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Abstract
GitHub Actions was introduced in 2019 as a software development workflow automation tool, allowing to automate a wide
range of social and technical activities in GitHub repositories. The reusable components known as Actions are developed
within GitHub repositories and can be distributed through the GitHub Marketplace. GitHub Actions forms an ecosystem
because workflows can rely on reusable Actions, that themselves may depend on other components such as NodeJS packages,
Docker images, or other Actions. Just as packages in software library ecosystems have been shown to suffer from a multitude
of maintainability issues due to their complex dependency networks, we posit that the same is true for Actions. Therefore,
this paper presents preliminary insights in the dependencies of Actions. Based on a dataset of 2,817 Actions, we report on the
characteristics of these Actions and we explore to which extent they are developed using JavaScript, Docker or as composite
Actions, and to which extent they depend on other components. We show that most Actions are developed using JavaScript,
and that composite Actions are gradually replacing Docker Actions. We also show that Actions have many dependencies,
especially towards JavaScript packages, resulting in a large number of deeply nested transitive dependencies. This justifies
the need for further maintainability studies of the GitHub Actions ecosystem.
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1. Introduction
Open-source software (OSS) has gained significant popu-
larity and typically forms a substantial portion of a mod-
ern software application stack, ranging from 70% to 90%
of its code base [1]. Software development has evolved
into a persistent, extensively distributed and collabora-
tive endeavour [2]. During collaborative development, a
multitude of tasks must be executed, including coding, de-
bugging, testing, quality and security analysis, packaging
and releasing software distributions, and so forth. These
tasks require the use of version control systems, soft-
ware distribution managers, bug and issue trackers, and
quality, vulnerability and dependency analysers. Many
of these tools are integrated into, or accessible through,
social coding platforms [3]. The largest such platform to
date is GitHub, hosting millions of software repositories
and having served over 94 million users in 2022 [4].

To speed up the pace of development while maintain-
ing high-quality software releases, continuous integra-
tion, deployment, and delivery (CI/CD) was introduced
to automate a plethora of repetitive development-related
tasks [5]. With the introduction of GitHub Actions in
2019, GitHub has integrated CI/CD support within GitHub
repositories, providing direct access to a wide range of

SATToSE’23: Seminar on Advanced Techniques & Tools for Software
Evolution, June 12–14, 2023, Salerno, Italy
$ hassan.onsoridelicheh@umons.ac.be (H. O. Delicheh);
alexandre.decan@umons.ac.be (A. Decan); tom.mens@umons.ac.be
(T. Mens)
� 0000-0002-5824-5823 (A. Decan); 0000-0003-3636-5020 (T. Mens)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

services, including automated building, testing, qual-
ity analysis, code review, communication, licence ver-
ification, and monitoring dependencies and security vul-
nerabilities. Only 18 months after its public release,
GitHub Actions has become the dominant CI/CD ser-
vice on GitHub [6].

GitHub Actions facilitates the creation of workflows by
providing reusable Actions, that are distributed through
the GitHub Marketplace.1 In January 2023, already over
17K Actions were available for reuse. There is a signif-
icant amount of community involvement in the devel-
opment of these Actions, which entails a considerable
risk of malicious actors that intentionally develop new
or modify existing Actions to compromise software de-
velopment repositories.

Actions can be developed in three different ways: us-
ing JavaScript code, using Docker containers, or through
the mechanism of composite Actions. Additionally, Ac-
tions may depend on other Actions or on third-party
software components such as npm packages or Docker
images. Relying on such third-party components may
lead to maintainability issues such as incompatibilities,
security vulnerabilities, and the reliance on outdated or
abandoned components [7]. For instance, a study focus-
ing on the security vulnerabilities of composite Actions
and JavaScript Actions revealed that around 30% of these
Actions had at least one high or critical security alert in
their dependencies [8]. This makes it crucial to analyse
the dependencies of Actions. This justifies the current
article, which provides a preliminary study of the depen-
dency network of Actions that are developed through

1https://github.com/marketplace?type=actions
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GitHub repositories and published on the GitHub Mar-
ketplace. Such an investigation serves as an initial and
fundamental stepping stone for researchers seeking to
comprehend the potential impact of maintainability is-
sues in the GitHub Actions ecosystem.

We carry out a quantitative empirical analysis with
two main research goals. GoalG1 aims to characterise Ac-
tions distributed through the GitHub Marketplace, quan-
tifying the different approaches for developing Actions
and their evolution over time. This goal is subdivided into
two research questions that are centered around a quan-
titative analysis of the characteristics of 2,817 Actions
on the GitHub Marketplace, as well as their 25,975 corre-
sponding releases on the GitHub repositories in which
they are developed.
𝑅𝑄1.1 What are the characteristics of Actions distributed
through the GitHub Marketplace?
𝑅𝑄1.2 How do different types of Actions evolve?

Goal G2 focuses on the dependency characteristics
for the three types of Actions, through the following
research questions:
𝑅𝑄2.1 What are the dependency characteristics of com-
posite Actions?
𝑅𝑄2.2 What are the dependency characteristics of Java-
Script Actions?
𝑅𝑄2.3 What are the dependency characteristics of Docker
Actions?

2. Related work
On the usage and adoption of GitHub Actions. Pre-
vious research on GitHub Actions has primarily focused
on the usage and adoption of GitHub Actions, with lim-
ited investigation into their development. Several empir-
ical studies have evaluated the adoption and usage de-
tails of Actions, typically by analysing data from GitHub
repositories that use and adopt them for specific automa-
tion tasks. For example, Golzadeh et al. [6] analysed
91,810 GitHub repositories to study how the CI/CD land-
scape has changed since the introduction of GitHub Ac-
tions. They found that the adoption of Actions is associ-
ated with a decline of other CI/CD tools such as Travis,
CircleCI, and Azure. Rostami et al. [9] conducted a qual-
itative study aimed at comprehending the underlying
factors driving the transformations in the CI/CD land-
scape. In-depth interviews with 22 experienced software
practitioners provided insights into their usage, co-usage,
and migration patterns of 31 distinct CI/CD tools. Based
on this qualitative analysis, they identified a discernible
trend of migrating towards GitHub Actions, and they
also pinpointed the primary drivers behind this trend.

Kinsman et al. [10] examined 3,190 repositories to in-
vestigate changes in various development activity indi-
cators following the adoption of Github Actions. Chen

et al. [11] investigated the effects of GitHub Actions on
GitHub projects. Valenzuela-Toledo and Bergel [12] con-
ducted a study on the usage and maintenance practices
of GitHub Actions workflows in popular GitHub reposi-
tories and identified various types of workflow modifica-
tions. Benedetti et al. [13] proposed a security assessment
methodology to investigate the impact of security issues
on GitHub Actions workflows and the software supply
chain. Decan et al. [14] studied the usage of GitHub
Actions in GitHub repositories. They characterised the
repositories and their workflows by analysing job types,
steps and used Actions. They observed that almost all
workflows use Actions, which could potentially pose a
problem as any issues with these Actions, including bugs,
security vulnerabilities, or outdated components, could
negatively impact the workflows that incorporated them.

Saroar and Nayebi [15] investigated the motivations,
decision criteria, and challenges associated with creating,
publishing, and using GitHub Actions. They discovered
that, when presented with comparable options, develop-
ers tend to favour Actions created by verified individuals
and having a higher number of stars. Furthermore, they
noticed that users frequently switch to alternative Ac-
tions in response to issues such as bugs and insufficient
documentation. Additionally, they found that config-
uring and debugging workflow files is one of the most
common difficulties encountered by users of GitHub Ac-
tions. A recent study on security checks for Actions in
the Marketplace also discovered that when Actions are
forked and Dependabot 2 is enabled on the forked reposi-
tories, particularly for composite and JavaScript Actions,
approximately 30% of these Actions contain at least one
high or critical security alert in their dependencies [8].
To the best of our knowledge, our current quantitative
study is the first to focus on how Actions are developed,
differentiating between different types of Actions and ex-
amining the characteristics, evolution and dependencies
in the GitHub Actions ecosystem.

On the dependency management of software li-
brary ecosystems. Since this paper aims to investi-
gate dependencies in the GitHub Actions ecosystem, it is
worthwhile to explore prior studies that have explored
dependencies in other software ecosystems.

It is a widely adopted practice among software de-
velopers to depend on reusable software components
to benefit from pre-existing code, rather than creating
everything from scratch [16]. To enhance this practice
of reuse, package managers and registries of reusable
libraries have been introduced for the predominant pro-
gramming languages, such as npm for JavaScript, PyPI

2https://docs.github.com/en/code-security/
dependabot/dependabot-security-updates/
about-dependabot-security-updates
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for Python, and Maven for Java. While software compo-
nent reuse provides several benefits [17], it also comes
with maintainability issues such as dependency manage-
ment [18, 19, 20], security vulnerabilities [21, 22, 23, 24,
25, 26], compatibility issues [27, 28, 29], outdated compo-
nents [30, 31], deprecated and obsolete components [32].
Mirhosseini and Parnin [33] studied the incentives of
software developers to update their project dependen-
cies. The practice of maintaining outdated dependencies
increases the risk of encountering bugs and security vul-
nerabilities. Cox et al. [34] analysed Java projects and
found that projects relying on outdated dependencies
were four times more likely to experience security issues
and compatibility problems.

3. About GitHub Actions
GitHub Actions is a CI/CD tool integrated into GitHub to
allow maintainers of GitHub repositories to automate a
wide range of tasks. Following the “configuration as code"
paradigm, workflows are specified as YAML files (stored
in the .github/workflows folder of the repository). A
workflow reacts to one or more events (e.g., a pull request
is submitted, commits are pushed, or an issue is opened)
and executes one or more jobs. Jobs are defined in terms
of the steps that will be executed when the workflow is
triggered. A step can either define the shell commands
that need to be executed (using the run: syntax) or can
refer (using the uses: syntax) to a reusable component,
called an Action, to carry out its task.

The GitHub Actions Marketplace is a centralised plat-
form that enables users to browse, discover, and share
reusable Actions within the GitHub ecosystem. It serves
as a valuable resource for GitHub community to en-
hance their productivity and streamline their workflows
through the use of reusable Action. It includes features
for filtering, sorting, and searching Actions based on var-
ious criteria, such as category and popularity based on
stars. In the GitHub Actions Marketplace, Actions can
be assigned a primary and a secondary category. The
Actions that are published in the GitHub Marketplace
typically include information such as the name of the Ac-
tion, its contributors, its primary and secondary category,
a brief description of its functionality, information about
the developer or organization that created the Action, the
corresponding GitHub repository, the number of stars,
the number of open issues, the number of pull requests,
and the latest 10 releases,.

Actions can be developed in any public GitHub reposi-
tory and shared on the GitHub Marketplace. To enable
an Action to be reused, one has to create a YAML file
named action.y(a)ml at the root of the repository. This
file details the metadata of the Action, such as its name,
its set of parameters and its type. An Action can be devel-

oped in three different ways (i.e., it can be one of three
types):

JavaScript Actions enable the execution of JavaScript
code within a Node.js runtime environment. They are
used for tasks requiring complex logic or interactions
with the GitHub API or other external services. For ex-
ample, a JavaScript Action could be created to automate
the process of creating a new issue in a project manage-
ment tool when a new pull request is opened. The use
of JavaScript also unlocks the potential to rely on a huge
number of JavaScript libraries and packages distributed
through package managers such as npm.
Docker Actions define tasks that are executed in a

Docker container. This allows for greater flexibility and
portability in workflow execution, as the environment
can be customised to suit the needs of the workflow. A
Docker Action can be developed using a Dockerfile, which
defines the base image of the container, and the various
commands that will be executed on top of this image.
These base images can be found in container registries,
such as Docker Hub, GitHub Container Registry, Google
Container Registry, Microsoft Container Registry, Red
Hat Quay and Harbor.

Composite Actions allow to combine multiple work-
flow steps within one Action, similar to how jobs are
defined in workflow files. They allow developers to sim-
plify complex workflows and reduce code duplication by
defining such behaviour directly in a YAML file.

4. Data extraction process
To study the three types of Actions and their dependen-
cies, it is required to obtain a large dataset of Actions
and their respective releases from GitHub repositories
where the Actions were developed. In order to acquire
such a dataset, we retrieved Actions that are distributed
through the GitHub Marketplace, which is the central
location for discovering reusable Actions. At the time of
writing, there was no API to obtain all Actions distributed
on the Marketplace. Therefore, we gathered the Actions
contained in each category listed on the Marketplace. In
order to exclude Actions that might have been created
only for personal or experimental purposes [35] we only
considered Actions with at least 10 stars.

Through this process, we extracted 2,817 distinct Ac-
tions and their associated metadata including their pri-
mary and secondary categories, the name of the reposi-
tory in which the Action is developed, its number of stars,
issues, pull requests, and so on. Then, for each Action, we
extracted its complete list of releases. To do so, we relied
on the GitHub API for Releases, and obtained the 25,975
releases that were created between November 2019 (the
official release date of GitHub Actions) and January 2023
(the data extraction date).
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Figure 1: Evolution of the number of Actions on the Market-
place and their number of releases (in their GitHub reposito-
ries).

Figure 1 shows the evolution of the number of Actions
that we extracted from the Marketplace (blue line, scaled
by a factor of 10 for ease of comparison) and their number
of releases (orange line). We observe a continuous growth
in the number of Actions and releases.

5. Goal 1: Characterising Actions
and their evolution

Goal G1 aims to characterise the Actions distributed
through the GitHub Marketplace and quantify the three
types of Actions and how they have evolved over time.
Through a quantitative empirical analysis of the 2,817
considered Actions and their 25,975 releases extracted
from the corresponding GitHub repositories, we answer
the two following research questions.

𝑅𝑄1.1: What are the characteristics of
Actions distributed through the GitHub
Marketplace?
Since each type of Action uses a distinct approach for
defining their dependencies, this research question pro-
vides a comprehensive overview of the Actions in our
dataset. Investigating the characteristics of Actions dis-
tributed through the GitHub Marketplace can provide
valuable insights into the current landscape of Actions.

Table 1 reports on the median and mean values for
several characteristics such as the number of stars, the
number of releases, the age (in months) and the type
of Actions. The first line (“all categories”) includes all
Actions in our dataset. The next five lines list these char-
acteristics for the top five categories comprising at least
5% of the Actions as either primary or secondary category.
The last line corresponds to the Actions belonging to the

remaining 18 categories. Notice that since an Action can
belong to more than one category, the total number of
Actions exceeds 2,817.

The categories of continuous integration, utilities, de-
ployment, publishing and code quality are the most com-
monly used for publishing Actions on the GitHub Market-
place. In terms of popularity, the Actions in the utilities
category had the highest average (157.5) and median (30)
number of stars. We also found that the median and mean
number of releases for Actions were 5 and 9.2, respec-
tively. This indicates that Actions are still maintained
and updated after their initial release. Regarding the type
of Actions, JavaScript Actions and composite Actions are
the most and least prevalent types of Actions, respec-
tively, across the majority of categories. In the publishing
and code quality categories, Docker Actions have a higher
proportion than JavaScript Actions.

Overall, our observations did not reveal any significant
differences between the various categories of Actions.
Approximately half of all analysed Actions had at least
27 stars, 5 releases and were developed for a duration
of 3 years. A majority of the Actions were developed
as JavaScript Actions, accounting for 52.7% of the total,
followed by Docker Actions, which constituted 36.2% of
the Actions and composite Actions, which made up the
remaining 11.1%. However, these proportions differed
across the distinct categories of Actions.

𝑅𝑄1.2: How do different types of Actions
evolve?
By analysing the YAML files of the latest releases of Ac-
tions in our dataset, we observed that 11.1%, 36.2%, and
52.7% of the considered Actions were released as compos-
ite, Docker, and JavaScript Actions, respectively. We also
quantified the median and mean number of releases for
the three types of Actions and observed that, although
composite Actions is a new type of Action introduced in
August 20203, they had more releases with a median of 5
and a mean of 9.4, as compared to Docker Actions with a
median of 4 and a mean of 7.9.

Action developers may decide to change the type of
Action over its lifetime. Therefore, investigating the mi-
grations among the three different types of Actions and
their evolution over the course of the observation pe-
riod supplements the investigation of characteristics of
Actions. Action developers may change the type of Ac-
tion they are developing for a variety of reasons. The
choice of Action type may depend on factors such as
the required functionality, performance considerations,
maintenance requirements and integration with other
tools or services. Different types of Actions may be bet-

3https://github.blog/changelog/2020-08-07-github-actions-
composite-run-steps/



Table 1
Characteristics of Actions in the top 5 most popular Action categories on the GitHub Marketplace.

Actions # stars # releases age (months) % Action type
category # % median mean median mean median mean composite Docker JS

all categories 2817 100.0 27 121.1 5 9.2 34.5 31.9 11.1 36.2 52.7
continuous integration 766 17.7 28 116.9 5 9.5 34.6 32.0 12.1 35.5 52.4

utilities 645 14.9 30 157.5 5 10.6 34.8 32.8 9.2 28.8 62.0
deployment 455 10.5 28 119.9 4 7.8 36 33.3 6.8 45.3 47.9

publishing 311 7.2 27 126.6 5 10.2 35.5 32.8 9.3 46.0 44.7
code quality 264 6.1 28 129.1 5 10.5 34.3 31.2 18.9 45.1 36.0

remaining 18 categories 1885 43.6 27 109,9 5 9.0 32.7 30.4 11.9 35.1 53.0

ter suited for different use cases. For example, a Docker
Action may be useful for running a containerised applica-
tion, while a JavaScript Action might be more appropriate
for customising the behavior of a workflow. Different
types of Actions may also have varying performance
characteristics. For example, a JavaScript Action may be
faster than a Docker Action in some scenarios. Mainte-
nance may also be a factor that can influence the choice
of Action type. Some Action types may be more complex
and time-consuming to maintain than others, which may
prompt developers to switch to another type of Action
that is easier to maintain. Finally, integration with other
tools or services may also be a reason for changing the
Action type. If an Action needs to work with another
tool or service that works better with a different type
of Action, developers may choose to switch to a more
appropriate Action type.
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Figure 2: Evolution of different types of Actions over time.

Figure 2 shows the evolution over time of the propor-
tion of Actions for each of the three types. We observe
that the proportion of JavaScript Actions remains quite
stable through time. On the other hand, the introduc-
tion of composite Actions in August 2020 led to a gradual
decline in the proportion of Docker Actions in favour of
composite Actions. The consistent increase in the propor-
tion of composite Actions is possibly attributed to their

reusability, customisability and extensibility. They en-
able the definition of a set of steps that can be reused
across multiple workflows and repositories, facilitating
code reuse and reducing duplication. Moreover, regard-
ing the ability to combine shell commands and using
Actions, they can be customised to specific workflows or
repositories and extended with additional functionality
or steps.

Table 2 presents the number of Actions that migrated
away from and towards an Action type as well as their
relative proportion. We observe that composite Actions
represent the majority of the targets of a migration, re-
garding the source type, composite Actions attracted 45.3%
(73 out of 161) of all migrations away from Docker Actions
and 57.4% (31 out of 54) of all migrations away from Java-
Script Actions. Additionally, we note that 15.8% of the
Docker Actions migrated to either composite or JavaScript
Actions.

Table 2
Number and relative proportion of Actions that migrated away
from and towards a specific type of Action.

TO Actions
composite Docker JS # %

FROM
composite - 12 14 26 8.3

Docker 73 - 88 161 15.8
JS 31 23 - 54 3.6

Actions
# 104 35 102
% 33.3 3.4 6.9

6. Goal 2: Analysing dependency
characteristics of Actions

Goal G2 aims to characterise the dependency of the
three Action types by analysing the GitHub repositories
in which these Actions are being developed. Given that
different Action types have different ways to depend
on reusable components, we divide this goal into three
research questions, one per Action type.



𝑅𝑄2.1 What are the dependency
characteristics of composite Actions?
Composite Actions represent 11.1% of all Actions (i.e.,
312 out of 2,817). Their YAML files define a set of steps
that combine shell commands and reusable Actions. We
extracted all steps from the composite Actions, distinguish-
ing between shell commands (through the run: keyword)
and used Actions (through the uses: keyword). The used
Actions were considered as the dependencies of the com-
posite Actions.

We found that 73% of the composite Actions (227 out of
312) are exclusively composed of 1 to 12 steps executing
shell commands. The remaining 27% (i.e., 85 out of 312)
combine both shell commands and used Actions. For
those composite Actions that use (i.e., depend on) other
Actions, we identified these dependencies and their type.
If the dependencies were again composite Actions, we
iteratively extracted all steps from their YAML file to ob-
tain a complete list of indirect dependencies of composite
Actions.

Table 3 reports on the dependency depth for composite
Actions, the proportion of composite Actions at each depth
and the types of Actions that composite Actions depend
on. The first line, for instance, indicates that there are 85
composite Actions (accounting for 27% of the composite
Actions) that have dependencies at depth 1 (i.e., the first
level of dependency nesting). There are 177 dependencies
required by these 85 Actions, comprising 23 composite
Actions, 5 Docker Actions, and 149 JavaScript Actions. In
terms of indirect dependencies, we discovered that 7.4%
of composite Actions demonstrated such dependencies,
relying indirectly on only 25 composite Actions.

Table 3
Dependency characteristics of composite Actions.

composite Actions type of dependency
depth # % composite Docker JS

1 85 27 23 5 149
2 23 7.4 2 0 10
3 2 0.06 0 0 0

Regarding the development approach for composite
Actions, our analysis indicates that they are primarily de-
veloped to streamline complicated workflows and reduce
code duplication, rather than heavily relying on other
Actions available within the GitHub ecosystem.

𝑅𝑄2.2 What are the dependency
characteristics of JavaScript Actions?
JavaScript Actions are written in JavaScript and may de-
pend on npm packages. Developers usually define these
included dependencies in the package.json file, the usual

manifest file for JavaScript projects. The dependencies
part of this manifest lists the name and version number
of the required packages.

JavaScript packages and projects are known to be ex-
posed to security vulnerabilities and other issues coming
from their dependencies [25, 21]. Therefore, we aim to
quantify to which extent JavaScript Actions are relying
on npm packages, as a preliminary step towards quanti-
fying their exposure to security vulnerabilities and the
impact of these vulnerabilities on the GitHub Actions
ecosystem.

For each JavaScript Action, we extracted its list of de-
pendencies from the package.json file of its latest release.
This allowed us to get a list of all direct dependencies
these Actions have. To obtain their indirect dependencies,
we applied the npm-remote-ls 4 command-line tool on
each of its direct dependencies. This tool produces a list
of all the packages that are required, taking into account
the dependency constraints, and also including those that
are transitively required. For 1,364 out of 1,485 JavaScript
Actions in our dataset, we collected a total of 90,370 (di-
rect and indirect) dependencies in this way, accounting
for 4,309 distinct required packages. The remaining 121
JavaScript Actions do not have a package.json file or the
corresponding package did not available on npm reg-
istry. Therefore, they are not considered in the following
analysis.

Table 4
Dependency characteristics of JavaScript Actions.

JS Actions # dependencies
depth # % median mean max

1 1364 100.0 4 4.3 27
2 1351 99.0 9 12.9 179
3 1347 98.7 12 18.4 266
4 1034 75.8 8 16.6 313
5 975 71.5 4 10.8 291
6 876 64.2 3 7.3 208
7 404 29.6 7 10.2 201
8 319 23.4 6 8.0 117
9 274 20.1 3 4.0 64

10 41 3.0 3 4.4 25
11 20 1.5 2 3.3 11
12 12 0.9 1 2.2 8
13 4 0.3 1 1.5 3

Table 4 reports on the depth and proportion of Java-
Script Actions that depend on npm packages in the cor-
responding depth, along with the median, mean, and
maximum number of dependencies associated with the
depth of the dependency trees. For instance, the fifth row
shows that among the JavaScript Actions in our dataset,

4https://www.npmjs.com/package/npm-remote-ls



975 of them (representing 71.5% of the JavaScript Actions)
have indirect dependencies at a depth of 5, with a median
and mean value of 4 and 10.8 npm packages, respectively.

Our analysis also shows that the median and mean
number of direct dependencies for JavaScript Actions
were 4 and 4.3, respectively. Furthermore, we discov-
ered that 99% of the JavaScript Actions contained indirect
dependencies, a significant proportion of these depen-
dencies being deeply nested. Specifically, we observed
that up to 64% of the JavaScript Actions included indirect
dependencies at a depth of 6. The JavaScript Actions are
considerably exposed to potential issues associated with
their dependencies, and since these dependencies may
be deeply nested, it could become increasingly challeng-
ing to identify and resolve such issues. This situation
is consistent with the observations made for JavaScript
projects [25, 21].

In addition, among the npm packages specified as de-
pendencies for JavaScript Actions, @actions/core was the
most frequent npm depencency and 97% of JavaScript Ac-
tions in our dataset were dependent on that. The top five
most frequently occurring npm packages are @actions/-
core, @actions/github, @actions/exec, @actions/tool-cache
and @actions/io. The @actions/ namespace corresponds
to packages distributed by GitHub to ease the develop-
ment and maintenance of JavaScript Actions, explaining
why these packages are frequently found as dependen-
cies for JavaScript Actions. For comparison, the most
required packages that do not belong to this namespace
are semver (used by 9.7% of JavaScript Actions), axios
(used by 7.8% of JavaScript Actions) and node-fetch (used
by 5.6% of JavaScript Actions).

𝑅𝑄2.3 What are the dependency
characteristics of Docker Actions?
Docker Actions realise their tasks through the execution
of a Docker container. To define a Docker Action, one
has to specify, in the action.y(a)ml file at the root of the
repository, either the URL to a Docker image (e.g., from
Docker Hub) or the filepath to a Dockerfile. A Dockerfile
is a file specifying the configuration of the container to
be used for the Action. Among other, this file specifies
the base image that should be used to create the Docker
container, as well as the various commands that should
be executed by this container.

Docker images are usually based on Linux distributions
and contain several pre-installed packages that are re-
quired during the execution of the corresponding Docker
containers. As such, we consider these images and their
packages as dependencies for the Docker Actions that
use them. However, getting the complete list of pack-
ages that are required that way by Docker Actions is not
straightforward. As we will see, Docker Actions use a
large number of images and these images are based on

several Linux distributions, each of them having its own
package manager and requiring a different methodology
to identify the packages that are part of the image. This
research question therefore focuses on the images used
in Docker Actions, keeping for future work the identifi-
cation of the packages that are actually used within the
Docker containers.

We found that the YAML files of 156 out of 1,020 (i.e.,
15.3%) of the Docker Actions specify the URL of the Docker
image directly. The remaining 864 Docker Actions refer
to a Dockerfile instead. We extracted this Dockerfile for
842 out of the 864 cases. For the remaining 22 Actions,
we could not find the corresponding Dockerfile on their
repositories.

For each Dockerfile, we extracted the URL of the base
image, i.e., the value of the FROM field of the Dockerfile.
We parsed this field and extracted the name of the image
and the registry where the image can be found. We did
the same for the Actions that directly specify the URL of
the Docker image in their YAML file.

Table 5 lists the Docker registries that are the most
frequently used by Dockerfiles and action.y(a)ml files. We
observe that Docker Hub is the most frequently used
Docker registry. It is used in 95% of the extracted Dock-
erfiles and in 57.7% of the Action YAML files. This is
expected, since Docker Hub is the default registry that
is used for retrieving Docker images when no registry
is explicitly specified. Moreover, Docker Hub is one of
the largest and most active Docker registries. Addition-
ally, during our investigation, we discovered that GitHub
Container Registry (ghcr.io) ranks as the second most
commonly used Docker registry, used in 36.5% of the
Action YAML files. Other registries being reported are
the Microsoft Container Registry (MCR), docker.io and
Google Container Registry.

Table 5
Docker image registries used by Docker Actions.

Dockerfile action.y(a)ml
container registry # % # %

Docker Hub 800 95.0 90 57.7
GitHub Container Registry 16 1.9 57 36.5

Microsoft Container Registry 15 1.8 0 0.0
docker.io 3 0.3 3 1.9

Google Container Registry 3 0.3 1 0.6
other registries 5 0.7 5 3.3

We also quantified the base images specified in the
Dockerfile. Table 6 reports the top ten most commonly
used images by Docker Actions along with the proportion
of Docker Actions that used them. The numbers suggest
that the predominant referenced images are mostly asso-
ciated with both programming languages (e.g., python,
node, golang, etc.) and operating systems (e.g., alpine,
ubuntu, etc.).



Table 6
Most frequent images used by Docker Actions.

Docker Actions
docker image # %

alpine 157 18.7
pyhton 140 16.7

node 88 10.5
golang 66 7.8
ubuntu 32 3.8

ruby 22 2.6
docker 22 2.6
debian 21 2.5

openjdk 9 1.1
php 8 1.0

all other types of images combined 277 32.7

Previous research [36, 37, 38] has primarily empha-
sised the security of system packages inside Docker im-
ages, disregarding third-party packages. Considering the
growing prevalence of these packages, it is crucial to
examine maintainability issues of such third-party pack-
ages and the impact of their use in the GitHub Actions
ecosystems. The current analysis represents an initial
step in studying the dependencies of images used by
Docker Actions. As future work, we intend to perform
an in-depth study of such Docker images, Dockerfiles
and their corresponding commands, with the aim to de-
tect the dependencies of Docker Actions. Investigating
the package dependencies within Docker images enables
practitioners to enhance the provisioning and deploy-
ment of Docker Actions. It can address potential concerns
related to maintainability while also promoting the sta-
bility of the workflow for users of Docker Actions.

7. Threats to validity
Our study adopts the structure suggested by Wohlin
et al. [39] to address the primary threats to validity.

Threats to external validity relate to whether the re-
sults can be applied or extended beyond the specific scope
of this study. One such threat was our choice to focus
the analysis solely on Actions distributed through the
GitHub Marketplace. Both the study conducted by Saroar
and Nayebi [15] and our own observations highlighted
the existence of numerous Actions developed on GitHub
repositories that were not published on the GitHub Mar-
ketplace. Another threat to external validity relates to
filtering the Actions with at least 10 stars, in order to ex-
clude personal or experimental Actions [35]. Moreover,
we exclude around 100 Actions with more than 10 stars
that appear in the GitHub Marketplace but produce an
error when attempting to load detailed information for

them, such as c-documentation-generator5. This implies
that our findings may not be universally applicable to all
Actions, as filtered and unpublished Marketplace Actions
might possess characteristics that differ from those that
we analysed.

Threats to construct validity discuss the connection
between the theoretical basis of the experiment and the
observed results. Our research utilises quantitative ob-
servations and rigorous methods in software repository
mining, minimizing the impact of threats to construct
validity.

Threats to internal validity address the choices and
internal factors within the study that have the potential
to influence the observations we have made. A potential
threat to internal validity arises from the method we used
to identify releases of Actions. As described in Section 4,
we utilised the "releases" feature of the GitHub API to
determine when Actions had been updated. This intro-
duces a potential limitation, since not all Actions depend
on the release management system of Github; some may
distribute through other mechanisms such as tags, git
commits, or branches. However, there is currently no ac-
curate method to identify which git tags and branches
correspond to releases, except by using GitHub’s release
management system.

Threats to conclusion validity concern the extent to
which the conclusions drawn from our analysis are rea-
sonable. Since our conclusions mostly state quantitative
observations, it is unlikely that they will be influenced
by such threats.

8. Conclusion
Since its introduction in 2019, GitHub Actions has be-
come the de facto CI/CD automation service for GitHub
repositories. This preliminary quantitative study aimed
to understand the ecosystem of GitHub Actions and its
dependency on external, third-party components such as
Docker images and npm packages. Through an analysis
of the GitHub development repositories of 2,817 Actions
distributed through the GitHub Marketplace, we aimed
to explore the characteristics of their dependencies. To
do so, we distinguished between three types of Actions:
those that are developed using JavaScript, those that are
developed using Docker, and the so-called composite
Actions.

We observed that, while most Actions are developed
using JavaScript, a significant proportion of Actions are
based on Docker. Moreover, after GitHub decided to intro-
duce the mechanism of composite Actions, such Actions
seem to be slowly replacing Docker Actions. Considering

5https://github.com/marketplace?type=actions&query=
c-documentation-generator+

https://github.com/marketplace?type=actions&query=c-documentation-generator+
https://github.com/marketplace?type=actions&query=c-documentation-generator+


the fact that composite Actions can depend on other Ac-
tions, this might lead to more (transitive) dependencies
in the GitHub Actions ecosystem.

JavaScript Actions have many dependencies towards
npm packages, leading to a huge number of transitive
dependencies that are deeply nested in the dependency
tree. This makes JavaScript Actions considerably exposed
to potential maintainability issues associated with their
dependencies. It could become increasingly challenging
to identify and resolve such issues, similar to what has
been observed for JavaScript projects and packages [21,
25, 26, 40, 41].

We observed that Docker Hub is the most popular con-
tainer registry for Docker Actions and the predominant
used images by Docker Actions are associated with pro-
gramming languages and operating systems. The GitHub
container registry is another container registry that is
commonly used by Action YAML files.

As future work, we intend to assess the impact of main-
tainability issues such as dependency management, se-
curity vulnerabilities, compatibility issues, outdated or
obsolete components on the GitHub Action ecosystem
due to its cross-ecosystem dependencies to Docker im-
ages and npm packages.
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