
Citation: Debauche, O.; Nkamla

Penka, J.B.; Hani, M.; Guttadauria, A.;

Aït Abdelouahid, R.; Gasmi, K.; Ben

Hardouz, O.; Lebeau, F.; Bindelle, J.;

Soyeurt, H.; et al. Towards a Unified

Architecture Powering Scalable

Learning Models with IoT Data

Streams, Blockchain, and Open Data.

Information 2023, 14, 345. https://

doi.org/10.3390/info14060345

Academic Editor: Ge Yu

Received: 29 May 2023

Revised: 4 June 2023

Accepted: 16 June 2023

Published: 17 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Towards a Unified Architecture Powering Scalable Learning
Models with IoT Data Streams, Blockchain, and Open Data
Olivier Debauche 1,2,3,4,*,† , Jean Bertin Nkamla Penka 3,† , Moad Hani 3 , Adriano Guttadauria 3 ,
Rachida Ait Abdelouahid 5 , Kaouther Gasmi 6 , Ouafae Ben Hardouz 5 , Frédéric Lebeau 2,7 ,
Jérôme Bindelle 2,8 , Hélène Soyeurt 2,4 , Nicolas Gengler 2,9 , Pierre Manneback 3 ,
Mohammed Benjelloun 3 and Carlo Bertozzi 1,*

1 Elevéo, R&D Service, Innovation Department, Awé Group, 5590 Ciney, Belgium
2 Gembloux Agro-Bio Tech, Terra, University of Liège, 5030 Gembloux, Belgium; f.lebeau@uliege.be (F.L.);

jerome.bindelle@uliege.be (J.B.); hsoyeurt@uliege.be (H.S.); nicolas.gengler@uliege.be (N.G.)
3 Faculty of Engineering, ILIA Unit, University of Mons, 7000 Mons, Belgium;

jeanbertin.nkamlapenka@student.umons.ac.be (J.B.N.P.); moad.hani@umons.ac.be (M.H.);
adriano.guttadauria@umons.ac.be (A.G.); pierre.manneback@umons.ac.be (P.M.);
mohammed.benjelloun@umons.ac.be (M.B.)

4 Gembloux Agro-Bio Tech, Modeling and Development, University of Liège, 5030 Gembloux, Belgium
5 Faculty of Sciences Ben M’sik, Hassan II University—Casablanca, Casablanca P.O. Box 7955, Morocco;

rachida.aitbks@gmail.com (R.A.A.); benhardouz@yahoo.fr (O.B.H.)
6 National Engineering School of Tunis, Tunis El Manar University, 1080 Tunis, Belgium; gasmik86@gmail.com
7 Gembloux Agro-Bio Tech, Digital Energy & Agriculture Lab, University of Liège, 5030 Gembloux, Belgium
8 Gembloux Agro-Bio Tech, Animal Production Engineering and Nutrition, University of Liège,

5030 Gembloux, Belgium
9 Gembloux Agro-Bio Tech, Animal Production and Nutrition Engineering, University of Liège,

5030 Gembloux, Belgium
* Correspondence: odebauche@awegroupe.be or olivier.debauche@uliege.be (O.D.);

cbertozzi@awegroupe.be (C.B.); Tel.: +32-83-230-677 (O.D.); +32-83-230-615 (C.B.)
† These authors contributed equally to this work.

Abstract: The huge amount of data produced by the Internet of Things need to be validated and
curated to be prepared for the selection of relevant data in order to prototype models, train them, and
serve the model. On the other side, blockchains and open data are also important data sources that
need to be integrated into the proposed integrative models. It is difficult to find a sufficiently versatile
and agnostic architecture based on the main machine learning frameworks that facilitate model
development and allow continuous training to continuously improve them from the data streams.
The paper describes the conceptualization, implementation, and testing of a new architecture that
proposes a use case agnostic processing chain. The proposed architecture is mainly built around the
Apache Submarine, an unified Machine Learning platform that facilitates the training and deployment
of algorithms. Here, Internet of Things data are collected and formatted at the edge level. They are
then processed and validated at the fog level. On the other hand, open data and blockchain data via
Blockchain Access Layer are directly processed at the cloud level. Finally, the data are preprocessed
to feed scalable machine learning algorithms.

Keywords: Internet of Things; cloud computing; fog computing; edge computing; blockchain;
machine learning

1. Introduction

The tremendous amount of data produced by the Internet of Things (IoT ) sensors
need to be collected, cleaned, verified, eventually curated, preprocessed, stored, selected,
and finally explored. In parallel, it is essential to properly select relevant data from highly
dynamic systems or Cyber-Physical Systems (CPS) to limit the size of the dataset to design
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and train effective Machine Learning algorithms [1]. The performance of Machine Learning
is classified following three criteria: quality of results, consumption of computer resources,
and level of expert intervention [2]. The analysis of the dataset is composed of structured,
unstructured, or semi-structured data allowing for the extraction of relevant patterns.
Different kinds of data analysis can be achieved on datasets:

1. Streaming Analytics, also called event stream processing, analyzes in real time the
huge volume of data. This type of analysis is adapted to detect urgent situations and
immediate actions such as medical monitoring, air fleet tracking, financial transactions,
traffic analysis, etc.

2. Spatial analysis analyzes geographic patterns to identify the relationships between
IoT devices in the physical world. This analysis is used in applications such as
smart parking.

3. Time series analysis analyzes time series data to reveal trends and associated patterns.
This form of analysis is used, for example, in weather forecasting, smart meters, health
monitoring systems, etc.

4. Prescriptive Analysis combines descriptive and predictive analysis to understand the
best actions to take in each situation. This type of analysis is, for example, used in
commercial IoT applications.

Various techniques allow for exploring, exploiting, and highlighting patterns in raw
data. Figure 1 gives an overview of the different analytical approaches at the frontier of
Artificial Intelligence (AI) and Data Science (DS). The AI contains inclusively Machine
Learning (ML) and Deep Learning (DL). The storage in the Big Data (BD) allows for the
extraction of Knowledge Discovery in Databases (KDD) by relying on machine learning.

Figure 1. Artificial Intelligence—Data Science interactions.

Machine Learning (ML) aims to improve productivity, thus shortening the model
development time to production. Machine Learning platforms exist but some suffer from
difficulties that become obstacles for non-experts to use them. Among these difficulties
include the complete model life cycles such as TFX [3] or even the need to transform
algorithms in Kubernetes Job, for instance, MLFlow [4], or needing to integrate Application
Programming Interface (API) in the code, for example in Determined [4].

Deep Learning (DL) is a sub-domain of ML in which learning is based on neural
network models to model data with a high level of abstraction thanks to various non-linear
transformations.

Knowledge Discovery in Databases (KDD) is an automatic discovery process from
previously unknown patterns, rules, and other regular contents implicitly present in large
volumes of data. KDD is often confused with Data Mining (DM), whereas DM is only one
part of KDD and plays a central role in the knowledge extraction process [5].
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In practical use cases, it is often necessary to combine disparate data sources to
construct a comprehensive training database for machine learning algorithms. However,
these data sources exhibit variations in terms of quality and data formats. To ensure
consistency across these sources, preprocessing steps are required to consolidate the training
database. Furthermore, the arrival frequencies, speeds, and quantities of data can greatly
differ depending on the systems and devices responsible for their production [6].

To address these challenges, Lambda and Kappa architectures are commonly em-
ployed for real-time or batch data processing [7,8]. These architectures provide robust
frameworks for managing and processing data in different scenarios. The Lambda archi-
tecture allows for the simultaneous processing of both real-time and batch data, enabling
near-real-time analytics while ensuring fault tolerance and scalability. On the other hand,
the Kappa architecture is primarily focused on real-time data processing, leveraging stream
processing frameworks to handle high-velocity data streams efficiently.

By leveraging Lambda or Kappa architectures, organizations can effectively handle
the complexities associated with combining diverse data sources. These architectures
facilitate the integration of data with varying formats, qualities, and arrival frequencies,
allowing for the creation of a unified and consistent training database. Through appropriate
preprocessing steps and the utilization of the appropriate architecture, organizations can
unlock valuable insights and train machine learning algorithms on comprehensive and
reliable datasets.

To illustrate the need for an integration of consolidation of multiple sources and
machine learning platforms, four use cases are provided:

1. Internet of Things (IoT) Predictive Maintenance: IoT devices generate a massive vol-
ume of data streams, which vary in arrival frequency, speeds, and quantities. In the
context of predictive maintenance, combining these heterogeneous data sources is cru-
cial for building accurate machine-learning models. Data from sensors, machine logs,
maintenance records, and external sources need to be integrated and preprocessed to
create a comprehensive training database.

2. Fraud Detection in Financial Transactions: In the realm of financial transactions, fraud
detection is a critical use case that requires combining diverse data sources to build a
reliable training database. Various sources such as transaction logs, customer profiles,
and external data feeds contribute to the training data. However, these sources often
differ in data formats and quality. To ensure consistency, preprocessing steps such as
data cleaning, normalization, and feature engineering are applied to consolidate the
training database.

3. Crop Yield Optimization in Smart Farming: In smart farming, optimizing crop yield
and ensuring efficient resource utilization is crucial for sustainable and profitable
agricultural practices. To achieve this, farmers often gather data from various sources
such as soil sensors, weather stations, crop health monitors, and machinery telemetry.
However, these data sources may have different quality levels, formats, and update
frequencies. This is where the Consolidated Learning (CL) platform comes into play,
facilitating the preprocessing and integration of data for effective decision making.

4. Threat Detection and Response in Cybersecurity: In the field of cybersecurity, organi-
zations face constant challenges in detecting and responding to evolving cyber threats.
To effectively protect their systems and data, organizations rely on various security
tools and systems that generate vast amounts of security event logs, network traffic
data, and intrusion detection alerts. However, these data sources often differ in terms
of data formats, protocols, and logging mechanisms, making it difficult to analyze
and correlate them for accurate threat detection.

This paper aims to present a simple and agnostic Machine Learning platform to
combine and process the Internet of Things data, blockchains data, and data stream data,
managing the entire model life cycle while allowing users to deploy their models on their
usual frameworks: TensorFlow (tensorflow.org; accessed on 11 November 2022), Apache
MXNet [9], Pytorch [10], Keras (keras.io; accessed on 15 September 2022), and Horovod [11].

tensorflow.org
keras.io
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The contributions in this paper are:

1. An Integrated Architecture Edge-Fog-Cloud and Machine Learning;
2. Complete automation of the data acquisition chain, data reconciliation, development,

and training of machine learning models.

The rest of this paper is organized as follows. Section 2 summarizes recent advances in
ML platforms. In Section 3, the architecture is conceptualized. In Section 4, the architecture
is described. In Section 5, the architecture is implemented, and in Section 6, experimentation
is achieved to demonstrate its abilities and performances. Then, the obtained results are
analyzed in Section 7. Afterward, in Section 8, the limitations of this work are discussed.
Finally, this work is concluded and future research directions are drawn in Section 9.

2. Related Works

In this section, the recent advances published on the ML platform are summarized.
Afterward, we compare the pros and cons of each one to identify the issues to address
using the proposed architecture, thus also highlighting the contributions of this paper.

Lee et al. [2] proposed an autonomic ML platform based on five autonomic levels
using steps according to the degree of expert intervention. The proposed platform can
operate as a black box for non-expert users without writing code and as a white box for
expert users where they can write code to design ML tasks using script programming
language [2].

Bagozi et al. [1] presented the Interactive Data Exploration As-a-Service (IDEAaS)
approach compliant with the Human-In-The-Loop Data Analysis (HILDA) vision, enabling
Big Data Exploration (BDE) and including an incremental clustering algorithm, a multi-
dimensional organization of summarized data, and data relevance evaluation techniques.
IDEAaS architecture is organized in three modules: Data collection, which achieves the
preprocessing of IoT collected data stored in the form of JavaScript Object Notation (JSON)
document in MongoDB; Core, which summarizes a batch of collected data and generates a
synthesis and snapshots organized in JSON at each iteration; and Front-end, which takes
the form of a data exploration GUI that loads summarized data and snapshots and then
activates the data exploration API [1].

Apache Submarine [12] is a unified ML platform that takes into account not only
expert data scientists but also citizen data scientists. This platform allows fitting models
with a large parameter space and/or with a high computational cost thanks to the support
of model parallelism to shorten the learning process. Regarding Submarine support, on
one side, Kubernetes is the most popular container orchestrator, and on the other side,
Apache Hadoop YARN can be easily integrated into the Hadoop ecosystem. Submarine
integrates also Azkaban (azkaban.github.io; accessed on 22 October 2022) which is useful
to submit a tasks set of workflow in Apache Spark for preprocessing or transfer Apache
Zeppelin (zeppelin.apache.org; accessed on 10 September 2022) to Azkaban to distribute
Deep Learning on Tensorflow (tensorflow.org; accessed on 10 September 2022).

The data stream clustering, CluStream, has emerged as a solution to process data
arriving at a high rate and synthesize them by a lossless aggregation dividing the clustering
into an online component that periodically stores detailed summary statistics and an offline
component that uses these summary statistics to provide a quick understanding of map
clusters in the data stream [13]. This approach has undergone various improvements and
adaptations, such as the use of sliding windows [14,15]; Equi-Clustream, a dynamic cluster-
ing of mixed-type time-evolving data [16]; Clustream, which is a Spark implementation [17];
and speed up [18,19].

Akbar et al. [20] presented a generic architecture that combined ML with Complex
Event Processing (CEP) to predict complex events for proactive IoT applications. They
proposed an adaptive prediction algorithm called Adaptive Moving Window Regression
(AMWR). This algorithm utilizes a moving window of data for training the model, and
when new data arrives, it calculates an error and retrains the model based on it. This

azkaban.github.io
zeppelin.apache.org
tensorflow.org
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approach is interesting because it re-trains the model as soon as possible to obtain the
potential of the new data.

Calabrese et al. [21] designed an event-based IoT and ML architecture for Predictive
Maintenance in Industry 4.0. This architecture is divided into three modules: the data
acquisition module built with Azure Blog Storage; the data processing defined with Apache
Spark and the data science module based on the pySpark libraries; and the predictive
monitoring web application module. The final predictions result in two data processing
types: the offline mode to generate predictive models based on historical log data files and
the online mode which uses the last 24 h data. This approach is interesting because it is
similar to the lambda architecture but with ML tools.

Machorro-Cano et al. [22] presented a big data and machine learning-based smart
home energy management system for home comfort, safety, and energy saving, called
HEMS-IoT. Its architecture is defined by seven layers: the Device layer (sensors, actuators),
the Communication layer (TCP/IP, HTTP/IP), the Data layer (sensed data, recommenda-
tions), the Management layer (recommender system, user management), the IoT services
layer (REST API), the Security layer (authentication, authorization), and the Presentation
layer (web and mobile application). This architecture proposes many detailed layers based
on their choice, but they can be presented a little differently.

Rashid et al. [23] developed a smart energy monitoring system based on intelligence
in IoT. This architecture is defined by a common three-layer view: the physical sensing
layer, the IoT middle layer, or the network layer where the ML model is trained on Google
Colab, and the application layer. This architecture is simple and focuses on the integration
of the ML model to predict energy consumption.

Elsisi et al. [24] developed an integrated IoT architecture based on Deep Neural
Network (DNN) to handle the problems of cyber-attacks on Automated Guided Vehicles
(AGV). In addition to the usual tiers of real-time IoT architecture, in this architecture, an
additional unit was coupled between the sensors and the IoT platform. Based on the
proposed DNN against cyber-attacks, this unit aims to analyze the transferred data and
prevent known cyber-attacks.

Flores-Martin et al. [25] developed an architecture based on IoT and ML to improve
the monitoring of elderly people in nursing homes. This architecture has three parts:
the inputs (the collected data), the controller (including the ML model), and the outputs
(the actuators).

Anh Khoa et al. [26] proposed smart trash bins with real-time monitoring. This
architecture is defined by the trash bin with a sensor, the intermediate server which collects
the data sent through the LoRa gateway, the cloud server, and finally, an application to
display the data.

Table 1 summarizes the pros and cons of related work.

Table 1. Related works summary.

References Pros Cons

Lee et al. [2] Minimize expert intervention Focus on the cloud only
Bagozi et al. [1] New approach to use data as a service Complex and too theoretical
Apache Submarine [12] Open for non-experts of ML Difficult to install for non-IT Experts
Akbar et al. [20] The AMWR algo to retrain the model with new data Generic architecture
Calabrese et al. [21] The idea of Lambda architecture with ML tools More complex to maintain like Lambda
Machorro-Cano et al. [22] Detailed layers ML part is not clearly explained
Rashid et al. [23] Detailed layers based on LSTM Focuses on the network layer with ML
Elsisi et al. [24] Used a DNN model against cyber-attacks Implemented DNN is not clearly explained
Flores-Martin et al. [25] Used ML for monitoring elderly people The ML model tiers are partially defined
Anh Khoa et al. [26] Lots of details about the materials Lack of details on the ML model
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3. Architecture Conceptualization

An automatic ML platform must provide, on one hand, ML frameworks and tools such
as SparML (spark.apache.org/docs/latest/ml-guide.html; accessed on 16 October 2022),
TensorFlow (tensorflow.org; accessed on 10 September 2022), Keras (keras.io; accessed on
15 September 2022), Pytorch (pytorch.org; accessed on 10 September 2022), Apache Mahout
(mahout.apache.org; accessed on 16 October 2022), Weka (weka.io; accessed on 16 October
2022), and so forth, and language environments such as SparkML, Python, and so on for
experts. On the other hand, the platform must allow non-experts to be able to build ML
applications by the automation of tasks. In addition, the platform must be able to execute
training and inference tasks on distributed and parallel computing resources.

To enable the development of machine learning models, data must first be combined,
processed, and verified before constituting a training database. The data can come from
different sources in different forms: continuous data stream, intermittent to transmitted at
regular intervals, or data bursts. The data are rarely in the same format and must therefore
be transformed to be standardized or adapted. Furthermore, the quality of the data is also
variable depending on the data source. For all these reasons, a data preprocessing and
processing chain must be set up before the machine learning modeling platform.

The conceptual architecture is composed of three layers (see Figure 2).

Figure 2. Conceptual diagram of the architecture.

It is organized in levels from the bottom to the top as follows (Left to Right on the
Figure 2):

• An Edge layer (EL) is composed of microcontrollers where data are acquired using
sensors and then checked and validated. EL is also responsible for the activation of
the actuators that allow for acting on the environment of the subject of observation or
the subject himself. See the left part of Figure 2. The EL operates at the edge of the
network, closer to the data source, which offers several advantages. By processing data
locally, the EL reduces latency and minimizes dependence on cloud-based services,
making it well-suited for time-critical applications. Moreover, the EL enhances data
security and privacy since sensitive information can be processed and analyzed locally,
without necessarily transmitting it to external servers.

• A Fog level (FL) is the gateway that ensures network protocols commutation. At
the same time, the data are centralized for verification and curated where possible
before being transmitted to the cloud. See the middle section of Figure 2. The FL
acts as a communication bridge, ensuring seamless connectivity between different
network protocols utilized by the EL and the Cloud layer. It enables the exchange
of data and commands, allowing for efficient and reliable communication across the
entire system. By providing protocol commutation capabilities, the FL overcomes the
challenges posed by heterogeneous network environments where various devices and
protocols coexist.

• A Cloud level (CL) is where IoT data are processed and stored in a database as a
time series. See the right part of Figure 2. In the CL, data received from the Fog

spark.apache.org/docs/latest/ml-guide.html
tensorflow.org
keras.io
pytorch.org
mahout.apache.org
weka.io
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level (FL) or other sources are processed and analyzed using various cloud-based
services, algorithms, and machine learning models. This processing stage involves
extracting valuable insights, detecting patterns, and generating actionable information
from the collected IoT data. The CL leverages the computational resources and
scalability of cloud platforms to handle large volumes of data and perform complex
computations efficiently.

4. Architectural Proposal

The agnostic and unified architecture described in the previous section encompasses
the entire chain of data acquisition up to the Machine Learning model. This architecture is
designed to efficiently process and prepare data, enabling its seamless utilization in various
Machine Learning algorithms. Here, we provide a detailed description of this architecture.
The architecture begins with data acquisition, which involves collecting data from diverse
sources such as sensors, devices, or external systems. The Edge layer (EL) plays a vital role
in this process, utilizing microcontrollers and sensors to acquire data. The EL ensures that
the acquired data are checked and validated before being passed to the next layer. Once the
data are acquired by the EL, it is forwarded to the Fog level (FL). The FL acts as a gateway,
facilitating network protocol commutation and centralizing the data for verification and
curation. It ensures that the data are valid and reliable before it is transmitted to the Cloud
level (CL) for further processing. In the CL, the data are processed using cloud-based
services, algorithms, and machine learning models. This processing stage involves ana-
lyzing the data, extracting insights, and preparing it for utilization in Machine Learning
algorithms. Various techniques such as data cleaning, normalization, feature extraction,
and dimensionality reduction may be applied to efficiently prepare the data for modeling.
The processed data are stored in a database, typically organized as a time series, in the CL.
This database enables efficient storage, retrieval, and querying of the data, maintaining its
chronological order. The stored data serve as a valuable resource for historical analysis,
trend identification, and generating reports or visualizations. To ensure flexibility and
adaptability, the architecture is designed to be agnostic, allowing it to work with different
types of data and accommodate various Machine Learning algorithms. It supports the inte-
gration of different data formats, protocols, and sources, ensuring seamless compatibility
across the system. The unified nature of the architecture ensures that all stages of the data
chain, from acquisition to the Machine Learning model, are managed within a cohesive
framework. This eliminates the need for fragmented and disparate systems, streamlining
the entire process and enabling efficient data flow. By efficiently processing and preparing
data, the architecture enables easy utilization of the data in diverse Machine Learning algo-
rithms. This versatility empowers organizations to leverage the data for various purposes,
such as predictive modeling, anomaly detection, or decision support systems. In summary,
the agnostic and unified architecture described above provides a detailed framework for
managing the complete data chain, from acquisition to the utilization of Machine Learning
algorithms. It emphasizes efficient data processing and preparation, ensuring compatibility
with different data types and Machine Learning techniques. By adopting this architecture,
organizations can harness the full potential of their data and drive insights and value from
it. Figure 3 shows an overview of the architecture.

4.1. Edge Layer

The EL is responsible for the sensing and actuating. This level is composed of ARM
microcontrollers using TrustZone [27] in order to obtain security through hardware-based
isolation. It is important to separate important data such as private keys, user data, and
security functions from generic data and functions such as GUI elements or the real-time
operating system (RTOS). To achieve this, a hardware mechanism called TrustZone is imple-
mented in single-core microcontrollers. TrustZone divides the execution environment into
secure and non-secure memory, peripherals, and functions. Additionally, each execution
environment includes a memory protection unit (MPU) that can be utilized to further
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isolate memory regions. This added layer of isolation can deter potential attackers from
attempting to access data. TrustZone and MPU provide a multi-layered security approach
to safeguard important data. At this level, devices are constrained in terms of memory,
storage, and processing capabilities. As a consequence, the abilities to achieve complex
treatments are strictly limited.

Figure 3. Architecture Software Components Overview.

4.2. Fog Layer

The FL, also known as the edge-cloud layer, serves as an intermediate level between
the EL and the CL. The primary function of the FL is to carry out more extensive treatments
compared to the other two layers. These treatments may include data processing, analysis,
and storage, among others. By processing data at the edge, the FL reduces the latency
associated with transmitting data to the Cloud Layer for processing. This allows for faster
decision making and improved overall system performance.

In addition to data processing, the FL is also responsible for protocol conversion to
enhance the transmission of data between wireless sensor networks and Internet protocols.
This is achieved through the use of protocols such as MQ Telemetry Transport (MQTT),
Constrained Application Protocol (CoAP), and Hypertext Transfer Protocol (HTTP), which
allows for seamless communication between devices. The FL plays a crucial role in the
performance and efficiency of the IoT by ensuring that data are properly processed and
transmitted. By optimizing data transmission, the FL enables IoT systems to operate at
peak efficiency while conserving energy and reducing network congestion. Overall, the FL
acts as a bridge between the EL and CL, bringing the benefits of both worlds together to
create a powerful and efficient IoT ecosystem.

Apache MiNiFi (nifi.apache.org/minifi; accessed on 10 September 2022) is a com-
plementary approach to data collection that complements Apache NiFi’s (nifi.apache.org;
accessed on 10 September 2022) core principles of data flow management by focusing on
collecting data at the source of its creation. Apache IoTDB (iotdb.apache.org; accessed on 10
September 2022) is a native lightweight and high-performance database for IoT, deployable
on the edge and the cloud.

4.3. Cloud Layer

The CL consists of server infrastructure that incorporates Intel CPUs featuring Software
Guard Extensions (SGX) technology [27]. This innovative technology ensures secure data
processing by isolating sensitive computations within a protected memory enclave. To
support its operations, the CL relies heavily on Apache Submarine [12], an integrated
Machine Learning platform that comprises three key components: a user interface, a server
module, and a container management, orchestration, and deployment system.

nifi.apache.org/minifi
nifi.apache.org
iotdb.apache.org
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The user interface of Apache Submarine facilitates a seamless and intuitive experience
for users, allowing them to interact with the CL’s functionalities effortlessly. Through this
interface, users can manage and monitor their machine learning tasks, access datasets, and
configure training parameters, ensuring a streamlined workflow.

At the core of the CL lies the server module of Apache Submarine. This module
is responsible for handling the intricate processing and computation tasks required by
machine learning algorithms. Leveraging the power of Intel CPUs equipped with SGX
technology, the server module ensures that sensitive data are processed securely and
efficiently within isolated enclaves, protecting it from unauthorized access or tampering.

To ensure efficient resource utilization and scalability, the CL incorporates a container
management, orchestration, and deployment system. This system efficiently manages the
deployment and execution of machine learning tasks within a distributed environment, al-
lowing for the seamless allocation of resources and optimizing performance. By leveraging
containerization technologies such as Docker or Kubernetes, the CL can dynamically scale
its computational resources based on the workload, enabling the processing of large-scale
machine learning tasks with ease.

Apache Hadoop YARN plays the role of a fine-grained Graphics Processing Unit (GPU)
scheduler and allows for the scheduling of more than 1000 containers per second. It was
preferred to Kubernetes, which is only able to schedule 100 containers per second because
of the data storage in the etcd (etcd.ioits; accessed on 22 October 2022) database, which
induces a significant latency and limits performance (submarine.apache.org; accessed on
10 September 2022).

In summary, the CL harnesses the power of Intel CPUs with SGX technology and
relies on Apache Submarine’s comprehensive platform to provide a secure and efficient
environment for machine learning tasks. Through its user interface, server module, and
container management system, the CL offers a cohesive ecosystem that empowers users
to leverage advanced machine learning capabilities while ensuring data confidentiality
and integrity.

Apache Zookeeper is a centralized service used for preserving configuration details,
naming, giving out distributed synchronization, and offering group services (zookeeper.
apache.org; accessed on 10 September 2022). Apache NiFi (nifi.apache.org; accessed on
10 September 2022) is a powerful, scalable, and distributed directed graph of data rout-
ing, transformation, and system mediation logic. Apache IoTDB [28] is deeply integrated
with Apache Spark and Apache Hadoop, allows to address requirements of massive data
storage with ingestion at high speed, and provides abilities for complex data analysis.
Apache Spark (spark.apache.org; accessed on 10 September 2022) is an open-source unified
framework for distributed computing using implicit data parallelism and fault tolerance.
Apache Airflow (airflow.apache.org; accessed on 10 September 2022) is an open-source
management platform designed to schedule and monitor workflows. Apache Zeppelin
(zeppelin.apache.org; accessed on 10 September 2022) is a web-based notebook that facili-
tates interactive data analytics, data-driven collaboration, and the creation of collaborative
documents. Azkaban (azkaban.github.io; accessed on 22 October 2022) is a batch workflow
job scheduler that supports the composition of workflows, which can include multiple
batch processing activities and run Hadoop jobs. Apache Ranger (ranger.apache.org; ac-
cessed on 10 September 2022) is a centralized platform for defining, administering, and
globally managing security policies for Hadoop clusters. Apache Kafka (kafka.apache.org;
accessed on 10 September 2022) is an open-source distributed event streaming platform that
provides a unified, real-time, low-latency system for handling data streams used for high-
performance data pipelines, and streaming analytics. Apache Hadoop (hadoop.apache.org;
accessed on 10 September 2022) is a platform that permits the distributed handling of vast
datasets across computer clusters by using straightforward programming models. Apache
Submarine (submarine.apache.org; accessed on 10 September 2022) is a comprehensive
ML platform designed to enable data scientists to develop complete Machine Learning
workflows. Submarine can train models based on TensorFlow, PyTorch, MXNet, or by

etcd.ioits
submarine.apache.org
zookeeper.apache.org
zookeeper.apache.org
nifi.apache.org
spark.apache.org
airflow.apache.org
zeppelin.apache.org
azkaban.github.io
ranger.apache.org
kafka.apache.org
hadoop.apache.org
submarine.apache.org
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using the framework Horovod (horovod.ai; accessed on 10 September 2022), a distributed
deep-learning training framework that allows for deploying in multi-nodes and multiGPU
models built with MXNet, Keras, PyTorch, or TensorFlow. TensorFlow [29] is an end-to-end
open-source platform for machine learning developed by Google. PyTorch [10] is an open-
source machine learning framework that accelerates the path from research prototyping
to production deployment. Apache MXNet (mxnet.apache.org; accessed on 10 September
2022) is an open-source flexible and efficient library for deep learning used to train and
deploy deep neural networks. Keras (keras.io; accessed on 15 September 2022) is an API
that has been specifically designed to minimize the number of user actions required for
common use cases while also providing clear and actionable error messages. Figure 4
below shows ML Frameworks usable with Submarine.

Figure 4. Components of the cloud part of the architecture.

4.4. Security

At the cloud level, the security at the Apache Hadoop cluster is globally managed
by Apache Ranger, which centralizes access policies to files, folders, databases, tables, or
even columns. These policies can apply to individual users as well as groups. Ranger
Key Management Service (RKMS) provides a scalable encryption key management service
that complements the native function of Hadoop Key Management Service (HKMS) by
allowing keys to be stored in a secure database on the one hand and encrypting Hadoop
Distributed File System (HDFS) “data at rest” on the other. Ranger provides a centralized
auditing capability that monitors all access requests in real time and supports multiple
destination sources such as Apache Hadoop HDFS, Apache Kafka, Apache NiFi, YARN,
Elasticsearch, etc. The Ranger Audit component collects and then stores ranger audit logs
in Elasticsearch ( elastic.co/elasticsearch; accessed 18 September 2022), and shows logs for
each access event of the resource in the Ranger Audit User Interface (UI).

4.5. Software Components

In this paragraph, we summarize the identified software components that will be used
to implement the architecture proposal in Section 5. Table 2 summarizes tools and software
used to build the architecture.

Table 2. Tools and their role in our architecture.

Tools Usage Role

Apache MiNiFi EL Collects data at the source of its creation.
Apache NiFi FL Routes and transforms data on the desirable format.
Apache IoTDB FL, CL Addresses requirements of massive data storage with ingestion at high speed.

horovod.ai
mxnet.apache.org
keras.io
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Table 2. Cont.

Tools Usage Role

Apache Zookeeper CL Centralizes configuration details, and names and gives out distributed synchronization.
Apache Spark CL Distributes computing using implicit data parallelism and fault tolerance.
Apache Hadoop CL Permits the distributed handling of vast datasets across Computer clusters.
Apache Airflow CL Schedules and monitor workflows.
Apache Zeppelin CL Facilitates interactive data analytics.
Azkaban CL A batch workflow job scheduler that supports the composition of workflows.
Apache Ranger CL Defines, administers, and manages security policies for Hadoop clusters.
Apache Kafka CL Provides a unified, real-time, low-latency system for handling data streams.
Apache Submarine CL Helps to develop ML workflows.
TensorFlow CL Helps to develop ML model.
PyTorch CL Accelerates the path from research prototyping to production deployment.
Apache MXNet CL Uses for Deep Learning used to train and deploy deep neural networks.
Keras CL Helps to minimize the number of user actions required for common use cases.
Horovod CL A distributed deep-learning framework.

5. Implementation

To deploy the proposed architecture, Docker containerization technology is selected
because it is widely used in the DevOps context to quickly prototype architectures. In the
following, we detail the content of the different services at the cloud level and then at the
edge and fog levels. Figure 4 shows the interactions between services composing the cloud
level of our architecture.

For the cloud part of our architecture, Docker containerization is used. The list of
software components that composed each service is resumed in the tables below.

Table 3 presents the three services that are deployed in the Kafka service, which
temporarily stores data before its processing. Zookeeper ensures the coordination of the
service and uses server ports 2888 and 3888 while the client port 2181 is used with the
instance of Kafka to communicate with it. In addition, the Kafka instance listens on two
different external ports: 9092 and 29,092, and on the internal port: 19,092. Kafka Schema
Registry listens to requests on port 8081.

Table 3. Composition of Kafka Component.

Service Docker Image Instance Internal Port Exposed Port Mapped Port

Zookeeper confluentinc/cp-zookeeper:7.2.1 1 2888, 3888 2181 2181
Kafka confluentinc/cp-kafka:7.2.1 1 19,092 9092, 29,092 9092, 29,092

Kafka Schema Registry confluentinc/cp-schema-registry:7.2.1 1 8081 8081

Apache NiFi 1.20.0 is installed in cluster mode with Zookeeper 3.8.0 and Apache NiFi
Registry 1.20.0 to make persistently developed workflows. To avoid conflict, the client port
of NiFi 8080 was mapped with exposed port 8091 while the NiFi registry client port was
conserved on 18,000. Apache NiFi is linked with ZooKeeper with its default client port:
2181, while port 8082 is reserved for communication with NiFi nodes. The composition of
the services is summarized in Table 4. Apache NiFi uses the processor PutIoTDB to read
the content of the incoming FlowFile from NiFi and classifies them as individual records
before writing them in Apache IoTDB 0.13.3 using the native interface.

Table 4. Composition of the NiFi Component.

Service Docker Image Instance Internal Port Exposed Port Mapped Port

Zookeeper bitnami/zookeeper:3.8.0 1 8082 2181 2181
NiFi apache/nifi:1.20.0 1 8082 8080 8091

NiFi Registry apache/nifi-registry:1.20.0 1 18,000 18,000
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Apache Zeppelin version 0.10.1 was built from a personalized Dockerfile to add the
connection to Apache IoTDB version 0.13.3 using its interpreter compiled from the source
code of Apache IoTDB with Apache Maven 3.8.6 and OpenJDK 19. The default port 8080
was mapped with the exposed port: 5000, as illustrated in Table 5. Zeppelin was also
connected with Apache Spark 3.2.2 with its native interpreter allowing experts to adapt
processing pipelines directly. While Apache Spark and Apache IoTDB were linked using
the spark-iotdb-connector compiled in Scala 2.12.

Table 5. Composition of the Zeppelin Component.

Service Docker Image Instance Internal Port Exposed Port Mapped Port

Zeppelin Custom Dockerfile 1 8080 5000

To evaluate Apache Submarine quickly, we opted to use the mini-submarine proposed
in the dev-support directory of the Apache Submarine repository available on GitHub.
We compiled Apache Submarine source code using Maven 3.6.3 and Java 8. Afterward,
an image based on the Dockerfile which stacks Apache Hadoop 2.9.2, Apache Zookeeper
3.4.14, Apache Spark 3.4.3, and the SNAPSHOT of the GitHub master branch of Apache
Submarine was built.

Table 6 describes services implemented in the Airflow component. The Airflow-init
service is triggered at the service’s launch and exits after execution. Airflow-webserver
and Airflow-scheduler are responsible for the front end of the service and scheduling of
workflow respectively. The scheduler exposes port 8793 and the server exposes port 8000
mapped with the default port 8080. All the data of the service are stored in Postgresql 14
which listened on port 5434 mapped with the default port 5432.

Table 6. Composition of the Airflow Component.

Service Docker Image Instance Internal Port Exposed Port Mapped Port

Airflow-scheduler apache/airflow:2.6.0 1 8793 8793
Airflow-webserver apache/airflow:2.6.0 1 8080 8080

Airflow-init apache/airflow:2.6.0 1
Postgresql postgres:14 1 5432 5434

To reduce the deployment time of the Docker images, a registry coupled with Redis al-
lows the storage of local Docker images built by researchers. Table 7 shows the composition
of the service.

Table 7. Composition of the Registry Component.

Service Docker Image Instance Internal Port Exposed Port Mapped Port

Docker Registry registry:2.8.2 1 5000 5000
Redis bitnami/redis:7.0.5 1 6379 6379

The Fog level within the architecture plays a vital role in establishing a seamless
connection between microcontrollers embedded in connected devices, which are equipped
with sensors and/or actuators, and the Cloud level. To ensure optimal resource utilization,
a lightweight variant of Apache NiFi, known as Apache MiNiFi, is deployed on the
microcontrollers. This streamlined version, coupled with IoTDB, consumes fewer resources
while maintaining efficient performance. The Fog IoTDB instance synchronizes seamlessly
with the cloud-based IoTDB using TsFile sync, enabling smooth data transmission and
synchronization. Apache MiNiFi serves as a versatile component, capable of receiving
data from Edge devices through various Radio Frequency protocols. Upon receiving the
data, Apache MiNiFi processes it using its built-in capabilities before routing it through the
PutIoTDB processor. To facilitate seamless integration, the ’Record Reader’ configuration
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reads the content of the incoming FlowFile as separate records, ensuring efficient handling
and transmission to Apache IoTDB through its native interface.

6. Experimentation

To validate the proposed architecture, two experiments were conducted: In the first, a
simple classifier was tested on open data. In the second, data from the Ethereum blockchain
were retrieved via Access Layer API, and the same classifier was trained. Experimentation
was conducted on a VPS Contabo with 10 vCPU Cores, 60 GB RAM, and 800 GB NVMe
(contabo.com/en/vps/; accessed on 16 October 2022).

6.1. Description of the Dataset

The dataset MNIST (nist.gov/srd/nist-special-database-19; accessed on 15 January
2023) is composed of 70,000 images of 28 × 28 px divided into ten classes as follows: class
0: 6903 data; class 1: 7877 data; class 2: 6990 data; class 3: 7141 data; class 4: 6824 data; class
5: 6313 data; class 6: 6876 data; class 7: 7293 data; class 8: 6825; class 9: 6958 data. Figure 5
shows the distribution of data in the 10 different classes.

Figure 5. Class size distribution.

6.2. Structure of the Classifier

The classifier that is used to evaluate our architecture is composed of 8 layers from the
bottom to the top:

1. Convolutional Layer 1 (Conv2D):

• Filters: 32;
• Kernel size: (3, 3);
• Activation function: ReLU;
• Input shape: (28, 28, 1) (images with a size of 28 × 28 and a single channel).

2. Max Pooling Layer 1 (MaxPooling2D):

• Pool size: (2, 2).

3. Convolutional Layer 2 (Conv2D):

• Filters: 64;
• Kernel size: (3, 3);
• Activation function: ReLU.

4. Max Pooling Layer 2 (MaxPooling2D):

• Pool size: (2, 2).

contabo.com/en/vps/
nist.gov/srd/nist-special-database-19
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5. Convolutional Layer 3 (Conv2D):

• Filters: 64;
• Kernel size: (3, 3);
• Activation function: ReLU.

6. Flatten Layer:

• Converts the 2D output from the previous layer into a 1D vector to feed into a
dense layer.

7. Dense Layer 1 (Dense):

• Neurons: 64;
• Activation function: ReLU.

8. Dense Layer 2 (Dense):

• Neurons: 10;
• Activation function: Softmax;
• Output layer with 10 neurons, representing the probability distribution over the

10 classes.

Figure 6 presents the organization of the 8 layers of the classifier.

Figure 6. Structure of the classifier.

The model was deployed using TensorFlow 2.2.

6.3. Training of the Model

The model was trained on 10 epochs with 70 steps per epoch with the Adam optimizer
loss function: sparse categorical cross-entropy, and the Adam Optimizer on one side with
open data and on the other side with data from the blockchain on a single CPU with a RAM
limited to 2G. Afterward, the accuracy of the model was evaluated with training using
different learning rates and batch sizes, and configurations with one or two CPUs.

7. Results and Discussion

The first experiment involves testing the use of open-source data by loading MNIST
data directly from a ZIP file hosted on a remote server. The second experiment involves
retrieving MNIST data previously stored in the Ethereum blockchain and then retrieving it
using the Access Layer APIs. This data are then prepared using Apache Spark at the cloud
level so that it can be used for training on Apache Submarine.

The experiments have shown that the cloud architecture can work with data from files
with open data and data streams from the Ethereum blockchain. Figures 7 and 8 show
results obtained from files (open data) and stream data (blockchain), respectively.

Figures 7 and 8 give similar results in terms of accuracy and loss, but the training speed
is very different between the two experiments. Training with data from the blockchain
is 5 times slower than reading data from a file. This difference in speed is explained by
the time it takes to access the data stored in the blockchain via the access layer API and
transform it into the cloud to prepare it for training.
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Figure 7. Evolution over time of the accuracy and the loss during the model training with open data.

Figure 8. Evolution of the accuracy and the loss during the model training with blockchain data.

Table 8 presents accuracies obtained for different configurations of the learning rate,
batch size, number of CPU, and RAM. The analysis of the table shows that better results are
obtained with a learning rate (lr) of 0.001 and a batch size of 150. The accuracy increases
progressively with the batch size up to maximum with 150 images. In addition, the
distribution of the training does not impact the accuracy but reduces significantly the
processing time.

A licensing analysis of the proposed architecture was achieved. Table 9 includes the
licenses for the software components used in the architecture. The table shows that all
the architecture is open source with licenses which allow for contributions without license
contamination of the code.
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Table 8. Accuracy obtained for different configurations.

Parameters Accuracy
1 cpu, 2 Gb 1 cpu, 4 Gb 2 cpu, 2 Gb 2 cpu, 4 Gb

lr = 0.01, batch size = 20 0.9349 0.9285 0.9396 0.915
lr = 0.001, batch size = 20 0.9491 0.9380 0.9415 0.9484
lr = 0.0001, batch size = 20 0.9069 0.8996 0.9069 0.9038

lr = 0.01, batch size = 50 0.9496 0.9546 0.9430 0.9522
lr = 0.001, batch size = 50 0.9603 0.9638 0.9610 0.9585
lr = 0.0001, batch size = 50 0.9170 0.9188 0.9206 0.9206

lr = 0.01, batch size = 100 0.9616 0.9604 0.9616 0.9236
lr = 0.001, batch size = 100 0.9687 0.9664 0.9679 0.9679
lr = 0.0001, batch size = 100 0.9244 0.9059 0.9262 0.9220

lr = 0.01, batch size = 150 0.9668 0.9671 0.9644 0.9667
lr = 0.001, batch size = 150 0.9716 0.9703 0.9711 0.9683
lr = 0.0001, batch size = 150 0.9296 0.9287 0.9216 0.9297

Table 9. License analysis of the architecture.

Service Docker Image License

Apache Airflow apache/airflow:2.4.2 Apache License 2.0
Apache IoTDB apache/iotdb:0.13.3 Apache License 2.0
Apache Kafka confluentinc/cp-kafka:7.2.1 Apache License 2.0

Apache Hadoop Apache License 2.0
Apache Horovod Apache License 2.0
Apache Maven Apache License 2.0
Apache MXNet Apache License 2.0

NGINX nginx:latest BSD 2-clauses (d)
Apache NiFi apache/nifi:1.20.0 Apache License 2.0

Apache NiFi Registry apache/nifi-registry:1.20.0 Apache License 2.0
Apache NiFi Toolkit apache/nifi-toolkit:1.20.0 Apache License 2.0

Postgresql postgres:14 PostgreSQL License (d)
Python Python Software Foundation License
PyTorch BSD 3-clauses

Apache Ranger Apache License 2.0
Redis bitnami/redis:7.0.5 BSD 3-clauses

Registry registry:2.8.1 Apache License 2.0
Apache Spark Apache License 2.0

Apache Submarine Apache License 2.0
Tensorflow Apache License 2.0

Apache Zeppelin apache/zeppelin:0.10.1 Apache License 2.0
Apache Zookeeper bitnami/zookeeper:3.8.0 Apache License 2.0

8. Work Limitations

In the end, the proposed architecture does not yet support important ML frameworks
such as Apache Mahout (mahout.apache.org; accessed on 16 October 2022), Weka (weka.io;
accessed on 16 October 2022), SparkML (spark.apache.org/docs/latest/ml-guide.html;
accessed on 16 October 2022), and so forth. The described architecture is a development
version but it needs adaptation to become usable in a production context as follows:

NiFi Service implements two or more instances of Apache NiFi instead of one, an
NGINX proxy to load balance from port 8443 between instances of NiFi, and a NiFi Toolkit
to allow the deployment of the TLS certificate. In addition, the anonymous connection
allowed in the development version is replaced by user/password authentication, TLS
encryption, and JKS Keystore and Truststore must be used and activated to guarantee
security. Table 10 lists the composition of the NiFi Service in production.

mahout.apache.org
weka.io
spark.apache.org/docs/latest/ml-guide.html
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Table 10. Composition of the NiFi component in production context.

Service Docker Image Instance Internal Port Exposed Port Mapped Port

Zookeeper bitnami/zookeeper:3.8.0 1 2181 2181
NiFi apache/nifi:1.20.0 min 2 8444, 8445 8444, 8445

NiFi Toolkit apache/nifi-toolkit:1.20.0 1
NiFi Registry apache/nifi-registry:1.20.0 1 18,000 18,000

NGINX nginx:latest 1 8443 8443

Kafka Service must also be adapted to improve its capabilities to accept heavy loads.
Table 11 presents the three services which are deployed in the Kafka service in a production
context. The instance of Zookeeper is replaced by a quorum of Zookeeper composed of
three instances and the unique instance of Kafka is replaced by three instances working
in parallel and coordinated by the Zookeeper quorum. Each instance of the quorum uses
server ports 2888 and 3888 to communicate with other instances while each one uses
separated and unique client ports: 2181, 2182, and 2183, respectively, with which each
one of the tree instances of Kafka is linked. Each Kafka instance listens on two external
different ports: 9092 and 29,092; 9093 and 29,093; 9094 and 29,094 respectively, and on
internal ports: 19,092, 19,093, and 19,094, respectively. Kafka Schema Registry listens to
requests on port 8081.

Table 11. Composition of the Kafka Component in production context.

Service Docker Image Instance Internal Port Exposed Port Mapped Port

Zookeeper confluentinc/ 3 2888, 3888 2181,2182, 2183 2181, 2182, 2183
cp-zookeeper:7.2.1

Kafka confluentinc/ 3 19,092, 19,093, 19,094 9092, 9093, 9094 9092, 9093, 9094
cp-kafka:7.2.1 29,092, 29,093, 29,094 29,092, 29,093, 29,094

Kafka Schema confluentinc/cp- 1 8081 8081
Registry schema-registry:7.2.1

Apache Submarine 0.8.0 must be deployed with Kubernetes 1.21.14, Kubectl 1.21.0
(kubernetes.io/docs/reference/kubectl/kubectl/; accessed on12 February 2023), Helm
3.0.0 (helm.sh; accessed on 14 February 2023), Minikube 1.23.0 (minikube.sigs.k8s.io; ac-
cessed on 15 February 2023), istioctl 1.17.1 (istio.io; accessed on 16 February 2023), and the
following dependencies: KinD 0.17 (kind.sigs.k8s.io; accessed on 16 May 2023), OpenJDK
11, Maven 3.8.0, Docker 20.10.8, NodeJS 16.19.1 LTS, Go 1.17, and Python 3.10. After-
ward, the submarine-cloud-v3-system is deployed using Helm, and Kubectl is used to
create the cluster. The following artifacts are also deployed: MySQL, MinIO (min.io; ac-
cessed on 27 May 2023), MLFlow (mlflow.org; accessed on 27 May 2023), and Tensorboard
(tensorflow.org/tensorboard; accessed on 27 May 2023).

9. Conclusions and Future Directions

It is often necessary to combine disparate data sources to construct a comprehensive
training database for machine learning algorithms. However, these data sources exhibit
variations in terms of quality and data formats. To ensure consistency across these sources,
preprocessing steps are required to consolidate the training database.This paper presents an
integrated architecture associating a complete acquisition chain and a training ML platform.
This architecture has been designed to combine and process data from IoT, blockchain, and
open data. It also allows the complete life cycle, which enables users to deploy their models
on their usual frameworks: TensorFlow, Apache MXNet, PyTorch, Keras, and Horovod.

To validate the architecture, experimentation was conducted to compare training oper-
ations with open data and blockchain data on a single CPU. Afterward, experimentation
was achieved to compare the impact of the distribution of the training. The results show
that the distribution of the training on the architecture does not impact significantly the
accuracy, and that performances increase with a batch size of up to 150 and a learning

kubernetes.io/docs/reference/kubectl/kubectl/
helm.sh
minikube.sigs.k8s.io
istio.io
kind.sigs.k8s.io
min.io
mlflow.org
tensorflow.org/tensorboard
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rate of 0.001. The architecture’s ability to process and train a classification model based
on data stored as files and stored within the Ethereum blockchain was evaluated. The
architecture must be fully tested on complete use cases in production to definitively validate
the entire architecture.

In future works, the proposed architecture for the WALLeSmart platform (wallesmart.
be; accessed on 1 June 2023) [30,31], a cloud platform designed to centralize data from
multiple sources from the agricultural sector in the Walloon region (Belgium), manages
users’ consent for the use of their data, and deploy and host applications and services
for farmers, will be integrated. The proposed architecture coupled with the synthetic
generation of datasets currently under development will allow for the acceleration of the
development of new services and applications based on machine learning, which will then
be hosted on the WALLeSmart platform (wallesmart.be; accessed on 16 February 2023).
In addition, the possibility to replace Docker with Singularity (sylabs.io; accessed on 16
February 2023), which is better adapted for High-Performance Computing (HPC), will
be investigated. Singularity offers a better level of security, is compatible with Docker,
and allows to deploy encrypted containers [32]. Moreover, many researchers use R and
R shiny for model development; therefore, it is also worth investigating the possibility of
integrating this into the architecture.
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Abbreviations
The following abbreviations are used in this manuscript:

AGV Automated Guided Vehicles
AI Artificial Intelligence
AMWR Adaptive Moving Window Regression
API Application Programming Interface
BD Big Data
BDE Big Data Exploration
CEP Complex Event Processing
CL Cloud Layer
CoAP Constrained Application Protocol
CPS Cyber-Physical Systems
CPU Central Processing Unit
DL Deep Learning
DM Data Mining
DNN Deep Neural Network
DS Data Science
EL Edge Layer
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FL Fog Layer
GUI Graphical User Interface
GPU Graphics Processing Unit
HDFS Hadoop Distributed File System
HILDA Human-In-the-Loop Data Analysis
HKMS Hadoop Key Management Service
HPC High Performance Computing
HTTP Hypertext Transfer Protocol
IDEAaS Interactive Data Exploration As-a-Service
IoT Internet of Things
IP Internet Protocol
JKS Java KeyStore
JSON JavaScript Object Notation
KDD Knowledge Discovery in Databases
LR Learning Rate
LSTM Long-Short-Term-Memory
ML Machine Learning
MPU Memory Protection Unit
MQTT MQ Telemetry Transport
RKMS Ranger Key Management Service
TOS Real-Time Operating System
REST Representational State Transfer
SGX Software Guard Extensions
TCP Transmission Control Protocol
TLS Transport Layer Security
UI User Interface
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