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Abstract: Video surveillance and image acquisition systems represent one of the most active research
topics in computer vision and smart city domains. The growing concern for public and workers’
safety has led to a significant increase in the use of surveillance cameras that provide high-definition
images and even depth maps when 3D cameras are available. Consequently, the need for automatic
techniques for behavior analysis and action recognition is also increasing for several applications
such as dangerous actions detection in railway stations or construction sites, event detection in crowd
videos, behavior analysis, optimization in industrial sites, etc. In this context, several computer vision
and deep learning solutions have been proposed recently where deep neural networks provided more
accurate solutions, but they are not so efficient in terms of explainability and flexibility since they
remain adapted for specific situations only. Moreover, the complexity of deep neural architectures
requires the use of high computing resources to provide fast and real-time computations. In this paper,
we propose a review and a comparative analysis of deep learning solutions in terms of precision,
explainability, computation time, memory size, and flexibility. Experimental results are conducted
within simulated and real-world dangerous actions in railway construction sites. Thanks to our
comparative analysis and evaluation, we propose a personalized approach for dangerous action
recognition depending on the type of collected data (image) and users’ requirements.

Keywords: action recognition; computer vision; deep learning; explainable artificial intelligence;
depth maps

1. Introduction

Action recognition applications actually represent a very important research topic in
computer vision and video surveillance domains. Indeed, the high increase in public and
workers’ safety concerns has caused a great deal of growth in the number of connected
captors such as surveillance cameras. In this context, the technologies of Big Data, Cloud,
and Edge Computing have made it possible to increase the production of real scenes and
videos. The automatic detection, recognition, and localization of actions are increasingly
useful. The main objective of these methods is to detect moving objects within different situ-
ations (mobile cameras, variable weather conditions, etc.) using various capture equipment
(embedded camera, drone, etc.). In the literature, one can find several action recognition
methods based on: 1. image and video processing algorithms that extract motion features
in order to recognize the type of actions [1–5]; 2. machine and deep learning techniques
that learn from previous examples in order to define a model that should bind each video
sequence with its corresponding type such as that proposed in [6] where a recognition
pipeline exploits the detected motion features and a recurrent neural network (LSTM) for
fall prediction. Authors of [7] proposed a method of action recognition that exploits limited
accelerometer and gyroscope data and applies a combination of a convolutional neural net-
work (CNN), Long-Short Term Memory (LSTM), and classical machine learning algorithms
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which yields an accuracy of 97.4% with the UCI HAR dataset. In [8], the authors proposed
a method called Tree-Network-Tree (TNT) learning framework that provides explainable
decisions (partially) through knowledge transfer between the tree model and DNNs. Even
with the significant evolution of these methods in terms of precision, they are not always
able to provide real-time and generic solutions within various situations. Moreover, deep
learning models that provide generally better results are highly hampered by their low
explainability and interpretability where they are generally considered black boxes. In this
paper, we propose a review and a comparative analysis of deep learning solutions in terms
of precision, explainability, computation time, and flexibility. Based on this analysis, we
propose a personalized method for action recognition depending on the type of collected
data (images) and users’ requirements (explainability, real-time, embedded, etc.).

The remainder of this paper is organized as follows: Section 2 describes the re-
lated work within classic and deep learning approaches of action recognition. Section 3
presents our experimental and comparative analysis of the literature solutions using public
databases; in Section 4, we present our application and selection of the appropriate deep
learning model for action recognition in railway stations. The proposed approach is evalu-
ated with different metrics: accuracy, explainability, computation time, memory size, and
flexibility. Section 5 concludes and indicates future work.

2. Related Work

In this section, we present the state-of-the-art related to the methods of action recogni-
tion and dangerous scenes analysis and prediction. The aim is to target works related to
action classification and prediction from videos that can be captured in different situations
(mobile cameras, day, night, noisy scenes, etc.). In the literature, one can find two kinds of
action recognition methods: 1. generic and semi-automatic approaches; 2. automatic and
deep learning approaches.

2.1. Semi-Automatic and Generic Action Recognition Approaches

This approach consists of building pipelines that combine different methods for action
recognition. While some pipelines are quite straightforward and only require doing ROI
and object detection, others require multiple steps to detect, identify, and track actors in the
scene. These pipelines usually comprise some or all of these phases (Figure 1):

• Object Detection: Advanced pipelines use some deep-based object detection meth-
ods [9] as an initial phase in a multi-phase approach. These object detection methods
can be categorized into either one-stage methods such as YOLO [10] and SSD [11],
or a two-stage region of interest proposal based methods such as Mask RCNN [12].
Other studies propose a much simpler pipeline by relying solely on single-frame object
detection for action recognition through labeling objects with both identity and state
information. For example, SW Pienaar et al. [13] used a dataset of toy soldiers, where
bounding box annotations specified the state of each soldier who is either standing
or lying down, to train an SSD MobileNet model [14] for action recognition through
object detection. Improving this approach is carried out through multi-frame informa-
tion fusion [15], which consists of applying object detection on multiple frames. Then,
a majority vote system is applied, where the most detected action including a high
number of frames represents the correct action to recognize.

• Object Tracking: Numerous approaches exist for multi-object tracking [16], with some
building on object detection methods [17]. JK Tsai et al. [18] proposed to detect objects
on multiple frames, which are then passed to the DeepSORT [19] object-tracking
algorithm coupled with FaceNet [20] for subject identification. This information is fed
to an I3D CNN [21] deep neural architecture that is able to take into account this mix
of spatiotemporal information to recognize actions in a certain range of frames [22].
Other tracking solutions are not dependent on object detection, such as Siamese-based
tracking [23] or correlation filter-based tracking [24]. These methods do not focused
on objects in the scene. Thus, they are more abstract in the way they process scene
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information. They output different information such as pixel flow or shift as well as
latent spatiotemporal features that can be used to perform other tasks.

• Action Recognition: This phase of the pipeline consists of feeding the acquired in-
formation through object tracking to a model that can relate these features to actions
or events. In addition to the above-mentioned example, and in the case of subject-
dependent object tracking, a trajectory can be used as in [25] where the authors applied
action recognition from temporal trajectory data through Long Short-Term Memory
(LSTM) and Temporal CNNs.

Figure 1. Example of semi-automatic and generic action recognition approach.

Other approaches such as [26–29] use object-independent tracking methods that rely
more on spatiotemporal-based features. While these features decrease the accuracy of
recognizing different actions, they employ methods such as 2D CNNs [30] but more
commonly 3D CNNs [31] to predict actions in the scene in a more generalized manner.

2.2. Automatic Approaches for Action Recognition

Machine and deep learning methods can be used for both action detection and pre-
diction, where the main advantage is represented by their independence since they do not
require system initialization or scene annotations. In fact, thanks to the learning process, the
models can benefit from the variety of training databases where several types of actions and
environments are presented. However, the architecture of these models must be deep and
complex to effectively extract relevant features while accounting for spatial, temporal, and
depth information of actions, as well as the diverse environmental factors, such as noise,
weather conditions, and varying day/night conditions. Additionally, the decision-making
process of deep neural networks lacks explainability and interpretability, often leading
to their perception as “black boxes”. Fortunately, several explainability approaches have
been proposed in recent years, mainly enabling the explanation of deep neural decisions
by the identification of the responsible parameters and image pixels of each model output.
As a consequence, this subsection is further developed within five parts: (1) features ex-
traction methods for action recognition; (2) deep learning methods for action recognition;
(3) depth-based methods for action recognition (4) explainability of deep neural networks;
and (5) contribution.

2.2.1. Features Extraction Methods for Action Recognition

These methods consist generally of modeling normal movements (actions) to distin-
guish abnormal movements. The main idea is that the major available data are related
to normal behaviors and abnormal movements are generally unavailable. Thus, the de-
viations from normal movements are considered an abnormality [1,2,4,5]. The modeling
and description of movements are generally based on the extraction of optical flow vectors
that provide a pertinent description of movements in terms of velocity and direction for all
frame pixels (dense optical flow) or for the detected points of interest only (sparse optical
flow). The main advantage of these methods is their interpretability and explainability since
we can easily define the responsible features of each decision. However, these methods
are hampered by their lesser flexibility and genericity (to various situations). They are
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more adapted to global actions that are related to crowd videos without a specific focus on
workers or people. Figure 2 illustrates the general process of this kind of approach.

Figure 2. Features extraction process for action recognition: green (input), red (detection), blue (recognition).

2.2.2. Deep Learning Methods for Action Recognition

The main current existing deep learning approaches are based on convolutional
neural networks (CNNs) [32], recurrent neural networks (RNNs) [33], and transformer
architectures [34,35]. CNNs are used to consider the spatial information of actions (pixels
and objects’ positions within video frames), while RNNs are used to consider the temporal
information of actions (moment and duration of actions within videos). Each neuron
in RNNs is connected to the neurons of the previous layer and to its previous result
(corresponding to the processing of the previous frame in this specific case). Notice that
RNNs are hampered by the problem of a vanishing gradient generating a small change
in weights and, therefore, a small improvement in accuracy within successive iterations
during the training process [36]. To deal with this problem, the LSTM (Long Short-Term
Memory) and GRU (Gated Recurrent Unit) neural networks [37] are used to limit and select
the data in the memory. On the other hand, transformers are able to handle long-term
memories by focusing on important aspects independently of the fact that they are close
or far in the past. We describe here the main deep learning models in the literature: Two-
Stream networks, Convolutional networks, Temporal networks, and transformers. Figure 3
illustrates the general process of deep learning-based approaches.
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Figure 3. Deep Learning process for action recognition.

1. Convolutional networks: generally, two-dimensional CNNs are used for 2D image
classification and object detection. In contrast, 3D convolutional networks (3D Con-
vNet) can be used to incorporate the third dimension, which, in the context of action
recognition, represents a brief temporal sequence of frames that compose the actions
and movements, such as those proposed in [22]. Authors of [38] proposed to combine
a 2D convolutional (CNN) with recurrent networks (RNNs) in order to take into
account, respectively, spatial and temporal information. The recurrent connection
within RNNs, and more particularly LSTMs, facilitates taking into account the pre-
vious image features within actions and thus detecting more accurately the type of
action. Another method is proposed in [39] that applied spatial 2D convolutions
followed, separately, by temporal convolution (1D) providing a specific convolution
called (2+1D). This factorization offers significant gains in terms of precision thanks
to the extraction of fine features.

2. Two-Stream networks: the two-Stream reference method [40] is based on the oper-
ating principle of the human visual cortex, which is represented by two parts: the
ventral part is involved to recognize objects, while the dorsal part is involved to
recognize movements. Similarly, the two-Stream neural network architecture is com-
posed of two parts: spatial and temporal where each one consists of a convolutional
neural network. The spatial part allows the detection of actions based on the extracted
images and object features while the temporal part allows improving the precision
of action recognition by considering the order and frame succession in time. This
evolution in time is calculated within motion vectors, estimated by the optical flow
method [41]. The merging of the two parts’ features can be performed at the first
layers “Early fusion”, the last layers “Late fusion” or in a progressive way “Slow
fusion”. Authors in [42] found that the late fusion yields the best results. The two-
Stream architecture has been improved by several works such as [43] that integrated
the trajectory features. The authors of [44] proposed a novel spatiotemporal pyramid
network for combining the spatial and temporal features in a pyramid structure in
order to improve their reinforcement. In [45], the authors proposed to connect static
and optical flow channel streams in order to increase the interactions between the
streams. In [46], a new video representation was proposed for action detection by
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the aggregation of local convolutional features across the complete spatiotemporal
extent of the video. The authors of [21] proposed to replace 2D convolutions (in a
two-Stream network) with 3D convolutions in order to take into account the frames’
succession within the actions. Alternatively, the authors of [47] proposed a 3D CNN
network that operates on RGB images and generates motion in order to avoid the
computation of optical flow vectors, which are computationally intensive. During
training, this method consists of minimizing the difference between the produced mo-
tion stream and motion features from the optical flow vectors. This allowed providing
accurate results without the computation of optical flow offering real-time inference.

3. Temporal networks: these methods allow the consideration of temporal information
without using recurrent cells or motion vectors. Indeed, the methods try to extract
the short, medium, and long temporal changes between successive frames. In this
context, authors in [48] proposed a flexible solution that models long-range temporal
structures where the video is divided into segments having the same duration. A
short video extract is randomly selected from each segment and passed to two-Stream
networks composed of two CNNs, one for spatial characteristics and the other for
temporal characteristics. In [49], the authors exploit 2D CNNs for action recognition
by adding the particularity of moving the learned features between neighboring
images. It is a very simple approach that considers the time dimension by keeping the
use of 2D CNNs, less intensive in computation, compared to 3D CNNs or two-Stream
networks. Another method called “SlowFast” [50] is inspired by biological studies,
considering a video as a sequence of slow and fast movements. SlowFast is designed
to combine two different paths in the network: one with a low rate (slow), and the
other with a high rate (fast) of images from the video. The slow rate path enables the
capturing of spatial information of slow movements, while the fast part is devoted to
detect spatial information of fast movements.

4. Transformers: a transformer is a deep learning architecture, introduced in 2017,
based on the consideration of attention and self-attention mechanisms, which allow
quantifying (weight) the importance of each part of the input data. Transformers
were initially proposed for natural language processing (NLP) [51], and due to their
promising results, their usage was extended for computer vision (CV) applications
such as proposed within Vision transformers Vit [35]. As proposed within recurrent
neural networks, Transformers can take into account temporal information. The
main difference is that transformers can process the complete input at once thanks
to the attention mechanism. Several transformer architectures have been proposed
such as BERT [52] and GPT [53], which have provided excellent results for natural
language processing and interpretation such as provided within ChatGPT tool [54].
Furthermore, transformers represent a powerful solution for video understanding.
The authors of [55] proposed an improvement of R2+1D architecture [39] by replacing
the Temporal Global Average Pooling (TGAP) layer present at the end of R(2+1)D
network by the BERT attention mechanism. In fact, the TGAP does not consider the
order or the importance of the temporal features learned by the network. With BERT
and its “multi-headed” attention mechanism, we can learn this importance in addition
to the R(2+1)D method. This permitted the improvement of the accuracy of action
recognition within several public databases. In [56], authors proposed an extension of
the vision transformer architecture (Vit) by integrating a temporal dimension. The
TimeSformer takes as input a video clip, which is represented as a four-dimensional
tensor of dimension: h × w × c × f , where h and w are the height and width of each
frame, c is the number of channels, and f the number of frames in the video. Then,
the Timesformer divides each frame into n patches where each one is flattened into a
vector representing spatial information within the patch.
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2.2.3. Depth-Based Methods for Actions Detection

The use of the depth information, provided by 3D cameras, can be very helpful for
action recognition since the 3D information is insensitive to brightness and can therefore
work in various situations (darkness, noise, etc.), which can be a real advantage to get
a generic solution. In this context, [57] proposed an approach called DMM-HOG that
projects the depth information, collected under the three Cartesian views (front, side, and
top over time) and apply the HOG (Histogram of Oriented Gradients) [58] descriptor on
each view to extract the shape features of the moving objects. Based on these features, a
support vector machine (SVM) classifier [59] is applied to recognize actions. The DMM-
HOG method was improved in DMMs, DMM [60] by calculating a depth map “Depth
Motion Maps” (DMMs) represented by the difference between two images, for the entire
sequence of the video. Then, the classification is provided with the “Sparse Coding”
approach [61]. The method called HON4D, [62] included the depth information « z »
which permits to obtain 4 dimensions (x, y, z and t for time). The depth information
makes it possible to capture the surfaces representing the geometry of each action and thus
recognize the type of movement. In [63], authors proposed a method, that we call HistRF,
combining the features extracted from two or three histograms (spatial-temporal depth
histogram, depth derivatives histogram, RGB histogram) where each one represents an
additional contribution. Then, the extracted features from histograms are combined and
treated by a Random Forest algorithm [64] to select the pertinent features and recognize
actions. Authors in [65] proposed a new approach, called MPDMM, that does not project
the 3D depth information along the three Cartesian views but along various angles and
positions, allowing the extraction of more features to represent actions. Then, the difference
between the projected images is applied for the whole video, and the LBP [66] descriptor is
used to extract texture features. Finally, a classifier (ELM; Extreme Learning Machine) [67]
is applied for action recognition.

2.2.4. Explainability of Deep Neural Networks

Aside from intrinsically interpretable models (e.g., linear models or decision trees),
there are black-box models such as deep neural networks whose results do not directly
produce explanations. Thus, post-hoc explainability methods, applied to input samples,
are commonly used in the state-of-the-art to obtain an explanation of the reasoning of the
model. Post-hoc methods can be divided into three types.

First, gradient-based methods start from the output neuron and backpropagate its
value to the input [68], obtaining significance-related weights for each input feature. These
weights can be interpreted as input relevance for text features or visualized by a saliency
map in an image or action classification to understand the most important parts for the
decision. Backpropagation variants are, for example, SmoothGrad and Integrated Gradi-
ents: SmoothGrad [69] creates neighbor input samples by adding Gaussian noise to the
features and averages the gradients computed on each of them. Integrated Gradients [70]
interpolates the input sample with a baseline image (e.g., black, white, or uniform image)
over an α[0, 1] parameter and averages the gradients obtained.

Second, perturbation-based methods disturb the inputs using a baseline value and
analyze the performance drop of the metric used for evaluation. The first such method was
Occlusion [71], which perturbed the inputs using square patches and a widely used method
in the state-of-the-art is RISE [72]. The latter computes masks based on an upsampling of
randomly filled binary masks and creates a heatmap based on the relevance of each mask
for the prediction. Those methods are computationally heavier compared to most of the
post-hoc methods as they require replacing input values and computing the result of the
model at each iteration.

Finally, CAM-based methods are applied to convolutional neural networks and have
the particularity of utilizing the activations from the convolutional layers (usually the last
one) to produce saliency maps. GradCAM [73] is the most widely used and weights the
activation maps by the gradients obtained by a backpropagation from the output neuron
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of a chosen class to the convolutional layer. Many variants exist that combine activations
from different layers (Layer-CAM [74], Poly-CAM [75]), aggregate the results for the input
image at different scales (CAMERAS [76]), or use the activations as masks to predict their
importance (Score-CAM [77]).

2.2.5. Contribution

Our contribution is represented by a review and a comparative analysis of deep learn-
ing solutions in terms of precision, explainability, computation time, and flexibility for
action recognition. Based on this analysis, we propose a personalized method for action
recognition depending on the type of collected data (images) and users’ requirements
(explainability, real-time, embedded, etc.). To provide a fair analysis, we applied standard
metrics (accuracy, computation, memory) and developed new metrics related to the explain-
ability of our models: XAI_Acc and XAI_Bias. The metric of XAI_Acc compares the human
explanation with the model explanation. XAI_Bias, on the other hand, quantifies the num-
ber of situations where actions can be detected as a consequence of the presence of biased
information confusing the model decision (Section 4.4). We contribute also by analyzing
the generality of deep learning models with a global analysis, taking into account various
situations and datasets (real, simulated, and mixed). Through this comprehensive analysis,
we could identify the optimal model ensuring accurate, explainable, and embedded action
recognition solutions in a real-life use case related to workers’ safety within railway stations.
Figure 4 illustrates the above-mentioned categories of action recognition methods.

Figure 4. Action recognition approaches, categories and methods.

3. Comparative Analysis of Existing Solutions

The above-mentioned Deep Learning architectures (Section 2.2) demonstrated a high
potential for action recognition. The common point between these models is the consid-
eration of both spatial and temporal information but each approach applied a different
combination algorithm (3D convolutions, recurrent cells, Two-Stream, transformers, etc.).
On the other hand, several methods have been proposed in Section 2.2.3, which consider
the depth information for action recognition. These methods are not mainly based on deep
learning since they consist of the extraction of the most representative features (with three
dimensions) followed by a classifier. To complete this study, we proposed a comparative
analysis of these approaches in terms of precision (top1 accuracy), computation time, ex-
plainability, and flexibility since these metrics are the most required for action recognition
methods within video surveillance and smart cities domain applications. In order to pro-
vide a fair comparative analysis, we have selected the same public database “UCF101”
which consists of of 101 categories of realistic actions [78] collected from YouTube.
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1. Precision: we analyzed the precision (top-1 accuracy) of the above-mentioned meth-
ods and noticed several observations :

• The use of 2D convolution networks is not sufficient for action recognition. They
are generally replaced by 3D convolutional neural networks or combined with
other networks that consider the temporal information of movements.

• The use of RNNs is designed to deal with temporal information, but they are
hampered by the Vanishing gradient problem during the training process. As a
solution, Transformer architectures are employed.

• By considering slow and fast movements during the training process, precision
can be improved with a more generalized solution.

• The incorporation of depth information helps to enhance the results, but it cannot
benefit from a deep learning process since there are few annotated databases
including the depth information.

2. Computation time: the two-Stream networks are very intensive in computation due
to the calculation of optical flow and the application of two parts of the neural network.
The recurrent neural networks are also very intensive since they need to consider
long-term memory in the case of action recognition. On the other side, the use of
transformers provided fast training and inference phases thanks to their use of a fast
attention mechanism.

3. Explainability: as shown in Section 2.2.3, several methods have been proposed re-
cently to identify the responsible parameters (pixels) of each deep learning model
and mainly those based on convolutional layers such as proposed within convolution
networks, two-Stream, and some temporal networks (Section 2.2.1). However, the
explainability of transformer architecture is more complex due to the use of the mech-
anism of attention. The depth-based approaches are better in terms of explainability
since they are mainly based on classical models.

4. Flexibility: the presented deep learning approaches methods can be generalized
but require regular retraining of the model with the consideration of a significant
variation of actions, which is not so easy. However, the depth-based approaches are
more suitable for generalization since they are based on texture, shape, and color
features extraction before applying a classifier which makes them more independent
from the learning data.

More in detail, from Table 1, we can note that the deep learning methods provide better
results in terms of accuracy than the depth-based ones. Although the consideration of the
3D information, the accuracy of depth-based methods remains less important since they do
not benefit from a learning process using deep neural architectures. Actually, we have a
few annotated databases presenting both movements and depth information. Thus, we
propose to continue our experiments with deep learning methods for the rest of this paper.

Otherwise, the four categories (convolutional, two-Stream, temporal, and transform-
ers) of deep learning methods provide highly accurate results, where the best model of
each category achieves a top-1 accuracy of around 98%.

In terms of explainability (XAI), the models that are mainly based on 2D convolutional
neural networks are more easily explainable with the methods described in Section 2.2.3
such as R(2+1D) and Slowfast. The other architectures can be explained partially since
they generally use 2D convolutions for one part of the neural network only. In terms of
computation time, the temporal networks and transformers provide fast solutions since
neither the calculation of optical flow vectors nor the application of 3D convolutions is
required. In terms of memory size, we have similar conclusions to those of computation
time since there is a natural dependence between the model, the number of extracted
features, and thus the computation time. This confirms that temporal networks and
transformers can provide the smallest models, which makes them well convenient for
deployment on embedded hardware. In terms of flexibility, the temporal network solutions
are well-ranked since they have been pre-trained and tested, successfully, on different
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databases (UCF101, HDMB [79], etc.). The other architectures are less flexible, which is due
to two main reasons:

• They have been tested/pre-trained with one database only.
• They have been pre-trained/tested with different databases but high variation is noted

in terms of accuracy.

Table 1. Comparative Study between deep-based and depth-based methods of action recognition.

Acc XAI Time Mem Flexibility

Deep
Learning
methods

Convolutional

C3D 90.4% + - - - - -

LRCN 82.92% + - - - - - -

R(2+1D) 98.17% ++ ++ - - - -

Two-Stream

Two
Stream

86.9% + - - - - - -

I3D 98% + ++ +++ -

MARS 97.8% + - - - - -

Temporal

TSN 94% + - - +++ ++

TSM 95.9% + ++ ++ ++

SlowFast 95.7% ++ ++ + +

Transformers
R(2+1)D

BERT
98.69% - ++ - - - -

Timesformer 95.43% - ++ - - - -

Depth
based

methods
With 3D

DMM-HOG 85.52% +++ + + +

DMM 90.5% +++ + + +

HON4D 88.89% +++ + + +

HistRF 88% +++ + + +

MPDMM 94.8% +++ + + +

4. Proposed Approach for Dangerous Action Recognition

The above-mentioned comparative study allowed us to select the most appropriate
methods and models in terms of precision, explainability, computation time, memory size
and flexibility. In this paper, we are focused on the development of real-time dangerous
action recognition that can occur in railway stations. As constraints, we have to provide
an accurate, explainable, real-time and embedded solution since the main requirement
of customers is to be able to deploy the solution on railway construction sites with a
high level of precision, explainability, and flexibility. The metrics of computation time
and memory size are also important since we need to deploy the solution in the end
on Edge AI hardware such as Jetson Nano (Jetson Nano. https://www.nvidia.com/fr-
fr/autonomous-machines/embedded-systems/jetson-nano.Accessedon24April2023 (ac-
cessed on 26 April 2023)), Jetson Xavier (Jetson Xavier. https://www.nvidia.com/fr-fr/
autonomous-machines/embedded-systems/jetson-agx-xavier (accessed on 24 April 2023))
or Jetson Orin (Jetson Orin). https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-orin (accessed on 24 April 2023)). This section can be summa-
rized with the following parts: (1) experimental setup; (2) data generation and preparation;
(3) deep learning models’ analysis and selection; (4) experimental results.

4.1. Experimental Setup

Experiments were conducted using the cluster of the Faculty of Engineering at the
University of Mons (UMONS) with the following configuration:

https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-nano. Accessed on 24 April 2023
https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-nano. Accessed on 24 April 2023
 https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-agx-xavier
 https://www.nvidia.com/fr-fr/autonomous-machines/embedded-systems/jetson-agx-xavier
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin
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• CPU Processor: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz with 32 cores, 48 GB
of RAM.

• GPU Processor: GTX 1080ti, 3584 CUDA cores with 12 GB of RAM.

In the following parts, the deep learning models are trained and evaluated using
the MM action framework [80] implemented in PyTorch [81]. The database underwent a
preprocessing step, as described in Section 4.2 and was split into train, test, and validation
sets with a ratio of 70%, 15%, and 15%, respectively.

4.2. Data Generation and Preparation

The main difficulty faced in this study is the hard collection of real scenes present-
ing different dangerous situations since this kind of danger happens rarely. Still, when
it happens it can be very dangerous and even deadly in some situations. As a solution,
we proposed to generate, within the game engine of Unity (Unity. https://unity.com/
(accessed on 24 April 2023)), artificial videos representing similar environments of dan-
gerous actions. In fact, through the animation of three-dimensional worker personas and
a three-dimensional excavator, a wide range of scenarios can be simulated within these
environments. The generated dataset is represented by four classes (normal, bucket-worker,
cabin-worker, and track excavator). Each scene is represented by four views in order to
have a high variation of situations. Notice that each recording has a duration of 2 min where
the annotations are represented by the delimitation of the actions with frame numbers
(begin to end) as references. The generated dataset, following a trimming step, is outlined
in Table 2. Figure 5 illustrates some of the actions that are textually defined in Table 3, while
Figure 6 presents the class distribution and duration of actions in our generated dataset.

Table 2. This table summarizes the simulated dangerous actions. ’Classes’ lists the different action
types, ’Clips’ gives the total number of samples per class, ’Duration’ provides the duration of clips in
seconds, and ’Frames’ is the total number of frames per class.

Classes # Clips
Duration Frames Number

Min Max Avg Min Max Avg

Other 504 0.03 3.03 2.89 1 91 86.71

Cabin-
Worker 320 0.23 14.33 3.07 7 430 92.12

Bucket-
Worker 468 0.20 5.73 1.16 6 172 35.07

Track-
Excavator 352 0.20 13.96 2.72 6 419 81.67

Figure 5. Dataset action examples from left to right are “ Bucket-Worker”, “Cabin-Worker”, “Normal
(no danger)”, and “Track Excavator”.

https://unity.com/
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(a) (b)
Figure 6. Dataset statistics. (a) Action’s duration (in seconds) distribution. (b) Class distribution of
the simulated dangerous actions.

Table 3. Dataset actions definition.

Actions Definition

Other No dangerous actions to be notified

Cabin-Worker Worker moving too close to the cabin while the excavator is being operated

Bucket-Worker Worker moving under the bucket, In danger of getting hit, or materials may fall from the bucket

Track-Excavator The excavator moving forward to the tracks (active railway line or electric wires)

On the other side, we have a small database of real dangerous actions represented by
three classes: normal, bucket-worker, and cabin-worker. The normal class is represented
by 101 videos, the class Bucket-Worker disposes of 88 videos, while the class “Cabin-
Worker” is represented by 16 videos. We note that this database is very small compared
to the generated one, the class distribution is not fair and we have one class missing
“Track Excavator”.

4.3. Deep Learning Model Selection and Optimization

We propose to select the most convenient models from those proposed in Section 2,
the best model is selected from each category as follows:

• Selected convolutional network: R(2+1D)
• Selected two-Stream network: I3D
• Selected Temporal networks: TSN and SlowFast
• Selected transformer networks: R(2+1D) and Timesformer

We propose to compare experimentally between these models by the use of simulated,
real, and mixed (real and generated) video sequences. The objective is to:

1. Define the most convenient model for dangerous action recognition within railway
construction sites. This selection is performed based on several metrics: precision,
explainability, computation time, model memory size, and flexibility.

2. Define the appropriate database needed for the training of these models among real,
simulated, and mixed databases.

3. Define the convenient ratio of real and simulated databases in case of using a mixed
database.

4. Propose an approach of action recognition based on users’ requirements in terms of
precision, explainability, computation time, memory size, and flexibility.

4.4. Experimental Results

In this section, we compare experimentally the five selected models in terms of sev-
eral metrics:
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• Top-1 accuracy: provided by the models using the same parameters (simulated dataset,
epochs, loss function = cross-entropy, learning rate decay for weights optimization,
etc.). This top-1 accuracy is calculated for both the UCF-101 dataset and our simulated
database in order to analyze the flexibility of the selected models.

• Explainability “XAI”: represented by two factors: XAI_Acc and XAI_Bias.

1. XAI_Acc: calculated by comparing human explanation (responsible regions and
pixels of each detected action) with the results obtained by one of the best XAI
methods. This metric allows assessment of whether the model is focused on the
correct regions during the decision phase, as presented in Figure 7.

2. XAI_Bias: defined by the percentage of situation where the model detects accu-
rately an action where the responsible regions of this decision are not correct,
which represent a bias. As an example, Figure 8 illustrates an example of accurate
detection of “Bucket-worker” action, where the responsible region detected by
GradCAM is represented by the good collision region but accompanied by an-
other region “Cloud”, which has no relation with this kind of action (this bias is
due the quality of our simulated database). Low values of XAI_Bias correspond
to a good model having a low level of bias and vice versa.

• Time: represented by the computation time of the training process and the test process
(248 short videos).

• Model size: enables the definition of the suitable models for deployment on embedded
resources that dispose of low capacity of memory and calculation.

Figure 7. Correct explainability for detecting the action “bucket-worker”.

Figure 8. Example of biased recognition of the action “bucket-worker” detected by GradCAM.

The remainder of this section is presented within two subsections: action recognition
within simulated videos and action recognition within mixed videos.

4.4.1. Action Recognition within Simulated Videos

Table 4 shows that the SlowFast model provides the best results for our simulated
databases, although it was not the best when using other public databases (UCF-101,
HMDB-51, etc.). This means that the Slowfast architecture is the best in terms of flexibility
since the model can capture both slow and fast movements. The variation of movement
velocities is so present in the case of railway sites. Moreover, we have not noticed overfitting
during the training of the model where a small difference is noted between the train,
validation, and test top-accuracy values. In terms of explainability, the Slowfast architecture
is also providing the best results since the responsible regions of each decision correspond
to the human explanation with a precision of 85%. However, we note a high bias rate in
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this explainability where the model considers the color of sky and cloud for its decision
in addition to the real responsible regions (collision areas) (Figure 8). We extended our
experiments by running the same bias detection test on TSN [48] as illustrated in Figure 9.
The first example (a) concerns a hammer-throwing action, we can notice that the model’s
bias stems from its focus on the environment rather than the person. In the second example
(b), which depicts a person playing basketball, the model displays a random focus on other
regions (such as the floor) instead of the ball or the player. However, in the third example
(c), the model demonstrates no bias; despite the presence of text, it accurately identifies the
balls and the table and correctly categorizes them as belonging to the “billiard” class.

Table 4. Results analysis: Accuracy, explainability, computation time, memory size and flexibility.

Model
Category

Model
Name

UCF
101

Simulated Videos (Railway Site)

Top-1
Acc

Top-1 Acc XAI Time
Model

Size
(MB)Test Train Valid Test XAI_Acc XAI

Bias Train Test

Conv R(2+1D) 98.17% 93.96% 86.17% 87.90% 55% 40% 2 h 25 s 243

Two
stream

I3D 98% 93.79% 85.38% 85.48% 55% 90% 2h25 60 s 107

Temp TSM 95.9% 83.55% 83.40% 86.29% 45% 45% 0h32 16 s 123

SlowFast 95.7% 96.24% 90.91% 91.53% 85% 55% 2h01 33 s 196

Trans-
formers

R(2+1D)
BERT

98.69% 94.60% 88.62% 89.83% — — 1h02 17 s 464

Times-
former

95.43% 83.62% 82.21% 81.60% — — 1h45 20 s 309

In terms of computation time, the fast models are TSM and R(2+1D) BERT, which
benefit from a relatively short training (around 1 h) and provide a fast inference (around
16 s for treating 248 short videos). However, these models provide lower precision and
explainability compared to Slwofast. Notice that, the explainability results of the R(2+1D)
BERT model are not provided since there is not yet a suitable method for this interpretation.

In terms of memory size, I3D provided the smallest model followed by TSM, SlowFast,
and R(2+1D) respectively. On the other side, the transformer architectures provide very
large models due to their consideration of the attention mechanism. To summarize, we can
consider that SlowFast architecture represents the most convenient model since it has the
ability to consider both slow and fast movements where the detected collision can concern
a worker moving slowly and excavators that can move faster. This explains the excellent
results provided by this model in terms of accuracy and explainability. The main drawback
of Slowfast architecture is the computation time compared to the other model but this
problem can be solved by the compression and optimization of the deep neural architecture
with the use of pruning [82], quantization [83] and knowledge distillation [84] methods.
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(a)

(b)

(c)
Figure 9. GradCAM explainability results on UCF101 dataset. (a) Example of biased detection
of the action “hammer throw” detected by GradCAM. (b) Example of biased detection of the ac-
tion “basketball” detected by GradCAM. (c) Correct explainability of the action “billiard” detected
by GradCAM.

4.4.2. Action Recognition within Mixed Videos

As shown in the previous section, the bias rate (detected by XAI) remains high when
using the best model, which is mainly due to the quality of simulated videos that can
not provide sufficient variety of sky and cloud for example. Therefore, we propose to
complete our analysis by the use of real videos and also mixed videos since we have a small
database of real videos. This dataset consists of recordings taken at railway construction
sites, with a total of 101 video clips showing both dangerous and safe actions. Table 5
illustrates the results obtained by the best model “Slowfast”, where we can note that the
model trained with real videos provides less accurate results, which is due to the small
size of this database, the imbalanced classes, and the missing samples of one class (Track
Excavator). To deal with these problems, we proposed to work with a mixed database
composed of both real and simulated videos, where we noted that the use of simulated
videos in addition to real videos contributes to increasing the model accuracy when treating
real videos. Notice that in Table 5, when we increased the percentage of simulated videos
(ranging from 50% to 75%), the number of real videos was not reduced since we had initially
small video samples.
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Table 5. Deep Learning for action recognition using simulated, real and mixed databases.

Training on
Simulated Videos

Training on
Real Videos Training on Mixed Videos

100% Simulated
0% Real

0% Simulated
100% Real

50% Simulated
50% Real

60% Simulated
40% Real

75% Simulated
25% Real

Test on simulated videos 91.53% 91.53% 87.88% 91.78% 96.81%

Test on real videos 39.08% 51.52% 42.42% 48.48% 54.07%

Test on mixed videos 66.28% 72.99% 70.08% 73.29% 78.44%

5. Conclusions

This paper addressed the problem of action recognition in general and more par-
ticularly dangerous action detection in railway stations and construction sites. After a
theoretical review of deep learning-based and depth-based methods of action recognition
that allowed us to select the most convenient solutions, we have designed a complete
comparative study in order to propose the best solution in terms of accuracy, explainability,
computation time, memory size, and flexibility. For this study and analysis, we applied
standard metrics (accuracy, computation, memory) and developed new metrics related
to the explainability (XAI_Acc and XAI_Bias) that allow the validation of the accuracy of
our explainability algorithm and its ability to recognize biased decision. This study was
developed using simulated videos, real videos, and mixed videos. As result, we have
identified the Slowfast model as the most appropriate one for dangerous action recognition
within railway stations thanks to its high accuracy, flexibility, and explainability. This study
demonstrated the advantage of using simulated videos if we combine real and simulated
videos for training. In future work, we plan to accelerate the computation time and reduce
the model memory size of the Slowfast model by the use of compression methods such
as pruning [82], quantization [83], and knowledge distillation [84]. This optimization will
be so helpful for the deployment of our solution on embedded and edge AI resources
such as Jetson Nano, Jetson Xavier, and Jetson Orin. We also plan to improve the usage
of transformers for action recognition by the proposition of an adapted solution for the
explainability of these transformer-based solutions.
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