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Abstract
This paper explores the quaternion representation in order to devise an extended Kalman filter approach for pose estimation:
inertial measurements are fused with visual data so as to estimate the position and orientation of a six degrees-of-freedom
rigid body. The filter equations are described along with a data-driven tuning method that selects the model covariance matrix
based on experimental results. Finally, the proposed algorithm is applied to a six degrees-of-freedom Stewart platform, a
representative system of a large class of industrial manipulators that could benefit from the proposed solution.

Keywords Extended Kalman filter (EKF) · Quartenion · Sensor fusion · State estimation · Inertial measurement units (IMU) ·
Computer vision

1 Introduction

The six degrees-of-freedom (6-DOF) rigid body model
describes a large class of systems in different research
domains. Examples go from a wide range of robotic manip-
ulators (Sciavicco & Siciliano, 2012) to various autonomous
vehicles (Tayebi &McGilvray, 2006).Most applications that
use these systems require some form of estimation of the sys-
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tem states, leading to an intrinsic difficulty since no single
sensor is able to measure the pose of a 6-DOF rigid body.
While inertial measurement units (IMUs) have high band-
width, they only provide the orientation and position of the
rigid body via integration of the gyroscope and accelerome-
ter, which leads to problems related to drift and error growth.
The typical approach to work around this problem is to cou-
ple these sensors with others that can compensate the drifting
effect but provide a low bandwidth response on their own.
One such example is the sensor fusion of a camera and an
IMU via filtering methods, of which the Kalman Filter is the
most popular and widely applied (Kalman, 1960).

Several works have explored the sole use of computer
vision in order to achieve state estimation (Li et al., 2020;
Yang et al., 2020; Colonnier et al., 2021). Despite promis-
ing results, the sole reliance on vision sensing has intrinsic
drawbacks related to the already mentioned low bandwidth,
high computational cost, and, more fundamentally, to prob-
lems related to occlusion. Consequently, investigations of a
camera and IMU fusion for pose estimation are a recurring
topic of research where different nonlinear filtering tech-
niques have been explored. In particular, particle filters are
used by Zhang and Ye (2020) and—in association with dual
quaternions—by Sveier and Egeland (2021). They provide
good estimations, particularly when subject to non-Gaussian
noise, but are computationally expensive and tedious to
tune. Another EKF-based solution is presented in Tong et
al. (2018) but solely concerned with the orientation of the
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body. Zhang et al. (2020) proposes an unscented Kalman fil-
ter approach but does not rely on quaternions, making use
of trigonometric functions instead. Other works present less
flexibility because they are based on the use of maps (Ratz et
al., 2020), do not mention how to tune the covariance matri-
ces of the EKF (Araguás et al., 2015), or tend to specialize in
the estimation of some variables instead of offering a com-
plete pose estimation (Nützi et al., 2011). Approaches solely
based on image information are commonly referred to as the
perspective-n-point (PnP) problem by the Computer Vision
Community, resulting in a vast body of literature such as
He et al. (2020) and Schönberger et al. (2018). While these
methods do not include the added robustness of IMU inte-
gration, they may be incorporated in the current approach by
replacing the image-based computation of the pose estimate.

This paper focuses on the derivation of the EKF equa-
tions for the quaternion-based 6-DOF rigid body model to
estimate its full pose, i.e., orientation and position. Since
the main difficulty in implementing the EKF is choosing
the covariance matrix, a novel data-driven tuning method
is proposed. Given an experiment where the “ground-truth”
is available, this method iterates the best covariance matrix
Q through an optimization problem that minimizes the esti-
mation error. As a result, an initial value for the Q is
systematically available, avoiding the tedious trial-and-error
approach commonly used. In order to apply the proposed
method, a quaternion representation is used to describe the
dynamic equations of the systemattitude.As a result, thefilter
design and implementation are significantly simplified since
this representation eliminates costly trigonometric functions.
An implementation of the resulting algorithm is performed
in a 6-DOF Stewart platform, a particular application rep-
resenting a large class of industrial manipulators that could
benefit from the proposed approach.

This paper is organized as follows. Section2 introduces
the problem at hand and describes the quaternion notation
as it is used in the development of the fusion algorithm.
While the mathematical models used in the filter are derived
in Sect. 3, the algorithm itself is described in Sect. 4 and sub-
sequently implemented in the Stewart platform in Sect. 5.
Conclusions are drawn in Sect. 6.

Notation:Uppercase characters denote matrices, and vec-
tors are bold lower case. The n×n zero and identity matrices
are given by 0n and In . AT is the transpose of A. Rbo(q) is
the rotation matrix from frame Fo to frame Fb given by the
quaternion vector q. Unless clearly stated, all vectors are
referred to the origin frame Fo.

2 Problem Formulation

This paper uses quaternions to represent rotations in space. In
terms of the axis-angle rotation, quaternions can be parame-

terized as follows:

q =
⎡
⎣ cos

(
ψ
2

)

r sin
(

ψ
2

)
⎤
⎦ =

[
η

ε

]
, q ∈ R

4, (1)

where η ∈ R and r, ε ∈ R
3. The unit vector r describes the

direction aroundwhich the rotationψ is performed. By (1), it
is clear that the following normalization equation is satisfied

η2 + εTε = 1. (2)

From q ∈ R
4, a corresponding rotation matrix readily

follows. Assuming q is the orientation of a body reference
frame Fb with respect to an origin reference frame Fo, the
rotation matrix from Fo to Fb is given by,

Rbo(q) = I3 − 2ηS(ε) + 2S(ε)2, Rbo(q) ∈ R
3×3, (3)

where the operator S(·) is used to represent the vector cross
product in matrix form,

S(z) =
⎡
⎣

0 −z3 z2
z3 0 −z1

−z2 z1 0

⎤
⎦ . (4)

Basedon the quaternion representation, the dynamic equa-
tions of a rigid rotating body are given by the following
expressions (Markley & Crassidis, 2014),

q̇(t) = 1

2

[
0 −ω(t)T

ω(t) −S(ω(t))

]
q(t)

J ω̇(t) = −S(ω(t))Jω(t) + τ (t) (5)

where J ∈ R
3×3 is the inertia matrix and τ (t) ∈ R

3 repre-
sents the torques applied to the body whose angular velocity
is ω(t) ∈ R

3.
Furthermore, the equations of motion of the translation

dynamics are given by,

ṗ(t) = v(t)

M v̇(t) = F(t) − g (6)

where p(t), v(t) ∈ R
3 are the position and velocity of

the body with inertia matrix M ∈ R
3×3 subject to a force

F(t) ∈ R
3 and the gravitational field g = [0 0 g]T. Here,

all variables are descriptions of the body frame with respect
to the origin frame.

We consider that three rate-gyros and three accelerometers
(i.e., an IMU), and a monocular camera are available to esti-
mate the body’s pose. Therefore, the following assumptions
are made concerning these sensors:
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Fig. 1 The problem being addressed is that of estimating the body
reference frame Fb with respect to the origin Fo given measurements
from the IMU sensor (Fs) and the camera (Fc)

A1 Reference frames: both the IMU sensor and the camera
are rigidly attached to the body and their respective ref-
erence frames Fs and Fc are known: with respect to Fb,
the IMU sensor Fs has displacement obs and orientation
Rsb, and the cameraFc is coincident with orientation Rcb

(see Fig. 1).
A2 Features: the environment has a set of features whose

positions with respect to Fo are known.
A3 Image Processing: the camera sensor provides the coor-

dinates (pixels) of the incidence of the features on the
image, i.e., image processing is not addressed in this
paper.

Note that there is no requirement that the features remain
in the camera’s field of view. In their absence, it is expected
that the EKF may continue estimating the pose based solely
on the IMU. Furthermore, we assume no knowledge what-
soever is provided concerning the inertial parameters J and
M , which may be time-varying. Likewise, no knowledge is
assumed for the system inputs F and τ . Given the above, the
problem to be addressed in this paper is defined as follows.

Problem definition: Given the IMU and the camera mea-
surements, estimate the position p(t) and orientation q(t) of
the 6-DOF rigid body subject to assumptions A1, A2, and
A3.

3 Models for the EKF

The extendedKalman filter (EKF) relies on the systemmodel
to make predictions, and on the sensor models and data to
make corrections. While these models are described in the

current section, their role in the EKF algorithm is detailed in
the next one.

3.1 SystemModel

The sensors and the algorithm will run in discrete time at
constant sample rates.Weassume the IMUprovides datawith
sample time T , at a higher frequency than the camera, which
provides data at a sample time Tc = κT for a positive integer
κ . Therefore, the algorithm itselfwill run at a frequencyT and
accommodate the camera data onlywhen available. Thus, the
system equations are discretized with sample time T leading
to:

qk+1 = qk + T

2

[
0 −ωT

k
ωk −S(ωk)

]
qk

ωk+1 = ωk + Tαk

pk+1 = pk + T vk

vk+1 = vk + T ak (7)

where α and a represent the unknown angular and linear
accelerations of the body.

Remark 1 In order to accommodate the lack of knowledge of
the acceleration variablesα and a (both the inertiamatrices J
and M and the inputs F and τ are unknown), their dynamics
will be modeled as random walks during the Kalman Filter
implementation, as detailed next section.

3.2 GyroscopeModel

The gyroscope sensor provides a vector of angular velocities
ωg ∈ R

3 with equal magnitude of that of the bodyω but with
different orientation. Given Rsb, the constant rotation matrix
from Fb to Fs, the gyroscope model is,

ω
g
k = Rsbωk + bgk + δ

g
k , (8)

where bg ∈ R
3 is the time-varying sensor bias, and δg ∈ R

3

is themeasurement noise sampled from a normal distribution
with zero mean and covariance Rg ∈ R

3×3, i.e.,

P(
δ
g
k

) ∼ N (
0, Rg

)
. (9)

Given a set ofmeasurements, an estimate for Rg maybedeter-
mined experimentally. Notice that it is due to the inclusion
of the bias in Eq. (8) that we may assume that the noise δ

g
k

has zero mean. However, since the bias vector bgk is unknown
and time-varying, it will be necessary to provide an online
estimate of this parameter in order to use Eq. (8).
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3.3 Accelerometer Model

Refer to Fig. 1 in order to derive the accelerometer model.
The vector s(t) that describes the position of the IMU sensor
with respect to the origin is given by,

s(t) = p(t) + Rbo
(
q(t)

)
obs, (10)

and its linear velocity is,

ṡ(t) = ṗ(t) + Rbo
(
q(t)

)
S
(
ω(t)

)
obs. (11)

By computing the time derivative of the above, recalling
that obs is a constant, one finds the linear acceleration of the
IMU with respect to Fo,

s̈(t) = a(t) + Rbo(q(t))H(ω̇(t),ω(t))obs, (12)

where H(ω̇(t),ω(t)) = S(ω(t))2 + S(ω̇(t)).
Finally, one must take into account the orientation of the

sensor, the gravitational field g, and the bias and noise inher-
ent to the measurements. The final (discrete time) model of
the accelerometer is given by,

aacck = Rsb
(
Rbo(qk)(ak − g) + H(αk, ωk)obs

) + bak + δak .

(13)

As with the gyroscope, the rotation matrix product
RsbRbo(qk) describes the orientation of the sensor with
respect to the origin. Furthermore, bak ∈ R

3 is the time-
varying accelerometer bias, and δak ∈ R

3 is the measurement
noise sampled from a normal distributionwith zeromean and
covariance Racc ∈ R

3×3, i.e.,

P(δak ) ∼ N (0, Racc). (14)

Given a set of measurements, an estimate for Racc may also
be determined experimentally. Also, an online estimate of
the accelerometer bias will have to be produced.

3.4 Pinhole Camera Model

The pinhole camera measurements use nξ known features
(landmarks) whose positions with respect to the global ref-
erence frame are given by ξ i ∈ R

3, i = 1, . . . nξ , and whose
time-varying projections on the image plane (in pixels) are
denoted by mi

k ∈ R
2. Based on Mariottini and Prattichizzo

(2005), the image formation of the points ξ i on a camera with
orientation qk and position pk is

λm̃i
k = KcRcbRbo

(
qk

) (
ξ i − pk

)
, ∀ λ > 0. (15)

Here, m̃i is the feature projection in the camera frame [pixels]
(m̃i = [mi 1]T), and ξ i and pk are, respectively, the feature
and camera positions with respect to Fo. The scaling factor
λ > 0 accounts for the fact that any point in a line passing
through the focal point of a pinhole camera will be projected
on the same pixelmi . Furthermore, Kc is a matrix containing
the intrinsic parameters of the camera, represented as follows:

Kc =
⎡
⎣
f sx f sθ ox
0 f sy oy
0 0 1

⎤
⎦ . (16)

The entries of the matrix Kc have the following geometric
interpretation: ox and oy are the x- and y-coordinates of the
principal point, measured in pixels; f sx and f sy are the size
of unit length in horizontal and vertical pixels, and f sθ is
the skew of the pixel. These parameters are usually obtained
experimentally via some optimization procedure (Ma et al.,
2004).

Since S(m̃i )m̃i = 0, the unknown parameter λ may be
eliminated by left multiplying the matrix S(m̃i ) to equation
(15). By doing so, and adding the noise inherent to the mea-
surements, the following relation is obtained,

02×1 = C S
(
m̃i

k

)
KcRcbRbo

(
qk

)(
ξ i − pk

) + δcik , (17)

where C = [I2 02×1] is an auxiliary matrix that eliminates
the last line of Eq. (15), and δcik ∈ R

2 is the measurement
noise associated with the camera. Once again, the noise is
assumed sampled from a normal distribution with zero mean
and covariance Rc ∈ R

2×2, i.e.,

P(
δcik

) ∼ N (
0, Rc

)
, i = 1, . . . nξ . (18)

Equation (17) will be used to incorporate camera mea-
surements during the filter correction step.

4 EKF-based Sensor Fusion

4.1 Prediction Step

The state vector xk includes all necessary variables that must
be estimated in order to accommodate the model and the
different sensors.Besides the variables of interest, namely the
position and orientation of the camera, the linear and angular
velocities and accelerations, along with the sensor biases,
must be included in xk , leading to the following definition:

xTk :=
[
q̂Tk ω̂

T
k α̂

T
k p̂Tk v̂

T
k âTk b̂

gT
k b̂

aT
k

]
∈ R

25. (19)
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Given the above state vector, the state transition equation
incorporates Eq. (7) and is fully described by,

xk+1 = f (xk) + δxk , (20)

where

f (xk) = xk + T

⎡
⎢⎢⎢⎢⎢⎢⎣

F(ω̂k)q̂k
α̂k

03×1

v̂k
âk
09×1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (21)

and

F(ω̂k) = 1

2

[
0 −ω̂

T
k

ω̂k −S(ω̂k)

]
. (22)

The random variable δxk ∈ R
25 is a zero-mean Gaus-

sian random vector that models the uncertainty introduced
by the state transition equation. The block-diagonal covari-
ance matrix governs this uncertainty Q ∈ R

25×25, which
is a tuning parameter While the sensor covariance matrices
may be computed by a set of measurements, Q is notori-
ously harder to be determined and is usually the result of a
tiresome trial-and-error approach. Section5.2, however, will
show a systematic way of computing this matrix via an opti-
mization algorithm that explores an external sensor during
the tunning process.

It must be mentioned that Eq. (21) describes the system
accelerations and sensor biases as constants. Obviously, this
is a coarse approximation of the real dynamics of these vari-
ables and is only reasonable when their rate of change is
slow when compared to the filter dynamics. Nevertheless,
the uncertainty related to these estimates is incorporated in
matrix Q.

Finally, the EKF filter requires a linearization of the state
transition Eq. (21), which is given by the Jacobian matrix
Fk ∈ R

25×25,

Fk := ∂ f (xk)
∂xk

= I25 + T diag{	(xk),
, 06×6}, (23)

where

	(xk) =
⎡
⎣
F(ω̂k) G(q̂k) 04×3

03×4 03 I3
03×4 03 03

⎤
⎦ , 
 =

⎡
⎣
03 I3 03
03 03 I3
03 03 03

⎤
⎦ , (24)

and,

G(q̂k) = 1

2

[ −ε̂
T
k

η̂k I + S(ε̂k)

]
, (25)

where it is recalled that q̂Tk = [η̂k ε̂Tk ].

4.2 Correction Step

A sensor vector zk with variable dimension is used in the
correction step of the filter, and it is defined in the following
form:

zk =
⎡
⎣

ω
g
k

aacck
02i×1

⎤
⎦ ∈ R

nh , (26)

where i = 0, . . . nξ denotes the number of features that are
visible to the camera at instant k. Note that the dimension
nh = 6 + 2i of the sensor vector varies according to this
number of features in the camera field of view. For most of
the time, however, nh = 6 since in between the arrival of
camera sensor data the filter will rely on the IMU alone.

The nonlinear time-varying output equation that describes
how zk is reconstructed from xk , i.e.,

zk = h(xk) + δzk, (27)

is built from Eqs. (8), (13) and (17):

h(xk) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Rsbω̂k + b̂
g
k

Rsb
(
Rbo(q̂k)(âk − g) + H(α̂k, ω̂k)obs

) + b̂
a
k

C S(m̃1
k)KcRcbRbo(q̂k)(ξ

1 − p̂k)
...

C S(m̃
nξ

k )KcRcbRbo(q̂k)(ξ
nξ − p̂k)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(28)

δzk =
[
δ
g
k
T

δak
T

δcik
T
]
T. (29)

In here, terms h(xk), δ
z
k ∈ R

nh have the same varying dimen-
sion of zk .

The covariance matrix Rk for all sensor measurement
noises δzk is composed by the covariance matrices of each
individual sensor. It is defined in the following block diago-
nal form,

Rk = diag
{
Racc, Rg, Rc, . . . Rc

}
,∈ R

nh×nh . (30)

As with zk , the dimension of Rk varies according to the num-
ber of features i in the camera field of view.

In order to compute the Kalman gain, the correction step
needs the Jacobian matrix Hk ∈ R

nh×25 given by the partial
derivatives of h(xk) with respect to xk ,
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Hk := ∂h(xk)
∂xk

=
[
H

q̂k
k H ω̂k ,α̂k

k H
p̂k
k H v̂k ,âk

k H b̂k
k

]
. (31)

The result of these computations is provided below:

H q̂k :=

⎡
⎢⎢⎢⎢⎢⎣

03×4

RsbJ(q̂k , âk − g)

C S(m̃1
k)KcRcbJ(q̂k , ξ

1 − p̂k)
.
.
.

C S(m̃i
k)KcRcbJ(q̂k , ξ

i − p̂k)

⎤
⎥⎥⎥⎥⎥⎦

, (32)

H ω̂k ,α̂k
k :=

⎡
⎢⎢⎢⎢⎢⎣

Rsb 03
RsbRbo(q̂k)W(ω̂k , obs) −RsbRbo(q̂k)S(obs)

02×3 02×3
.
.
.

.

.

.

02×3 02×3

⎤
⎥⎥⎥⎥⎥⎦

, (33)

H
p̂k
k :=

⎡
⎢⎢⎢⎢⎢⎣

03
03

−C S(m̃1
k)KcRcbRbo(q̂k)

.

.

.

−C S(m̃
nξ

k )KcRcbRbo(q̂k)

⎤
⎥⎥⎥⎥⎥⎦

, (34)

H v̂k ,âk
k :=

⎡
⎢⎢⎢⎢⎢⎣

03 03
03 RsbRbo(q̂k)
02×3 02×3

.

.

.
.
.
.

02×3 02×3

⎤
⎥⎥⎥⎥⎥⎦

, (35)

where H b̂k
k = [I6 06×2nξ ]T. The auxiliary functions J(q, u)

and W( y, u) ∀ y, u ∈ R
3 are defined by

J(q, u) := ∂Rbo(q)u
∂q

= ∂(I3 − 2ηS(ε) + 2S2(ε))u

∂

[
η

ε

]

= 2[−S(ε)u S(u)η + W(ε, u)] (36)

and

W( y, u) := ∂S2( y)u
∂ y

= yuT − 2uyT + yTuI3. (37)

Given the definitions presented so far, the extended
Kalman filter algorithm used for sensor fusion is described
in Algorithm 1.1 The algorithm follows the very traditional
and well-known structure of an extended Kalman filter with
twomain peculiarities: the correction step starts (in line 7) by
adjusting the dimension of the associated matrices accord-
ing to the available visualdata, this will result in a Kalman

1 In Algorithm 1, x−
k and P−

k denote a priori estimates, i.e., prior to
the application of the correction step.

Algorithm 1 EKF-based sensor fusion algorithm

1: function ekf(ωg
k , a

acc
k ,mi

k , Rk , Q)
2: persistent xk , Pk

Prediction Step:
3: Compute Fk from xk as in (23);
4: x−

k = f (xk); % using (21)
5: P−

k = Fk Pk FT
k + Q;

6: Normalize the quaternion in x−
k ;

Correction Step:
7: Determine the dimension nh based on available features;
8: Compute Hk from x−

k as in (31);
9: Kk = P−

k HT
k (Hk P

−
k HT

k + Rk)
−1;

10: xk+1 = x−
k + Kk(zk − h(x−

k )); % using (26) and (28)
11: Pk+1 = (I − KkHk)P

−
k ;

12: Normalize the quaternion in xk+1;
13: end function

gain Kk of variable dimension, as computed in line 9; fur-
thermore, the estimated quaternion after the prediction and
correction steps must be normalized2 in order to satisfy the
property stated in Eq. (2). While this simple normalization is
sufficient for the current study, other methods are shown in
Markley (2003).

The computational burden of this algorithm is centered in
line 6 where the Kalman gain is computed from an inverse
matrix. Since the size of this matrix will vary according to
the number of features available for correction, the velocity
of the algorithm may be compromised. If that is the case, an
upper bound regarding the number of features being used
may be imposed. Nevertheless, with up-to-date computa-
tional power, the extendedKalman filtermay be embedded in
inexpensive processors even for the fusion of a large number
of sensors.

5 Implementation via Data-driven Tuning

This section will apply the proposed algorithm to a six
degrees of freedom Stewart platform. The goal is to com-
pute the position and orientation of the center of the platform
given data from an IMU and a camera. Conversely, it is also
possible to compute these variables fromencoders positioned
at the platform motors, a method that requires the solution of
a nonlinear optimization problemnot trivially implementable
online. Nevertheless, this secondmethod will be detailed and
plays the role of ground truth for comparison purposes.

2 The normalization of a quaternion in x is computed as q ← q/‖q‖,
where ‖·‖ stands for the Euclidian norm and q represents the quaternion
component of x as in (19).

123



726 Journal of Control, Automation and Electrical Systems (2023) 34:720–730

Fig. 2 The Stewart platform with its coordinate systems. The top
hexagon has position pk and orientation qk due to the variable lengths
Li ( pk , qk)

5.1 Estimating the Stewart Pose from Encoder
Measurements

The Stewart platform is a parallel mechanism whose kine-
matics is determined by the relation between the pose of
the top platform and its linear actuators lengths. Therefore,
the forward kinematics problem—that is, the computation
of the platform pose from actuators lengths—is framed as
a geometric problem resulting in high degree polynomials
with multiple solutions, which must be computed numeri-
cally (Cardona, 2015).

In particular, consider the Stewart platform represented
in Fig. 2 and take note of two reference frames: the origin
(or inertial) reference frame Fo centered at the base, and the
time-varying body reference frame Fb, with position p(t)
and orientation q(t) attached to the center of the top hexagon.
The manipulator itself has i = 1, . . . , 6 linear actuators,
which concede to the platform its six degrees of freedom.
These actuators are attached to joints geometrically defined
by Bi and T i , positioned at the vertices of hexagons inscribed
in circles with radius rB and rT , respectively. Consequently,
the joints are arranged in pairs 120◦ apart from each other.
As shown in the figure, angles ϕB and ϕT define the length of
each edge of the base and top hexagons such that the hexagon
vertices may be expressed as:

Bi =
⎡
⎣
rB cos(λi )
rB sin(λi )

0

⎤
⎦ , bT i =

⎡
⎣
rT cos(vi )
rT sin(vi )

0

⎤
⎦ , (38)

where the superscript b in bT i states that these vectors are
referred to the body coordinate frame Fb, and

λi =
{

iπ
3 − ϕB

2 , i = (1, 3, 5),

λi−1 − ϕB, i = (2, 4, 6),
(39)

with similar definition for υi . Therefore, parameters rB, rT,
ϕB andϕT define the geometric structure of any given Stewart
platform.

The variable length of the i th actuator computed from
the geometric parameters of the platform, denoted by
L̂i ( pk, qk), is given by the Euclidean distance between its
joints. In the origin reference frame, the base joints are con-
stant, but the top joints are time-varying, hence,

L̂i ( pk, qk
) = ||T i ( pk, qk

) − Bi ||
=

√(
T i

(
pk, qk

) − Bi
)T(

T i
(
pk, qk

) − Bi
)
,

(40)

with T i ( pk, qk) = pk + Rob(qk)
bT i .

The numerical method consists in finding θk := [ p̂k ′ q̂k ′]
that minimize the error between the actuator position Li

given by the encoders and the actuator position L̂i ( p̂k, q̂k)
given by equation (40). The optimization problem is defined
as

P1 : θk = argmin
θk

6∑
i=1

(
Li − L̂i (θk)

)2
.

The values of the body pose are retrieved by θk = [ p̂Tk q̂Tk ]T.
Since this is a nonlinear optimization problem, and noncon-
vex, at every iteration the algorithm takes the solution θk−1

as the starting point for the computation of θk . An estimate
is provided as the starting point when the solution of θ0 is
sought. In addition, this approach will reduce the minimiza-
tion problem number of possible solutions, as the estimate
values in two consecutive iterations are expected to be close
to each other. The positiveness of θk is guaranteed using the
function log(θk) in the optimization problem.

Since this optimization problem requires several minutes
of computation to solve a trajectory of a few seconds, it is not
practical to be used in real-time but may provide a solution
to which the EKF can be compared. Furthermore, it also
provides a form of tuning the covariancematrices of the EKF,
as detailed next section.

5.2 Selection of the Covariance Matrices

This section will show how to compute the EKF covariance
matrices from experimental data, assuming that the model
noise is stationary. One experiment is performed where data
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from the accelerometer, gyroscope, camera and encoders are
gathered. The covariancematriceswill be computed such that
the estimation error isminimized for this particular trajectory.
Later on, results comparing the filter performance to different
trajectories will be presented.

The sensor covariance matrix, as defined in (30), is a
diagonal matrix containing the covariance information of the
IMU and the camera. Since the uncertainty related to these
sensors is primarily given by noise, it is straightforward to
compute the entries for this matrix based on experimental
data collected by the sensors.

The difficult task is related to the tuning of the covari-
ance matrix Q ∈ R

25×25 related to model uncertainty. In
order to do so, we collect the data of the encoders and com-
pute the trajectory by means of the optimization problem
detailed in the previous section. Not only the position and
orientation vectors are computed, but also their respective
velocities and accelerations, that is, the whole state xoptk ,
k = 1, 2 . . . nk . With that information in hand, we can set
up another optimization problem that uses the parameter δxk
and Eq. (21) in order to estimate Q. The problem consists in
the minimization of the distance between the trajectory xk ,
k = 1, 2 . . . nk estimated by Algorithm 1, and the trajectory
xoptk , k = 1, 2 . . . nk computed by the optimization prob-
lem P1. The argument to this optimization problem is the
covariance matrix Q parameterized in the following form:

Q := diag
{
qq I4, qω I3, qα I3, . . .

. . . q p I3, qv I3, qa I3, qbg I3, qba I3
}
, (41)

such that thematrix Q is constrained to a diagonal format and
only eight scalars need to be estimated by the optimization
algorithm.

Given the above, we define the following optimization
problem:

P2 : Q = argmin
Q

nk∑
k=1

(
xk − xoptk

)T
�−1

(
xk − xoptk

)
,

where nk is the trajectory length and � is a scaling diago-
nal matrix defined such that its entries are the square of the
maximum associated error.

Remark 2 As P1, P2 is also nonconvex. Nevertheless, our
true aim with these optimization problems is to provide a
systematic way to search for adequate (not necessarily opti-
mal) values to the covariancematrix Q, instead of employing
a crude trial-and-error manual procedure.

5.3 Experimental Results

It is now possible to apply the proposed EKF algorithm along
with optimization problems P1 and P2 to the six degrees of

Fig. 3 The experimental setup of the Stewart platform

freedom Stewart platform depicted in Fig. 3. The platform
is described by rB = 0.35 m, rT = 0.25 m, ϕB = π

6 and
ϕT = π

2 , and is equipped with an LSM6DS3H IMU from
STMicroelectronics, running at 104Hz, and a Logitech C270
downward pointing web camera running at 20.8 Hz, i.e., one-
fifth the IMU frequency. Four colored markers (features) are
placed in known locations on the platform base, as depicted
in Fig. 3. The camera focal was considered as the origin of
body frame and correspondent IMU offset with respect to the
point is according to obs = [−0.0026 −0.0005 −0.0140]T
m.

Three datasets are collected from three different trajecto-
ries: DataSet 01 is used to compute the covariance matrix
Q from problem P2, DataSet 02 shows the filter perfor-
mance while tracking a trajectory where no features are
lost, and DataSet 03 shows the performance of the filter
when subject to feature loss. All plots depict the trajectory
reconstructed from the encoders via optimization problem
P1 (dashed lines), the trajectories estimated by the proposed
algorithm (full lines) and the associated error (bottom plots).
BothP1 and P2were solved using aNelder–Mead algorithm,
as implemented in the fminsearch inMatlab. In order to
improve visualization, orientation plots are depicted in terms
of Euler angles: roll α(t), pitch β(t) and yaw γ (t).

Figure4 depicts the trajectory from DataSet 01 from
which the matrix Q was tuned. This trajectory was designed
to excite all states in order to aid the optimization prob-
lem. Furthermore, given the fact that the sensors biases had
insignificant variations, their covariances were manually set
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Fig. 4 Optimization results for tuning the model covariance matrix Q. Top plot: real (dashed line) and estimated (full lines) trajectories. Bottom
plot: associated errors

Table 1 Covariances associated with the filter

Description Value Description Value

rq 1.0869 × 10−11 r p 2.5911 × 10+4

rω 2.8780 × 10+4 rv 6.0022 × 10+4

rα 1.1824 × 10−17 ra 1.4907 × 10−13

to approximately zero in order to reduce the optimization
variables to be tuned. The resulting model covariance matrix
Q is described in Table 1, and the sensor covariances, also
obtained experimentally, are given by,

Racc = 10−2 × diag{0.337, 0.294, 1.249},
Rg = 10−3 × diag{0.1423, 0.1378, 0.1630},
Rc = 10−3 × I2. (42)

After this tuning step, it is possible to run the EKF to
different trajectories in order to validate its performance.
The resulting estimation applied to DataSet 02 is depicted in
Fig. 5, where one sees the filter tracking the platform move-
ments as expected. A thorough analysis is given in Table 2
where the mean, standard deviation σ and maximum values
of the errors are depicted. It is clear from this table that the

Fig. 5 Validation of the filter. Top plots: real (dashed line) and estimated (full lines) trajectories. Bottom plot: associated errors
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Fig. 6 Filter performance in the presence of feature loss. The first two vertical dashed lines indicate the time instants when features were lost, the
next two indicate when they were recovered. Top plots: real (dashed line) and estimated (full lines) trajectories. Bottom plot: associated errors

Table 2 Statistical analysis of
the errors

Description Error position (mm) Euler angle errors (◦)
DataSet 01 DataSet 02 DataSet 01 DataSet 02
(Tuning) (Validation) (Tuning) (Validation)

Mean x 1.3171 −0.0708 0.1025 0.0457

Mean y −0.6491 −0.4659 0.0064 −0.0331

Mean z −1.2413 −0.3072 0.1096 −0.0218

σx 0.5641 0.5000 0.0866 0.0560

σy 0.6383 0.7060 0.0718 0.0417

σz 0.7613 0.7434 0.0585 0.0749

Max(|x |) 2.5661 1.5661 0.3045 0.2592

Max(|y|) 2.5194 2.4274 0.1964 0.1715

Max(|z|) 3.3437 2.5601 0.2832 0.1686

filter was able to track the platform with maximum errors
below 2.6mm and 0.26◦.

Feature losswas imposed in the third trajectory employing
an exaggerated inclination in the roll and pitch axes. The plat-
formwas tilted until all featureswere lost, and then it returned
to the original position recovering visual information. Fea-
ture loss causes the filter to rely solely on its inertial sensors
and has damaging consequences to the filter performance:
the platform’s orientation is estimated from the gravitational
field and the integration of the gyroscope; the position is
estimated from the double integration of the accelerometer.
As expected, error drift is seen in this case, particularly in
the position vector and yaw orientation—recall that roll and
pitch may be estimated from the gravitational field. Figure6
shows the estimation drifting from the correct values as soon
as the features are lost: which occur two features at a time
in the first two vertical dashed lines in the plots. The follow-
ing dashed lines indicate the time instants when the features

were recovered. It is important to emphasize that the filter
converges to the correct pose estimation as soon as the fea-
tures are available.

6 Conclusions

This paper has devised a quaternion-based extended Kalman
filter algorithm for the pose estimation of a 6-DOF rigid body.
Inertial measurements were fused with visual information
such that a high bandwidth low-cost solutionwas available.A
data-driven tuning approach for the model covariance matrix
Q was proposed and the resulting algorithm was imple-
mented in a 6-DOF Stewart platform. Experimental results
have shown the efficacy of the sensor fusion algorithm when
subject to low-cost sensors. The filter performance was also
tested against feature loss, indicating that a reasonable esti-
mation is possible provided camera occlusion occurs for

123



730 Journal of Control, Automation and Electrical Systems (2023) 34:720–730

short periods of time. Our proposal for future works is to
investigate more efficient ways to solve the proposed tuning
optimizationproblems and, possibly, to also include anonline
tuning process thatmay take into account a time-varying term
Q, thus dealing with nonstationary model noise (Silva et al.,
2018; Yuen et al., 2013).
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