηAB on R2,D−1 is the flat one with signature (−,+, . . . ,+,−), i.e.

X2 = ηABX
AXB = −(X0)

2 − (XD)
2 + (X1)

2 + · · · + (XD−1)
2 . (2.2.4)

The generators of the algebra of ambient space isometries preserving a particular

AdS sub-manifold are given by (the imaginary unit times) the Lorentz transforma-

tions of R2,D−1

JAB = XA ∂B −XB ∂A , (2.2.5)

and verify the algebra

[JAB, JCD] = ηBCJAD − ηACJBD − ηBDJAC + ηADJBC . (2.2.6)

The usual transvections and Lorentz transformations can be identified by choosing a

time-like vector in R2,D−1 , say ∂
∂XD , and write the decomposition of the generators

with respect to this direction JAB = (Jab, JaD) := (Jab, R Pa)

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc , (2.2.7a)

[Jab, Pc] = ηbcPa − ηacPb , (2.2.7b)

[Pa, Pb] = R−2Jab , (2.2.7c)

where a ∈ {0, . . . , D− 1} . The advantage of this formulation is that the spectrum

of higher-spin generators greatly simplifies when the latter are grouped in ambient

space tensors. Indeed, using the branching rules

YD+1(s− 1, s− 1) −−−−−→
D+1→D

s−1⊕
t=0

YD(s− 1, t) , (2.2.8)

we can see that the whole collection of Killing tensors (2.1.10) can be grouped

together in a single generator MA(s−1),B(s−1) with two-row rectangular Young pro-

jection. Focusing on the coset construction, we want to define a quotient of the
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UEA of so(2, D − 1) such that only the generators MA(s−1),B(s−1) are present. In

particular, we need to get rid of generators whose Young symmetry are given by

tableaux with more than two rows. This is done by identifying an ideal of the UEA,

that is a subalgebra k such that [k,U (so(2, D − 1))] ⊂ k . In the following, we will

focus on the the quadratic sector of U (so(2, D − 1)) and identify those quadratic

combinations that should not appear in the higher-spin algebra. The requirement

of compatibility and the property of being an ideal will uniquely fix the whole

construction.

The ambient space construction allows to define the higher-spin algebra hsD in

a compact way by quotienting the UEA of U (so(2, D − 1)) by a two-sided ideal

spanned by two quadratic elements

hsD :=
U (so(2, D − 1))〈
I[ABCD] ⊕ I(AB)

〉 , (2.2.9)

where ⟨·⟩ stands for the left- and right- multiplication by U (so(2, D − 1)) using the

associative product. The two-sided ideal is generated by I[ABCD] and I(AB), which

take the following expressions

I[ABCD] := J[AB ⊙ JCD] , (2.2.10a)

I(AB) := JC
(A ⊙ JB)C − 4

D+1
ηAB C2 , (2.2.10b)

where the first element is completely anti-symmetric and the second one is sym-

metric and traceless. We defined the quadratic Casimir of so(2, D − 1) as

C2 :=
1
4
JAB ⊙ JBA = 1

2
JABJ

BA . (2.2.11)

The only other independent quadratic combination is

KAB,CD = JC(A ⊙ JB)D − 1
D−1

(
ηAB ICD + ηCD IAB − 2 ηC(A IB)D

)
− 4

D(D+1)

(
ηAB ηCD − ηC(A ηB)D

)
C2 ,

(2.2.12)

which is completely traceless and irreducible. This latter is a good candidate to be

the generator of rigid isometries of a spin-three field, described in section 2.1.2, ow-

ing to the branching rule YD+1(2, 2) −→ YD(2, 2)⊕YD(2, 1)⊕YD(2) . This pattern

is reproduced for higher-order expressions, so that the only remaining generators

carry a rectangular two-row irreducible representation of the conformal group.

At first sight, one could think that the generator C2 is still unconstrained, but

the requirement that I[ABCD] and I(AB) define an ideal in U(so(2, D − 1)) forces it

to assume a fixed expression, which can be seen by the identity

3

4
I[ABCD]J

CD +
1

2
IC[AJB]

C +
D − 1

D + 1

(
C2 +

(D + 1)(D − 3)

4
id

)
JAB ≡ 0 , (2.2.13)

where id represents the identity generator. Factoring out I[ABCD] and I(AB) forces

one to factor out
(
C2 +

(D+1)(D−3)
4

id
)
JAB as well. If we do not want to factor out
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JAB and therefore trivialise the whole algebra, we are forced to adopt the following

expression for the quadratic Casimir

C2 = −(D + 1)(D − 3)

4
id . (2.2.14)

The eigenvalue of C2 matches the one of a unitary irreducible representation of the

conformal algebra called the singleton, that we will discuss in section 3. Retrospec-

tively, Schur’s lemma confirms that the quadratic Casimir C2 must be proportional

to the identity generator when its UEA is evaluated on an irreducible module. At

every order in the symmetrised product of so(2, D − 1) generators, one can show

that we obtain more elements which are all factored out except for a generator with

a two-row rectangular Young symmetry, indicating that the correct spectrum has

been reached.

Up to now, we have only showed that eq. (2.2.14) is the value of the Casimir

which is compatible with the quotient of the elements I[ABCD] and I(AB) . When

moving higher and higher in the tensor algebra, there will be other consistency

requirements coming from the compatibility of the quotient with higher products

appearing at each order, e.g. I[ABCD] I [CDEF ] . . . , establishing non-trivial relations

between all higher-order Casimir operators C2 , C4 , etc. It is remarkable that all

these relations are satisfied at the ‘singleton point’ defined by eq. (2.2.14), see, e.g.

[182].

When splitting the generators into Lorentz-irreducible pieces, we obtain an alge-

bra which displays the desired spectrum and the Lorentz-covariance property, and

one can read off the structure constants of the commutators [Pa,Mb(s−1),c(t)] , for

instance by a meticulous application of the Leibniz rule, and see that it verifies

eq. (2.1.28b) as well.

It was shown [62] that hsD is the only admissible algebra in D = 4 and D ≥ 6

reproducing known interactions. In D = 5 , a one-parameter family of deformations

exists [182, 184], due to the exceptional isomorphism so(2, 4) ≃ su(2, 2) and the fact

that the UEA of the sl(N,R) family of algebras admits a one-parameter deformation

[185].6

For the same reason, in D = 3 a one-parameter family, called hs3[λ] , also exists

due to the isomorphism so(2, 2) ≃ sl(2,R)⊕ sl(2,R) , which we will now review. The

algebras hs3[λ] are infinite-dimensional generalisations of the sl(N,R) ⊕ sl(N,R)
algebras, where the real parameter λ interpolates between integral values of N .

These algebras can be described by applying the same construction as in any D ,

with a slight relaxation on the factoring out of IABCD [134, 150].

6Remember that sl(4,R) and su(2, 2) are two real forms of sl(4,C) .
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2.2.2 Three dimensions

The isometry algebra so(2, 2) is isomorphic to two copies of so(2, 1) , which are in

turn isomorphic to two copies of sl(2,R) . To see this isomorphism in action, let us

start with the generators JAB of so(2, 2) , with A ∈ {0, 1, 2, 3} . Let us pose

mab := Jab , pa := Ja3 , (2.2.1)

where a, b ∈ {0, 1, 2} and mab can be dualised into

ja := 1
2
εabcmbc ⇐⇒ mab = −εabcjc , (2.2.2)

using the Levi-Civita tensor. For the latter we adopt the convention ε012 = 1 and

use the metric η = (−,+,+) to raise or lower indices. In this basis, the commutation

relations read

[ja, jb] = εabcj
c , [ja, pb] = εabcp

c , [pa, pb] = εabcj
c . (2.2.3)

One can rearrange the components of pa and ja into the generators

Pm := (p0 − p1, p2, p0 + p1) , Lm := (j0 − j1, j2, j0 + j1) , (2.2.4)

where m ∈ {−1, 0, 1}. This gives the commutation relations of two intertwined

copies of sl(2,R)

[Lm, Ln] = (m− n)Lm+n ,

[Lm, Pn] = (m− n)Pm+n ,

[Pm, Pn] = (m− n)Lm+n .

(2.2.5)

One can eventually identify two orthogonal copies of sl(2,R) by introducing the

linear combinations defining a Z2-grading

Lm =
1

2
(Lm + Pm) , L̄m =

1

2
(Lm − Pm) , (2.2.6)

verifying

[Lm,Ln] = (m− n)Lm+n , [L̄m, L̄n] = (m− n)L̄m+n , [Lm, L̄n] = 0 . (2.2.7)

The quadratic Casimir operator of so(2, 2) introduced in eq. (2.2.11) is then

expressed in terms of the Casimir operators of the two orthogonal sl(2,R) algebras
as

C2 = L2 + P 2 = 2
(
L2 + L̄2

)
, (2.2.8)

where we used the components of the inverse of the sl(2,R) Killing metric γmn to

contract indices, e.g., L2 = γmnLmLn and L2 = γmnLmLn , with the convention

γmn =

 0 0 −2

0 1 0

−2 0 0

 . (2.2.9)
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In three space-time dimensions, the higher-spin algebra takes a much simpler

form, since the generators Y3(s−1, t) with s > 2 and t > 1 do not exist due to Young

symmetry. This means that for every spin s ≥ 2 , there are only two generators,

with symmetries Y3(s − 1) and Y3(s − 1, 1) , which will be interpreted as higher-

spin generators extending translations and Lorentz transformations respectively.

Moreover, the second one can be dualised by means of the three-dimensional Levi-

Civita tensor εabc to give again a generator with complete symmetry in its indices.

Carrying on with the construction of the previous section, it can be proven that

I(AB) ∼ 0 ⇐⇒ LmL̄n ∼ 0 , (2.2.10)

where ∼ is the equivalence relation defined by the factoring out of the ideal and

where we omitted the anti-commutator since the two copies of sl(2,R) naturally

commute, see [107]. This explains why, in the construction of higher-spin algebras

in three dimensions, it is enough to consider the direct sum of two copies of the

UEA of sl(2,R), since all mixed products are factored out, see, e.g., [134] and the

review [150].7 In terms of Lm and Pm generators, the relations (2.2.10) read, see

[107]

Lm Pn − Pm Ln ∼ 0 , Pm Pn − Lm Ln ∼ 0 , L2 + P 2 − λ2 − 1

2
id ∼ 0 . (2.2.11)

On the other hand, contrary to the generic case, in three dimensions one does not

need to factor out the element I[ABCD] . One can dualise it instead into a singlet,

using the ambient space Levi-Civita symbol εABCD . Although a singlet fits in the

vector space of global symmetries of a massless spin-one field as the U(1) phase

transformation, the UEA construction already provides us with such a singlet: the

identity. The two, however, do not match, since

W :=
1

16
εABCDIABCD = japa = γmnLmPn = L2 − L̄2 , (2.2.12)

while C2 = 2
(
L2 + L̄2

)
∝ id . Moreover, factoring out IAB implies a relation

between W and C2

W 2 ∼ 1
4
(C2)

2 . (2.2.13)

Imposing I[ABCD] =
2
3
εABCDW ∼ 0 as in section 2.2.1 would imply C2 ∼ 0 , con-

sistently with the D-dimensional result (2.2.14). However, we will choose to work

with the weaker condition (2.2.13) that leaves the choice of the eigenvalue of the

quadratic Casimir C2 free. For the latter, we will use the convenient8 parameteri-

sation

C2 ∼
λ2 − 1

2
id . (2.2.14)

7An alternative construction, in which mixed products of the L and L̄ generators are allowed,

leads to an extended algebra dubbed ‘large AdS higher-spin algebra’ in [186]. Similar extended

algebras also appear in the description of partially-massless fields in three dimensions [187].
8The lower bound on the value of C2 is related to unitarity constraints [136], and the case

λ ∈ N reproduces some finite-dimensional truncations.
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The condition I(AB) ∼ 0 also guarantees that products of W with other elements

in the UEA do not introduce new generators since the relations (2.2.10) imply

WLm ∼ 1
2
C2 Lm , W L̄m ∼ − 1

2
C2 L̄m . (2.2.15)

The eq. (2.2.14) leads to the one-parameter family of higher-spin algebras that has

been considered in the literature on massless fields in three dimensions [135, 188,

189, 150]. One can write

W ∼ λ2 − 1

4
η , (2.2.16)

where we introduced the twist operator η flipping the sign of one copy of sl(2,R)
while leaving the other untouched. Of course, η2 = id which respects (2.2.13). This

leads to the presentation of the one-parameter family of higher-spin algebras:

id⊕ η ⊕ hs3[λ] :=
U(so(2, 2))〈

IAB ⊕
(
C2 − λ2−1

2
id
)〉 , (2.2.17)

which is equivalently written as

hs3[λ] = hs[λ]⋉ hs[λ] , (2.2.18)

where the algebra hs[λ] is defined by

1⊕ hs[λ] =
U(sl(2,R))〈
C2 − λ2−1

4
1
〉 , (2.2.19)

where C2 denotes the sl(2,R) Casimir operator (say L2 or L̄2). When λ = N ∈ N , its

eigenvalue corresponds to that of a finite-dimensional irreducible representation and

a further infinite-dimensional ideal appears. Factoring it out leads to the sl(N,R)
algebra, that can be interpreted as a higher-spin algebra involving a finite number

of fields with spin 2 ≤ s ≤ N .

It is worth revisiting the previous construction in the finite-dimensional case.

The absence of mixed products of L and L̄ means that one can consider so(2, 2)

representations of the form

Lm =

(
lm 0

0 0

)
, L̄m =

(
0 0

0 lm

)
, (2.2.20)

where the finite-dimensional representations lm of the sl(2,R) algebra are the same

in the two blocks. This is because the eigenvalue of l2 in the upper and lower

blocks are forced to assume the same eigenvalue if we want C2 to be a multiple of

the identity by virtue of eq. (2.2.14). Choosing that of dimension N , the Casimir

operators of so(2, 2) take the form

C2 =
N2 − 1

2

(
1 0

0 1

)
, W =

N2 − 1

4

(
1 0

0 −1

)
, (2.2.21)
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where W manifestly satisfies the relation (2.2.13) imposed by IAB ∼ 0 .

Historically, this class of higher-spin algebras was arrived at by other consider-

ations. Indeed, by remembering that AdS3 gravity can be formulated as a Chern-

Simons theory based on the gauge group so(2, 2) ≃ sl(2,R) ⊕ sl(2,R) , with con-

nections

Am = ωm +R−1 em , Ām = ωm −R−1 em , (2.2.22)

where em plays the role of the vielbein and ωm of the spin connection. A natural

extension of sl(2,R) is sl(N,R) . Decomposing sl(N,R) into irreducible sl(2,R)
components we get

sl(N,R) = 2N − 1 ⊕ 2N − 3 ⊕ · · · ⊕ 3 , (2.2.23)

where the final 3 represents the adjoint representation of sl(2,R) and (2 s − 1)

is the dimension of the spin-(s − 1) representation of sl(2,R) , i.e. the number

of components of a fully symmetric tensor with (s − 1) indices under the three-

dimensional Lorentz algebra which is identified with the components of a spin-s

frame-like field (2.1.1). The family of algebras sl(N,R) ⊕ sl(N,R) is therefore

appropriate to describe a higher-spin theory with fields of spin 2 to N included.

The non-linear theory gauging this algebra was described in [137, 138], see also

[190] and references therein.

2.3 Higher-spin algebras for massless theories in

flat space

As mentioned in the introduction, the existence of flat space higher-spin theories is

restricted by a number of no-go results, some of them constraining the low-energy

behaviour of the interacting theory, others regarding the consistency of interactions,

others lastly concerning the (in)existence of Lie algebras underlying the symme-

try. For instance, as advertised in the introductory remarks of this chapter, the

higher-spin algebra hs4 built in [60] doesn’t admit any flat-space contraction whose

linearised curvatures reproduce the limit R → ∞ of the initial conditions displayed

in (2.1.28). Although this should resound as a no-go theorem for the possibility to

build an interacting theory of higher-spin gravity in flat space along the same lines

as [54, 59, 61, 67], there are a number of observations that suggest to reconsider

this problem.

Firstly, this problem is evaded in D = 3 . Although theories of massless higher-

spin fields are degenerate in three space-time dimensions in the sense that there are

no dynamical degrees of freedom, the existence of a flat contraction of the higher-

spin algebras should be signalled as a yes-go. Moreover, the fact that higher-spin

theories are constrained by low-energy no-go theorems in dimensions greater than
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three does not have to be related to the existence or not of a gauge algebra in

dimensions greater than three, because the first of these statements is dynamical

while the other is kinematical. At best, the existence of an algebra in D = 3 should

be considered as coincident to the no-go theorems not being applicable.

Secondly, non-Abelian higher-spin algebras extending the Poincaré algebra ac-

tually exist in dimensions strictly greater than three. In the original article [60]

displaying the construction of the higher-spin algebra hs4 , the authors discussed

possible contractions of this algebra giving rise to a higher-spin algebra extending

iso(1, 3) . Although they found several, none of them was able to reproduce the

limit R → ∞ of the eqs. (2.1.28). One of these algebras was also reproduced more

recently in [191], where it was remarked that using the spinorial representation of

SL(2,C) , this flat-space algebra contained zero-norm state whose factoring out in-

evitably led to the trivialisation of the action of translations. In the following, we

will identify one of the possible contractions of [60] as a candidate flat-space higher-

spin algebra, explaining why the arguments mentioned above do not constitute in

themselves a no-go to the existence of an interacting theory gauging it.

2.3.1 Three dimensions

We can perform an İnönü-Wigner contraction that takes one from the AdS higher-

spin algebra hs3[λ] to the flat space higher-spin algebra ihs3[λ] , as was already

noticed for the specific value λ = 3 , where the infinite-dimensional higher-spin

algebra can be truncated to a finite-dimensional algebra isomorphic to two copies

of sl(3,R). In [78, 79], this İnönü-Wigner contraction was defined and shown to

reproduce a theory of three-dimensional spin-three gravity formulated on flat space-

time. Later, the case where λ ∈ N and λ ∈ R+ were considered in [192, 80].

The sl(3,R) ⊕ sl(3,R) algebra is spanned by generators Lm , Pm with |m| ≤ 1

and Un , Vn with |n| ≤ 2 and its Lie brackets are given by

[Lm, Un] = (2m− n)Um+n , [Lm, Vn] = (2m− n)Vm+n , (2.3.1a)

[Pm, Un] = (2m− n)Vm+n , [Pm, Vn] = (2m− n)Um+n , (2.3.1b)

[Um, Un] = (m− n)
(
2m2 + 2n2 −mn− 8

)
Lm+n , (2.3.1c)

[Um, Vn] = (m− n)
(
2m2 + 2n2 −mn− 8

)
Pm+n , (2.3.1d)

[Vm, Vn] = (m− n)
(
2m2 + 2n2 −mn− 8

)
Lm+n , (2.3.1e)

in addition to eq. (2.2.5). By introducing a parameter ϵ ∈ R , replacing the genera-

tors Pm and Vm by ϵ−1 Pm and ϵ−1 Vm respectively, the limit ϵ → 0 reproduces the

İnönü-Wigner contraction to the sl(3,R) ⋉ sl(3,R) algebra. The resulting algebra

contains a three-dimensional Poincaré sub-algebra.

The procedure to define the İnönü-Wigner contraction ihs3[λ] from hs3[λ] follows

from the observation that the structure of (2.3.1) is reproduced for any spin: the
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generators of hs3[λ] always split into two categories, one of them forming a sub-

algebra. Therefore, one can perform an İnönü-Wigner contraction by redefining the

generators in the complement of this sub-algebra with an inverse power of ϵ , as

explained in [80], and sending ϵ to zero.

As explained in section 2.2.2, the algebra hs3[λ], with generators that we shall

denote as L
(s)
m and P

(s)
m (of which Lm , Pm on the one hand and Um , Vm on the other

hand are the s = 2 and s = 3 instances respectively), possesses a Z2-grading and its

generators can be built as the sum and differences of generators of two orthogonal

copies of hs[λ] , that we shall denote as L(s)
m and L̄(s)

m . As such, there is a natural

prescription for the İnönü-Wigner contraction

L(s)
m = L(s)

m + L̄(s)
m , P (s)

m = ϵ
(
L(s)

m − L̄(s)
m

)
, (2.3.2)

with commutators

[
L(s)
m , L(t)

n

]
=

s+t−2∑
u=|s−t|+2

s+t+u even

gsts+t−u(m,n;λ)L
(u)
m+n , (2.3.3a)

[
L(s)
m , P (t)

n

]
=

s+t−2∑
u=|s−t|+2

s+t+u even

gsts+t−u(m,n;λ)P
(u)
m+n , (2.3.3b)

[
P (s)
m , P (t)

n

]
= ϵ2

s+t−2∑
u=|s−t|+2

s+t+u even

gsts+t−u(m,n;λ)L
(u)
m+n , (2.3.3c)

where gsts+t−u(m,n;λ) are some structure constants, displayed for instance in [135,

193]. The limit ϵ→ 0 reproduces the algebra ihs3[λ] ≃ hs[λ]⋉ hs[λ] .

A natural question is if one can build the algebra ihs3[λ] from a UEA con-

struction. If the answer turns out to be positive, this would mean that the AdS3

higher-spin algebra and its flat-space counterpart should be thought of on the same

footing, a statement that we can hope to generalise to higher dimensions.

To this end, we will start from the observation that the generators L
(s)
m form a

sub-algebra extending the Lorentz sub-algebra of Poincaré, and which is isomor-

phic to hs[λ] . This leads to the natural assumption that the generators L
(s)
m are

constructed as products of Lorentz generators only. From there, defining the other

generators P
(s)
m through the adjoint action of translations and checking that the

commutators indeed reproduce ihs3[λ] , we will encounter consistency conditions

that will constitute the ideal one has to factor out in order to build ihs3[λ] as a

coset.
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Higher-Lorentz sector

We are working in the UEA of the Poincaré algebra iso(1, 2) , with associative

product ⋆ that we will omit in the following. Assume the following form for the

generators L
(s)
m , reflecting the observation that they form a sub-algebra isomorphic

to hs[λ]

L
(s)
±(s−1) := (L±1)

s−1 , L
(s)
m∓1 :=

∓1

s±m− 1

[
L∓1 , L

(s)
m

]
. (2.3.4)

For instance, for s = 3 we find

L
(3)
±2 = L±1L±1 , L

(3)
±1 = L0L±1 ±

1

2
L±1 , L

(3)
0 = L0L0 −

1

3
L2 . (2.3.5)

To recover the hs[λ] algebra we have to impose that the quadratic quantity L2 of the

Lorentz sub-algebra is proportional to the identity with the following λ dependence:

L2 := γmnLmLn = L0L0 −
1

2
(L1L−1 + L−1L1) ∼

λ2 − 1

4
id , (2.3.6)

where γmn is the inverse Killing metric of so(2, 1) ≃ sl(2,R) with the conventions of

eq. (2.2.9). Notice that this is a rather strong constraint since L2 does not commute

with translations: we shall check its consistency later.

Higher-translation sector

The other class of generators, denoted by P
(s)
m , can be recovered from the L

(s)
m via

the adjoint action of the Poincaré sub-algebra. Indeed, from (2.3.3), we have that[
Pm , L

(s)
n

]
=
(
(s− 1)m− n

)
P

(s)
m+n , (2.3.7)

and we can use this relation to define all P
(s)
m , that will thus be linear in Pm in their

UEA realisation. For instance, for s = 3 we have

P
(3)
±2 = L±1P±1 , P

(3)
±1 = L0P±1 ± 1

2
P±1 , P

(3)
0 = L0P0 − 1

3
W , (2.3.8)

where

W := γmnLmPn = L0P0 − 1
2
L1P−1 − 1

2
L−1P1 , (2.3.9)

is the three-dimensional analogue of the Pauli-Lubanski vector. However, in this

case, it is already a central element because it is scalar.

Eqs. (2.3.8) can be readily generalised to arbitrary values of the spin by noticing

that the adjoint action of Pm is consistent with the definitions

P
(s)
±(s−1) := (L±1)

s−2 P±1 , P
(s)
m∓1 :=

∓1

s±m− 1

[
L∓1 , P

(s)
m

]
. (2.3.10)

The expression for P
(s)
±(s−1) follows from the adjoint action of P0 on L

(s)
±(s−1) and

the position of the operator P±1 is irrelevant since [L±1, P±1] = 0 . The other
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components are fixed by the known action of Lorentz transformations on P
(s)
m . Still,

the consistency of the whole set of relations (2.3.4), (2.3.6) and (2.3.10) requires

some additional constraints which will specify the ideal that has to be factored out

from the UEA of iso(1, 2).

Universal enveloping construction of ihs3[λ]

Let us observe from (2.3.3) that[
Pm , L

(s)
n

]
=
(
(s− 1)m− n

)
P

(s)
m+n =

[
Lm , P

(s)
n

]
. (2.3.11)

These relations give rise to a first set of consistency conditions, since the two com-

mutators must agree. We can obtain them from the analysis of the case s = 3:

[
P∓, L

(3)
±2

]
!
=
[
L∓, P

(3)
±2

]
=⇒ L±P0 ∼ P±L0 , (2.3.12a)[

P∓, L
(3)
±1

]
!
=
[
L∓, P

(3)
±1

]
=⇒ L±P∓ ∼ P±L∓ , (2.3.12b)

which can be summed up in

LmPn ∼ PmLn , (2.3.13)

because [Lm, Pm] = 0 . Here and in the following, we used the symbol ∼ instead of

an equality to stress that the identity is valid only in a representation of the UEA

of the Poincaré algebra. Equivalently, ∼ defines is an equivalence relation, where

the left-hand side is equivalent to the right-hand side module terms in an ideal that

we will now build.

We can verify that the remaining relations in (2.3.11) are identically satisfied:

the cases with s ≥ 4 give rise to the same conditions, multiplied on the left or the

right by some elements of U(iso(1, 2)) . Using eq. (2.3.13), we can check that[
L2, Pm

]
∼ 0 . (2.3.14)

Therefore, in this setup L2 commutes with all elements of the Poincaré algebra and

this confirms the consistency of the relation (2.3.6), in which we imposed L2 ∝ id .

We now have to check that the higher-translation generators previously defined

form an Abelian factor and satisfy the limit ϵ → 0 of the commutation relations

(2.3.3). Given the form of the [Lm, Pm] commutator, it is clear that [L
(s)
m , P

(t)
n ]

contains exactly one P generator, and so it belongs to the higher-translation sector.

When developing
[
P

(s)
m , P

(t)
n

]
in powers of Lm’s and Pm’s, any factors of Pm can be

pushed to the right thanks to (2.3.13) and, for s = 2 and t = 3 , one obtains the
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following set of consistency conditions:[
P0 , P

(3)
±2

]
!
= 0 =⇒ P±1P±1 ∼ 0 , (2.3.15a)[

P∓1 , P
(3)
±2

]
!
= 0 =⇒ P±1P0 ∼ 0 , (2.3.15b)[

P∓1 , P
(3)
±1

]
!
= 0 =⇒ P±1P∓1 ∼ 0 . (2.3.15c)

Taking advantage of the relation (2.3.13) to get P
(3)
±1 ∼ P0L±1 ± 1

2
P±1 from (2.3.8),

the last commutator also gives[
P∓1 , P

(3)
±1

]
!
= 0 =⇒ P0P0 ∼ 0 . (2.3.16)

In conclusion, the product of any two translation generators must vanish:

PmPn ∼ 0 . (2.3.17)

In particular, this implies that the quadratic Casimir P 2 of the Poincaré algebra

must vanish.

From the consistency conditions (2.3.13) and (2.3.17) one can also fix the action

of the second quadratic Casimir W of the Poincaré algebra that we defined in

eq. (2.3.9) on the generators of iso(1, 2):

WLk = γmnLmPnLk ∼ γmnLmLnPk = L2Pk ∼
λ2 − 1

4
Pk , (2.3.18a)

WPk = γmnLmPnPk ∼ 0 . (2.3.18b)

The whole set of consistency conditions,

Pmn := PmPn ∼ 0 , (2.3.19a)

Im,n := LmPn − PmLn ∼ 0 , (2.3.19b)

L2 − λ2 − 1

4
id ∼ 0 , (2.3.19c)

defines an ideal because

[Lk, Im,n] = (k −m) Im+k,n + (k − n) Im,n+k , (2.3.20a)

[Lk,Pmn] = (k −m)P(m+k)n + (k − n)Pm(n+k) , (2.3.20b)

which show that Pmn and Im,n transform as Lorentz tensors, and

[Pk, Im,n] = (k −m)P(m+k)n − (k − n)Pm(n+k) , (2.3.21a)

[Pk,Pmn] = 0 . (2.3.21b)

Note that Pmn is manifestly symmetric due to the fact that translations commute,

and Im,n is antisymmetric owing to the commutator of Lorentz transformations with
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translations. Furthermore, we already showed that L2 is central in the quotient and

in the following we shall see how one can recover the ideal (2.3.19) from the flat

limit of the ideal introduced in the quotient construction of higher-spin algebra in

AdS3. In conclusion, the one-parameter family of flat-space higher-spin algebras

can be obtained as

id⊕W ⊕ ihs3[λ] =
U(iso(1, 2))〈

Pmn ⊕ Im,n ⊕
(
L2 − λ2−1

4
id
)〉 , (2.3.22)

where the relations defining the ideal are given in (2.3.19).

From a limit of the ideal

Let us work again in the UEA of so(2, 2) and introduce the dimensionless parameter

ϵ , redefining the generator of translations Pm → ϵ−1 Pm such that the limit ϵ → 0

reproduces the Poincaré algebra

[Lm, Ln] = (m− n)Lm+n ,

[Lm, Pn] = (m− n)Pm+n ,

[Pm, Pn] = ϵ2 (m− n)Lm+n .

(2.3.23)

Under this rescaling of Pm, the quadratic relations in U(so(2, 2)) that define the

ideal written in (2.2.11) become

Lm Pn − Pm Ln ∼ 0 , Pm Pn − ϵ2 Lm Ln ∼ 0 , L2 − λ2 − 1

4
id ∼ 0 , (2.3.24)

where we used the trace of the second relation to transform P 2 into ϵ2 L2 in the last

one.

We may choose to represent higher-spin generators in the UEA of the AdS3

algebra in different ways, as an example, using the relations in the ideal, the spin-

three generator L
(3)
+2 can be represented either by its initial definition L+1 L+1 , or by

ϵ−2 P+1 P+1 . Clearly, one expression becomes singular when ϵ → 0 while the other

stays regular. Notice also that the generators L+1 L+1 and P+1 P+1 have distinct

commutators in the Poincaré algebra. Similarly, one can express the right-hand

side of a commutator in hs3[λ] by different representatives in the equivalence class

of generators, modulo relations in the ideal

[P+1, L+1 L+1 L+1 P0] = ϵ2 L+1 L+1 L+1 L+1

∼ L+1 L+1 P+1 P+1

∼ ϵ−2 P+1 P+1 P+1 P+1 ,

(2.3.25)

where the right-hand side can become either zero, finite or divergent when ϵ → 0,

depending on the expression. This means that the choice of a representative is
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essential when discussing the flat limit of the algebra at the level of the UEA

construction.

Now, the direct limit ϵ→ 0 in the left-hand side of the expressions in eq. (2.3.24)

takes the form

Lm Pn − Pm Ln , Pm Pn , L2 − λ2 − 1

4
id , (2.3.26)

and setting them to zero reproduces the consistency conditions first obtained in

eqs. (2.3.19a) – (2.3.19c), and identified as the ideal one has to quotient out of the

UEA of iso(1, 2) in order to reproduce ihs3[λ] . This signals that in the flat case, the

product of at least two translations should be identified to zero, while the product

of two Lorentz transformations remains a free generator.

The upshot of the analysis of the previous sections is that taking the limit ϵ→ 0

is a well-defined procedure both in the UEA definition and in the commutators,

by choosing a representative for the higher-spin generators which are the products

of Lorentz generators with at most one translation generator. On the other hand,

expressions in the UEA written as the product of two or more translation generators

will become factored out in the limit ϵ is sent to 0 .

Finite-dimensional matrix representation

One can treat the algebras hs3[λ] and ihs3[λ] in a similar way. As an example,

for λ = N ∈ N, both algebras admit finite-dimensional truncations of the form

sl(N,R) ⊕ sl(N,R) . In the flat case, one can recover a matrix representation by

evaluating the UEA of iso(1, 2) on the following finite-dimensional representation

of the Poincaré algebra:

Lm =

(
lm 0

0 lm

)
, Pm =

(
0 0

lm 0

)
, (2.3.27)

where the lm are N ×N matrices giving an irreducible representations of sl(2,R) .
Thanks to the lower-triangular form of the generators Pm , the conditions (2.3.19a)

and (2.3.19b) in the definition of the ideal are clearly satisfied. Moreover,

L2 =

(
l2 0

0 l2

)
=
N2 − 1

4

(
1 0

0 1

)
, W =

(
0 0

l2 0

)
=
N2 − 1

4

(
0 0

1 0

)
, (2.3.28)

so that the conditions (2.3.18) and (2.3.19c) are satisfied too. Notice that W is

manifestly a central element, but it is not proportional to the identity either: this is

consistent with the structure of the representation (2.3.27), which is not irreducible

but indecomposable.

The semi-direct structure is realised by block 2×2 matrix multiplication, so that

the whole set of generators forming the algebra known as isl(2,R) takes the form

L(s)
m =

(
l
(s)
m 0

0 l
(s)
m

)
, P (s)

m =

(
0 0

l
(s)
m 0

)
, (2.3.29)
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where the l
(s)
m are the generators of sl(N,R) in the defining representation, which

can be built as products of lm . Let us stress that the lower-triangular form of

the generators with so(1, 2) representations on the diagonal blocks is in agreement

with general results on the structure of finite-dimensional indecomposable repre-

sentations of the Poincaré algebra [194]. We will also encounter a similar type of

representations in the discussion on the possible holographic dual of this construc-

tion, presented in section 3.

Discussion

We found that there are several ways to write higher-spin generators in the UEA

of the isometry algebra of AdS3. For instance, classifying all possible spin-three

generators and using relations in the ideal, one can represent the generator spin-

three Lorentz transformations either by the product of two Lorentz generators Lm

or two translations Pm . These two ways of representing the higher-spin generators

are completely equivalent when the cosmological constant is non-zero, but lead to

two distinct generators when it is sent to zero. The natural expectation would

be that the spin-three translation generators are represented by the product of

two Pm’s, since they commute with translations. We explored this possibility in

[107], and we showed that with this prescription, the spin-three Lorentz generator

is given by the product of one Lm and one Pm. At this point, one has to face

an inconsistency: we have exhausted the number of generators of the flat-space

higher-spin algebra, but we still have the product of two Lm’s at our disposal. The

problem is that this combination cannot be part of the ideal, at the risk of getting

rid of all higher-spin generators. Consider for instance the quadratic combinations

written in eq. (2.3.5) and use the repeated adjoint action of the generators Pm :

this gives all the combinations displayed in eq. (2.3.8), as well as the combinations

Pm Pn ; thus quotienting by the expressions in eq. (2.3.5) also quotients all quadratic

combinations.

Therefore, one has to abandon the prescription of representing higher-translations

by a product of translations only. While it seems counter-intuitive, focusing first on

the higher-Lorentz transformations (that is products of only Lm) allows to resolve

the previous tension. Representing the spin-three Lorentz transformations by the

product of two Lm’s, the spin-three translations must be given by the product of

one Lm and one Pm. The product of two Pm’s is an extra generator which can be

consistently factored out.

We noticed that we can realise the full algebra ihs3[λ] as the quotient of the UEA

of iso(1, 2) by a one-parameter ideal, and showed that the expressions entering this

ideal could be recovered by taking the limit ϵ→ 0 of the ideal that appears in AdS.

Notice also that in AdS, one may represent higher-spin generators by the product of

many Lm’s and at most one Pm . In that case, the structure constants appearing on
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the right-hand side of the commutators take an expression such that the limit ϵ→ 0

is well-behaved. We now want to extend what we learned to the higher-dimensional

setting.

2.3.2 Higher dimensions

In the previous section, we learned how to construct a flat three-dimensional higher-

spin algebra from an İnönü-Wigner contraction of one on AdS3. We were also able

to reproduce the contracted algebra from a Universal Enveloping Algebra construc-

tion. The contraction relies on the existence of a sub-algebra (called algebra of

‘higher-Lorentz’ transformations in the case of D = 3, here spanned by products

of Lorentz generators) which allows to make a rescaling of the generators living in

the complement. We learnt that, in order to repeat the contraction at the level

of the Universal Enveloping Algebra requires to carefully pick a representative for

the higher-spin generators containing no more than one translation generator. In

turn, this implies that the ideal one has to quotient in the coset construction must

contain all generators built as products containing at least two translations. This

structure allows to precisely reproduce the flat-space higher-spin algebra and all its

finite-dimensional truncations.

We will try to repeat this observation in D ≥ 4: a candidate higher-spin algebra

in Minkowski space should be built as an İnönü-Wigner contraction leaving a sub-

algebra untouched, and as a quotient of the universal enveloping algebra of the

Poincaré algebra.

As an İnönü-Wigner contraction

The most straightforward way of building a flat-space higher-spin algebra from the

Eastwood-Vasiliev algebra is to proceed like in D = 3 by identifying an interesting

İnönü-Wigner contraction. To this end, it is necessary and sufficient to find a sub-

algebra of hsD containing the Lorentz algebra. Indeed, for any algebra g, if one can

find a splitting g = h + k such that h is a sub-algebra of g containing the Lorentz

algebra, then one can then redefine elements of k by multiplying them by a real

dimensionless parameter k̃ := ϵ k , such that

[h, h] ⊆ h , [h, k̃] ⊆ ϵ h+ k̃ , [̃k, k̃] ⊆ ϵ2 h+ ϵ k̃ , (2.3.1)

and in the limit ϵ→ 0 , one finds that commutators involving only h are untouched

while k̃ becomes an Abelian ideal.

In the case of g = so(2, D − 1) and h = so(1, D − 1) , the result of the İnönü-

Wigner contraction is the Poincaré algebra. In the case of g = hsD , it is not obvious

what the sub-algebra h should be, but it should be strictly bigger than the Lorentz
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algebra and therefore infinite-dimensional. Indeed, if h is the Lorentz algebra then

the İnönü-Wigner procedure results in an algebra where the only non-vanishing

commutators are the ones involving only the generators of the Lorentz sub-algebra

among themselves. In other words, the resulting theory will include higher-spin

interactions that do not deform the gauge algebra, which is the opposite of what

we set out to do. Therefore, the sub-algebra h must also contain one higher-spin

generator, and it follows from usual arguments that it must be infinite-dimensional.

Fortunately, there are a few observations that can help to find some interesting

sub-algebras. Firstly, note that the only available tensor that can appear in the

structure constants of the AdS higher-spin algebra is the flat metric ηab . This

means that the number of indices of the generators on the right-hand side of the

Lie bracket is equal to the number of indices on the left-hand side of the Lie bracket,

modulo a multiple of 2 . Secondly, the spin of the generators appearing on the right-

hand side of the Lie bracket is equal to the sum of the spins of the generators on

the left-hand side, modulo a multiple of 2 (this is a consequence of the Poincaré-

Birkhoff-Witt theorem applied to the UEA construction of hsD , and one even has

the spin addition rules displayed in section 2.2).

These conditions can be schematically summarised as

[
Ma(s1−1),b(s1−t1−1),Mc(s2−1),d(s2−t2−1)

]
∝

s1+s2−2∑
s3=|s1−s2|+2

s3−1∑
t3=0

Me(s3−1),f(s3−t3−1) , (2.3.2)

where s1 + s2 − s3 mod 2 = 0 and t1 + t2 − t3 mod 2 = 0 and we omitted the pre-

cise form of the structure constants. Here and in the following, we changed notation

with respect to section 2.1, so that t directly parameterises the depth.

These two basic observations already allow us to build a list of candidate sub-

algebras. We will follow the terminology of sections 5 and 6 of [60] to classify

infinite-dimensional sub-algebras of the AdS4 higher-spin algebra (although there a

specific realisation was assumed):

• s mod 2 = 0 , which corresponds to the sub-algebra of even spin ;

• s + t mod 2 = 0 , which corresponds to the generalisation to any dimensions

of (the bosonic part of) the h2 sub-algebra of [60] ;

• s mod 2 = 0 and t mod 2 = 0 , which corresponds to the generalisation to

any dimensions of (the bosonic part of) the f22 sub-algebra of [60] ;

• t mod 2 = 0 , which corresponds to the generalisation to any dimensions of

(the bosonic part of) the k sub-algebra of [60] .

Not all of them are of interest. For instance, the first item leads to the trun-

cation to minimal higher-spin algebras, but does not lead to a higher-spin algebra
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extending the Poincaré one. The two most interesting items are the second and

last. We will argue in the following that only the last one can be reproduced from a

coset construction. We call the algebra resulting from an İnönü-Wigner contraction

with respect to the even t sub-algebra ihsD . It is clear that the structure constants

of ihsD are exactly the same as those of hsD , except for the commutators of two

generators with t odd which vanish. Finally, the third item can be used to define a

minimal truncation of ihsD to its even-spin sub-algebra.

In the following, we will show how to construct a flat-space higher-spin algebra

in any dimensions, enlarging the Poincaré one with an infinite set of generators. We

will construct it from a quotient of the UEA of the Poincaré algebra, in a similar

way as we showed before for ihs3[λ] . We will then argue that it reproduces ihsD .

Annihilator of the scalar singleton

Reversing the logic we followed in section 2.3.1, we first identify this ideal by looking

at how the limit of vanishing cosmological constant affects the ideal that one factors

out in the AdSD coset construction. We then check its consistency and track how the

resulting algebras can also be recovered as İnönü-Wigner contractions of Eastwood-

Vasiliev algebras. We also prove that, under reasonable assumptions, the ideal we

obtain in the limit is the only one whose factoring out gives a coset algebra defined

on the same vector space as the Eastwood-Vasiliev one. Let us recall once again

that, in any D ≥ 4 , the contractions presented below can be interpreted either as

flat limits of AdSD higher-spin algebras or as ultra-relativistic, Carrollian limits of

conformal higher-spin algebras in D − 1 dimensions.

To study the flat-space limit of the AdS coset construction we first have to express

the algebra so(2, D−1) in a basis adapted to the limit. We shall later use the same

basis to classify all cosets of the UEA of iso(1, D − 1) that give the same set of

generators as in Eastwood-Vasiliev algebras.

Let us rewrite the AdS algebra so(2, D−1), singling out the generator Pa = ϵ JaD

[Jab , Jcd] = ηbc Jad − ηac Jbd − ηbd Jac + ηad Jbc , (2.3.3a)

[Jab , Pc] = ηbc Pa − ηac Pb , (2.3.3b)

[Pa , Pb] = ϵ2 Jab , (2.3.3c)

where ηab has signature (−,+, . . . ,+) . We assign the same mass dimensions to the

generators Pa and Jab , so that ϵ is a dimensionless parameter and the Poincaré

algebra iso(1, D−1) is recovered by sending ϵ to 0 . It will also prove useful to have

a contraction parameter ϵ distinct from the cosmological constant, since (as we will

see in section 2.4) the limits ϵ→ 0 and R → ∞ will not coincide.
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Quadratic combinations

In section 2.2.1 we factored out from the UEA of so(2, D − 1) an ideal generated

by quadratic combinations of the JAB , corresponding to the annihilator of the

scalar singleton representation. In the basis (2.3.3), linearly-independent quadratic

combinations of the generators can be conveniently classified according to their

properties under permutations of their free indices. We get:

• Two independent scalars

P 2 :=
1

2
Pa ⊙ P a , J2 :=

1

4
Jab ⊙ J ba ; (2.3.4)

• One vector

Ia := Jab ⊙ P b ; (2.3.5)

• Two traceless symmetric tensors of rank two

Qab := Pa ⊙ Pb − 2
D
ηabP

2 , Sab := J c
a ⊙ Jbc − 4

D
ηabJ

2 ; (2.3.6)

• One irreducible and traceless tensor transforming as a hook Young diagram

Mab,c := P(a ⊙ Jb)c +
1

D−1

(
ηabIc − ηc(aIb)

)
; (2.3.7)

• One tensor transforming as a traceless two-row rectangular Young diagram

Kab,cd := Jc(a ⊙ Jb)d − 1
D−2

(
ηabScd + ηcdSab − 2ηc(aSb)d

)
− 4

D(D−1)

(
ηabηcd − ηc(aηb)d

)
J2 ;

(2.3.8)

• Two completely anti-symmetric tensors

I[abc] := J[ab ⊙ Pc] , I[abcd] := J[ab ⊙ Jcd] . (2.3.9)

Note that, due to the commutation relations of the AdS isometry algebra, the

combinations P 2 , J2 , I[abc] and I[abcd] can actually be defined using the associative

product rather than the symmetrised product, the latter differing by a factor of two

from the former.

The tensors in eqs. (2.3.4) – (2.3.8) correspond to the branching in so(1, D− 1)-

irreducible components of the product JC(A⊙JB)D , while those in (2.3.9) correspond

to the branching of J[AB ⊙ JCD] . Notice that it is not necessary to symmetrise

explicitly the indices in P(a ⊙ Pb) and J
c
(a ⊙ Jb)c because the symmetrised product

automatically projects on the symmetric component.
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The ideal (2.2.10) that we factored out in the AdSD coset construction is gener-

ated by the following combinations, where we recall that the generator Pa has been

rescaled by a factor of ϵ :

J2 − D − 1

2
ϵ−2 P 2 ∼ 0 , (2.3.10a)

ϵ−1 Ia ∼ 0 , (2.3.10b)

Sab + ϵ−2Qab ∼ 0 , (2.3.10c)

ϵ−1 Iabc ∼ 0 , (2.3.10d)

Iabcd ∼ 0 , (2.3.10e)

C2 := J2 + ϵ−2 P 2 ∼ −(D + 1)(D − 3)

4
id . (2.3.10f)

The first three expressions come from the branching of the symmetric traceless

product I(AB) defined in eq. (2.2.10) and the next two come from the branching of

the completely anti-symmetric one, I[ABCD] . Finally, C2 is the quadratic Casimir

of so(2, D− 1) , which is fixed by the factoring out of the previous expressions (see

eq. (2.2.14)). Taking linear combinations of the first and the last equations we get

J2 ∼ D − 1

D + 1
C2 ∼ −(D − 1)(D − 3)

4
id , (2.3.11a)

ϵ−2 P 2 ∼ 2

D + 1
C2 ∼ −D − 3

2
id , (2.3.11b)

which means that both P 2 and J2 are central elements in the scalar singleton

representation. This is the case because [J2, Pa] = Ia ∼ 0 .

Higher-spin generators

Among the quadratic combinations listed above, all are fixed or factored out except

for Qab (or Sab), Mab,c and Kab,cd, which we identify as the spin-three generators of

the Eastwood-Vasiliev algebra. All these tensors are fully traceless and irreducible,

so that they transform as the following so(1, D − 1) irreducible representations:

Qab , Sab ≃ YD(2) , Mab,c ≃ YD(2, 1) , Kab,cd ≃ YD(2, 2) . (2.3.12)

In the rest of this section, we shall use either the name of the generators or their

associated Young diagrams to denote them. Note that, at this stage, we may

choose the spin-three fully-symmetric generator as either Qab or Sab since the two

expressions are identified by the relations that define the coset algebra hsD . One

has to be careful when working in the Poincaré UEA, since we shall see that the

two expressions cannot be identified anymore.

The structure of the other generators of the algebra results from the branching

rules of two-row Young diagrams of so(2, D − 1) into so(1, D − 1) diagrams: for
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s ≥ 2 , spin-s generators are associated to all two-row diagrams of so(1, D−1) with

length s− 1 and depth ranging from 0 to s− 1

Ma(s−1),b(s−t−1) with t ∈ {0, . . . , s− 1} . (2.3.13)

Once again, in analogy with section 2.3.1, there are multiple expressions for these

generators as products of J ’s and P ’s which are equivalent in AdS (modulo relations

of the ideal), but that will become inequivalent when ϵ is sent to 0 .

We now first consider the limit ϵ → 0 of the ideal (2.3.10) and check that it

defines an ideal in the Poincaré UEA. We then show that requiring the same set of

generators as in (2.3.13) also identifies uniquely that ideal.

Flat ideal from the contraction limit

By multiplying each expression of the ideal (2.3.10) by the suitable power of ϵ so

as to keep only the leading part, one can take a limit ϵ→ 0 and get

Jab ⊙ P b ∼ 0 , (2.3.14a)

Pa ⊙ Pb − 2
D
ηabP

2 ∼ 0 , (2.3.14b)

J[ab ⊙ Pc] ∼ 0 , (2.3.14c)

J[ab ⊙ Jcd] ∼ 0 , (2.3.14d)

together with

P 2 ∼ 0 , J2 ∼ −(D − 1)(D − 3)

4
id . (2.3.15)

Combining eqs. (2.3.14b) and (2.3.15) one can eventually recast these expressions

as

Pa Pb ∼ 0 , (2.3.16a)

Ia := Jab ⊙ P b ∼ 0 , (2.3.16b)

I[abc] := J[ab ⊙ Pc] ∼ 0 , (2.3.16c)

I[abcd] := J[ab ⊙ Jcd] ∼ 0 , (2.3.16d)

J2 +
(D − 1)(D − 3)

4
id ∼ 0 . (2.3.16e)

We verify now that these relations span an ideal, which we will abbreviate in I♭ .

All tensors entering (2.3.16) form irreducible representations of the Lorentz group

under the adjoint action of Lorentz generators, as displayed e.g. in eq. (2.1.28a).

Therefore, the only thing we need to check is the commutation relations with the

generator of translations. Remark that

[J2, Pa] = Ia , (2.3.17)



50 CHAPTER 2. HIGHER-SPIN SYMMETRY IN MINKOWSKI SPACE

so that J2 is a central element of the Poincaré algebra if and only if Ia is factored

out. Next

[Ia, Pb] = 2Pa Pb − 2 ηab P
2 . (2.3.18)

On the other hand

[I[abcd], Pe] = 4 ηe[a Ibcd] , [I[abc], Pd] = 0 . (2.3.19)

Notice that we recovered the condition Pa Pb ∼ 0 that was already manifest in

D = 3 , but we do not impose the stronger constraint Pa ∼ 0 that characterises the

flat limit of the scalar singleton proposed in [71]. Compared to the three-dimensional

case, the eigenvalue of J2 is instead fixed. Moreover, both the quadratic Casimir of

Poincaré P 2 and the Pauli-Lubanski tensor [195]

W[a1 ··· aD−3] :=
1
2
εa1 ··· aD−3bcd J

bc P d , (2.3.20)

vanish on account of the relations (2.3.16). This implies that all Casimir operators

of the Poincaré algebra are set to zero in any representation satisfying eqs. (2.3.16a)

and (2.3.16c), as one can appreciate by looking at their explicit expressions reported,

e.g., in [196]. Therefore, we are looking at a massless, scalar representation.9 How-

ever, eq. (2.3.16a) tells us that we are not dealing with an irreducible representation

of the Poincaré group obtained in Wigner’s classification (cf. [26, 27]), because if

that were the case, there exists a state |p⟩ characterised by its momentum pa such

that

Pa Pb |p⟩ = pa pb |p⟩ , (2.3.21)

but the factoring out of the left-hand side can be obtained if and only if pa is zero,

meaning that we are in the zero-momentum representation. However, in this case

Pa |p⟩ = pa|p⟩ = 0 so that we are identifying the generator Pa to zero in the UEA of

Poincaré. In part 3, we will propose a reducible but indecomposable representation

of the Poincaré algebra satisfying eqs. (2.3.16).

We can now take the quotient of the Poincaré UEA by the two-sided ideal ⟨I♭⟩
whose quadratic expressions are given in eqs. (2.3.16) and consider the resulting

coset algebra as a flat-space higher-spin algebra in any dimensions D or as a Car-

rollian conformal higher-spin algebra in (D − 1) dimensions (see section 3.3):

ihsD :=
U(iso(1, D − 1))

⟨I♭⟩
. (2.3.22)

The generators of this algebra are labelled byMa(s−1),b(s−t−1) like in hsD , and spin-s

generators are realised as products of s− 1 generators of the Poincaré algebra.

9In the case of massless Poincaré representations, the Pauli-Lubanski pseudo-vector or its

higher-dimensional generalisation is proportional to the generator of translations, where the pro-

portionality constant encodes the helicity. In our case, Wa1 ··· aD−3
∼ 0, meaning that we are

looking at a massless scalar.
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As it is manifest from eq. (2.3.16a), these products contain at most one trans-

lation generator and, more precisely, none if t is even and one if t is odd. Since

the t-even sub-algebra only contains products of J ’s, it can be viewed as a coset

of the UEA of the Lorentz sub-algebra. Moreover, the completely anti-symmetric

projection I[abcd] is factored out, so that this sub-algebra is isomorphic to one of the

higher-spin algebras for partially-massless fields (in D − 1 dimensions and with de

Sitter signature). The t-odd part can then be recovered by the adjoint action of Pa

on the allowed products of J ’s, with the prescription that I[abc] ∼ 0 and Ia ∼ 0 .

Computing an additional commutator with Pa does not produce new generators nor

extra consistency conditions because the combination Pa Pb is factored out.

Some commutators

Since the generators of ihsD are realised as products of Poincaré generators, they

all transforms as Lorentz tensors. For instance, for s = 3 one has

[Jab, Scd] = ηbcSad + ηbdSac − ηacSbd − ηadSbc , (2.3.23a)

[Jab,Mcd,e] = 2 ηb(cMd)a,e + ηbeMcd,a − 2 ηa(cMd)b,e − ηaeMcd,b , (2.3.23b)

[Jab, Kcd,ef ] = 2
(
ηb(cKd)a,ef + ηb(eKf)a,cd − ηa(cKd)b,ef − ηa(eKf)b,cd

)
, (2.3.23c)

where we used the fact that Kab,cd = Kcd,ab to write the commutators in a compact

form. On the other hand, their commutators with translations take a more ‘exotic’

form:

[Pa, Sbc] = 2Mbc,a , (2.3.24a)

[Pa,Mbc,d] = 0 , (2.3.24b)

[Pa, Kbc,de] = ηabMde,c + ηacMde,b + ηadMbc,e + ηaeMbc,d (2.3.24c)

+ 2
D−2

(
ηd(bMc)e,a + ηe(bMc)d,a − ηbcMde,a − ηdeMbc,a

)
.

Due to our choice of definition for the generators Pa and Mab,c , the AdS radius

does not appear explicitly in the commutators (2.3.23) and (2.3.24).

This structure generalises to any value of s, and we can always redefine the

generators so that

[Jcd,Ma(s−1),b(s−t−1)] = (s− 1)
(
ηdaMca(s−2),b(s−t−1) − ηcaMda(s−2),b(s−t−1)

)
(2.3.25)

+ (s− t− 1)
(
ηdbMa(s−1),cb(s−t−2) − ηcbMa(s−1),db(s−t−2)

)
,

and

[Pc,Ma(s−1),b(s−2n−1)] = ηc{bMa(s−1),b(s−2n−2)} (2.3.26a)

+ βs,s−2nMa(s−1),b(s−2n−1)c ,[
Pc,Ma(s−1),b(s−2n)

]
= 0 . (2.3.26b)
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The vanishing commutators in (2.3.26b) are clearly an exotic feature and do

not respect the initial conditions for a flat-space higher-spin algebra displayed in

(2.1.28). This implies that the curvatures of the algebra (2.3.22) do not repro-

duce upon linearisation the linear curvatures introduced in [58] to describe the free

dynamics of higher-spin particles.

Nevertheless, in section 2.4, we will show that they allow to describe the propa-

gation of free fields of arbitrary integer spin. These algebras are the first step of a

possible new paradigm for the formulation of the free dynamics in order to lead to

an interacting higher-spin gauge theory in Minkowski space via their gauging.

Classification of the possible ideals

In the previous pages we identified an ideal that allows us to obtain a higher-spin

extension of the Poincaré algebra with the same spectrum as the Eastwood-Vasiliev

algebra. We now prove that, under certain assumptions, this algebra is the only

coset of the Poincaré UEA with the desired set of generators. In particular, we

work under the hypothesis that all spin-s generators are built out of products of

(s− 1) generators of iso(1, D − 1) . This implies, by consistency, that all elements

of the ideal to be factored out are homogeneous in the number of generators they

contain. We shall thus ignore here the option to add dimensional-dependent terms

as, e.g., those entering the ideal in D = 5 whose peculiarities are discussed in [107].

As a first step, we have to identify an ideal such that, after its factoring out, only

the generators transforming as the so(1, D − 1) Young diagrams YD(2), YD(2, 1)

and YD(2, 2) in eq. (2.3.12) are left from the quadratic combinations of Poincaré

generators listed in eqs. (2.3.4) – (2.3.9). Achieving this goal requires to factor

out the fully anti-symmetric combinations Iabc and Iabcd . From the commutation

relations presented in eq. (2.3.19) it can be seen they form in themselves an ideal,

consistently with their interpretation as the components of IABCD . Therefore, we

can consistently factor out these two combinations.

Among the remaining quadratic combinations, onlyKab,cd transforms as a YD(2, 2)

Young diagram, so that we have to keep it. Similarly, only Mab,c fits the role of

the YD(2, 1) generator. The delicate point is that both Qab and Sab display the

correct Lorentz transformations to fill the role of the remaining spin-three gener-

ator. However, we still have to handle the vector Ia , that cannot belong to the

set of generators of the higher-spin algebra since the vector Pa already plays this

role. Keeping Ia would thus both introduce an unwanted multiplicity and violate

our hypothesis on the structure of the generators. Requiring Ia ∼ 0 then implies

that both Qab and P
2 have to vanish as well when quotienting the ideal because of

eq. (2.3.18).

Summarising, factoring out Ia , Iabc and Iabcd from the UEA of iso(1, D− 1), as
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required to match the Eastwood-Vasiliev spectrum, implies as well the condition

Pa Pb ∼ 0 .

What remains to be determined is the fate of J2 . As it is manifest in (2.3.17),

it becomes a central element thanks to the previous conditions. It is thus natural

to set it proportional to the identity so as to avoid multiplicities in the spectrum.

Its eigenvalue is then fixed by

Iabc J
bc − 2

3
Jab Ib +

D − 3

3
Ia = −4

3

(
J2 +

(D − 1)(D − 3)

4
id

)
Pa , (2.3.27)

and the requirement that the left-hand side be factored out.

In conclusion, if one wants to build a higher-spin extension of the Poincaré al-

gebra with the Eastwood-Vasiliev spectrum (2.1.10) as a quotient of its UEA by a

two-sided ideal, one can only obtain the coset algebra (2.3.22).

Notice that one can proceed along the same lines to recover the Eastwood-Vasiliev

algebra as a coset of the UEA of so(2, D − 1), but eq. (2.3.18) is substituted by

ϵ−2 [Pa , Ib] = −
(
Sab + ϵ−2Qab

)
− 4

D
ηab

(
J2 − D − 1

2
ϵ−2P 2

)
, (2.3.28)

and thus implies (2.3.10a) and (2.3.10c).

Finally, let us mention that the splitting of the AdSD ideal into Lorentz-irreducible

parts (2.3.10) was already displayed in [70], and that its flat limit in D = 4 was

already taken in [191], but was discarded as a candidate algebra for higher-spin

symmetry in flat space, since the nilpotent character of translations was deemed

too problematic.

2.4 Free dynamics from the higher-spin curva-

tures

Defining the algebra ihsD, we noticed that its structure constants do not reproduce

the R → ∞ limit of those advertised in (2.1.28b). In turn, this means that the

linearised curvatures of this algebra are not the R → ∞ limit of those identified in

(2.1.26).

The burning question is then what system can these linearised curvatures de-

scribe. In order to do this, we will begin by analysing the form of the linearised

curvature F̄ a(s−1),b(t) for the gauge potentials ωa(s−1),b(t) and show that, by imposing

the same equations of motion as in the usual case (2.1.19a) and (2.1.19b), our set

of linearised curvatures are still equivalent to the Lopatin-Vasiliev set of equations

[64] describing the propagation of a spin-s particle on Minkowski background.
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The reason for this rather surprising result is actually quite simple: one does

not need to impose the full set of equations (2.1.19a) and (2.1.19b) in order to

describe the Fronsdal equation whose components are carried by the frame-like

ea(s−1). Instead, one may choose the tower of equations at any point we like and

reconstruct the missing equations by the Poincaré lemma. This fact was already

noticed in more abstract terms in [165, 166, 167], and we provide here a step-by-step

explanation of its inner working.

A crucial element in this discussion is that the gauge field ωa(s−1) , which has the

symmetries to be identified with the frame-like field (2.1.1), turns out to be pure

gauge as soon as s > 2, which is also true of most of the other gauge potentials.

Instead, the first non-pure-gauge connection of the tower is ωa(s−1),b(s−2) , which for

s = 2 coincides with the vielbein.

2.4.1 New higher-spin curvatures in flat space

We recall that the commutators [Ma(s1−1),b(s1−t1−1),Mc(s2−1),d(s2−t2−1)] of ihsD are the

same as the corresponding commutators in hsD when t1 or t2 are even, but vanish

when t1 and t2 are odd. In particular when s1 = 2 and t1 = 1, the commutators are

given by eq. (2.1.28b) when t2 is even (where the generators have been redefined so

that the AdS radius does not appear) and vanish when t2 is odd.

Let us consider a potential one-form taking values in the Lie algebra ihsD ,

A =
∞∑
s=1

s−1∑
t=0

ωa(s−1),b(s−t−1)Ma(s−1),b(s−t−1) , (2.4.1)

and its Yang-Mills curvature,

dA+ A ∧ A =
∞∑
s=1

s−1∑
t=0

F a(s−1),b(s−t−1)Ma(s−1),b(s−t−1) . (2.4.2)

The one-forms ωa and ωa,b correspond to the space-time vielbein and spin connection

respectively. Consider the perturbative expansion ωa = ha + ea and, for simplicity,

let us choose Cartesian coordinates so that the background vielbein is hµ
a = δµ

a

and the background spin connection vanishes.

The linearisation (denoted with a bar) of the curvatures F a(s−1),b(s−t−1) around

the Minkowski background only depend on the commutators between the higher-

spin generators Ma(s−1),b(s−t−1) and those of the Poincaré sub-algebra

F̄ a(s−1),b(s−2n−1) := dωa(s−1),b(s−2n−1) , (2.4.3a)

F̄ a(s−1),b(s−2n) := dωa(s−1),b(s−2n) + hc ∧ ωa(s−1),b(s−2n)c

+ βs,s−2n h
{b ∧ ωa(s−1),b(s−2n−1)} , (2.4.3b)
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where 0 ≤ n ≤
⌊
s−1
2

⌋
in the first equation and 1 ≤ n ≤

⌊
s
2

⌋
in the second one.

Note that, although they involve the same type of terms as the linearised Lopatin-

Vasiliev equations, they are in fact quite different. Indeed, they contain both σ+
and σ− terms when t is odd, and none when t is even.

These linearised curvatures can be obtained as a limit R → ∞ of the linearised

curvatures of Lopatin and Vasiliev, provided one rescales the fields ωa(s−1),b(s−t−1)

by Rt if t is even, and Rt−1 if t is odd (equivalently, one can keep the cosmological

constant fixed to a finite value and rescale the fields with t odd, including the

background vielbein ha , by a factor ϵ then sent to 0).

The linearised curvatures (2.4.3) are invariant under the gauge transformations

δωa(s−1),b(s−2n−1) = dλa(s−1),b(s−2n−1) , (2.4.4a)

δωa(s−1),b(s−2n) = dλa(s−1),b(s−2n) + hc λ
a(s−1),b(s−2n)c

+ βs,s−2n h
{b λa(s−1),b(s−2n−1)} . (2.4.4b)

In order to proceed, we need to impose equations of the type of the ones usually

implemented in [64] and recalled in section 2.1.2 that were shown to describe the

propagation of a spin-s particle. However, it is not at all obvious which one we

should impose at this stage. The spin-three case is instructive to start with.

2.4.2 Equations on the curvatures

Spin-three case

For a spin-three particle eqs. (2.4.3) read

F̄ ab := deab , (2.4.1a)

F̄ ab,c := dωab,c + hd ∧Xab,cd + β3,1 h
{c ∧ eab} , (2.4.1b)

F̄ ab,cd := dXab,cd , (2.4.1c)

where, for clarity, we renamed the fields ωab → eab and ωab,cd → Xab,cd . These

equations are invariant under

δeab = dξab , (2.4.2a)

δωab,c = dλab,c + hd ρ
ab,cd + β3,1 h

{c ξab} , (2.4.2b)

δXab,cd = dρab,cd . (2.4.2c)

The first curvature F̄ ab only involves the exterior derivative of the frame-like

field eab, therefore setting it to zero would mean that the latter becomes pure-gauge

thanks to the Poincaré lemma

F̄ ab !
= 0 =⇒ eab = dSab , (2.4.3)
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where Sab is a zero-form field with the same symmetry in its fibre indices, and whose

gauge variation is given by

δSab = ξab . (2.4.4)

Let us pick a gauge where Sab = 0, which fixes the gauge parameter ξab . In this

gauge, the remaining equations read

F̄ ab,c := dωab,c + hd ∧Xab,cd , (2.4.5a)

F̄ ab,cd := dXab,cd , (2.4.5b)

and the corresponding gauge variations

δωab,c = dλab,c + hd ρ
ab,cd , (2.4.6a)

δXab,cd = dρab,cd . (2.4.6b)

Notice that the last two curvatures take exactly the same form as the last two

curvatures of the Lopatin-Vasiliev tower of unfolded equations. Driven by this

analogy, we impose

F̄ ab,c !
= 0 , F̄ ab,cd !

= he ∧ hf Cabe,cdf , (2.4.7)

where Cabe,cdf is a Lorentz-irreducible zero-form.

In the usual case, the auxiliary fields ωab,c and Xab,cd are expressed in terms of

the first and second derivative of a frame-like field eab . Here, this is seemingly not

the case since the latter is pure gauge. Nevertheless, we can reconstruct such a field

by noticing that

hc ∧ F̄ ab,c = hc ∧ dωab,c + hc ∧ hd ∧Xab,cd = hc ∧ dωab,c = −d
(
hc ∧ ωab,c

)
, (2.4.8)

where we used that hc ∧ hd is anti-symmetric in c and d, and that dhc = 0 . The

Poincaré lemma then allows one to introduce the one-form ẽab such that

−hc ∧ ωab,c = dẽab , (2.4.9)

which has the gauge variation

δẽab = dξ̃ab + hc ∧ ωab,c . (2.4.10)

The existence of the field ẽab and associated parameter ξ̃ab is guaranteed by the

Poincaré lemma, but has nothing to do with the gauge field eab and parameter ξab ,

which are both zero in our gauge. Therefore, we were able to reconstruct the full

tower of Lopatin-Vasiliev equations of motion in the limit R → ∞ , presented in

eqs. (2.1.19a) and (2.1.19b), for the fields ẽab , ωab,c and Xab,cd

dẽab + hc ∧ ωab,c = 0 , (2.4.11a)

dωab,c + hd ∧Xab,cd = 0 , (2.4.11b)

dXab,cd = he ∧ hf Cabe,cdf , (2.4.11c)
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with the gauge symmetries

δẽab = dξ̃ab + hc λ
ab,c , (2.4.12a)

δωab,c = dλab,c + hd ρ
ab,cd , (2.4.12b)

δXab,cd = dρab,cd . (2.4.12c)

One can then extract a Fronsdal field φµνρ = h(µ
a hν

b ẽρ)ab as usual and observe that

the first two equations impose the Fronsdal equation, as discussed in section 2.1.2.

Note, however, that the field ẽab is not part of the original gauge description

of the free theory, and is rather a by-product of the consistency of the linearised

equations.

Arbitrary spin

When the spin s ≥ 4 is arbitrary, one can apply a similar mechanism. First, note

that we can get rid of the fields ωa(s−1),b(s−2n−1) with 1 ≤ n ≤
⌊
s−1
2

⌋
by imposing

the equations

F̄ a(s−1),b(s−2n−1) !
= 0 =⇒ ωa(s−1),b(s−2n−1) = dSa(s−1),b(s−2n−1) , (2.4.13)

for some zero-forms Sa(s−1),b(s−2n−1) thanks to the Poincaré lemma. The latter are

shifted by the gauge parameters

δSa(s−1),b(s−2n−1) = λa(s−1),b(s−2n−1) , (2.4.14)

so we can pick a gauge where they are both zero. In this gauge, which is the

generalisation of Sab = 0 to arbitrary spin, all other curvatures but the last two

become

F̄ a(s−1),b(s−2n) = dωa(s−1),b(s−2n) (gauge-fixed) , (2.4.15)

for 2 ≤ n ≤
⌊
s
2

⌋
, and setting these curvatures to zero allows one to gauge away the

corresponding connections

F̄ a(s−1),b(s−2n) !
= 0 =⇒ ωa(s−1),b(s−2n) = dSa(s−1),b(s−2n) , (2.4.16)

with

δSa(s−1),b(s−2n) = λa(s−1),b(s−2n) , (2.4.17)

Therefore, the only non-zero curvatures in this gauge are

F̄ a(s−1),b(s−2) = dωa(s−1),b(s−2) + hc ∧ ωa(s−1),b(s−2)c (gauge-fixed) , (2.4.18a)

F̄ a(s−1),b(s−1) = dωa(s−1),b(s−1) , (2.4.18b)
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which, again, correspond with those emerging from the limit R → ∞ of Lopatin-

Vasiliev equations of motion. From there, we impose

F̄ a(s−1),b(s−2) !
= 0 , (2.4.19a)

F̄ a(s−1),b(s−1) !
= hc ∧ hdCa(s−1)c,b(s−1)d (2.4.19b)

like in the usual case. The Bianchi identities in this case read

dF̄ a(s−1),b(s−2n−1) = 0 , (2.4.20)

for 1 ≤ n ≤
⌊
s−1
2

⌋
and

dF̄ a(s−1),b(s−2n) = −hc ∧ F̄ a(s−1),b(s−2n)c − βs,s−2n h
{b ∧ F̄ a(s−1),b(s−2n−1)} , (2.4.21)

for 1 ≤ n ≤
⌊
s
2

⌋
. They are consistent with eqs. (2.4.19), and the consistency of

F̄ a(s−1),b(s−1) = hc ∧ hdC
a(s−1)c,b(s−1)d in the zero-form sector are the same as the

ones in the usual case, see eq. (2.1.22).

We can verify that we can reconstruct the whole hierarchy of one-forms corre-

sponding to the limit R → ∞ of Lopatin and Vasiliev equations of motion

0 = hc ∧ F̄ a(s−1),b(s−3)c = −d
(
hc ∧ ωa(s−1),b(s−3)c

)
, (2.4.22)

which leads, thanks to the Poincaré lemma, to

−hc ∧ ωa(s−1),b(s−3)c = dω̃a(s−1),b(s−3) , (2.4.23)

and so on. The final set of equations reproduces the limit R → ∞ of Lopatin and

Vasiliev

dω̃a(s−1),b(t) + hc ∧ ω̃a(s−1),b(t)c = 0 , 0 ⩽ t ⩽ s− 2 , (2.4.24a)

dω̃a(s−1),b(s−1) = hc ∧ hdCa(s−1)c,b(s−1)d , (2.4.24b)

where we also renamed for simplicity ωa(s−1),b(s−1) → ω̃a(s−1),b(s−1) and ωa(s−1),b(s−2) →
ω̃a(s−1),b(s−2) . Of the family of gauge potentials ωa(s−1),b(s−t−1) , only the t = 0 and

t = 1 members are not pure-gauge in the final description of the unfolded dynamics.

Since the full theory is so(1, D − 1)-invariant, we can generalise the previous

equations to an arbitrary system of coordinates by replacing hµ
a = δµ

a with any

background vielbein and the exterior derivative d into the Lorentz-covariant deriva-

tive ∇ of Minkowski, verifying ∇ha = 0 and ∇2 = 0 .

2.5 Discussion

In this chapter, we discussed the construction of an algebra for higher-spin symmetry

in Minkowski space-time, and showed that its gauging reproduces, at the linear
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level, the Lopatin-Vasiliev equations of motion. There are still a number of open

questions with this new formalism, related to the fact that we proceeded counter

flow (define the algebra first then the equations of motion) compared to the usual

case described in section 2.1 (find an algebra for the symmetries of the equations of

motion). Let us stress, however, that our algebra and the corresponding curvatures

are nothing more than the limit ϵ → 0 of the curvatures of Lopatin and Vasiliev

[64] where we rescaled the fields with t odd by a factor of ϵ−1 , which is distinct

from the limit R → ∞ of eq. (2.1.26).

One still open question is if there exist an alternative description of the free

theory, either in the metric-like or in the frame-like formulation, that possesses the

same spectrum of reducibility parameters as the Fronsdal case, but where the Lie

derivative along a constant vector reproduces the bracket of eq. (2.3.26)?

The reducibility parameters of the system described in (2.4.3) are given by

the rigid symmetries of the system, i.e. the symmetries of the vacuum solution

ωa(s−1),b(s−t−1) = 0 in eq. (2.4.4) for all t ∈ {0, . . . , s− 1} . We find

λa(s−1),b(s−2n−1) = Λa(s−1),b(s−2n−1) , (2.5.1a)

λa(s−1),b(s−2n) = Λa(s−1),b(s−2n) − xc Λ
a(s−1),b(s−2n)c

− βs,s−2n x
{b Λa(s−1),b(s−2n−1)} , (2.5.1b)

for some constant tensors Λa(s−1),b(s−t−1) . In this form, it is clear that the Lie bracket

of spin-two isometries with the parameters of global isometries λa(s−1),b(s−t−1) repro-

duces the Lie brackets (2.3.25) and (2.3.26).

However, it is less clear at the moment how to find a second-order field equation

possessing the λa(s−1),b(s−t−1) of eq. (2.5.1) as reducibility parameters. Clearly, one

has to start with a new description of the dynamics making use of another field

than the Fronsdal. One candidate to replace the Fronsdal field is the symmetric

component of the connection ωµ
a(s−1),b(s−2)

hµ
a · · · hµa hνb · · · hνb ωρ a(s−1),b(s−2) . (2.5.2)

which has mixed symmetry, and one can draw inspiration from the case of Labastida

fields [39] in order to build an equation of motion.

We also investigated an action principle resembling the one using the first two

fields, aiming at reproducing directly the equations of motion (2.4.19)∫
dDx

(
dωa1a(s−2),b(s−2) + 1

2
hc ∧ ωa1a(s−2),b(s−2)c

)
∧ωa2

a(s−2),b(s−2)
a3 ∧Ka1a2a3 ,

(2.5.3)

where Ka1a2a3 is defined near eq. (2.1.13), which is a natural generalisation of the

action presented in [57]. However, variation with respect to ωa(s−1),b(s−1) yields only
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a projection of the torsion constraint

T a(s−1),b(s−2)
∣∣
YD(s,s−1)⊕YD(s−1,s−2)⊕YD(s−1,s−1,1)

= 0 , (2.5.4)

because ωa(s−1),b(s−1) contains less Lorentz-irreducible components than T a(s−1),b(s−2) ,

while this is not an issue for the action in eq. (2.1.13) because ωa(s−1),b contains more

Lorentz-irreducible components than T a(s−1) . It might be worth trying to repro-

duce the non-gauge-fixed version of these equations of motion instead, i.e. including

contributions from the other fields with t ≥ 2 .

The fact that the ‘last’ connections within the frame-like approach ωa(s−1),b(s−2)

and ωa(s−1),b(s−1) play a more fundamental role than the ‘first’ ones ωa(s−1) and

ωa(s−1),b may seem counter-intuitive, but it mirrors independent observations in

chiral higher-spin gravity [197], that proposes an alternative way to build fully

interacting higher-spin theories on self-dual four-dimensional manifolds.10

If all the connections ωa(s−1),b(s−t−1) with t ≥ 2 are actually pure gauge in our

system, one might wonder if it is really necessary to introduce them in the first

place. However, if one remains within the UEA approach, one is forced to do so.

Indeed, from the classification of section 2.3.2 at the quadratic level, one can deduce

that a higher-spin algebra containing the generator Ma(2),b(2) and Ma(2),b must also

contain the generator Ma(2), and therefore reproduce the algebra ihsD , which is an

additional argument in favour of its role as a higher-spin algebra in flat space.

Let us mention that process of reconstruction a Lopatin-Vasiliev branch out of

a single torsion constraint is in fact quite general and not restricted to our algebra,

since it relies on the application of identifying pure-gauge fields and applying the

Poincaré lemma. Any algebra satisfying the Jacobi identity and which allows for

this process to happen may be qualified as a potentially interesting algebra for flat

space higher-spin symmetry. For instance, taking the ‘exotic’ contraction based on

the sub-algebra of even s+ t (which corresponds to the h2 sub-algebra of [60]), the

curvatures are the same as (2.4.3a) and (2.4.3b) for even spin, but one obtains for

odd spin

F̄
a(s−1),b(s−2n−1)
exotic := dωa(s−1),b(s−2n−1) + hc ∧ ωa(s−1),b(s−2n−1)c

+ βs,s−2n−1 h
{b ∧ ωa(s−1),b(s−2n−2)} , (2.5.5a)

F̄
a(s−1),b(s−2n)
exotic := dωa(s−1),b(s−2n) . (2.5.5b)

By imposing still the same equations as before

F̄
a(s−1),b(s−t−1)
exotic

!
= 0 , F̄

a(s−1),b(s−1)
exotic

!
= hc ∧ hdCa(s−1)c,b(s−1)d , (2.5.6)

10In this approach, the full power of spinor notation is leveraged, so all the various spin-

connections have chiral and anti-chiral components with a total of (2s− 2) frame indices, making

it clear that they play an equivalent role.
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for 1 ≤ t ≤ s − 1 , one can play a similar game as before: the fields ωa(s−1),b(s−2n)

are pure gauge for 1 ≤ n ≤ s−1
2
, so we can choose a gauge where they vanish. In

this gauge, we can also gauge way ωa(s−1),b(s−2n−1) for 1 ≤ n ≤ s−1
2

so that the only

remaining equation is

F̄
a(s−1),b(s−1)
exotic

!
= hc ∧ hdCa(s−1)c,b(s−1)d , (2.5.7)

which is enough to reconstruct a new tower of connections, ending with a frame-like

field from the identity

0 = hc ∧ F̄ a(s−1),b(s−2)c
exotic = −d

(
hc ∧ ωa(s−1),b(s−2)c

)
, (2.5.8)

and the Poincaré lemma, recursively. Therefore this exotic unfolded set of equations

propagates again the correct dynamics at the linearised level, even though the

underlying algebra cannot be built upon a quotient of the UEA of the Poincaré

algebra.

Once the free theory is identified, the next logical step is to introduce interactions.

In [130], it was noticed that a consistent non-Abelian coupling of a spin-three field

with a spin-two field (the 3 − 3 − 2 vertex) that deforms the algebra of gauge

symmetries exists, at the price of introducing higher-derivative terms. In [55], the

analysis was pushed to the coupling of a spin-s field with a spin-2 field and the

same pattern was verified. This coupling introduces (2s − 2) derivatives and can

be viewed as the non-uniform limit R → ∞ of the Fradkin-Vasiliev top vertex, also

containing (2s − 2) covariant derivatives but completed with a decreasing number

of derivatives, due to non-zero commutation relations.

Concerning the cubic interactions of our system, we have already access to a

class of non-Abelian ones from the structure constants of the algebra ihsD. In

particular, a class of gravitational couplings of the form s − s − 2 is given by the

brackets [Ma(s−1),b(s−1),M c(s−1),d(s−2)] ∝ P e + . . . which are present both in the

AdS and flat-space algebras. As explained in [108], they encode the non-minimal

gravitational coupling found in [130, 55] by BV-BRST arguments. This is so be-

cause the (2s− 2)-derivative vertex is the one that possesses the highest number of

derivatives among those that constitute the Fradkin-Vasiliev gravitational coupling

in AdS, that has later been reproduced within the unfolded formulation. Only this

top vertex survives the flat limit that coincides with the high-energy limit of the

Fradkin-Vasiliev action. The advantage of using the penultimate spin connection

as a fundamental field is that, on-shell, it encodes not a Fronsdal field but (s − 2)

derivatives thereof. Therefore, a two-derivative cubic 2− s− s coupling using this

connection is in fact a (2s− 2)-derivative coupling in terms of a Fronsdal field, in

agreement with the existing classification.

Another approach to quartic and higher-order interactions is to use the formal

construction of [198, 199]. The possible interactions are encoded in the Hochschild
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cohomology class of the higher-spin algebra, which measures its potential to be

deformed. Our algebra retains many features of the AdS higher-spin algebra, which

are known to be deformed. In addition, it contains an Abelian ideal, which usually

signals more possibilities.



Chapter 3

Higher-spin symmetry of

Carrollian Conformal Field

Theories

In this part, we will be concerned with the appearance of higher-spin symmetry at

the asymptotic boundary of space-time, which is a first step towards a holographic

realisation of the putative theory in flat space described in the previous part. The

AdS/CFT correspondence – which is a particular realisation of the idea of holog-

raphy – was first derived in the context of string theory [73], but its influence has

permeated through to many other aspects of physics, and in particular to gravita-

tional physics in a broad sense. In its original form, it establishes a duality between

type IIB string theory formulated in the bulk (i.e. the interior) of AdS5 space-time

times an internal manifold S5 , with a ‘dual’ theory formulated on its boundary

∂AdS5 = R1,3, which is a certain field theory enjoying conformal invariance, namely

N = 4 super-symmetric Yang-Mills. This equivalence was proven in the limit where

the string coupling constant in bulk is small, corresponding to the limit where the

number of colors in the Yang-Mills theory (the size of its matrix group) is large.

The conjecture that this correspondence holds outside of this regime of parameters

is the object of intense research, since it could provide a description of the quan-

tum regime of gravity. The holographic correspondence has also been extended to

other gravitational theories aside from type IIB string theory, including (but not

limited to) three-dimensional gravity with a negative cosmological constant and the

description of black-hole horizons.

As far as higher-spin holography is concerned, a lot of progress has been made

in understanding what the dual theory to AdS higher-spin gravity is. In its sim-

plest form, the holographic dual of AdS higher-spin gravity is given by a single

free scalar field living on its conformal boundary, while more refined models involve

the large N limit of a collection of N scalar fields interacting via a quartic cou-

63
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pling term [74, 75]. One of the basic reasons why holography works can be found

in symmetry: the algebra of rigid isometries of AdSD and the algebra of confor-

mal transformations of R1,D−2 are both isomorphic to so(2, D − 1) . In the bulk,

gravity gauges space-time isometries, while the fact that the boundary theory pre-

serves conformal isometries guarantees that its stress-energy tensor is conserved,

symmetric and traceless. This statement extends to higher-spin holography, where

the gauged higher-spin symmetry in the bulk giving rise to AdS higher-spin grav-

ity corresponds to an extension of the rigid conformal symmetries of the boundary

theory to include conserved higher-spin currents. In the AdS/CFT dictionary, bulk

higher-spin gauge fields then couple to higher conserved currents (for a review, see

e.g., [200, 62, 201]). The requirement that the boundary field theory has exact

higher-spin symmetry is quite constraining, while theories with slightly-broken (i.e.

exact up to order 1/N in a large-N expansion) higher-spin symmetry gives more

flexibility and would correspond to a situation where higher-spin symmetry in the

bulk is broken by quantum effects. In the free theory with N scalars, the value of N

and of the dimension of the boundary play little role. However, when the boundary

theory becomes interacting thanks to the addition of a quartic coupling, it flows

to an interacting fixed point in the IR which is stable only when the boundary

space-time dimension is three, see e.g., [202].

Evidence for the holographic character of higher-spin gravity can also be gathered

from other viewpoints. As an example, the spectrum of higher-spin gravity in AdS

described in the previous part of this thesis, that is composed of bulk massless

fields of all spins with multiplicity one, can be recovered from group-theoretical

arguments, by considering the decomposition in irreducible representations of the

tensor product of two scalar representations of a certain type, called the singleton

and reviewed in section 3.1. This is known as the Flato-Fronsdal theorem [71],

and it states that the tensor product of two singleton modules can be decomposed

into the direct sum of massless higher-spin irreducible unitary representations of

AdSD with multiplicity one. The singleton will play a fundamental role in the

following, since it is the free boundary scalar field upon which higher-spin symmetry

is realised as higher-differential operators, following an argument by Eastwood [65].

The singleton, which we already encountered in section 2.2 near eq. (2.2.14) is

a short irreducible representation of the so(2, D − 1) algebra. It also admits a

realisation as an AdS scalar field, and its ambient space reformulation allows to

prove easily that its algebra of higher-differential symmetries is hsD .

Much less is known about holography in asymptotically flat space-time. Early on,

it was realised that the asymptotic symmetries of gravity are not the expected group

of Poincaré symmetries of the vacuum Minkowski space, but an infinite-dimensional

enhancement called BMS, following the work of Bondi, van der Burg, Metzner

and Sachs [97, 98]. The BMS group is the semi-direct product of usual Lorentz

transformations and an infinite-dimensional Abelian factor called super-translations,
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enhancing the usual space-time translations. By relaxing the conditions on the form

of the boundary metric, it is possible to enhance the BMS group further to include

local conformal transformations of the two-sphere S2, obtaining the generalised

BMS group Diff(S2)⋉C∞(S2,R) , where the generators of Diff(S2) are called super-

rotations [99].1

In arbitrary dimension, the co-dimension one conformal boundary of asymptot-

ically MinkowskiD space-time is non-Lorentzian and described by a pair of null

manifolds, called past (resp. future) null infinity I − (resp. I +, abbreviated to

I when talking about either one of them) whose geometry is locally diffeomor-

phic to the product of the real line R and the sphere Sd , where d = D − 2 , and

whose coordinates are called the advanced time u (resp. retarded time v) and

d angular coordinates xi . The metric is degenerate in the direction of u , e.g.,

ds2 = 0× du2 + γij(x) dx
idxj (see e.g. appendix A).

Such null manifolds are often called Carrollian, since their symmetries are given

by the eponymous group following the work of Lévy-Leblond [203] on the limit of

vanishing speed of light of the Poincaré group. Interestingly, the isometries of the

Carrollian conformal manifold R × Sd (see appendix A) were shown to reproduce

the restriction of BMS symmetries to I [87, 104, 204, 205, 206], where super-

translations are angle-dependant shifts in the null time, thus confirming that the

study of Carrollian conformal field theories constitute a promising route to flat-space

holography. There is also a stream of independent evidence pointing to Carrollian

theories for the description of gravity in asymptotically Minkowski space [94, 95].

For instance in the fluid-gravity correspondence, the AdS bulk theory is dual to a

boundary theory which is ruled by relativistic fluid equations and the limit R → ∞
in the bulk corresponds to the limit k → 0 on the boundary, where the speed of

light k is directly proportional to 1
R2 [92, 207].

In the following, we will argue that the correct framework to describe a holo-

graphic dual of the flat-space higher-spin gravity theory presented in part 2, if it

exists, indeed fits within the context of Carrollian holography. To this end, we will

show that the algebra of higher-spin symmetries ihsD can be realised as (a sub-

algebra of) the algebra of higher-differential operators preserving the action of a

Carrollian scalar field on I [114], as presented in section 3.2. The full algebra of

symmetry is actually much bigger. Work on the asymptotic symmetries of Fronsdal

fields propagating on Minkowski background [101, 102, 103] allowed to identify the

analogue of super-translations and super-rotations for any spin, and we show that

our algebra also contains a sub-algebra displaying the same spectrum of asymptotic

symmetry generators, albeit with a different expression, while providing a concrete

algebraic realisation.

1Another possibility is given by the extended BMS algebra of Barnich and Troessaert [89],

which enhances the group of conformal transformations of the two-sphere to transformations of

the Riemann sphere by arbitrary holomorphic and anti-holomorphic functions.
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Carrollian field theories are usually defined through the limit c→ 0 of relativistic

field theories [208, 110, 116, 111]. In [110], it was noticed that Carrollian field

theories usually come in (at least) two kinds, dubbed electric (or time-like) and

magnetic (or space-like), named by analogy with the ‘electric-like’ and ‘magnetic-

like’ limits of Maxwell theory. The electric theory is usually obtained by taking

directly the limit c → 0 in a Lagrangian formulation, while the magnetic theory is

obtained after a Legendre transformation and redefining the fields and conjugate

momentum in the Hamiltonian formulation.

The field playing the role of a flat-space analogue of the singleton module in CFT,

defined in section 3.2, will be tentatively called the simpleton. It is characterised

by the equation of motion ∂u
2 ϕ = 0 , making it one of the simplest possible field

theories on the boundary side. We will then show in section 3.3 that the other

realisation of the simpleton, characterised by the equations of motion ∂u ϕ = 0 and

∂u π = ∇̂2ϕ , also admits a realisation as a bulk field.

Throughout this part, we will denote the dimension of the celestial sphere by d ,

related to the dimension of the bulk by D = d + 2 , so that the dimension of the

boundary manifold is d+ 1 . We will make ample use of ambient space techniques,

and in order to make it easier to distinguish between objects and the space they

live in, we will denote:

• ambient space coordinates by XA where A ∈ {0, . . . , d + 2} and fields by

Φ(X) , Ψ(X) , . . . ;

• bulk space-time coordinates by xa where a ∈ {0, . . . , d + 1} and fields by

φ(x) ;

• boundary coordinates by xµ where µ ∈ {0, . . . , d} and fields by ϕ(x) .

In addition, when the boundary is the Carrollian manifold R×Sd , the coordinates

xµ will be split into u for the null time and xi with i ∈ {1, . . . , d} for the angles

on the celestial sphere Sd . Thus, the Bondi coordinates for Minkowski space-time

will be denoted by (r, u,x) and its metric in Bondi gauge is

ds2 = −du2 − 2 du dr + r2 γij(x) dx
idxj . (3.0.1)

3.1 The singleton module

The description of the singleton in four-dimensional (A)dS space-time dates back to

Dirac [112]. It can be described in any dimensions by means of representation theory

of the conformal algebra so(2, d+1) defined in eq. (3.2.1) [113, 209]. By looking at

highest-weight representations satisfying the unitarity bound, one finds that a scalar

field ϕ(x) on the boundary defining a state |ϕ⟩ is unitary if its scaling dimension,
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that is the eigenvalue of the operator of dilations, is greater than the bound d−1
2

.

In the language of representations of the conformal algebra so(2, d + 1) , a (quasi-

)primary state is a highest-weight representation, meaning that it is annihilated by

the action of weight-lowering generators (i.e. the special conformal transformations

Kµ ), and the action of the level-zero generators of the conformal algebra, i.e. Lorentz

transformations Jµν and dilations D , act diagonally

Kµ|ϕ⟩ = 0 , Jµν |ϕ⟩ = 0 , D|ϕ⟩ = ∆|ϕ⟩ . (3.1.1)

The generatorsKµ , Jµν and D form a parabolic subalgebra of the conformal algebra

which have non-positive level by convention.

From there, one can build a generalised Verma module V(∆, 0) , where the first

entry in V represents the conformal weight and the second the irreducible represen-

tation of so(d+ 1) . It is given by the successive action of weight-raising operators,

the translation generators Pµ

V(∆, 0) = span {Pµ1 · · · Pµs |ϕ⟩}s≥0 . (3.1.2)

As explained, e.g., in [209], this Verma module is not irreducible for ∆ = d−1
2

,

as it admits the sub-module V(∆ + 2, 0)

V(∆ + 2, 0) = span
{
Pµ1 · · · Pµs P

2 |ϕ⟩
}
s≥0

. (3.1.3)

Taking a quotienting of the module V(∆, 0) by ‘on-shell-trivial states’ contained in

V(∆+ 2, 0) , meaning that we get rid of the ideal V(∆+ 2, 0) which is trivial when

the wave equation ∂2 ϕ = 0 is satisfied, defines the singleton module

D(∆, 0) := V(∆, 0)
/
V(∆+2, 0) ≃ span

{
Pµ1 · · · Pµs |ϕ⟩

∣∣ P 2|ϕ⟩ ∼ 0
}
s≥0

. (3.1.4)

In what follows, we will work directly with the fields using [210, 211] to pro-

vide a summary of the various definitions of the singleton field. Starting with the

definition of a singleton, i.e. a free conformal scalar field living at the boundary

of AdSd+2 in section 3.1.1, we will review Eastwood’s argument to construct its

higher-symmetries in section 3.1.2. Subsequently, we will define the singleton in the

bulk of AdSd+2 space-time in 3.1.3 as a shortened scalar field, and propose a third

definition 3.1.4 which links the previous two by means of ambient space geometry.

Finally, we will then check that the higher-spin algebra hsd+2 is realised on the

singleton in section 3.1.5.

3.1.1 Boundary definition

Consider a free complex scalar field ϕ(x) with scaling dimension ∆

S =
1

2

∫
dd+1x ϕ̄(x) ∂2ϕ(x) . (3.1.1)
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Recall that a field ϕ(x) has scaling dimension ∆ if it satisfies ϕ(λx) = λ−∆ ϕ(x)

for xµ ∈ R1,d and λ > 0 . By performing a rigid rescaling of space-time xµ → λxµ

in the action (3.1.1), we observe that the action is multiplied by an overall factor

λd−1−2∆ . To ensure that this action is invariant under rigid scale transformations,

we will therefore tune ∆ = d−1
2

. It is well-known that this action is also invariant

under the action of rigid conformal transformations

δϕ = i
[
aµ∂µ + ωµνxν∂µ + c (xµ∂µ +∆) + bµ

(
2xµx

ν∂ν + 2xµ∆− x2∂µ
)]
ϕ , (3.1.2)

where aµ , bµ , c and ω[µν] are constants, representing the action of translations, spe-

cial conformal transformations, dilations and Lorentz transformations respectively.

3.1.2 Higher symmetries of the singleton

Let us here reproduce the argument of Eastwood [65]. A higher-differential sym-

metry of a differential operator A is a differential operator D̂ such that there exists

another differential operator δ̂ verifying

A ◦ D̂ = δ̂ ◦ A , (3.1.1)

where ◦ denotes the composition of differential operators. For instance, when A

is the Laplacian or the d’Alembertian ∂2 , symmetries of A are differential trans-

formations δϕ = i D̂ ϕ mapping solutions of the equation of motion ∂2 ϕ = 0 to

themselves.

We will call a non-trivial2 higher-differential symmetry of A a higher-differential

symmetry D̂ of A such that in addition, there does not exist an D̂′ such that

D̂ = D̂′ ◦ A . Indeed, in this case, δ̂ = A ◦ D̂′ suffices to satisfy eq. (3.1.1).

Finally, an on-shell (non-trivial) symmetry ofA is a (non-trivial) higher-differential

symmetry of A that preserves the action 1
2
⟨ϕ|Aϕ⟩ , where the inner product ⟨−|−⟩

is defined for compactly supported functions by

⟨ϕ|ψ⟩ =
∫

dd+1x ϕ̄(x)ψ(x) . (3.1.2)

It is easy to check that an on-shell higher-symmetry D̂ of A is a higher-symmetry

D̂ of A such that δ̂ = D̂†, where † denotes Hermitian conjugation with respect to

the inner product ⟨−|−⟩ .

One can apply the previous argument to the case of the singleton, by looking

at the higher symmetries of the action (3.1.1), which are differential operators D̂
2Alternatively, one may consider higher-differential symmetries, up to the quotient by the

equivalence relation ∼ defined by D̂1 ∼ D̂2 if and only if there exists P̂ such that D̂1−D̂2 = P ◦A .
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such that the transformation δϕ = i D̂ ϕ leaves the action invariant. One obtains

the condition

∂2 ◦ D̂ = D̂† ◦ ∂2 , (3.1.3)

where it is sometimes said that such an operator D̂ commutes weakly with the

d’Alembertian.

It is clear that these symmetries form an associative algebra, from the observation

that if D̂1 and D̂2 are isometries, then i [D̂1, D̂2] = i
(
D̂1 ◦ D̂2 − D̂2 ◦ D̂1

)
is an

isometry as well. Indeed,

∂2 ◦
(
i [D̂1, D̂2]

)
= i ∂2 ◦ D̂1 ◦ D̂2 − i ∂2 ◦ D̂2 ◦ D̂1

= i D̂†
1 ◦ D̂

†
2 ◦ ∂2 − i D̂†

2 ◦ D̂
†
1 ◦ ∂2 =

(
i [D̂1, D̂2]

)†
◦ ∂2 .

(3.1.4)

Moreover,
{
D̂1, D̂2

}
= D̂1 ◦ D̂2 + D̂2 ◦ D̂1 as well

∂2 ◦
{
D̂1, D̂2

}
=
{
D̂†

1, D̂
†
2

}
◦ ∂2 =

{
D̂1, D̂2

}†
◦ ∂2 , (3.1.5)

so that we can construct higher-order isometries from products of lower-order ones.

This is in fact equivalent to the observation that Killing tensors are products of

Killing vectors, and that higher-spin algebras can be built as universal enveloping

algebras.

By considering the class of differential operators of the form

D̂ = V µ1 ···µs−1(x) ∂µ1 · · · ∂µs−1 + lower-order terms , (3.1.6)

where V µ1 ···µs−1 is a symmetric and traceless3 tensor and lower-order differential

terms are expressed in terms of V µ1 ···µs−1 only, Eastwood [65] classified all such

symmetries, and showed that the spectrum of non-trivial higher-symmetries is in

one-to-one correspondence with the traceless conformal Killing tensors of (d + 1)-

dimensional Minkowski space ξµ1 ···µs−1 such that

∂(µ1ξµ2 ···µs) −
s− 1

d+ 2s− 3
η(µ1µ2∂ · ξµ3 ···µs) = 0 , ξ′µ3 ···µs−1 = 0 , (3.1.7)

itself in bijection with the reducibility parameters of a collection of free massless

higher-spin fields in AdSd+2 .

Therefore, non-trivial higher symmetries of the d’Alembertian [132, 133, 65] give

rise to an algebra which is a candidate algebra for the role of higher-spin symmetry

in AdSd+2 , or equivalently, of conformal higher-spin symmetry [212] in R1,d . In

fact we will see in section 3.1.5 that it is the same algebra hsd+2 .

3The requirement that D̂ is non-trivial means that we can always look for V µ1 ···µs−1 . Indeed,

if V µ1 ···µs−1 = η(µ1µ2W a3 ···µs−1) , then the highest-order of D̂ is trivial. This means that D̂ is

equivalent to another differential operator of strictly lower degree, in the definition of footnote 2.
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3.1.3 Bulk definition

Let us consider a free scalar field φ(xµ) in AdSd+2 space-time of radius R , with

metric gab (
∇2 −m2

)
φ = 0 , (3.1.1)

where ∇2φ = 1√
−g
∂a
(√

−g gab ∂b φ
)
is the Laplace-Beltrami operator in AdSd+2 ,

and the mass parameter m2 satisfies the mass-shell condition

m2 =
∆(∆− d− 1)

R2
⇔ ∆ = ∆± = d+1

2
±
√(

d+1
2

)2
+ (mR)2 , (3.1.2)

where the two branches with ∆± correspond to two different scaling dimensions of

the field φ(x) near the boundary of AdSd+2 .

We can perform an expansion of the field φ(x) near the boundary using coordi-

nates xa = (ρ, xµ) , with ρ ∈ [0,+∞[ , and the metric

ds2 =
R2

4ρ2
dρ2 +

1

ρ
ηµνdx

µdxν . (3.1.3)

The conformal boundary of AdSd+2 is located at the limit ρ → 0 . By writing the

Ansatz

φ(ρ, xµ) = ρ∆−/2φ−(ρ, x
µ) + ρ∆+/2φ+(ρ, x

µ) , (3.1.4)

we obtain(
∇2 −m2

)
φ = 0 ⇔ ∂µ∂

µφ± + 2 (d+ 3− 2∆∓ + 2ρ∂ρ) ∂ρφ± = 0 . (3.1.5)

Assuming the two fields φ±(ρ, x
µ) are analytic near ρ = 0 and performing a Taylor

expansion

φ±(ρ, x
µ) =

∑
n≥0

ρn ϕ
(n)
± (xµ) , (3.1.6)

and plugging inside of (3.1.5) we obtain the set of equations, order by order in ρ

2n (2∆∓ − d− 1− 2n)ϕ
(n)
± = ∂2ϕ

(n−1)
± . (3.1.7)

If there exists an ℓ ≥ 1 such that 2∆+ − d− 1 = 2ℓ, then the pre-factor in the left

hand side of eq. (3.1.7) for the φ− branch becomes zero when n = ℓ . This signals

that the function ϕ
(ℓ−1)
− verifies a second-order differential equation and the set of

functions ϕ
(n)
− for n ≥ ℓ is independent from the value of ϕ

(ℓ−1)
− . Therefore, all these

functions can be consistently set to zero.4 As an example, for ℓ = 1 , ∆+ = d+3
2

and

∆− = d−1
2

, the n = 1 instance of eq. (3.1.7) imposes ∂µ∂
µϕ

(0)
− = 0 . One can set to

zero all the functions ϕ
(n≥1)
− , which also coincides with the φ+ branch, and notice

that the field ϕ
(0)
− satisfies the same equation of motion as the field ϕ in section 3.1.1.

4In this case, it is customary to add a logarithmic branch [213] so that the holographic re-

construction procedure can be performed without obstruction, but in the case of the singleton we

precisely want to keep things that way so that a truncation of the spectrum appears, corresponding

to defining an ‘ultra-short’ representation of the conformal group.
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3.1.4 Ambient space definition

We can incorporate both of the previous definitions inside of a third one, using

ambient space geometry. We can describe the singleton by a set of three equations

acting on a field Φ(X) depending on XA ∈ R2,d+1 , with A ∈ {0, . . . , d+ 2}

ηAB ∂A ∂B Φ = 0 ,
(
XA ∂A +∆

)
Φ = 0 , Φ ≃ Φ +X2Ψ . (3.1.1)

The first equation is simply the fact that Φ verifies a wave equation in ambient

space, while the second fixes its homogeneity degree to be the real number ∆ .

Finally, the last one signals that we are quotienting Φ(X) by terms that vanish

when X2 = 0 , represented by the relation ≃ .

This system of equations is self-consistent only when ∆ = d−1
2

. Indeed, this can

be seen by considering the bracket of the first and the third conditions acting on

the quotiented contribution Ψ with scaling dimension ∆ + 2[
∂2, X2

]
Ψ = 2

(
XA∂A +

d+ 3

2

)
Ψ , (3.1.2)

which is factored out only if the scaling dimension of Ψ is ∆ + 2 = d+3
2

. In this

case, the definition of eq. (3.1.1) can be seen as a set of constraints generating an

algebra isomorphic to sp(2) which commutes with the generators of ambient space

isometries JAB, forming what is called as a Howe dual pair [214, 202].

The advantage of working in ambient space is that one can have access both to

the bulk of AdS and to its conformal boundary. On the one hand, as explained in

section 2.2.1, one can recover the bulk of AdS of radius R by selecting the manifold

AdSd+2 :=
{
X2 = −R2

∣∣ X ∈ R2,d+1
}
. (3.1.3)

On the other hand, to recover the conformal boundary of AdS, on has to define

the projective light-cone X2 = 0 , where points along the (positive) light-rays are

identified

∂AdSd+2 :=
{
X2 = 0

∣∣ X ∈ R2,d+1 , X ∼ λX for all λ > 0
}
, (3.1.4)

which is a (d+ 1)-dimensional manifold, identified with the boundary of AdS.

To recover the two previously introduced representations of the singleton, the one

in AdSd+2 and the one on R1,d−1 , one has to look at the pullback of the equations

of motion (3.1.1) on the two different manifolds defined in eqs. (3.1.3) and (3.1.4).

On the one hand, Φ(X) is the unique extension of φ(x) to the region X2 < 0

of ambient space. AdS space-time can be embedded in ambient space by going to

light-cone coordinates

X2 = ηABX
AXB = 2X+X− + ηµν X

µXν , (3.1.5)
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and using Poincaré coordinates parameterising X2 = −R2

X+ =
1
√
ρ
, Xµ =

1
√
ρ
xµ , X− = −1

2

(
R2√ρ+ 1

√
ρ
x2
)
. (3.1.6)

The pullback of the flat metric ds2 = ηAB dXAdXB then takes the form of eq. (3.1.3).

Using homogeneity of the field Φ, we can write

Φ(X) =

(
−X

2

R2

)−∆/2

Φ̄

(
R√
−X2

X

)
, (3.1.7)

where Φ̄ is defined on X2 = −R2 and ∆ = d−1
2

. With the parameterisation of

eq. (3.1.6), we can define a bulk field

φ(ρ, xµ) = Φ̄(X)
∣∣
X2=−R2 . (3.1.8)

One can then prove that the ambient d’Alembertian equation in (3.1.1) then pulls

back to the wave equation shown in (3.1.1), with the correct value of the mass term

R2m2 = − (d+1)(d+3)
4

, while the quotient condition in eq. (3.1.1) tells us that the

∆+ branch has to be set to zero, see, e.g., [210, 211].

On the other hand, the field Φ(X) is the unique extension of ϕ(x) outside the

light-cone X2 = 0, which is the conformal boundary of AdSd+2 . We will parame-

terise it using the same light-cone metric, but this time with

X+ =
1
√
ρ
, Xµ =

1
√
ρ
xµ , X− = −1

2

1
√
ρ
x2 . (3.1.9)

Using these coordinates and homogeneity of Φ, we have that

Φ(X)|X2=0 = Φ
(
X+, X+ xµ,−1

2
X+x2

)
:= (X+)−∆ϕ(xµ) (3.1.10)

where the field ϕ lives purely on the boundary. It can be shown that it satisfies the

d’Alembertian equation ∂µ∂
µϕ = 0 , and therefore it can be identified with the one

used in eq. (3.1.1).

Due to the simple and unifying nature of the ambient space description, it will

be the preferred language to look for a flat counterpart of the singleton.

3.1.5 Higher-spin algebra of ambient isometries

The ideal defined near eq. (2.2.8) that is quotiented in the definition of the higher-

spin algebra hsd+2 corresponds to the annihilator (i.e. the trivial symmetries) of the

singleton module [70]. As a result, Eastwood’s algebra of higher symmetries pro-

vides an explicit representation of hsd+2 as an algebra of differential operators. Con-

versely, the algebra of higher symmetries of a free scalar field in (d+1)-dimensional

Minkowski space-time is isomorphic to the higher-spin algebra in (d+2)-dimensional
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AdS space-time, a statement that can also be extended to partially-massless theo-

ries by replacing the wave equation ∂2ϕ = 0 by a higher-order wave equation (also

called polywave) ∂2ℓϕ = 0 [215, 216, 217, 211, 218, 181].

The ambient space description of the singleton can serve as a basis to prove the

isomorphism between Eastwood’s construction of the higher-spin algebra and hsd+2 .

Indeed, in ambient space, AdS isometries are realised as simple differential operators

(where we replaced infinitesimal canonical generators of Lorentz transformations by

i times themselves)

JAB = XA ∂B −XB ∂A , (3.1.1)

therefore the completely anti-symmetric projection automatically vanishes

J[AB ◦ JCD] Φ = 4X[A ηBC ∂D]Φ + 4X[AXB ∂C ∂D]Φ = 0 . (3.1.2)

Moreover, using eq. (3.1.1)

JC
(A ◦ JB)C Φ =

(
XC∂(A −X(A∂

C
)
◦
(
XB)∂C −XC∂B)

)
Φ ≃ −∆ ηAB Φ , (3.1.3)

where we recall that ≃ meant ‘equal up to terms proportional to X2’, and

1
2
JAB ◦ JBA Φ = ∆(∆− 1− d) Φ , (3.1.4)

so that the whole ideal is indeed factored out. Thus, using ambient space geometry,

it is extremely simple to check that the higher-spin algebra is realised as the algebra

of higher-symmetries of the ambient space field Φ verifying eqs. (3.1.1).

3.2 The simpleton module

After this review of the AdS (or, equivalently, conformal) case, we now switch to

the Minkowski (Carrollian conformal) case, loosely following [114]. As a prelimi-

nary remark, let us recall the isomorphism between the Poincaré algebra and the

Carrollian contraction of the conformal algebra.

The algebra of Carrollian conformal transformations emerges as the c→ 0 limit

of conformal transformations [203, 219, 205].5

The conformal algebra is generated by Lorentz transformations Jµν , transla-

tions Pµ , special conformal transformations Kµ and dilations D and satisfy the Lie

brackets

[Jµν , Jρσ] = ηνρ Jµσ − ηµρ Jνσ − ηνσ Jµρ + ηµσ Jνρ ,

[Jµν , Pρ] = ηνρ Pµ − ηµρ Pν , [D,Pµ] = Pµ ,

[Jµν , Kρ] = ηνρKµ − ηµρKν , [D,Kµ] = −Kµ ,

[Kµ, Pν ] = 2 ηµν D − 2 Jµν .

(3.2.1)

5In its original form, the Carroll group of coordinate transformations is the c → 0 contraction of

the Poincaré group, and plays a dual role to the Galilei group obtained as the c → ∞ contraction.
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with µ, ν, ρ, σ ∈ {0, . . . , d} and where the metric ηµν has signature (−,+, . . . ,+) .

Splitting the generators along the time direction µ = 0 and rescaling the gen-

erators as Bi = c Ji0 , H = c P0 and K = cK0, the Carrollian conformal algebra

arises as the c→ 0 limit of the previous brackets, whose generators will be denoted

by Jij , Bi , Pi , H , Ki , K and D (see [205]). The non-zero Lie brackets of the

Carrollian conformal algebra are

[Jij, Jkl] = δjk Jil − δik Jjl − δjl Jik + δil Jjk , [Jij, Bk] = δjk Bi − δik Bj ,

[Jij, Pk] = δjk Pi − δik Pj , [Bi, Pj] = −δijH ,

[Jij, Kk] = δjkKi − δikKj , [Bi, Kj] = −δijK ,

[D,H] = H , [D,Pi] = Pi , [D,K] = −K , [D,Ki] = −Ki ,

[Ki, H] = −2Bi , [K,Pi] = 2Bi , [Ki, Pj] = 2 δij D − 2 Jij ,

(3.2.2)

where i, j, k, l ∈ {1, . . . , d} .

This algebra is of prime importance in the approach to holography that we are

advocating in this thesis (more can be found in [94, 95]), as it is isomorphic to the

Poincaré algebra in one dimension more.6 Let us define the generators

P0 =
1
2
(H −K) , Pi = −Bi , Pd+1 =

1
2
(H +K) . (3.2.3)

and

Ji0 = 1
2
(Pi −Ki) , Jij = Jij , Ji d+1 =

1
2
(Pi +Ki) , J0 d+1 = D . (3.2.4)

We can see that they verify the Lie brackets of the Poincaré algebra in d + 2

dimensions (see e.g. [107, 95])

[Jab, Jcd] = ηbc Jad − ηac Jbd − ηbd Jac + ηad Jbc ,
[Jab,Pc] = ηbc Pa − ηac Pb ,

[Pa,Pb] = 0 ,

(3.2.5)

where a, b, c, d ∈ {0, . . . , d+ 1} and the metric ηab has signature (−,+, . . . ,+) .

From this correspondence, in addition to the unitary irreducible representations

of the Poincaré group classified by Wigner, one can also define some highest-weight

(possibly non-unitary, see [140]) representations of the Poincaré algebra, understood

as modules of the Carrollian conformal algebra presented above. These modules

can be defined starting from modules of the conformal algebra and taking the limit

c → 0 , as explained in [205]. Representations that are highest-weight and scalar

remain highest-weight and scalar in the sense that

Ki|ϕ⟩ = 0 , K0|ϕ⟩ = 0 , Jij|ϕ⟩ = 0 , Bi|ϕ⟩ = 0 , D|ϕ⟩ = ∆|ϕ⟩ . (3.2.6)

6Let us also mention that the algebra of isometries of any null projective hypersurface (for

instance null infinity I ) is the BMS algebra [104, 220], which is a straightforward extension of

the conformal Carroll algebra.
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where Bi are Carrollian boosts. For the singleton, the value ∆ = d−1
2

stays the same

in the limit, and we can define the quotient of ultra-relativistic Verma modules in

the same way as before

span {Pi1 · · · Pis |ϕ⟩}s≥0 ⊕ span {Pi1 · · · Pis P0 |ϕ⟩}s≥0 , (3.2.7)

where we discarded the product of more than one P0 on |ϕ⟩ in the UEA of the

Carrollian conformal algebra by account of the quotient by Pi1 · · · Pis P0 P0 |ϕ⟩ for
any s ≥ 0 . We can readily see the emergence of a semi-direct structure in the

algebra, related to the presence of an Abelian factor generated by the action of

the UEA of the Carrollian conformal algebra of eq. (3.2.2) on the second part of

eq. (3.2.7).

3.2.1 Boundary definition

Let us start from the action for a massless relativistic complex scalar field ϕ living

on R× Sd with coordinates (u,x)

Sr =
1

2

∫
du ddx

√
γ ϕ̄
(
∂u

2 − c2 ∇̂2
)
ϕ , (3.2.1)

where γij(x) is the round metric on the d-dimensional round sphere Sd . In addition,

the differential operator

∇̂2 := ∇2 − d− 1

4 d
R[γ] = ∇2 −

(
d− 1

2

)2

, (3.2.2)

is the conformal completion of the Laplacian on R×Sd , where R[γ] represents the

scalar curvature of the metric given by the line element ds2 = −c2du2 + γijdx
idxj ,

and which is distinct from the Laplace-Yamabe operator ∇2
LY on the sphere Sd

with metric γ defined in eq. (B.1.6) (more details in appendices B.1 and B.2). The

action has also been rescaled by an overall factor of −c2 so that the limit c → 0 is

well-defined.

Consider the action resulting from the direct limit c→ 0 of the relativistic scalar

in (d+ 1) dimensions, in the Lagrangian formulation

S =
1

2

∫
du ddx

√
γ ϕ̄ ∂u

2ϕ , (3.2.3)

which is now formulated on the Carrollian manifold R×Sd , which has the topology

of I . This is the electric Carrollian scalar field of [205, 221, 110, 109, 222, 111],

and we propose this action for the flat limit of the singleton, which we will call in

the following the simpleton. The equations of motion are simply

∂u
2 ϕ = 0 , (3.2.4)
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so that on-shell

ϕ(u,x) ≈ ϕ0(x) + uϕ1(x) . (3.2.5)

One can already understand why the simpleton is a good candidate to factor out

the ideal of ihsd+2 , in particular the condition Pa Pb ∼ 0 , uncovered in eq. (2.3.16).

Indeed, bulk translations and Lorentz transformations are realised on the boundary

as the subset of isometries of the Carrollian conformal manifold (see, e.g. [104] or

appendix A) acting on the scalar field ϕ of scaling dimension ∆

Pa ϕ = fa(x)∂u ϕ , (3.2.6a)

Jab ϕ =
[
ξiab(x)∂i +

1
d
∇ · ξab(x) (u∂u +∆)

]
ϕ , (3.2.6b)

where fa and ξiab verify(
∇(i∇j) − 1

d
γij∇2

)
fa = 0 , ∇(iξj)

ab − 1
d
γij∇ · ξab = 0 . (3.2.7)

It is easy to see that the part of the ideal corresponding to the product of two

translations is automatically factored out on-shell Pa Pb ϕ = fa fb ∂u
2 ϕ = 0.

We will prove that the whole ideal of eq. (2.3.16) is factored out using ambient

space techniques in section 3.2.2. It is important to note that the operators Jab
correspond to the standard realisation of the generators of the conformal algebra

so(1, d+1) acting on a primary scalar field on the sphere Sd with dimension ∆, up to

the replacement of the number ∆ by the first-order operator ∆+u ∂u (thereby taking

into account the scaling property of u). Therefore, when acting on a ‘Carrollian

primary’ scalar ϕ on I with scaling dimension ∆, we have

J2 ϕ = (∆ + u∂u) (∆ + u∂u − d)ϕ , (3.2.8)

which originates from the usual result J2 = ∆(∆− d) for a conformal primary

scalar of dimension ∆, taking into account the shift ∆ → ∆+ u ∂u. Expanding in

powers of u and ∂u, we have

J2 ϕ =
[
u2∂u

2 + (2∆− d+ 1)u ∂u +∆(∆− d)
]
ϕ , (3.2.9)

Assuming that the ideal (2.3.16) is factored out means that the expression on the

right-hand side of (3.2.9) must be a multiple of ϕ with eigenvalue fixed in (2.3.16).

Moreover, the adjoint action of P0 = ∂u on eq. (3.2.9) yields[
2u∂u

2 + (2∆− d+ 1) ∂u
]
ϕ = 0 , ∂u

2 ϕ = 0 . (3.2.10)

One can recognise the last condition as the Carrollian equation of motion for ϕ,

whereas the previous one fixes the scaling dimension to be the one of the simpleton

∆ = d−1
2

. Finally, the first equation fixes the eigenvalue of J2 to be precisely −d2−1
4

.



3.2. THE SIMPLETON MODULE 77

3.2.2 Ambient definition and factoring out of the ideal

Recall the ambient description of the singleton (3.1.1), where we split the ambient

space coordinate XA into u and ya where a ∈ {1, . . . , d+ 1} , and with powers of

c explicitly written(
∂u

2 − c2∂a∂
a
)
Φ = 0 , (u∂u + ya∂a +∆)Φ = 0 , Φ ≃ Φ +

(
y2 − c2u2

)
Ψ , (3.2.1)

where ∆ = d−1
2

. The ambient description of the electric simpleton is simply the

limit c→ 0 of the previous equations

∂u
2Φ = 0 , (u∂u + ya∂a +∆)Φ = 0 , Φ ≃ Φ + y2Ψ . (3.2.2)

The geometry of ambient space is Carrollian, since the (covariant) metric is now

degenerate in the direction of the vector ∂u . Contrary to the relativistic case, the

value of ∆ is not fixed anymore by the requirement that the three relations in

eq. (3.2.2) form an algebra when evaluated on a quotiented contribution, since[
u∂u + ya∂a +∆, ∂u

2
]
Ψ = −2 ∂u

2Ψ , (3.2.3a)[
u∂u + ya∂a +∆, y2

]
Ψ = +2 y2Ψ , (3.2.3b)[

∂u
2, y2

]
Ψ = 0 , (3.2.3c)

which closes on iso(1, 1) , which is a contraction of sp(2) ≃ so(2, 1) , for any value

of ∆ . We will keep the same value of ∆ for eq. (3.2.2) as the relativistic parent

eq. (3.1.1), and we will also see that it is necessary to fix this value to factor out

the ideal (2.3.16).

Remark that the c → 0 limit of ambient space isometry generators gives,7 upon

a proper rescaling of the generator Pa = Ja0

Jab = 2 y[a∂b] , Pa = ya∂u , (3.2.4)

which are indeed the isometries of the sub-manifold y2 = constant, that commute

with the generators defined in eq. (3.2.2).

Let us verify that the ideal (2.3.16) is indeed factored out. The first two condi-

tions

J[ab ◦ Jcd] Φ = 0 , J[ab ◦ Pc] Φ = 0 , (3.2.5)

are obvious, since both the coordinates ya and the partial derivatives ∂a commute

with themselves. The remainder can be proven by a direct computation

1

2
Jab ◦ J ba Φ ≃ ∆(∆− d) Φ , (3.2.6)

7This definition is well-suited for the boundary description of the simpleton, where bulk rigid

translations are represented on the boundary by the vector fields fa(x) ∂u, with fa(x) a function

of the celestial sphere verifying the good-cut equation defined in (3.2.7).



78 CHAPTER 3. HIGHER-SPIN SYMMETRY OF CARROLLIAN CFTS

which gives the correct eigenvalue only for ∆ = d±1
2

, and(
Jab ◦ P b + P b ◦ Jab

)
Φ ≃ (−2∆ + d− 1) ya∂uΦ , (3.2.7)

which vanishes only for ∆ = d−1
2

. We used everywhere that terms proportional to

y2 can be quotiented, as well as the homogeneity condition. Finally, as advertised

Pa ◦ Pb Φ = ya yb ∂u
2Φ = 0 . (3.2.8)

One can then realise the boundary simpleton by taking the null projection of the

ambient field along the light-cone y2 = 0 . Let us choose a light-cone parameterisa-

tion for the coordinates ya = (y+, yi, y−) , with metric

ηab y
ayb = 2y+y− + γijy

iyj , (3.2.9)

with γij the metric on the d-dimensional sphere. The locus y2 = 0 in the region

y+ > 0 can be parameterised by

yi = y+xi , y− = −1

2
y+γijx

ixj . (3.2.10)

Using the homogeneity of Φ(u, ya), we have

Φ
(
y+u, y

)
= (y+)−∆ϕ(u,x) , (3.2.11)

where ϕ(u,x) depends only on (u,x) ∈ R×Sd , and satisfies ∂u
2 ϕ(u,x) = 0 like its

ambient space parent.

3.2.3 Higher-spin symmetries of the simpleton

Following the philosophy of [65] (see also [132, 133]), we now show that a real

form of the higher-spin algebra ihsd+2 is a sub-algebra of the higher symmetries

of the conformal Carrollian scalar. It was already noticed that the higher symme-

tries of (3.2.3) contain all generators of the form f(x) ∂u without any constraints

on the functions f(x) [205] (see also [223, 224]), so that they include, at least,

super-translations. Similarly, in classifying the higher symmetries of (3.2.3), we

shall obtain infinite-dimensional extensions of the algebra ihsd+2 incorporating (ex-

tended) BMS symmetries and BMS-like higher-spin symmetries similar to those in

[101, 103, 225].

The higher symmetries of the electric action (3.2.3) are differential operators D̂

that commute weakly with the kinetic operator

∂u
2 ◦ D̂ = D̂† ◦ ∂u2 . (3.2.1)
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In the following, we will omit the hat notation and use the short-hands Ḋ = [∂u, D]

and D̈ =
[
∂u, Ḋ

]
. Since [∂u

2, D] = D̈ + 2 Ḋ ◦ ∂u, the condition (3.2.1) is equivalent

to

D̈ + 2 Ḋ ◦ ∂u =
(
D† −D

)
◦ ∂u2 . (3.2.2)

By implementing the on-shell identification D ∼ D + B ◦ ∂u2 for any differential

operator B, one can write down without loss of generality an Ansatz for D of the

form

D = D0 +D1 ◦ ∂u , (3.2.3)

where D0 and D1 are independent of ∂u . Then, eq. (3.2.2) translates into

2
(
Ḋ0 + Ḋ1 ◦ ∂u

)
◦ ∂u +

(
D̈0 + D̈1 ◦ ∂u

)
=
[(
D0

† −D0

)
−
(
D1

† +D1

)
◦ ∂u − Ḋ1

†
]
◦ ∂u2 ,

(3.2.4)

which decomposes into powers of ∂u as

D1
† +D1 = 0 , 2 Ḋ1 = D0

† −D0 − Ḋ1
† , (3.2.5a)

2 Ḋ0 + D̈1 = 0 , D̈0 = 0 . (3.2.5b)

The general solution is

D0 = K0 − iK+1 u , D1 = iK−1 +
(
K0

† −K0

)
u+ iK+1 u

2 , (3.2.6)

where the Km (m = −1, 0,+1) are independent of u and the K±1 are Hermitian.

Decomposing K0 into Hermitian and anti-Hermitian parts, K0 = L−1 − iL+1, we

have

D = K−1 ◦H−1 + L−1 ◦ id + 2L+1 ◦H0 +K+1 ◦H+1 , (3.2.7)

where the identity generator id has been inserted to emphasize the role of L±1 and

K±1 as coefficients multiplying the symmetry generators

H−1 = i ∂u , H0 = i
(
u ∂u − 1

2

)
, H+1 = i u (u ∂u − 1) , (3.2.8)

satisfying the sl(2,R) algebra (or gl(2,R) if one includes the identity generator) and

representing the conformal isometries of the real line.

The non-trivial higher symmetries of the action (3.2.3) thus span a real Lie

algebra isomorphic to

H
(
Sd
)
⊗ gl(2,R) , (3.2.9)

withH(Sd) the Lie algebra of Hermitian differential operators on the celestial sphere

Sd, while the set {id, H−1, H0, H+1} forms a basis of gl(2,R). The commutator

(times the imaginary unit i) of differential operators defines a Lie bracket on this

vector space. As anticipated, this algebra is much bigger than ihsd+2 and we now

discuss some relevant sub-algebras.
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Large u(1) transformations

We begin by considering symmetries which are differential operators of order zero.

They are real functions on the sphere Sd , D = α(x), corresponding to local phase

transformations

δαϕ = i α(x)ϕ . (3.2.10)

In a putative holographic correspondence, this symmetry should signal the presence

of large u(1) transformations of Maxwell theory as in [100] within the asymptotic

symmetries of the bulk theory.

Generalised BMS symmetry

We now move to first-order symmetries. We write L−1 = −i Y i(x) ∂i − i
2
∇ · Y (x)

andK−1 = −T (x) with real functions Y i and T , while choosing L+1 = − 1
2d
∇ · Y (x) .

In this way, we obtain

iDgbms = T ∂u + Y i∂i +
1
d
∇ · Y (∆ + u ∂u) , (3.2.11)

which is the form of a differential operator of order one generating super-translations

via T and super-rotations via Y i when acting on a scalar density of scaling dimension

∆ = d−1
2
. Note that we did not impose any constraint on the vectors Y i : therefore

the super-rotations in (3.2.11) generate the whole diff(Sd) algebra as in the extended

BMS algebra of [99].

Enhanced BMS symmetry algebra

Still looking at first-order differential operators, there are two more available func-

tions generating (super-)dilations and (super-)conformal boosts in the u direction:

Dbms+ = Dgbms +W (x)H0 + Z(x)H+1 , (3.2.12)

with real W and Z . From the bulk viewpoint, in which one seeks to interpret

these transformations as being associated to asymptotic symmetries, the action of

W (x)H0 should correspond to ‘BMS-Weyl’ transformations as those considered in

[226], while the action of Z(x)H+1 is isomorphic to that of the Newman-Unti8 group

at level 3 (which is the largest Newman-Unti group with finite level) [104, 220].

The latter has a natural interpretation in [89] as the group of generalised BMS

transformations allowing for Weyl rescalings of the metric of the sphere that are

affine in u . We denote the full first-order sub-algebra of (3.2.9) as bms+d+2 and we

remark that it does not seem to be isomorphic to any of the proposed conformal

8The Newman-Unti group at level k is generated by vector fields X preserving the metric up to

a conformal factor, i.e. LXg = λg and such that Lξ
kX = 0 where ξ is the fundamental Carrollian

vector fields defined in appendix A.
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extensions of the BMS algebra in three of higher dimensions [227, 228]. Instead,

the extra generator H+1 can be interpreted as a super-translations at the infinity

of I (remember that a special conformal transformation is the combination of an

inversion, a translation and an inversion).

Algebra of higher-order operators

The symmetrised product of differential operators satisfying (3.2.1) is a differen-

tial operator satisfying the same condition (similarly to the commutator times the

imaginary unit, that defines the Lie bracket on (3.2.9)). Higher-order symmetries

can thus be realised as symmetrised products of first-order ones. This simple ob-

servation guarantees that ihsd+2 is a Lie sub-algebra of (3.2.9). Indeed, as it is also

manifest in (3.2.11), the generators (3.2.6) belong to the symmetries of the simple-

ton and their symmetrised products acting on the simpleton give, by construction,

the algebra ihsd+2.

As discussed in section 3.2.3, the constraints (3.2.7) that select the algebra ihsd+2

are not necessary to identify a symmetry of the simpleton. Therefore, one can

also consider products of the operators in (3.2.11) with unconstrained T (x) and

Y i(x), which form a sub-algebra. In this way one obtains an infinite-dimensional

extension of the algebra ihsd+2, that we dub hsbmsd+2. It corresponds to realising

the gbmsd+2 UEA on the simpleton module, while the infinite-dimensional extension

of [225] realises it on the unitary Sachs module defined for ∆ = d
2
. As a result,

in that case as well as in [101, 103] polynomials of any order in u appear in the

differential operators, while here the u-dependence only comes from the operators

(3.2.8), compatibly with the observation that ihsd+2 is not a sub-algebra of the

higher-spin algebras of [225].

Concretely, higher-order symmetries are obtained composing the operators (3.2.8)

with higher-order differential operators on the sphere, see (3.2.9). The latter can

then be expanded as

L−1 =
∑
s≥3

is−1 Y j1 ··· js−1(x)∇(j1 · · · ∇js−1) + lower derivative (3.2.13)

with real Y j1 ··· js−1 , and where lower-derivative terms are required to obtain Her-

mitian operators. The operators K−1, L+1 and K+1 in (3.2.7) admit similar ex-

pansions. We only need to consider symmetric tensors Y j1 ··· js−1 because any anti-

symmetrisation of the indices will translate into the commutator of covariant deriva-

tives on the sphere, which gives contributions proportional to the Riemann tensor

and takes away two derivatives. Since the sphere is a space of constant curvature,

these terms can be reabsorbed into lower-order differential operators.

A higher-spin generalisation of (super-)translations, i.e. an Abelian ideal, is given

by K−1◦H−1 , while, in analogy with (3.2.11), the remaining generators of hsbmsd+2
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are given by linear combinations of L−1 ◦ id and L+1 ◦H0, each one depending only

on Y i1 ··· is−1 . This symbol, in its turn, can be recovered as a symmetrised product

of vectors Y i .

In spite of the differences discussed above regarding the u-dependence of the

gauge parameters, decomposing Y i1 ··· is−1 and the corresponding tensors T i1 ··· is−2 of

K−1 into traceless parts, one recovers the same set of generators as in the asymptotic

symmetries of Fronsdal fields for the weakest boundary conditions considered in

[103]. We wish to emphasize that the difference in the realisation of the asymptotic

symmetries here with respect to [103] are of the same nature as the differences in

the realisation of rigid (bulk) isometries between eqs. (2.5.1) and (2.1.7).

We conclude by stressing that one can also consider products of the operators

(3.2.12), so that the higher symmetries of the simpleton actually provide a higher-

spin extension of the algebra bms+d+2 of section 3.2.3.

3.3 Magnetic simpleton theory

The discussion of the previous section allowed us to identify a boundary candidate

for the flat analogue of the simpleton, which is for the moment only realised on I

and in ambient space. Its naive bulk realisation, which will be discussed in sec-

tion 3.4, seems more adapted to describe the Carrollian limit of the bulk singleton,

living in AdS-Carrolld+2 space-time (the c→ 0 contraction of AdSd+2 space-time9),

which can be explained by the dual role played by the Poincaré algebra, as both

the isometry algebra of flat space-time and of AdS-Carroll space-time.

In the following, we will follow an alternative route which is more adapted to

define the simpleton in Minkowski space, by starting again from a different definition

of the boundary dynamics.

3.3.1 Boundary definition

In addition to the electric, or time-like, limit c → 0 of the relativistic scalar, one

can define another scalar field theory, which is the Carrollian limit of the relativistic

scalar field theory in Hamiltonian form. Consider the action (3.2.1) in Hamiltonian

form

SH =
1

2

∫
du ddx

√
γ
(
π̄∂uϕ+ π∂uϕ̄− c2 π̄π + ϕ̄∇̂2ϕ

)
, (3.3.1)

with the field π playing the role of conjugate momentum to ϕ̄ and vice-versa (under

this form, the action is manifestly real), and where ∇̂2 was defined in eq. (3.2.2).

9AdS-Carroll space-time can be defined as the homogeneous space associated to the Klein pair

ISO(1, d + 1)/ISO(d + 1) in the language of [229, 230], rather than Minkowskid+2 whose Klein

pair is given by ISO(1, d+ 1)/SO(1, d+ 1) .
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Upon integration by parts, the relativistic theory (3.2.1) can be recast as

SH =
1

2

∫
du ddx

√
γ ϕ†Kcϕ , (3.3.2)

with ϕ =

(
ϕ

π

)
and the kinetic operator Kc =

(
∇̂2 −∂u
∂u −c2

)
which is manifestly

self-adjoint under the product ⟨ϕ|ψ⟩ =
∫
du ddx

√
γ ϕ†ψ .

The kinetic operator Kc has a non-vanishing determinant for all values of c

det (Kc) = ∂u
2 − c2 ∇̂2 , (3.3.3)

and the limit c→ 0 converges to the magnetic, or space-like, Carrollian theory

Sm =
1

2

∫
du ddx

√
γ
(
π̄∂uϕ+ π∂uϕ̄+ ϕ̄∇̂2ϕ

)
. (3.3.4)

also described in [110, 109, 111]. In appendix B.1, we prove that this action, when

coupled to an arbitrary Carrollian background, is Weyl-invariant for this choice

of ∇̂2 , and in appendix B.2, we prove that this action is invariant under rigid

Carrollian conformal transformations. The equations of motion of this theory are

ϕ̇(u,x) = 0 , π̇(u,x) = ∇̂2ϕ(u,x) . (3.3.5)

On-shell, the magnetic scalar is parameterised by two arbitrary functions of the

celestial sphere, ϕ0(x) and π0(x), such that

ϕ(u,x) ≈ ϕ0(x) , π(u,x) ≈ π0(x) + u∇̂2ϕ0(x) . (3.3.6)

Although the action in eq. (3.3.4) is different from the one in eq. (3.2.3), we will

prove in appendix B.5 that it also realises (an infinite-dimensional enhancement of)

the higher-spin algebra ihsd+2 , isomorphic to H
(
Sd
)
⊗ gl(2,R) and is therefore

also a candidate to be a flat-space analogue of the singleton. Moreover, the extra

symmetries that were called W (x)H0 and Z(x)H+1 find an interpretation in the

bulk of Minkowski space-time: the first one can be interpreted as the relic of a Weyl

symmetry, while the latter encodes the possibility of gluing the past of future null

infinity with the future of past null infinity [95].

The reason why both algebras are isomorphic, in essence, is due to the fact that

we are classifying on-shell symmetries of an action and the magnetic theory has the

same solution space as the electric theory, i.e. two arbitrary functions of the angles,

modulo the conformal completion of the Laplacian ∇̂2 . The latter is almost always

invertible, since the eigenvalue of ∇̂2 evaluated on the subspace of d-dimensional

spherical harmonics with principal quantum number ℓ is

−ℓ(ℓ+ d− 1)− (d−1)2

4
= −

(
ℓ+ d−1

2

)2
, (3.3.7)

which is zero only when d = 1 and ℓ = 0 .
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3.3.2 Ambient definition and factoring out of the ideal

We presented the magnetic simpleton theory on I with the aim of finding a bulk

description of the simpleton. To this end, we first propose an alternative ambient

space realisation of the simpleton, which we show in section 3.3.3 and in appendix B

to be equivalent to the theory of eq. (3.3.4).

We start from another ambient realisation of the simpleton, related to the former

by a Fourier transform (equivalently, an exchange ya ↔ ∂a and u↔ ∂u)

∂a∂
aΦ = 0 , (xa∂a + ς∂ς +∆)Φ = 0 , Φ ≃ Φ + ς2Ψ , (3.3.1)

where the generators defining the constraints (3.3.1) form again the algebra iso(1, 1)

and commute with the isometries

Jab = 2x[a∂b] , Pa = ς ∂a , (3.3.2)

generating the Poincaré algebra. We will take again ∆ = d−1
2

. The first generator

is exactly the canonical realisation of Lorentz transformations, while the second

looks like the canonical realisation of translations, up to the factor of ς . Contrary

to section 3.2.2, the geometry of ambient space is Galilean10 rather than Carrollian.

The ideal of the simpleton is still factored out on this module, due to the dual

role of the coordinates and their momenta. Explicitly,

J[ab ◦ Jcd] Φ = 0 , J[ab ◦ Pc] Φ = 0 , (3.3.3)

is guaranteed by the differential realisation of isometries, and the rest follows from

a direct computation

1
2
Jab ◦ J baΦ ≃ −d2−1

4
Φ , (3.3.4a)(

Jab ◦ P b + P b ◦ Jab
)
Φ ≃ 0 , (3.3.4b)

Pa ◦ PbΦ ≃ 0 , (3.3.4c)

where in the last three identities we used the quotient condition Φ ≃ Φ+ ς2Ψ (the

proof is completely analogous to that of section 3.2.2).

3.3.3 Bulk definition

The bulk description of the realisation (3.3.1) is quite elegant to perform: we simply

evaluate Φ(x, ς) at any finite value of ς , for instance ς = 1 . Performing again a

10Galilean geometry is the dual of Carrollian geometry of appendix A, in the sense that it is

characterised by an inverse metric, which is degenerate in the direction of a nowhere-vanishing

one-form. In our case, the ambient inverse metric with signature (−,+, · · · ,+︸ ︷︷ ︸
a

, 0) and the one-form

dς play this role.
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Taylor expansion of Φ(x, ς) and truncating to second order in ς

Φ(x, ς) = φ−(x) + ς φ+(x) , (3.3.1)

we find that the bulk value of the field Φ can be arranged in a doublet, where fields

are listed according to their power of ς

φ(x) =

(
φ−(x)

φ+(x)

)
, (3.3.2)

and each component satisfies

∂a∂
aφ±(x) = 0 , (xa ∂a +∆±)φ± = 0 , (3.3.3)

where we defined ∆− = d−1
2

and ∆+ = ∆− + 1 = d+1
2

(note that the value of

∆± is unrelated to the one of section 3.1.3). In this form, it is obvious that the

ς-dependence is completely factored out (it was an auxiliary direction anyway, used

to embed Minkowski space in ambient space), and that the action of translations is

nilpotent, since

Jab =

(
2x[a∂b] 0

0 2x[a∂b]

)
, Pa =

(
0 0

∂a 0

)
. (3.3.4)

Compared to the singleton, which can be described by a single scalar field in AdSd+2,

we have here a realisation in terms of a pair of scalar fields, with a slightly more com-

plicated structure. We nevertheless show in appendix B.3 that the same structure

can be achieved for the bulk AdS singleton, in which case the flat limit is actually

well-defined and corresponds to eq. (3.3.3). On the other hand, the structure in pair

is adapted to describe (the limit c→ 0 of) the boundary magnetic theory displayed

in eq. (3.3.1).

3.3.4 Asymptotics of the bulk field

A motivation

The intuition why we propose the definition (3.3.3) (equivalently the ambient space

description (3.3.1)) to be the bulk dual of the magnetic theory is that the equations

of motion of a free bulk scalar field in Bondi coordinates reproduce the equations

of motion (3.3.5) at lowest order in a 1/r-expansion of the d’Alembert equation.

Indeed, recall that in Bondi coordinates, a field ψ(r, u,x) with the 1/r expansion

ψ(r, u,x) =
1

r∆′

∑
n≥0

ψ(n)(u,x)

rn
, (3.3.1)
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where ∆′ is some real number that is for the moment arbitrary. The wave equation

∂a∂
aψ = 0 in Minkowski space gives, order by order in the 1/r expansion [225]

(d− 2n− 2∆′) ψ̇(n) = ∇2ψ(n−1) − (∆′ + n) (d− 1−∆′ − n)ψ(n−1) , (3.3.2)

where a dot stands for a derivative with respect to u . These equations can be solved

order by order using u integrals, bringing along some ‘integration constants’, that

are arbitrary functions of the angles.

There are several interesting values one can take for ∆′ . If ∆′ = d
2
− n for

some integer n ≥ 0, then the coefficient in the left-hand side of eq. (3.3.2) vanishes,

meaning that the corresponding field ψ(n) can have an arbitrary u-dependence. In

particular, when n = 0 the leading order is an arbitrary field. This solution is called

radiative, since it corresponds to the case where a function of arbitrary u-dependence

reaches null infinity.

The simpleton (neither the electric nor the magnetic one) does not verify this

property since its scaling dimension is d−1
2

. However, for this value of ∆′ and this

value only, the two instances n = 0 and n = 1 of eq. (3.3.2) are precisely the

equations of motion of the magnetic theory, as can be seen from eq. (3.3.5) with

the identification ψ(0)(u,x) := ϕ(u,x) and ψ(1)(u,x) := −π(u,x) . This means that,

even if the equations of motion n = 0 and n = 1 in eq. (3.3.2) describe a Poincaré

scalar for any value of ∆′ , only for the value d−1
2

can these equations of motion be

derived from a conformal Carroll-invariant action defined on I .

In order to identify the field ψ(r, u, x) as the bulk equivalent of the simpleton,

we need to match the solution spaces of the two theories. This means that we need

implement the condition that there are no free data (no ‘integration constants’)

hiding in the orders ψ(k) for k ≥ 2 . This condition corresponds to a shortening of

the degrees of freedom of the free scalar in Minkowski space, akin to the shortening

condition in AdSd+2 allowed by the fine-tuning of the scaling dimension [211]. This

can be implemented through a homogeneity condition and the doubling of the fields,

in the way presented in eq. (3.3.3), which we describe in the rest of this section.

Boundary value of the bulk simpleton

Performing a 1/r expansion of both fields φ±(r, u,x) of the bulk magnetic theory

in Bondi coordinates, we find that

φ±(r, u,x) =
1

r∆±

∞∑
n=0

ϕ
(n)
± (u,x)

rn
, (3.3.3)

where, solving the d’Alembert equation, we can express the part of ϕ
(n)
± homoge-

neous to un in terms of higher differential operators on the celestial sphere acting
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on ϕ± := ϕ
(0)
± , and we can get rid of the ‘integration constants’ by homogeneity.

ϕ
(n)
− (u,x) =

(2u)n

(2n)!

n−1∏
k=0

(∆2
− −∇2 − k2)ϕ−(x) , (3.3.4a)

ϕ
(n)
+ (u,x) =

(2u)n

(2n+ 1)!

n∏
k=1

(∆2
− −∇2 − k2)ϕ+(x) . (3.3.4b)

Thus, the magnetic simpleton is characterised at infinity by two functions of the

celestial sphere ϕ±(x) , and one can reconstruct its full bulk value in a 1/r expansion

without encountering any more arbitrary data. In other words, given the boundary

value limr→∞φ = ϕ (keeping u fixed) of the doublet of fields, it is enough to

reconstruct the doublet of fields φ in the whole Minkowski space-time.

Remark that

∂u φ−(r, u,x) = ∂u

(
1

r∆−

∞∑
n=0

ϕ
(n)
− (u,x)

rn

)
,

=
1

r∆−
∂u

∞∑
n=0

1

rn
(2u)n

(2n)!

n−1∏
k=0

(∆2
− −∇2 − k2)ϕ−(x) ,

=
−1

r∆+

∞∑
n=0

1

rn
(2u)n

(2n+ 1)!

[
n∏

k=1

(∆2
− −∇2 − k2)

]
∇̂2ϕ−(x) , (3.3.5)

which corresponds to the Bondi expansion of a field of scaling dimension ∆+ and

boundary value
(
∆2

− −∇2
)
ϕ−(x) = −∇̂2 ϕ−(x) , consistently with the identifica-

tion π = −ϕ+ and the equation of motion for a magnetic Carrollian scalar π̇ = ∇̂2ϕ .

Note that, in order to define the boundary value of the magnetic simpleton, we

could also have considered the pullback of the ambient definition of eq. (3.3.1) along

the projective hyperplane ς = 0 , (xa, ς) ∼ λ (xa, ς) , as one usually does in order

to define a boundary value from an ambient description (see section 3.1.4). This is

done in appendix B.4, where we also find that the boundary value is characterised

by two arbitrary functions of the angles, in agreement with eq. (3.3.6).

3.4 Discussion

In this part, we have presented a construction allowing to realise the algebra ihsd+2

as the algebra of symmetries of a Carrollian conformal scalar field theory. It relies

on an ultra-relativistic cousin of the free scalar field, named simpleton, and can

be described equally as a Carrollian field theory formulated on (d+ 1)-dimensional

null infinity I , as a scalar field theory in ambient space R2,d+1 , or as a ‘short-

ened’ pair of free scalar fields in Minkowskid+2 space. Its most naive description

eq. (3.2.3) realises an extension of the generalised BMSd+2 algebra that also incor-

porates generators that can be interpreted as higher-spin asymptotic symmetries,
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while the two-field description in eq. (3.3.4) is better suited for a realisation in the

bulk of Minkowski space, see eq. (3.3.3). Since the higher-spin symmetries are com-

puted on-shell, and the two theories have the same solution space, it should come

as no surprise that their symmetry algebras are the same (see appendix B.5), albeit

realised differently.

Although the electric and magnetic theories have the same symmetries, their

bulk realisation are however quite different. Following the logic of the relativistic

case, we can define the bulk value of the ambient space field Φ defined in eq. (3.2.2)

by pulling back on the hypersurface y2 = −R2, defining the bulk of space-time.

This hypersurface has the topology of R × Hd+1 , the product of null time with

a two-sheeted hyperboloid, which has a natural interpretation as AdS-Carrolld+2

[231, 232, 233, 230, 229].

One can split the non-Carrollian coordinates ya in light-cone coordinates ya =

(y+, yi, y−) such that the metric reads ηaby
ayb = 2 y+ y−+γij y

i yj and parameterise

y2 = −R2 by

y+ =
1
√
ρ
, yi =

1
√
ρ
xi , y− = −1

2

(
√
ρR2 +

1
√
ρ
x2

)
, (3.4.1)

so that, using homogeneity

Φ(u, ya) =

(
− y2

R2

)−∆/2

Φ̄

(
R√
−y2

u,
R√
−y2

ya

)
, (3.4.2)

and Φ̄ verifies the property of being defined only on y2 = −R2. Then, one can

define the field φ(u, ρ,x) which is the pull-back of Φ̄

φ(u, ρ,x) = Φ̄(u, ya)
∣∣
y2=−R2 , (3.4.3)

verifying the second-order equation

∂u
2 φ = 0 . (3.4.4)

Therefore, it is natural to interpret φ as the Carrollian limit of the singleton in

AdSd+2 . The fact that we can define an ultra-relativistic contraction of hsd+2 and

that it is isomorphic to ihsd+2 should not come as a surprise, since the algebra of

isometries of Minkowskid+2 and the Carroll contraction of the algebra of isometries

of AdSd+2 are isomorphic (see [234]), and one can prove that the limit c → 0 of

the ideal gives rise to the same expressions given in eq. (2.3.16) (consider that the

discussion under eq. (2.2.6) is unchanged if instead of picking ∂
∂XD as a stabiliser,

we pick 1
c

∂
∂X0 and send c to 0).

Although the algebras are the same, the homogeneous spaces Minkowskid+2 and

AdS-Carrolld+2 defined as cosets of their respective kinematical Lie groups are differ-

ent [234]. Surprisingly, the ‘blow-up’ of time-like infinity of Minkowskid+2 defined in
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[235] has the structure of an AdS-Carrolld+2 space-time [233], which indicates that

the AdS-Carroll field defined in eq. (3.4.4) may also play a role in flat higher-spin

holography, albeit in a different region of space than the field defined in (3.3.3). The

fact that Carroll field theories admit in general two distinct limits, and that one of

them seems relevant for the description of the asymptotics of AdS-Carroll, while the

other seems relevant for the description of the asymptotics of Minkowski space-time

is rather curious and it would be necessary to perform more investigations in order

to see if it constitutes a general statement.

In the discussion of Carroll-conformal-invariant field theories, let us remark that

the option to define a BMS-invariant theory at null infinity was considered in [236],

where a flat contraction of Liouville theory was shown to realise the BMS charge

algebra (with non-zero central charge) in d = 1. The theory in question is a non-

linear deformation of the free magnetic scalar by a term eϕ , although this theory

was not checked to be explicitly conformal Carroll invariant. Realising the BMS

algebra on free scalar fields was also investigated in [223, 237].11

In higher-spin holography, a key role is played by the boundary higher-spin cur-

rents Jµ(s)(x) , built from the free scalar field theory of section 3.1 [72]. These

higher-spin currents are conserved and traceless and are built from bilinears of ϕ(x)

with s derivatives. We suspect that the Carrollian analogue of the currents Jµ(s)
can be built by extending the setup of [92, 109, 238, 222, 111] to higher-spins, where

the s = 2 instance corresponds to the stress-energy tensor T µ
ν , which is displayed

for both the electric and magnetic theories in [111]. The expected conservation

laws are inherited from the relativistic ones, with the proviso that the currents

have the structure of a 1-contravariant, (s − 1)-covariant tensor Jµ
ν(s−1) verifying

∇µJ
µ
ν(s−1) = 0 , Jα

αν(s−2) = 0 and gµρv
σJρ

σν(s−2) = 0 , where gµν represents the

Carrollian metric, which is degenerate along vµ (see appendix A and B.1).

However, the construction of these currents are still a loose end of our con-

struction, in the sense that the Carrollian conformal scalar field (either electric or

magnetic) has an affine u-dependence on-shell, meaning that the bilinear currents

one can build out of them will clearly be at most quadratic in u . This signals that

the usual AdS/CFT dictionary stating that the boundary value of AdS higher-spin

fields couple to higher-spin currents through the minimal term
∫
dd+1x φµ(s)Jµ(s)

cannot, in this state, account for the gravitational and higher-spin radiation reach-

ing null-infinity, encoded in the gravitational shear and its higher-spin analogue

(the magnetic Carroll theory of section 3.3 is often called non-radiative for this rea-

son). A way out could be to consider an improved stress-energy tensor, including

arbitrary pieces allowed by the conservation laws. A situation of this sort has been

11In [225], the realisation of a higher-spin extension of the BMSd+2 algebra on the asymptotic

data of a free Minkowski scalar field was investigated, and it was proposed that the algebra realised

for the value of the scaling dimension ∆ = d
2 − 1 gave rise to a candidate asymptotic symmetry

algebra for unconstrained higher-spin theories in Minkowski space-time.
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encountered in the setup of the fluid-gravity correspondence applied to Carrollian

hydrodynamics [92], where part of the heat current is not related to the geometry

and can a priori assume any value. This falls under the general prescription of [95],

where it was remarked that one needs to include source terms to account for the

radiation reaching null infinity. A Carroll-invariant field theory accounting for the

boundary degrees of freedom of gravity is still an outstanding question in Carrollian

holography, and we hope that the elements laid in this part constitute a promising

basis upon which to proceed.



Chapter 4

Conclusions

In this thesis we presented a new, Lorentz-covariant description of the dynamics for

free massless higher-spin fields in Minkowski space-time of any dimensions, which

is based on the gauging of a non-Abelian higher-spin algebra dubbed ihsD .

The Lagrangian formulation of the free dynamics by Fronsdal makes use of a

completely symmetric, doubly-traceless field φµ(s) , and the starting point of its

reformulation in terms of curvatures is the ‘frame-like’ field eµ
a(s−1) dxµ, which is

a space-time one-form with (s− 1) completely symmetrised indices, varying under

the gauge transformations

δea(s−1) = dξa(s−1) + hb λ
a(s−1),b . (4.0.1)

Instead, our formulation uses a mixed-symmetry irreducible one-form with (2s− 3)

indices ωµ
a(s−1),b(s−2) dxµ , with gauge variation

δωa(s−1),b(s−2) = dλa(s−1),b(s−2) + hc λ
a(s−1),b(s−2)c + h{b λa(s−1),b(s−3)} ,

where braces denote a traceless and Young projection discussed in eq. (2.1.27).

This field is actually already part of the original frame-like description of the

dynamics [58]. Where our formulation differs is that, while it used to play a purely

auxiliary role in the original case, here it becomes fundamental.

Upon imposing unfolded equations of motion, this field can be identified with

(s − 2) derivatives of a frame-like field, generalising the vielbein with additional

indices so that its symmetric projection is a Fronsdal field. This is made possible

by the observation that the equation

hc ∧ dωa(s−1),b(s−3)c = 0 ,

which follows from the equations discussed in section 2.4 and which, for s ≥ 3 ,

automatically lead to the existence of a frame-like field ẽa(s−1) which obeys the

equations of motion spelled out in [64]. In turn, the field ẽa(s−1) can be viewed as a

Fronsdal field, although it is not necessary in our construction.
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This novel formulation of the dynamics was made possible by the identification of

a non-Abelian higher-spin algebra in flat-space and in any dimensions, ihsD , which

can be constructed as an İnönü-Wigner contraction of the non-Abelian algebra

of rigid symmetries for higher-spin fields in AdS hsD . Alternatively, this algebra

can also be constructed by an appropriate quotient of the universal enveloping

algebra of space-time isometries, similarly to the construction applying when the

cosmological constant does not vanish, and is unique under certain assumptions.

The structure constants of this algebra exhibit unusual features and do not satisfy

the set of ‘initial conditions’ historically imposed in the quest for a non-Abelian

higher-spin extension of the Poincaré algebra and that were dictated by the known

formulation of the frame-like dynamics. Thus, its existence does not contradict the

corresponding no-gos, but forced us to look for another formulation of the dynamics.

The equations that we impose on the linearisation of the curvatures taking values

in this algebra have the same form as the ones proposed by Lopatin and Vasiliev

in 1987 [64] when expressed in terms of higher-spin curvatures, but this time they

force a plethora of fields to be pure-gauge, including the completely symmetric gauge

field usually identified as the frame-like equivalent of the Fronsdal field. Crucially,

we realised that it is possible to reconstruct a Fronsdal field from the remaining

connections, and imposing the same equations of motion brings us back to the

usual case. Although the new linearised curvatures can be obtained from a simple

contraction of the ones in AdS, the mechanism used to eliminate the extra fields in

the flat case is now radically different.

As anticipated, the new formulation reserves for the gauge field ωa(s−1),b(s−2) a

central role. The latter identifies with the vielbein for s = 2 , and is one of the

only two fields which are not pure-gauge, alongside ωa(s−1),b(s−1) . On-shell, they are

identified with (s− 2) and (s− 1) derivatives of a Fronsdal field respectively, which

is not part of the original set of connections gauging the algebra. This means that

in our approach, the Fronsdal field is not directly accessible to build interactions,

rather only higher-derivative combinations thereof. In turn, this provides an expla-

nation as to why the only (cubic) interactions of higher-spin fields with gravity that

were found to deform the gauge transformations are higher-derivative.

Since, this new formulation is based on the linearised curvatures gauging the

higher-spin algebra ihsD , the full curvatures may serve as the starting point for a

consistent theory of higher-spin fields interacting with themselves and gravity in

flat space-time, e.g., by following the algebraic approach of [199]. Although our

construction starts with the Eastwood-Vasiliev algebra, and the equations gauging

this algebra are known to be singular in the limit R → ∞ , we do not need to rely on

a limiting procedure to construct the curvatures of eq. (2.4.3) and we can describe

everything in flat space from the get-go. We hope that this approach will allow

to eliminate most of the obstructions and subtleties associated with higher-spin

interactions in flat-space.
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In a second part, driven by the correspondence between the algebra of rigid

symmetries of higher-spin fields propagating in AdS space-time and the algebra

of higher differential symmetries of a free scalar field on Minkowski space, in the

context of higher-spin holography, we put forward an analogue correspondence be-

tween our higher-spin algebra and the higher differential symmetries of a Carrollian

scalar field theory that we tentatively call the simpleton, living on a null manifold

with topology R × Sd . In its simplest realisation, it involves a single scalar ‘elec-

tric’ scalar field ϕ(u,x) , which satisfies the equation of motion ∂u
2 ϕ = 0 , while

another, more exotic realisation involves a pair of fields ϕ(u,x) , π(u,x) which sat-

isfy the equations of motion of the ‘magnetic’ Carrollian scalar field, ∂u ϕ = 0 ,

∂u π =
(
∇2 − (d−1)2

4

)
ϕ , with no propagating degrees of freedom. This pair of fields

was then realised to be in one-to-one correspondence with the asymptotic data of

a pair of massless fields in Minkowski space-time, which is the direct flat limit of a

singleton.

In both cases, the algebra of higher differential operators contains ihsd+2 as a

sub-algebra. It also features an infinite-dimensional enhancement for generators of

every spin, that are the higher-spin analogue of the generators of the generalised

BMS algebra of [99]. The full algebra actually contains even more generators, which

close on a higher-spin extension of the level-three Newman-Unti algebra [220]. What

is still lacking at the moment is a realisation of the infinite-dimensional symmetries

of the simpleton as the asymptotic symmetries of a higher-spin field theory in the

bulk of Minkowski space-time. A natural candidate are the equations of motion

obtained by gauging the flat-space higher-spin algebra discussed in this thesis, and

we hope to come back to this issue soon.

Let us conclude with some research directions. A first direct extension of our

results would be to include the treatment of fermionic higher-spin fields in the bulk.

We expect the starting point to be the same: the identification of the rigid sym-

metries of the Fang-Fronsdal field [179, 180], given by Killing spinor-tensors. The

next step would be to construct a super-symmetric extension of ihs4 , as the İnönü-

Wigner contraction of the full super-higher-spin algebra shs4 in AdS4 space-time

[60], rather than its bosonic commutator sub-algebra. Spin-(s+ 1
2
) representations

in the bulk of AdS4 space-time then arise from the application of the Flato-Fronsdal

theorem to the tensor product of a scalar and a Dirac singleton, therefore the Car-

rollian limit of the free Dirac field [239] is expected to play a role in the holographic

description of this system. A second extension is related to the deformation of

the boundary free theory to include quartic interactions ϕ4 [240]. Finally, one can

wonder about the applicability of our procedure to other types of representations

of the Poincaré group than the completely symmetric ones [39, 31, 166, 241]. A

non-Abelian higher-spin algebra for mixed-symmetry fields in AdS [119, 120, 242]

was identified in [182], and it would be interesting to see if a flat-space contraction

exists. This might have a more direct application to the program of describing the
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tensionless limit of string field theory, since mixed-symmetry fields are ubiquitous

as soon as the dimension of space-time exceeds six, and constitute the main portion

of the string spectra.

In view of the historical difficulties encountered in building an interacting theory

of higher-spin gravity in Minkowski space starting from the Fronsdal formulation,

and the alternative approach suggested in this thesis, one can question the physical

relevance of the Fronsdal field in Minkowski space. Indeed, in our formulation of the

dynamics, it is only a by-product, while the gauge connection that gives rise to it

should be considered as the more fundamental field. However, in AdS, the Fronsdal

field plays a preponderant role in higher-spin holography. Indeed, in the usual

AdS/CFT dictionary, the latter couples to conserved higher-spin currents which

are completely symmetric and traceless. If higher-spin holography in flat space-

time were to work in the same way as it does in AdS space-time, one would need to

perform (s − 2) integrations to have access to a Fronsdal field. This tension could

be solved, for instance, by a careful treatment of the higher-spin currents in the

dual field theory, or by the emergence of a new dictionary in flat-space higher-spin

holography, see, e.g., [92, 243, 95].

A more general question, which is perhaps philosophical in nature, is if one should

expect higher-spin holography to work in the same way both in AdS and flat space-

time. Even though our approach features a bona fide extension of the Poincaré

algebra of symmetries, no equivalent of the Flato-Fronsdal theorem seems to emerge

due to the bilinears of the simpleton being at most quadratic in u , and therefore

unable to encode the degrees of freedom of higher-spin fields coming from the bulk.1

It was proposed that this issue should be addressed in Carrollian holography through

the inclusion of sources encoding gravitational radiation reaching the boundary

[94, 95], and which are absent in AdS/CFT if one imposes the usual reflective

boundary conditions.

1Some recent progress in chiral higher-spin gravity [244, 245] indicates that there exists another

framework in which one can translate most of the results of higher-spin holography into flat space.

One can prove for instance the Flato-Fronsdal theorem, but one must be ready to accept some

unconventional features as well. For instance, the gauge algebra relevant for flat self-dual higher-

spin gravity is not based on the Poincaré algebra [197, 246], but on a different contraction of the

AdS4 isometry algebra. This last statement is not restricted to higher spins, since it is also the

case for flat self-dual gravity [247].



Appendix A

Elements of Carrollian holography

In this section, we will review some facts about Carrollian geometry. We will

mainly follow [220, 104, 231], and more information can be gathered from, e.g.

[206, 229, 225]. We will define a Carrollian manifold as the triple (M, g, ξ) , where

g is a (d + 1)-dimensional degenerate metric and ξ is a nowhere-vanishing vector

field such that

g♭(ξ) = 0 . (A.0.1)

We will moreover assume that the manifold M can be split as the product of a null

direction generated by ξ and a non-degenerate spatial sub-manifold M ≃ R× Σ ,

where the tangent space to the direction R is a one-dimensional vector space gen-

erated by ξ . In a coordinate chart (u,xi), we can write for instance

gµνdx
µdxν = 0× du2 + γij(x) dx

idxj , ξ = ∂u , (A.0.2)

where γij(x) is a non-degenerate metric on the manifold Σ that only depends on x,

and the degenerate direction is spanned by u ∈ R . We can introduce a torsion-free,

metric-compatible1 connection ∇ . In our choice of coordinates, a simple choice is

given by the Levi-Civita connection for the metric γ .

Infinitesimal Carroll symmetry is encoded in the Killing vectors of the metric g,

i.e. the vectors X ∈ Γ(TM) such that LXg = 0 (which may include ξ). With our

choice of torsion-free metric-compatible connection, they include the Killing vectors

of Σ

∇(iXj) = 0 . (A.0.3)

Conformal Carroll symmetry are the transformations that leave the data (g, ξ)

invariant up to a rescaling by a power of a smooth function Ω ∈ C∞(M,R∗)

g → Ω2 g , ξ → Ω−1 ξ , (A.0.4)

1Even with these two requirements, it is in general non-unique [248, 231].
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or infinitesimally, they are vectors X such that there exists ω ∈ C∞(M,R) verifying

LXg = 2ω g , LXξ = −ω ξ , (A.0.5)

where we already specified that the metric g and the vector field ξ have weights two

and minus one under conformal transformations respectively, in accordance with

its relativistic parent (other choices exists as well, giving rise to the Newman-Unti

family group of transformations [249, 220, 104]). With our choice of coordinates, if

X = X i∂i is such a vector and the function ω takes the form

ω = 2
d
∇ ·X . (A.0.6)

Moreover, the conformal Killing vectors of Σ are conformal Killing vectors of M

∇(iXj) =
1
d
γij∇ ·X , (A.0.7)

where indices are lowered and raised thanks to γ , the non-degenerate part of the

Carrollian metric.

In both cases, arbitrary infinitesimal shifts in the direction u leave the metric

invariant, since guu = gui = 0 and γij and ξ are independent of u . In general,

(conformal) Carrollian diffeomorphisms are the ones that redefine space as a func-

tions of space only, while redefining time as a function of space and time, thus they

play a dual role to Galilean diffeomorphisms which transform space to a function of

space and time and time to a function of time only. Therefore, vectors of the form

f(x)ξ are also trivially (conformal) Killing vectors. The conformal Carroll isome-

tries are given by the semi-direct product of the conformal isometries of the spatial

sub-manifold and the previous shifts in the direction of u, called ‘super-translations’

and parameterised by smooth real functions

CCarr(M) = Conf(Σ)⋉ C∞(Σ,R) . (A.0.8)

This group may be further enhanced (by relaxing physical boundary conditions

[99]) to Diff(Σ) ⋉ C∞(Σ,R) to include transformations that modify the metric on

the sphere to be anything smoothly related to the sphere, and not just the rescaling

by a non-zero function. The new transformations are called super-rotations.



Appendix B

More on the magnetic simpleton

B.1 Weyl invariance of the magnetic simpleton

Let us verify in an independent way that the particular value of the linear term

entering the definition of ∇̂2 is the one needed to ensure that the action (3.3.4) is

Weyl-invariant on a manifold with the geometry of R × Sd (this proof is adapted

from the one in [111], which we reproduce here for the geometry of I ).

Let us reformulate this action when coupled to a more general background

Sgen =
1

2

∫
du ddx e

(
π̄vµ∂µϕ+ πvµ∂µϕ̄− gµν∂µϕ̄∂νϕ− d−1

4 d
R[g]ϕ̄ϕ

)
, (B.1.1)

which is specified by a degenerate metric gµν along the direction of vµ and with

non-vanishing density e, and R[g] = gµνRµν [g] , where Rµν [g] is the Ricci tensor

of the metric gµν , see [248, 111]. The clock form τµ dual to the vector vµ verifies

vµτµ = 1 and vµ ∂[µτν] = 0, and the metric gµν has vanishing extrinsic curvature

Kµν = −1
2
Lvgµν = 0. In particular, the non-degenerate part of gµν can be the

Euclidean metric on Rd or on the sphere Sd . In the following, we only allow trans-

formations that stay within this class of ‘flat’ Carroll backgrounds. In particular,

Weyl transformations must depend only on spatial coordinates.1

For instance, the background given by gµν = diag(0, γij) with γij the round metric

on the sphere, τµ = δ0µ, v
µ = δµ0 , and density e =

√
det(gµν + τµτν) reproduces the

action (3.3.4).

The various objects entering the action transform under Weyl rescalings with

real parameter ω

δωgµν = 2ω gµν , δωv
µ = −ω vµ , δωe = (d+ 1)ω e , (B.1.2)

1A general argument for a wider class of metrics stable under arbitrary Weyl transformations

can be found in [111] but involves additional fields playing the role of Lagrangian multipliers for

the conditions listed above on the clock form and the extrinsic curvature.
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and one can work out the transformation of the Ricci scalar under Weyl transfor-

mations

δωR = −2ωR− 2d∇2ω , (B.1.3)

with ∇2ω = e−1 ∂µ (e g
µν ∂νω), and

δωϕ = −d−1
2
ω ϕ , δωπ = −d+1

2
ω π , (B.1.4)

for the fields.

Under a Weyl rescaling, the generalised action transforms as

δωSgen =
1− d

4

∫
du ddx e

[
(π̄ϕ+ ϕ̄π)vµ∂µω − gµν∂µω∂ν(ϕ̄ϕ)−∇2ωϕ̄ϕ

]
, (B.1.5)

where the homogeneous terms cancel each other due to the total weight of the

integrand under Weyl transformations being zero. The last two terms cancel each

other upon integration by parts, while the first term is zero if and only if vµ∂µω = 0,

i.e. in a ‘flat’ Carroll space-time with an adapted set of coordinates, the parameter

ω does not depend on Carrollian time u.

Note that the value of the linear term in the case of the round sphere − (d−1)2

4

does not correspond to the one giving rise to the Laplace-Yamabe operator on the

round sphere Sd given by

∇2
LY = ∇2 − d(d−2)

4
, (B.1.6)

which is the conformal completion of the Laplacian on the celestial sphere Sd .

Instead, ∇̂2 − c2 ∂u
2 is the conformal completion of Laplacian which is conformally

invariant on the whole cylinder I ≃ R×Sd (this is true both for c ̸= 0 and c = 0).

For a more general class of metrics, Weyl rescalings with an arbitrary parameter

are allowed, although this would require to modify the form of the action. In

particular, in an adapted coordinate system where vµ = δµ0 , a metric of the form

gij(u,x) = e2ω(u,x) γij(x) is allowed since its extrinsic curvature is purely a trace.2

B.2 Conformal invariance of the magnetic sim-

pleton

Here, we prove that eq. (3.3.4) is invariant under generalised BMS transformations.

The actions of a super-translation f(x) and a super-rotations Y i(x)∂i on the fields

2In the language of [206], these metrics have vanishing Carrollian shear and are of significant

importance when studying BMS symmetry due to the presence of well-defined super-translation

generators.
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ϕ(u,x) and π(u,x) are given by

δf,Y ϕ =
(
Y i ∂i +

1
d
∇ · Y (∆− + u ∂u) + f∂u

)
ϕ , (B.2.1a)

δf,Y π =
(
Y i∂i +

1
d
∇ · Y (∆+ + u ∂u) + f∂u

)
π

+

(
∂if∂i + u

[
∇2, Y i∂i +

∆−

d
∇ · Y

]
− u

2d
∇ · Y ◦ ∇̂2

)
ϕ , (B.2.1b)

where ∆± = d±1
2

. In both cases, the terms in u ∂u coming from the action of

conformal Killings are the effect of the shift ∆ → ∆+ u ∂u already encountered in

eq. (3.2.6). Note that the action is non-diagonal since in the transformation law δπ

there is some piece proportional to ϕ .

B.3 The bulk simpleton is the flat singleton

Let us prove that the magnetic simpleton, although exotic-looking, is in fact the

well-defined flat limit of the singleton, realised as a pair of scalars in AdSD.

Let us start again with the ambient description of the singleton in RD−1,2 with

Cartesian coordinates (xa, w)(
∂a∂

a − ∂w
2
)
Φ = 0 , (xa∂a + w∂w +∆)Φ = 0 , Φ ≃ Φ− x2 − w2

R2
Ψ , (B.3.1)

where we restored the AdS radius R . The bulk value of the singleton is the eval-

uation of Φ(x,w) at x2 − w2 = −R2 . Let us pose w = R ς, then in terms of ς we

have(
∂a∂

a − ∂ς
2

R2

)
Φ = 0 , (xa∂a+ ς∂ς+∆)Φ = 0 , Φ ≃ Φ+

(
ς2 − x2

R2

)
Ψ . (B.3.2)

It is obvious that the flat limit R → ∞ of eqs. (B.3.2) reproduces eqs. (3.3.1)

and therefore describe the bulk simpleton. The goal of this section is to find a

realisation of the singleton in the bulk of AdSD such that the flat limit takes us to

the simpleton.

First, observe that one can always represent the singleton by a doublet of fields

depending only on the coordinates xa

Φ(x, ς) = φ−(x) + ς φ+(x) , (B.3.3)

where

(xa∂a +∆±)φ± = 0 , ∂a∂
aφ± = 0 . (B.3.4)

Indeed, by making a Taylor series expansion of the ambient field Φ(x, ς) in the

variable ς , the singleton reads

Φ(x, ς) =
∑
n≥0

ςn

n!
φn(x) , (B.3.5)
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where we the functions φn(x) are defined as ∂ς
nΦ(x, ς)|ς=0 . Homogeneity dictates

(xa∂a +∆− + n)φn = 0 . (B.3.6)

Then, using the last relation of (B.3.2) we can trade powers of ς2 for powers of x2

R2

Φ(x, ς) ≃
∑
n≥0

1

(2n)!

(
x2

R2

)n

φ2n(x) + ς
∑
n≥0

1

(2n+ 1)!

(
x2

R2

)n

φ2n+1(x) . (B.3.7)

The fields φn≥2(x) are actually not free: using the fact that Φ verifies the ambient

wave equation, we deduce a relation among the fields φn(x)

∂a∂
aφn(x) =

1

R2
φn+2(x) . (B.3.8)

Using this recursion relation, the ambient description of the singleton takes the form

Φ(x, ς) =
∑
n≥0

1

(2n)!
x2n ∂2nφ0(x) + ς

∑
n≥0

1

(2n+ 1)!
x2n ∂2nφ1(x)

:= φnew
− (x) + ς φnew

+ (x) .

(B.3.9)

Now, remark that φnew
± (x) have scaling dimensions ∆± , as a consequence of the

homogeneity of φ0 and φ1 and the fact that the operator x2 ∂2 has zero scaling

dimension [xa ∂a, x
2 ∂2] = 0 . In addition, φnew

± verify ∂a∂
aφnew

± = 0 . To see this, let

us compute directly

∂a∂
aφnew

− =∑
n≥1

2n(d+ 2n)− 8n2 − 4n∆−

(2n)!
x2n−2∂2nφ0 +

∑
n≥0

1

(2n)!
x2n∂2n+2φ0 , (B.3.10)

which vanishes precisely for ∆− = d−1
2

. Similarly,

∂a∂
aφnew

+ =∑
n≥1

2n(d+ 2n)− 8n2 − 4n∆+

(2n+ 1)!
x2n−2∂2nφ1 +

∑
n≥0

1

(2n+ 1)!
x2n∂2n+2φ1 , (B.3.11)

which vanishes precisely for ∆+ = d+1
2

.

All in all, we find that the singleton in the doublet representation verifies the

same equations as the simpleton

∂a∂
a Φ = 0 , (xa∂a + ς∂ς +∆)Φ = 0 , Φ ≃ Φ + ς2Ψ . (B.3.12)

The only difference between the singleton and the simpleton lies in the bulk reali-

sation. The bulk of AdS space is the locus ς(x) =
√

1 + x2

R2 for the region ς > 0 ,

instead of ς = 1 in the flat case.
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The AdS metric in ‘Minkowski-like coordinates’ is the pullback of the metric ηAB

on the curve ς(x), and reads

ds2AdS = −R2dς(x)2 + dx2 = gab(x) dx
a dxb , (B.3.13)

with

gab(x) = ηab −
xaxb

R2 + x2
, gab(x) = ηab +

xaxb

R2
, det(g) = − R2

R2 + x2
, (B.3.14)

which indeed describes a space-time of constant negative curvature with radius R,

i.e. Rabcd = − 1
R2 (gacgbd − gbcgad) .

Note that the determinant of the metric gab blows up when x2 = −R2 , which

corresponds to the boundary of AdS in this coordinate system, and that this metric

covers only half of AdS space-time [250], and therefore only half of its conformal

boundary. The other half is located at ς(x) = −
√
1 + x2

R2 . When R → ∞, the

coordinate singularity at x2 = −R2 is pushed to infinity and disappears, and one

recovers a full copy of Minkowski space.

One can verify that the equations ∂a∂
aφ± = 0 are equivalent to[

∇2 − 1

R2
∆±(∆± −D + 1)

]
φ± = 0 , (B.3.15)

where ∇2φ = 1√
−g
∂a
(√

−g gab ∂bφ
)
is the Laplace-Beltrami operator on AdSD with

metric gab , and we used the homogeneity relation. In this exotic realisation, the

bulk singleton is the given of two harmonic scalar fields with weights ∆± .

Note that in (B.3.15), the two values of the scaling dimension ∆± should not

be interpreted as the two possible solutions of the mass-shell equation for a single

scalar field of a given mass, but rather to the scaling dimensions of two distinct

scalar fields with different values of their mass-squared R2m2
± = ∆±(∆± −D+1) .

For the first scalar φ− with weight ∆− , there are two solutions to the mass-shell

condition with scaling dimensions ∆ = ∆− = d−1
2

and ∆ = d+3
2

. The homogeneity

condition (xa∂a +∆−)φ− = 0 tells us that only the first one, corresponding to the

leading branch in an expansion close to the conformal boundary, is present. For the

second scalar φ+ with weight ∆+ , there is only one solution to the mass-shell equa-

tion ∆ = ∆+ = d+1
2

, which is the one imposed by homogeneity (xa∂a +∆+)φ+ = 0 .

To conclude, let us present the actions of Lorentz transformations and transla-

tions on the AdSD singleton represented by the doublet φ ∼
(
φ−

φ+

)

Jab ∼
(
2x[a ∂b] 0

0 2x[a ∂b]

)
, Pa ∼

(
0 1

R2 (x
2 ∂a + xa)

∂a 0

)
. (B.3.16)
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These expressions satisfy the AdS algebra and one can verify that the ideal corre-

sponding to the AdSD higher-spin algebra is factored out in this form

J[ab ◦ Jcd]φ ∼ 0 , (B.3.17a)

J[ab ◦ Pc]φ ∼ 0 , (B.3.17b)

1
2
Jab ◦ J baφ ∼ − (D−3)(D−1)

4
φ , (B.3.17c)

Pa ◦ P aφ ∼ − 1
R2

D−3
2
φ , (B.3.17d)(

J c
(a ◦ Jb)c +R2 P(a ◦ Pb)

)
φ ∼ −D−3

2
ηabφ , (B.3.17e)(

Jab ◦ P b + P b ◦ Jab
)
φ ∼ 0 . (B.3.17f)

We conclude that the singleton can be described by a doublet of homogeneous

massless fields in AdS, admitting a non-degenerate3 flat limit.

B.4 Boundary definition of the magnetic simple-

ton from ambient space

Usually, one finds the boundary value from ambient space by performing the pro-

jection along a null direction. Here, we start instead from boundary theory, and

verified that the bulk definition has the same behaviour when transported to the

boundary. If one wants to define the boundary magnetic simpleton following the

usual procedure, we need a bit more gymnastics to recover our definition.

Let us perform the null reduction of eqs. (3.3.1) along ς2 = 0 , given by identifying

points up to rescaling (xa, ς) ∼ λ (xa, ς) by a positive number λ . The coordinate

ς can be factored out by using a 2 × 2 matrix representation like before (and not

forgetting to shift the scaling dimension by one unit in the ς direction), while the

coordinates xa ∈ R1,d+1 become ambient space coordinates for the celestial sphere

Sd .

However, in addition to the homogeneity condition, the equation of motion that

we need to pull back is not the quotienting condition Φ±(x) ≃ Φ±(x) + x2Ψ±(x)

that would allow to reduce Φ±(x) to two arbitrary fields on the boundary, like in

section 3.2.2. Instead, we have ∂2Φ± = 0 in ambient space. This contrasts sharply

with the expected answer, which is the given of two arbitrary fields on the celestial

sphere. However, we can perform a simple transformation that will allow us to

make contact with this result.

3Here, we refer to the usual lore that the flat limit of a singleton is a unitary, irreducible

representation of the Poincaré group in which translations are realised trivially [71]. What we

propose instead is a non-unitary, indecomposable representation in which translations are realised

non-trivially.
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By writing a Taylor expansion of Φ± near x2 = 0

Φ− =
∑
n≥0

x2n

(2n)!
Φ

(n)
− , Φ+ =

∑
n≥0

x2n

(2n+ 1)!
Φ

(n)
+ , (B.4.1)

where each Φ
(n)
± has scaling dimension ∆±+2n and is free of x2 terms (the latter can

always be reabsorbed in the next n’s). The fact that Φ± verify the wave equation

∂a∂
aΦ± = 0 allows us to read a set of differential equations order by order in x2

Φ
(n+1)
± = ∂2Φ

(n)
± , (B.4.2)

for n ≥ 0 , which means that all Φ
(n)
± with n ≥ 1 are actually determined in terms of

Φ
(0)
± . Each Φ

(n)
± being itself free from x2 terms, we can perform their pullback to the

celestial sphere Sd ∋ x and define an infinite collection of conformal scalars ϕ
(n)
± (x) ,

all determined as a function of the first one ϕ
(0)
± (x) by differential relations. This

matches with the expected on-shell boundary description of the simpleton, being

parameterised by two arbitrary fields of the celestial sphere, see eq. (3.3.4).

B.5 Higher symmetries of the magnetic simple-

ton

The higher symmetries of the magnetic Carrollian scalar are given by the differential

operators

D =

(
M N

P Q

)
, (B.5.1)

that commute weakly with the kinetic operator K

K ◦D =D† ◦K ⇔


∇̂2 ◦M − ∂u ◦ P =M † ◦ ∇̂2 + P † ◦ ∂u
∇̂2 ◦N − ∂u ◦Q = −M † ◦ ∂u

∂u ◦M = N † ◦ ∇̂2 +Q† ◦ ∂u
∂u ◦N = −N † ◦ ∂u

, (B.5.2)

while quotienting by trivial isometries of the form

D =D′ ◦K =

(
M ′ ◦ ∇̂2 +N ′ ◦ ∂u −M ′ ◦ ∂u
P ′ ◦ ∇̂2 +Q′ ◦ ∂u −P ′ ◦ ∂u

)
. (B.5.3)

Using the quotienting condition, we can always look for M , N , P and Q indepen-

dent4 of ∂u . Indeed, if M or P possesses a part containing at least one ∂u, we

4We may also choose a representative of D including powers of ∂u , which will be better suited

to represent super-translations, but it will prove to be more convenient to choose a representation

where the differential operators are independent of ∂u to compute symmetries.
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may cancel it by using the N ′ or Q′ symmetries, while if N or Q possesses a part

written as Ñ ◦ ∂u or Q̃ ◦ ∂u , we may push it to the column of M or P where it

is transformed into Ñ ◦ ∇̂2 or Q̃ ◦ ∇̂2 . We may then apply the same argument if

Ñ or Q̃ contains a part proportional to ∂u . Indeed, with this choice, the equations

are equivalent to

Ṅ = 0 , N † = −N , (B.5.4a)

Q̇ = ∇̂2 ◦N , M † = Q , (B.5.4b)

Ṗ = ∇̂2 ◦M −M † ◦ ∇̂2 , P † = −P , (B.5.4c)

and so the differential operator D reads

M = L−1 + i L+1 − i uK+1 ◦ ∇̂2 , (B.5.5a)

N = iK+1 , (B.5.5b)

P = iK−1 + u
[
∇̂2, L−1

]
+ i u

{
∇̂2, L+1

}
− i u2 ∇̂2 ◦K+1 ◦ ∇̂2 , (B.5.5c)

Q = L−1 − i L+1 + i u ∇̂2 ◦K+1 , (B.5.5d)

parameterised by four arbitrary Hermitian operators on the celestial sphere, denoted

here by K±1 and L±1 , as was the case for the electric Carrollian scalar.

Moreover, they satisfy the same algebra H(Sd) ⊗ gl(2,R) as for the electric

scalar, which is not surprising since the space of solutions of the electric and mag-

netic scalars are equivalent on-shell. Consider a higher symmetry of the magnetic

simpleton, that is a differential operator

D (L−1, L+1, K−1, K+1) , (B.5.6)

in the parameterisation of eqs. (B.5.5). The non-zero Lie brackets (time the imagi-

nary unit) verify

i[D (L, 0, 0, 0) ,D (L′, 0, 0, 0)] =D (i[L,L′], 0, 0, 0) , (B.5.7a)

i[D (L, 0, 0, 0) ,D (0, L′, 0, 0)] =D (0, i[L,L′], 0, 0) , (B.5.7b)

i[D (L, 0, 0, 0) ,D (0, 0, K ′, 0)] =D (0, 0, i[L,K ′], 0) , (B.5.7c)

i[D (L, 0, 0, 0) ,D (0, 0, 0, K ′)] =D (0, 0, 0, i[L,K ′]) , (B.5.7d)

i[D (0, L, 0, 0) ,D (0, L′, 0, 0)] =D (−i[L,L′], 0, 0, 0) , (B.5.7e)

i[D (0, L, 0, 0) ,D (0, 0, K ′, 0)] =D (0, 0, {L,K ′}, 0) , (B.5.7f)

i[D (0, L, 0, 0) ,D (0, 0, 0, K ′)] =D (0, 0, 0,−{L,K ′}) , (B.5.7g)

i[D (0, 0, K, 0) ,D (0, 0, 0, K ′)] =D

(
−i
2
[K,K ′],

1

2
{K,K ′}, 0, 0

)
. (B.5.7h)

are also the ones of the algebra H
(
Sd
)
⊗ gl(2,R) of eq. (3.2.9).
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B.6 Expressions in various coordinate systems

In retarded Bondi coordinates

Alternatively, one can find a closed form expression that reproduces the expansion

(3.3.4), solving the equations (3.3.3). In Bondi coordinates (r, u,x) they read

φ−(r, u,x) = r−∆−
[f(r, u) + g(r, u)]κ + [f(r, u) + g(r, u)]−κ

2
ϕ−(x) , (B.6.1a)

φ+(r, u,x) = r−∆+
[f(r, u) + g(r, u)]κ − [f(r, u) + g(r, u)]−κ

2 g(r, u)κ
ϕ+(x) , (B.6.1b)

with

f(r, u) := 1 +
u

r
, g(r, u) :=

√
f(r, u)2 − 1 , κ :=

√
∆2

− −∇2 . (B.6.2)

Although one could worry about the possible non-analytic dependence in the dif-

ferential operator ∇2 or the retarded time u , the 1/r expansion yields exactly the

expressions (3.3.4), which is well-defined in a 1/r expansion.

Near spatial infinity

Let us pick instead hyperbolic coordinates (η, s,x), defined for |t| ≤ r by

η =
√
r2 − t2 , s =

t

r
. (B.6.3)

We have

φ−(η, s,x) =

(√
1− s2

)∆−

η∆−

[
s+

√
s2 − 1

]κ
+
[
s+

√
s2 − 1

]−κ

2
ϕ−(x) , (B.6.4a)

φ+(η, s,x) =
i
(√

1− s2
)∆−

η∆+

[
s+

√
s2 − 1

]κ
+
[
s+

√
s2 − 1

]−κ

2κ
ϕ+(x) . (B.6.4b)

Note that when moving along the η-coordinate the fields are simply rescaled.

In the limit η → ∞, contrary to the limit r → ∞ in Bondi coordinates, the

boundary fields have a (fixed but non-trivial) s-dependence, on top of the arbi-

trary x-dependence. This is because the Euler operator xa ∂a takes the expression

r ∂r + u ∂u in Bondi coordinates, but η ∂η in hyperbolic coordinates.

Near i0, corresponding to the limit η → ∞ and s≪ 1 , we have

η∆− φ−(η, s,x) ∼
[
cos
(
π
2
κ
)
+ κ sin

(
π
2
κ
)
s+O(s2)

]
ϕ−(x) , (B.6.5a)

η∆+ φ+(η, s,x) ∼
[
−κ−1 sin

(
π
2
κ
)
+ cos

(
π
2
κ
)
s+O(s2)

]
ϕ+(x) , (B.6.5b)
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where the pattern of trigonometric functions repeats at every group of two orders

in the small-s expansion.

The functions φ+ and φ− do not have a definite parity under antipodal matching

(s,x) → (−s,−x) in even bulk dimension, but they do in odd bulk dimension. This

is due to the scaling dimension ∆− being a half-integer in even dimensions and an

integer in odd ones. For instance for d = 3 , the eigenvalue of κ on the subspace of

spherical harmonics with principal number ℓ is ℓ+ 1 , so that

η∆− φ−(η, s,x) ∼ Uodd(x) + Ueven(x) s+O(s2) , (B.6.6a)

η∆+ φ+(η, s,x) ∼ Veven(x) + Vodd(x) s+O(s2) , (B.6.6b)

and the pattern repeats at every order in s . Therefore, φ−(η, s,x) is odd under

antipodal matching while φ+(η, s,x) is even.
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