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Non-negative matrix factorization

D. Brie, N. Gillis and S. Moussaoui

Solving a source separation problem when the data at hand can be interpreted as lin-

ear instantaneous mixing of non-negative sources with non-negative mixing weights

reduces to performing a non-negative factorization of the data matrix, which is re-

ferred to as non-negative matrix factorization (NMF). NMF has a long story origi-

nating from linear algebra and analytical chemistry and extensive developments has

been recently achieved in the signal and image processing fields. The popularity of

NMF is guided either by the mathematically challenging question of factorizing a

matrix under non-negativity constraint and also by the need to explain observations

as purely additive combination of non-negative factors or physically meaning quan-

tities. This chapter addresses the concept of NMF, presents its foundations in terms

of model setting and indeterminacy in addition to the main guidelines of existing

factorization algorithms. The application of NMF to real situations of chemical data

processing is illustrated with two examples of Raman spectroscopy measurements.

4.1

Introduction

The linear instantaneous mixing model assumes that P observations gathered in a

vector x(t) can be modeled as the linear combination of R unknown sources

x(t) = As(t), ∀t = 1, 2, . . . , T. (4.1)

where t index refers to the observation variability parameter depending on the con-

sidered application. It can correspond for instance to time, frequency, wavelength,

pixel index, etc. We will often use the matrix notation, merging the observations

x(t) into the observation matrix X ∈ R
P×T and the source signals s(t) into the

source matrix S ∈ R
R×T . Moreover, we also consider that measured data are sub-

ject to measurement noise and errors. Therefore, given X , the source separation

aims at recovering the source matrix S ∈ R
R×T and the matrix of mixing coeffi-

cients A ∈ R
P×R such that

X = AS +E, (4.2)
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where the matrix E refers to the measurement noise. Moreover, we will only con-

sider in the sequel the case where the matrices containing the source signals and the

mixing coefficients are component-wise non-negative, that is, A � 0 and S � 0.

Finding non-negative matrices S and A allowing to reproduce the observation

matrix X according to (4.2) is known as non-negative matrix factorization (NMF).

Note that the smallest R such that such a decomposition of X exists is called the of

X and is denoted rank+{X}. Clearly, we have

rank{X} ≤ rank+{X} ≤ min(P, T ).

4.1.1

Brief historical overview

It is difficult to trace back the first time the model (4.1) with non-negativity con-

straints was introduced, as it is a rather natural model in many situations; see sec-

tion 4.6 for the description of several applications. For example, Imbrie and Van

Andel [1] used this model in 1960’s for the analysis of mineral data. In the field

of linear algebra, the first publications related to the mathematical formulation of

the NMF problem concentrated their effort on the conditions for the existence and

the uniqueness of such factorization [2, 3, 4, 5, 6]. The problem was named as

non-negative rank factorization and defined as the factorization of a non-negative

matrix into the product of two non-negative matrices. However, NMF in its cur-

rent form (4.2) was introduced by Paatero and Tapper [7] and referred to as (PMF).

In 1999, Lee and Seung [8] popularized NMF with a paper in Nature ‘Learning

the parts of objects by non-negative matrix factorization’ where they applied it to

the extraction of facial features in a set of facial images and to identify topics in

a set of documents. Regarding the decomposition algorithms, pioneering contri-

butions of Tauler, Kowalsi and Fleming [9], Paatero and Tapper [10, 11] proposed

original algorithms to find an approximate factorization of a matrix in the case of

spectroscopic data and noisy observations, by alternating non-negative least squares

estimation in the former and penalized least squares estimation in the latter. They

proposed a simple alternating optimization scheme (optimizing over A and S alter-

natively; see section 4.5) and applied it to air emission control. More recently, Lee

and Seung [12] presented two algorithms based on multiplicative updates dedicated

to non-negative matrix factorization (NMF); one for the Frobenius norm and one for

the Kullback-Leibler divergence (see section 4.5). NMF and source separation with

non-negativity constraint have since remained an active research topic using several

factorization approaches and applications [13, 14, 15, 16].

4.2

Geometrical interpretation of NMF and the non-negative rank

Let us assume that there is no noise and that the linear mixture model is exact, that

is, that each observation can be written as a non-negative linear combination of the
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R sources:

xp(t) =
R∑

r=1

aprsr(t) (∀t = 1, 2, . . . , T ), (∀p = 1, 2, . . . , P ). (4.3)

Given X , finding A � 0 and S � 0 such that X = AS is referred to as ex-

act NMF. Note that, even in noisy settings, the geometrical interpretation that we

will describe in this section for (4.3) is useful because the noisy observations are

approximated by points satisfying this exact linear mixing model.

Let us get rid of the index t by denoting xp the p-th row of X and sr the r-th row

of S. We have

xp =
R∑

r=1

apr sr (∀p = 1, . . . , P ). (4.4)

Since the coefficients apr are non-negative, the rows of X belong to the convex

cone generated by the rows of S, that is, by the set {s1, s2, . . . sR}; see Figure 4.1

(left) for an illustration in the case R = 3.
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Figure 4.1 Geometric illustration of exact NMF for T = R = 3 and P = 25. Both figures
represent the same data set. The figure on the right is the normalization to unit ℓ1 norm
of the rows of X and S from the figure on the left.

Equivalently, we can scale the observations and the sources as follows:

xp

||xp||1
︸ ︷︷ ︸

x′
p

=
R∑

r=1

(

apr
||sr||1
||xp||1

)

︸ ︷︷ ︸

a′
pr

sr

||sr||1
︸ ︷︷ ︸

s′
r

, (4.5)

where ||y||1 =
∑

i |yi|.
In this way, x′

p and s′r belong to the unit simplex S , defined as

S =

{

y ∈ R
T
∣
∣
∣ yt ≥ 0 for 1 ≤ t ≤ T, and

T∑

t=1

yt = 1

}

.
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Moreover, we must have
∑R

r=1 a
′
pr = 1 for all p since x′

p =
∑R

r=1 a
′
prs

′
r ∈ S

and s′r ∈ S . In other words, the vectors x′
p (1 ≤ p ≤ P ) belong to the convex hull

of the set {s′1, s′2, . . . s′R}, defined as

conv{s′1, s′2, . . . s′r} =
{

R∑

r=1

a′prs
′
r

∣
∣ a ∈ S

}

= conv{S′} = {a′TS′ |a ∈ S },

see Figure 4.1 (right) for an illustration.

For simplicity, we assume in the remainder of this section that xp and sr are

normalized to have unit ℓ1 norm for all 1 ≤ p ≤ P and 1 ≤ r ≤ R, that is, that the

entries of xp and sr sum to one (note that we also assume without loss of generality

that the observations xp and the sources sr are different from zero, otherwise we

discard them). Hence, given a normalized X � 0, finding A � 0 and S � 0 such

that X = AS is equivalent to finding a set of sources {s1, s2, . . . sr} such that

conv{x1,x2, . . .xp} ⊆ conv{s1, s2, . . . sr} ⊆ S.

This is an instance of the so called nested polytope problem (NPP) in computational

geometry;

see e.g. [17] and the references therein. NPP is defined as follows: given two

nested polytopes, P ⊂ Q, the goal is to find, if possible, a set of R points

{s1, s2, . . . sr} such that its convex hull is nested between the two given poly-

topes P andQ, that is, such that

P ⊂ conv{s1, s2, . . . sr} ⊂ Q ,

see Figure 4.2 for an illustration in two dimensions where P andQ are squares, and

conv{s1, s2, s3} is a nested triangle. For our exact NMF problem above, we have

P = conv{X} and Q = S . Note that, the outer polytope Q can have a higher

dimension than the inner polytope P . NPP is a very difficult geometric problem,

being NP-hard already in dimension 3 [17], although a polynomial-time algorithm

exists when the inner and outer polytopes have dimension two, that is, when they

are polygons [18].

The one-to-one equivalence between the exact NMF and NPP was established

in [19, 20, 21, 22]. In fact, it can also be shown that any NPP instance can be written

as an exact NMF problem: given the outer polytope described with its T facets

{y|aT

i y ≤ bi} 1 ≤ t ≤ T and the P vertices vp 1 ≤ p ≤ P of the inner polytope,

solving NPP is equivalent to solving exact NMF for the input matrix

Xp,t = bi − aT

i vp ≥ 0 for all 1 ≤ p ≤ P, 1 ≤ t ≤ T.

It is often assumed in practice that the rank of the input matrix X is equal to

the number of sources R, that is, R = rank{X}. In that case, the NPP problem

corresponding to exact NMF can be simplified because the row space of X and S

must coincide, since X = AS and S has R rows. Therefore, the rows of S must
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be contained in the polytope S ∩ row(X), where row(X) denotes the row space

of X . Hence we can restrict the outer polytope S to be S ∩ row(X), so that the

dimensions of the inner and outer polytope coincide and are equal to rank{X}−1.

Therefore, we are looking for a matrix S such that

conv{X} ⊆ conv{S} ⊆ S ∩ row(X). (4.6)

We will refer to this variant of NPP as the restricted NPP, where the inner and

outer polytopes have the same dimension (hence the nested polytope also has the

same dimension). The one-to-one correspondence between exact NMF with R =
rank{X} and restricted NPP was established in [19, 20]:

THEOREM 4.1 Given a normalized non-negative matrix X ∈ R
P×T
+ , deciding

whether rank{X} = rank+{X} and computing a corresponding factorization

X = AS with A ∈ R
P×R
+ and S ∈ R

R×T
+ is equivalent to deciding whether

there exists a polytope with R vertices nested between conv{X} and S ∩ row(X).

The theorem above can be generalized to check whether the rank+{X} =
rank{X} + 1. In fact, when R = rank{X} + 1, it can be shown that the nested

polytope can be assumed, without loss of generality, to have the same dimension

as the inner polytope. In other words, it can be assumed without loss of gener-

ality that rank{S} = rank{X}. Therefore, checking whether rank+{X} =
rank{X}+1 is equivalent to checking whether there exists a polytope with R+1
vertices nested between conv{X} and S ∩ row(X) [21, Corollary 2]. However,

if rank+{X} > rank{X} + 1, then in general rank{S} > rank{X} and it

can no longer be assumed that the nested and inner polytopes have the same dimen-

sion, that is, we will have that conv{S} 6⊂ S∩row(X) [21] (see example 2 below).

We can use the equivalence between NPP and the computation of the non-negative

rank described above to derive possible values of the non-negative rank of a non-

negative matrix X ∈ R
P×T in simple cases:

• For rank{X} = 1, it is clear that rank+{X} = 1 since all rows of X are

multiple of the same vector. Geometrically, the inner polytope corresponding to

the NPP instance is a single point and the NPP instance is trivial.

• For rank{X} = 2, the inner polytope is a line segment. Therefore, the problem

can easily be solved by identifying the two extreme points of that line segment

hence rank+{X} = 2 [3].

• For min(P, T ) = rank{X}, we have rank+{X} = rank{X} using the trivial

decompositions X = XI = IX where I is the identity matrix of appropriate

dimensions. Geometrically, this means that we either take the nested polytope

conv{S} as the inner polytope conv{X} (for X = XI where S = X) or as

the outer polytope S (for X = IX where S = I).

From the three results above, we have the following theorem from [? ].

THEOREM 4.2 Let X ∈ R
P×T
+ . If rank{X} ≤ 2 or min(P, T ) = rank{X},

then rank+{X} = rank{X}.
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When min(P, T ) ≥ 4 and rank{X} ≥ 3, determining the non-negative rank

becomes more difficult.

Let us analyze higher dimensional cases.

• For rank{X} = 3 and min(P, T ) ≥ 4, the restricted NPP instance is the

problem to finding a polygon nested between two given polygons. As men-

tioned above, this problem can be solved in polynomial time, more precisely in

O((P + T ) log(min(P, T ))) operations [18]. Therefore, when rank{X} = 3,

one can decide in polynomial time whether rank+{X} = 3. Moreover, because

it does not help to try to find a higher dimensional nested polytope with only four

vertices (this is the case R = rank{X}+ 1; see above), this algorithm can also

be used to decide in polynomial time whether rank+{X} = 4.

Deciding whether rank+{X} = 5 becomes more difficult (unless min(P, T ) =
5) because the nested polytope might live in a higher dimension than conv{X};
see the second example below. In fact, it is important to realize that, when

rank{X} ≥ 3, the non-negative rank of X can be arbitrarily large. For ex-

ample, for the matrix corresponding to the restricted NPP instances of the regular

P -gon nested with itself (for which T = P and conv{X} = S ∩ row(X)), we

have [23]

rank+{X} ≥ ⌈log2(2P + 2)⌉ ,
while rank{X} = 3; see also [24] the references therein for more details.

• For R = rank{X} = 4 and min(P, T ) ≥ 5, it is difficult to compute the

non-negative rank [20] since three-dimensional restricted NPP instances are NP-

hard [17] (note that this result does not fix a priori the number of vertices of the

nested polytope).

However, checking whether rank{X} = R for fixed R (that is, R is not part of

the input) can be done in polynomial time in P and T requiringO
(
(PT )R

2)
op-

erations [25]. This approach, although theoretically appealing, is not very useful

in practice as it requires to solving systems of equations via quantifier elimination

theory, and we were not able to identify a software able to solve problems already

for P = T = 4 and R = 3, the first non-trivial case (see above).

We now illustrate the results of this section on two interesting examples.

Example 1: Nested squares [19]. We consider the smallest possible case where

rank+{X} > rank{X}: this requires that P and T are at least 4 (see above).

Consider the matrix

X =
1

4







1 + a 1− a 1 + a 1− a
1− a 1 + a 1 + a 1− a
1− a 1 + a 1− a 1 + a
1 + a 1− a 1− a 1 + a







, (4.7)

where 0 < a ≤ 1 and rank{X} = 3. The restricted NPP instance corresponding to

the exact NMF problem for X (Theorem 4.3) are two nested squares; see Figure 4.2.

The following can be shown [26]:



7

Figure 4.2 Restricted NPP instance of two nested squares corresponding to the exact
NMF problem for X from (4.7) for a =

√
2− 1 and a = 1/4 [26]. The two triangles

correspond to two exact NMF’s for 0 < a ≤
√
2− 1.

• For 0 < a <
√
2 − 1, the inner square is small enough so that there exists

infinitely many triangles in between the two nested squares. This implies that

rank+{X} = 3. This also implies that the exact NMF of X is (highly) non-

unique; see section 4.4 for more details.

(Note that for a = 0, the inner ‘square’ is a single point and rank{X} = 1.)

• For a =
√
2− 1, there exists 8 different triangles nested between the two squares

hence rank+{X} = 3 (leading to 8 different exact factorizations, up to permu-

tation and scaling, not infinitely many as above); see Figure 4.2 where two such

triangles are represented (the other six solutions are rotations of these two).

• For a >
√
2− 1, there does not exist any triangle between the two nested squares

(note that, for a = 1, the two squares coincide) hence rank+{X} = 4.

Example 2: Regular hexagon. A popular example is the non-negative matrix cor-

responding to the restricted NPP instance of the regular hexagon nested with it-

self. It is the smallest nontrivial case for which rank{S} > rank{X} is nec-

essary to find the exact NMF of minimum rank when rank{X} = 3. In fact,

for rank{S} > rank{X} to be necessary when rank{X} = 3, we need that

rank+{X} is at least five (see above) hence we need min(P, T ) ≥ 6 to have a

nontrivial factorization.
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Let us consider the following non-negative matrix

X =











0 1 4 9 16 25
1 0 1 4 9 16
4 1 0 1 4 9
9 4 1 0 1 4
16 9 4 1 0 1
25 16 9 4 1 0











=











0 0 4 5 1
1 0 1 3 0
4 0 0 1 1
4 1 0 0 1
1 3 1 0 0
0 5 4 0 1



















1 0 0 0 0 1
5 3 1 0 0 0
0 0 1 1 0 0
0 0 0 1 3 5
0 1 0 0 1 0









= AS, (4.8)

for which

rank{X} = 3 < rank{S} = 4 < rank+{X} = 5 < min(P, T ) = 6.

The restricted NPP instance (4.6) corresponding to X are two hexagons that coin-

cide, with conv{X} = S ∩ row(X). Clearly, it is not possible to find a polygon in

between the hexagon and itself with less than 6 vertices hence (i) rank+{X} > 4
(see above) and (ii) it is not possible to find an exact NMF with R = 5 and

rank{S} = 3. However, there exists a three dimensional polytope conv{S} in

S with five vertices that contains conv{X} hence rank+{X} = 5 and, in any

decomposition of rank 5, it is required that rank{S} > rank{X}; see Figure 4.3

for an illustration.

Figure 4.3 Illustration of the polytope conv{S} with 5 vertices containing the hexagon
conv{X} = S ∩ row(X) in the unit simplex; see Equation (4.8). Note that the outer
polytope S is not shown here since it has dimension 5.
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4.3

Statistical formulation of NMF

The mixing model (4.1) assumes that P observations {xp(t), t = 1, ..., T}P
p=1 are

linear instantaneous combinations ofR unknown source signals {sr(t), t = 1, ..., T}Rr=1.

In the noisy case, this mixing model is expressed as

xp(t) =
R∑

r=1

apr sr(t) + ep(t), (4.9)

where the additive noise terms {ep(t), t = 1, ..., T}P
p=1 represent the measurement

errors and the model errors.

4.3.1

Case of a Gaussian noise

The statistical distribution of each noise term ep(t) is assumed to be Gaussian with

a zero mean and variance σ2
p . More generally, the distribution of the noise vector

e(t) is represented by a multivariate Gaussian distribution with zero mean vector

and a covariance matrix Σt. This matrix will be diagonal in the case of mutually

independent noise components and its diagonal terms are equal to [σ2
1 , . . . , σ

2
P ]. Al-

ternatively, one can consider a sample-dependent noise variance but the same value

for all the observations

f(et|σt) = N (0, σ2
t IP ),

where IP denotes the identity matrix and N (µ,Σ) stands for the Gaussian distri-

bution with mean µ and covariance Σ. In addition, by assuming that samples of

each noise component are independent and identically distributed, one can write

f(E|Σ) =
T∏

t=1

N (0,Σ).

Consequently the likelihood can be constructed as

f(X|S,A,Σt) =
T∏

t=1

N (x(t)−As(t),Σt). (4.10)

By taking its negative logarithm, this likelihood leads to a data fitting term

Q(S,A) =
T∑

t=1

(
x(t)−As(t)

)t
Σ

−1
t

(
x(t)−As(t)

)
. (4.11)

This objective function corresponds to a weighted least squares criterion. Howev-

er, when Σt = σ2I , this criterion simplifies to the quadratic data fitting objective

function used in most NMF algorithms [10, 8]; see Section 4.5.
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4.3.2

Case of Poissonian noise

Poissonian noise model is more adequate in the case where measurements in xp(t)
are obtained through a counting process. In this model, each observed data sample

xp(t) = [X]p,t is assumed to be a realization of a Poisson process of mean [AS]p,t.
The likelihood can therefore be expressed as:

f(xp(t)|A,S) =
([AS]p,t)

xp(t)

xp(t)!
exp(−[AS]p,t). (4.12)

Under the assumption of mutually independent observations and identically dis-

tributed samples, the likelihood f(X|S,A) can be deduced:

f(X|S,A) =
P∏

p=1

T∏

t=1

f(xp(t)|S,A).

It can be noted that the data fitting term, Q(S,A) = − log f(X|S,A), resulting

from this likelihood is

Q(S,A) =
P∑

p=1

T∑

t=1

(

[AS]p,t − xp(t) log[AS]p,t

)

. (4.13)

This criterion is an instance of those used in non-negative matrix factorization

algorithms based on divergence measures such as Kulback-Leibler [8, 27]. Actual-

ly, the source separation approach using the maximum likelihood approach, whose

principle is the maximization of f(X|S,A) or equivalently the minimization of

− log f(X|S,A) allows to give a statistical formulation of NMF algorithms. More

generally, adding statistical priors on matrices X and S can also formalized using

Bayesian source separation methods.

4.4

Uniqueness and admissible solutions of NMF

Before trying to effectively solve any NMF problem, a key point is to answer some

questions related to the model indeterminacy and to the uniqueness of the solution.

Let us assume the existence of a non-negative factorization of the data matrix X

into matrices A and S. Let us start with any pair (A,S) that fulfill the mixing

model (4.2) and then introduce a non-singular (p×p) matrix R. A new pair (Ã, S̃)
can be defined by

Ã = AR−1
and S̃ = RS, (4.14)

with no modification of the recovered data matrix, i.e. X = Ã S̃. In the uncon-

strained case, this well known result shows the existence of an infinite number of
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exact factorizations of the matrix X . Matrix R is sometimes called rotational am-

biguity matrix which includes classical scaling and ordering indeterminacies (See

Chapter ?? of this book). In the case of NMF, a possible linear transformation should

lead to transformed matrices Ã and S̃ satisfying the non-negativity constraints

Ã > 0 and S̃ > 0. (4.15)

In that respect, three questions arise:

1) what are the conditions on the actual source signals and mixing coefficients (fac-

tors S and A) ensuring the uniqueness of the factorization of X according to

(4.2), and satisfying the non-negativity constraints (4.15)?

2) if the decomposition is not unique, what are the admissible (feasible) solutions?

3) among all the admissible solutions, can we define a more plausible one?

These questions highlight three aspects of the NMF problem that will be detailed

in the sequel, with a special focus on a practical procedure for obtaining a set of

admissible NMF solutions.

4.4.1

Uniqueness conditions

Many necessary and/or sufficient conditions for establishing the have been formu-

lated in the literature. In what follows, we will suppose that :

rank{X} = rank+{X} = R.

The first theorem on uniqueness was proposed by Chen [5]. It gives a necessary

and sufficient condition to have a unique NMF. But, this condition does not give

any numerical mean to check if a given non-negative matrix admits a unique non-

negative factorization. In addition, Park et al. [28] and Smilde et al., [29] developed

some sufficient uniqueness conditions well adapted to some specific applications but

they seem not to be applicable for a general purpose.

First, we give a necessary condition [30], to have the NMF uniqueness. It states

that both S and A should have a minimum number of zero entries.

THEOREM 4.3 If the NMF of X = AS is unique, then the following condition are

fulfilled:

(A1) ∀(r 6= r′), ∃k such as : sr(k) = 0 and sr′(k) > 0.
(A2) ∀(r 6= r′), ∃ℓ such as : aℓr = 0 and aℓr′ > 0.

Chen’s uniqueness results is the starting point of Donoho et al. [31] which gives

a sufficient uniqueness condition :

THEOREM 4.4 The NMF of X = AS is unique if the following conditions are

satisfied:

• Separability: ∀r, ∃ k such that :sr(k) 6= 0 and sr(ℓ) = 0, ∀ℓ 6= k



12

• Generative model: the set {1, · · · , P} is partitioned into L groups P1, · · · ,PL,

each containing exactly R elements. ∀p, ∀ℓ, there exists an element apr such

that: apr 6= 0, r ∈ Pℓ and apℓ = 0, ∀ℓ ∈ Pℓ, ℓ 6= r
• Complete Factorial Sampling: ∀r1 ∈ P1, · · · , rL ∈ PL, ∃ k such that: akr1 6=
0, · · · , akrℓ 6= 0

The work of Laurberg et al. [32] is starting from a different point of view which

was initially proposed by [3] and proves the following sufficient uniqueness condi-

tion

THEOREM 4.5 The NMF of X = AS is unique if the following conditions are

satisfied:

• Sufficiently spread: ∀r, ∃ k such that :sr(k) 6= 0 and sr(ℓ) = 0, ∀ℓ 6= k
• Strongly Boundary Close: the matrix A satisfies the following conditions

1) ∀r, ∃ℓ such that: aℓr = 0 and aℓr′ 6= 0, ∀r′ 6= r
2) There exists a permutation matrixP such that ∀r, there exists a set k1, · · · , kR−k

satisfying [AP ]r,kj
= 0, ∀j ≤ R − k; and the matrix [AP ]r+1:R,k1:kR−r

is

invertible.

A recent and complete survey on the analysis of can be found in [33] where unique-

ness conditions are also formulated for the case of symmetric NMF; see also Chap-

ter ??. In fact, although sparsity of the input matrix is neither a necessary nor a

sufficient condition for uniqueness, there is a link between uniqueness of NMF and

sparsity of the latent variable; see for example Theorem 4.3. It is observed in practice

that if the true latent factors are sparse, NMF usually tends to recover the correct so-

lution, the geometric interpretation of NMF shows that sparser matrices lead to more

well-posed NMF problems. However, in many applications including multivariate

curve resolution and spectral data unmixing, there is at least one factor that is non-

sparse. This motivates the development of approaches allowing to assess the extent

of the possible results termed as solutions.

4.4.2

Finding the admissible solutions

The retained approach for finding the admissible solutions is based on the same

idea as the one previously proposed in [34, 30]. It consists in finding a set of para-

metric transformation matrices T (θ) minimizing a criterion Cnneg(θ) based on a

non-negativity measure. This criterion is defined as

Cnneg(θ) = ‖f(T (θ)S)‖2F + ‖f(AT−1(θ))‖2F . (4.16)

where f(x) = min(x, 0). Parameters θ are defined so as to implicitly handle the

scaling ambiguity. Such objective function is generally used in constrained opti-

mization as an exterior penalty function since it assigns a high cost to solutions that

do not fulfill the non-negativity constraint. The minimization of this criterion with

respect to the parameter vector θ is performed using an unconstrained optimization
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method such as the Neldar-Mead simplex algorithm with several different random

initializations of the transformation matrix parameters θ. The retained solutions are

those that cancel Cnneg, i.e. that exactly solve the constrained factorization problem.

The experiment is repeated with different starting points to get several admissible

values of the transformation matrix parameters.

Illustration in the case of two sources. For a decomposition rank R = 2, it

was shown in [30] that the transformation matrix T (θ) reduces to the following

parametric form:

T (θ) =

[
1− θ1 θ1
θ2 1− θ2

]

, (4.17)

with parameter vector such that (θ1 + θ2) < 1, to get rid of the ordering indeter-

minacy and ensuring invertibility of T . Analytical calculations detailed in [30] can

be performed in the case of two sources and lead to bounds on the values of the

parameters







θ1 ∈
[

−min
t∈T1

{
s1(t)

s2(t)− s1(t)

}

, min
ℓ

{
aℓ2

aℓ1 + aℓ2

}]

,

θ2 ∈
[

−min
t∈T2

{
s2(t)

s1(t)− s2(t)

}

, min
ℓ

{
aℓ1

aℓ1 + aℓ2

}] (4.18)

with T1 = {t ∈ {1, ..., T}; s2(t) > s1(t)} and T2 = {t ∈ {1, ..., T}; s1(t) > s2(t)}.
Figure 4.4 gives an illustration of a set of admissible solutions in the case of two

spectral sources. This example is inspired from measurement data that can be ob-

tained from the monitoring of kinetic chemical reactions using spectroscopy [35].

One can see here that acceptable NMF solutions deviate from the original sources

and presents additional peaks, which in practice may lead to data interpretation

errors when the separation is performed under the non-negativity constraint alone.

Illustration in the case of more than two sources. In the case of more than

two sources, analytical computations cannot be performed to get the feasible values

of the transformation matrix parameters. For instance, in the case of three sources,

a possible transformation matrix T bypassing permutation ans scaling ambiguities

[35] takes the form

T (θ) =





1− θ1 − θ2 θ1 θ2
θ3 1− θ3 − θ4 θ4
θ5 θ6 1− θ5 − θ6



 , (4.19)

A numerical optimization with several starting points allows to get some realizations

of the admissible transformation matrices. Figure 4.5, gives an example of the pa-

rameters values in the case of three spectral sources. Once again, one can see the

existence of several values of the transformation parameters leading to several ad-

missible solutions. Actually, the feasible NMF solution are mixtures of the original

sources. We refer the reader to [36] for a recent paper on this topic.
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Figure 4.4 Illustration of feasible NMF solutions in the case of a spectral mixture of two
components S1 and S2. The NMF solutions are mixtures of the actual sources.
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Figure 4.5 Illustration of feasible NMF solutions in the case of a three component
mixture: a-d) simulated sources and mixing coefficients, e-g) joint distribution of the the
transformation parameters of the actual sources leading to feasible NMF solutions.
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4.5

Non-negative matrix factorization algorithms

In this section, we present several widely used algorithms to solve NMF problems.

We will mostly focus on the least squares formulation

min
A,S

||X−AS||2F =
∑

i,j

(X−AS)2ij such that A � and S � 0. (4.20)

The Frobenius norm is suitable when assuming Gaussian noise; for example, if X

is a dense matrix representing images [8]. However, this is not always the case, in

particular for sparse input matrices X which are often encountered in the literature

(such as document data sets or matrices arising from large networks). In these cases,

other objective functions should be used; we refer the reader to [37, 38] and the

references therein.

The problem (4.20) is a difficult non-convex optimization problem and, in fact,

is NP-hard [20]. In practice, it is in general solved via standard iterative nonlin-

ear optimization approaches; some of them are described in the next section 4.5.1.

Although these approaches do not guarantee to obtaining an optimal solution, they

usually generate satisfactory results that are useful for applications. More recent-

ly, a new class of NMF methods were introduced that are guaranteed to recover an

optimal solution, up to the noise level, given that the input matrix X has a partic-

ular structure; this is briefly discussed in section 4.2, and in much more details in

Chapter ??.

To add to the complexity, as discussed in the previous section, the optimal solu-

tion of (4.20) is in general non-unique (even by considering equivalent solutions due

to permutation and scaling); see section 4.4. To alleviate this problem, a standard

approach is to incorporate priors, usually via regularizers or additional constraints,

into (4.20); see sections 4.5.2 and Chapter ??. Another problem which we do not

discuss in this chapter and which is inherent to most blind source separation prob-

lems is the choice of the number R of sources. In the sequel we discuss the NMF

algorithm in the case for a fixed value of R.

4.5.1

Iterative factorization methods

Although (4.20) is a difficult nonlinear optimization problem, it has several nice

properties. In particular, if we assume a known mixing matrix A, then the problem

becomes a convex optimization problem with respect to S,

min
S�0
||X −AS||2F . (4.21)

This is a particular convex quadratic optimization problem with linear inequality

constraints referred to as non-negative least squares () [39, 40]. Clearly, the same

property holds for A when S is fixed (this structure is sometimes referred to as bi-

convex). Most iterative methods take advantage of this fact: denoting (A(k),S(k))
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the solution obtained after k iterations (that is, the kth iterate), most methods obey

to the following framework:

1. Initialize (A(0),S(0)).
2. For k = 1, 2, . . . ,

2.a Compute S(k)
such that ||X −A(k−1)S(k)||2F ≤ ||X −A(k−1)S(k−1)||2F .

2.b Compute A(k)
such that ||X −A(k)S(k)||2F ≤ ||X −A(k−1)S(k)||2F .

The iterative process is usually stopped according to standard convergence rules,

e.g., stabilization of the objective function and/or the iterates; see Chapter ??.

Before we present some numerical algorithms, it is interesting to note the follow-

ing issues:

• Because of the symmetry of the problem, since X ≈ AS ⇐⇒ XT ≈
(AS)T = STAT

, A and S are updated in the same way for most NMF al-

gorithms (that is, steps 2.a and 2.b above use the same strategy).

• The product AS is the sum of R rank-one factors arsr , where ar is the Rth

column of A and sr the Rth row of S. Therefore, there is always a scaling

and permutation degree of freedom (see also section 4.4) since we can permute

indistinguishably the rank-one factors and since

arsr = (αrar)

(
1

αr

sr

)

for any αr > 0. Therefore, in practice, the columns of A (or rows of S) are

usually normalized to have unit ℓ2 or ℓ1 norm.

4.5.1.1 Initializing NMF algorithms

The initial matrices (A(0),S(0)) can be selected in many different ways. The most

naive approach is to initialize them randomly, using for example the uniform dis-

tribution in the interval [0, 1] for each entry of A(0)
and S(0)

. This approach is

of course very simple and easy to implement, but has the drawback to ignore com-

pletely the input matrix X . In particular, using such a procedure usually leads to a

low-rank approximation A(0)S(0)
which can be rather far from X . To improve the

initial iterate, it is recommended to scale it, that is, to multiply it by a constant α̂
such that [41]

α̂ = argminα>0||X − αA(0)S(0)||2F =
〈X,A(0)S(0)〉

〈A(0)S(0),A(0)S(0)〉

=
〈XS(0)T,A(0)〉

〈A(0)TA(0),S(0)S(0)T〉
,

where argmin denotes the global minimum of an optimization problem.

There exists many more sophisticated initialization approaches for NMF. Quite

naturally, the goal of this initialization is to locate a good initial point close to a

reasonable factorization in order to (i) avoid bad local minima and (ii) allow the

NMF algorithms to converge faster. We list here a few standard approaches:
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• The most commonly encountered idea is to use clustering algorithms, such as k-

means or spherical k-means [42]. They are used to initialize the rows of S(0)

(using the cluster centroids), while A(0)
is obtained either by using the clus-

ter assignment matrix of by solving the corresponding NNLS subproblem; see,

e.g., [43, 44] and the references therein.

• A computationally more expensive but, in general, more effective method is to use

the best unconstrained rank-R approximation of matrix X (that can be computed

efficiently via the singular value decomposition). Of course, this approximation

does not generate non-negative factors and the trick is to (somehow) project them

back onto the non-negative orthant [45, 46].

• A procedure that is cheap and effective is to initialize S(0)
by selecting a repre-

sentative subset of the observations, that is, rows of the input matrix X . Selecting

this subset can be done in many different ways and many algorithms exist for

doing so. This is closely related to the column subset selection problem and to

separable NMF which is discussed in section 4.2.

The choice of the initialization procedure depends on the application at hand:

which initialization seems to work best? which seems to make more sense? which

has a reasonable computational time (this depends on the dimension of the data)?

4.5.1.2 Alternating non-negative least squares, an exact coordinate descent

method with 2 blocks of variables

The first algorithm for NMF proposed by Paatero and Tapper in their original pa-

per [7] is based on alternating regression, which is now in general referred to as

(ANLS). It is a class of methods that solves the NNLS subproblems exactly, alter-

natively for A and S:

1. Initialize (A(0),S(0)).
2. For k = 1, 2, . . . ,

2.a Compute S(k) = argminY �0||X −A(k−1)Y ||2F .

2.b Compute A(k) = argminZ�0||X −ZS(k)||2F .

ANLS is a so called exact two-block coordinate descent method: there are two

blocks of variables (A and S) that are alternatively optimized exactly. This method

is guaranteed to converge to a stationary point of (4.20) [47]. ANLS methods differ

in the way the NNLS subproblems are solved. In fact, any method from (convex)

optimization can potentially be used. Here is a possible classification of methods

that can be used to solve NNLS:

• First-order methods such as standard projected gradient [48], (optimal) fast gra-

dient methods [49], and coordinate descent methods (see section 4.5.1.5). These

methods only use the first-order information, that is, the value and the gradient of

the objective function at each iterate.

• Higher-order methods such as interior point methods, Quasi-Newton or Newton

methods [50]. These method have a faster local convergence rate but each iteration

is more expensive.
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• Active-set methods that take advantage of the fact that, if one would know the

position of the zero entries in A and S, then the NNLS subproblems reduce to

unconstrained least-squares problems. The set of zero entries (the active set) is

updated in a clever way to guarantee the objective function to decrease at each

step and the algorithm to converge [39, 51, 52, 53]. This class of algorithms

performs well in practice, but the worst-case complexity is exponential; name-

ly, proportional to the number of active sets which is proportional to 2R (as the

simplex method for linear programming).

We refer the reader to [54] for a survey on NNLS methods.

4.5.1.3 Multiplicative updates

The most popular approach to attack (4.20) is the multiplicative updates (MU) in-

troduced along with the paper of Lee and Seung [8, 55] that really launched the

research on NMF. It updates alternatively over A and S using the following updates

(dropping the iteration index k for convenience):

A← A�
[XST]

[ASST]
and S ← S �

[ATX]

[ATAS]
, (4.22)

where � denotes the component-wise multiplication. Note that similar updates ex-

ists for many other objective functions [55, 37]. Note also that the MU were original-

ly introduced in [56] for updating only one factor in order to solve NNLS problems.

The MU (4.22) are guaranteed to decrease the objective function of (4.20) while

clearly preserving non-negativity of the iterates.

It is interesting to note that the MU can be interpreted as a scaled gradient descent

method, that is, a gradient descent method where each entry of the gradient is multi-

plied by a non-negative constant (this is equivalent to a quasi-Newton method where

one would only use a diagonal matrix as an approximation of the Hessian); see [57,

Section 1.3.2]. In fact, (4.22) can be equivalently written as

A ← A − [A]

[ASST]
�

(

ASST −XST

)

(4.23)

and similarly for S, by symmetry. The term ASST − XST
is the gradient of

1
2‖X −AS‖2F with respect to A.

It is important to note that, when implementing the MU, the term ASST
is com-

puted by first performing the matrix-matrix product SST
. In fact, in that case, the

computational cost will be in O(TR2 + PR2) operations while computing AS

first requiresO(PTR) operations andO(PT ) space in memory. This is particular-

ly crucial for large and sparse matrices since AS could be dense and could be too

large to store in memory.

The main advantage of the MU is the ease of its implementation. However, it

has several drawbacks. The main one being that it usually converges rather slow-

ly compared to most other approaches. Another drawback is that the MU are not

guaranteed to converge to a stationary point. The main reason being that once an
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entry is fixed to zero, it can no longer be modified (this is the so called locking phe-

nomenon). However, this can be overcome by unlocking variables at zero using a

proper procedure; see the discussion in [38].

It is interesting to note that updating A several times before updating S (and

similarly for S) allows a much faster convergence, because the matrix-matrix prod-

ucts XST
and SST

do not need to be recomputed between updates of A when

S is fixed [58]. Note also that the multiplicative updates can be used in an ANLS

framework, where A and S would be updated until convergence for the NNLS sub-

problems (see [59] for a convergence analysis when using the MU for NNLS).

4.5.1.4 Alternating least squares

A naive approach to solve NMF, referred to as alternating least squares (ALS), takes

advantage of the fact that unconstrained least-squares problems can be solved very

efficiently. To update A (and similarly for S), it first solves the unconstrained least

squares problem

A ← argmin
Y ∈RP×R ||X − Y S||2F ,

and then projects the solution back onto the non-negative orthant

A ← max(0,A).

ALS is very easy to implement (e.g., in Matlab, it requires one line of code to up-

date A, namely A = max(0,(X*S’)/(S*S’))). However, it is not guaranteed

to converge and the objective function of (4.20) usually oscillates under the ALS

updates, sometimes drastically. However, it is usually efficient to use ALS as an

initialization step, before a convergent algorithm is used, especially for sparse input

matrices; see, e.g., [37, 60].

4.5.1.5 Exact coordinate descent method with 2R blocks of variables

A method that works very well in many situations is the so called (HALS) method. It

is a block coordinate descent method such as ANLS but has more block of variables.

HALS optimizes alternatively over the columns of A and the rows of S, hence

there are R blocks of P variables (the columns of A) and R blocks of T variables

(the rows of S). HALS, although first suggested in [40], was first implemented an

analyzed in [61] (and later in [62]) and independently in [41, 63, 64].

The benefit of considering smaller blocks of variables is that the optimization

subproblem for each block is much easier to solve. In fact, the optimal solution for

each r-th column of A and each r-th row of S can be written in closed form. Let

us derive the formula here for the r-th column of A (again, by symmetry, the same

holds for the r-th row of S). Fixing all variables but the R-th row of A, we need to

solve the following optimization problem
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min
ar�0

∥
∥X −AS

∥
∥
2

F
= min

ar�0

∥
∥X −

∑

k 6=r

aksk − arsr
∥
∥
2

F

= min
ar�0

∥
∥Z(r) − arsr

∥
∥
2

F
, (4.24)

where ar is the r-th column of A, sr is the r-th row of S, and Z(r) = X −
∑

k 6=r aksk is the residual matrix with respect to the r-th rank-one factor arsr .

Interestingly, (4.24) can be decoupled into P independent NNLS problems in one

variable:

min
ar�0

∥
∥Z(r) − arsr

∥
∥
2

F
=

P∑

p=1

min
apr�0

∥
∥z(r)

p − aprsr
∥
∥
2

2
, (4.25)

where vector z
(r)
p is composed by the p-th row of Z(r)

. A NNLS problem in one

variable is equivalent to a problem of the form

min
y≥0

αy2 − 2βy, (4.26)

for some α > 0 and β ∈ R. Clearly, if the solution of the unconstrained problem

miny∈R αy
2 − 2βy is non-negative, then it is also the solution of (4.26), otherwise

the minimizer is zero. Therefore,

argminy≥0 αy
2 − 2βy = max

(

0,
β

α

)

. (4.27)

For the problem miny�0

∥
∥z

(r)
p − ysr

∥
∥
2

2
, we have

α = sTr sr = ||sr||22 and β = sTr z
(r)
p ,

hence

argminapr�0

∥
∥z(r)

p − aprsr
∥
∥
2

2
= max

(

0,
sTr z

(r)
p

‖sr‖22

)

.

Finally, in vector form, we have

argmin
ar�0

∥
∥Z(r) − arsr

∥
∥
2

F
= max

(

0,
Z(r)sTr
‖sr‖22

)

= max

(

0,
XsTr −

∑

k 6=r aksks
T

r

‖sr‖22

)

. (4.28)

HALS updates successively the columns of A and the rows of S using the above

closed-form solution:
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1. Initialize (A,S).
2. For ℓ = 1, 2, . . . ,

2.a For r = 1, 2, . . . , R: Update sr ← max

(

0,
a

T

rX−
∑

k 6=r a
T

raksk

‖ar‖2
2

)

.

2.b For r = 1, 2, . . . , R: Update ar ← max

(

0,
Xs

T

r−
∑

k 6=r aksks
T

r

‖sr‖2
2

)

.

Note that the residuals Z(r)
are not computed (as they could be dense while X

could be sparse). As for ANLS, HALS is guaranteed to converge to a stationary

point of (4.20) [65]. As for the MU, it is possible to accelerate HALS by updating

several times the columns of A before updating the rows of S since the terms XsTr
and sks

T

r do not need to be recomputed [65, 58]. The computational cost of HALS

is, up to some negligible factor, the same as for the MU [58]. However, in practice,

HALS converges significantly faster. In fact, in most situations, HALS performs

the best among ANLS, the MU and ALS; see the references above and also, e.g.,

[37, 66].

To conclude this section, we refer the reader to the survey [67] on the classification

of NMF methods as coordinate descent schemes (exact or approximate), where a

more detailed analysis can be found along with some numerical comparisons.

4.5.2

Constrained and penalized factorization methods

As explained in details in sections 4.2 and 4.4, a crucial aspect for practical appli-

cations when designing NMF algorithm is to take into account the non-uniqueness

issue. The usual way to tackle this is to take into account, in the model, additional

prior information depending on the application at hand. Here is a (non-exhaustive)

list of additional constraints that can be added to the NMF model:

• Minimum volume. Looking back at the geometric interpretation of NMF from

section 4.2, it often makes sense in practice to look for a source matrix S such

that H(S) has minimum volume. This enforces the sources to be as close as

possible to the data pointsH(X), while allowing to approximate them well. This

is discussed in much details in Chapter ??; see also [33].

• Sparsity. In many cases, the activation matrix A should be sparse because, for

most observations, only a few sources are active. For example, in hyperspectral

unmixing, most pixels only contain a few constitutive materials (also called end-

members); see Chapter ??. In other cases, the source matrix S should be sparse.

For example, in document classification, the sources are topics (represented by a

set of words) which contain only a few words from the dictionary.

• Orthogonality. NMF can be used as a clustering model, using an additional or-

thogonality constraints ATA = I . In fact, this constraint imposes that each

observation is approximated only by a single source since, for any 1 ≤ r ≤ R
and 1 ≤ p ≤ P ,

apr > 0 ⇒ apℓ = 0 for all ℓ 6= r.
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where apr is the activation coefficient of the r-th source for the p-th observation.

This follows from the fact that
∑P

p=1 aprapℓ = 0 for all ℓ 6= r and A � 0.

In practice, this constraint is often too restrictive because most observations result

from a combination of several sources. However, adding a penalty term in the

objective function of the form ||ATA − I||2F to enforce the mixing matrix A to

be closer to an orthogonal matrix allows to enforce sparsity.

• Spatial information. In imaging applications (see, e.g., section 4.6), it is possible

to take into account the spatial information as most neighboring pixels (the obser-

vations) will share similarities and their activation coefficients will be similar. For

example, if pixels p and p′ for 1 ≤ p, p′ ≤ P are neighbors, it is useful to add the

following penalty term in the objective function

R∑

r=1

|apr − ap′r|.

Note that the absolute is usually used because it allows to preserve the edges in

the images, instead of the ℓ2 norm that smooths the edges; see, e.g., [68, 69].

• Graph regularization. In several situations, it is possible to embed the observa-

tions in a graph using some similarity measure. The vertices of the graph are the

observations and the (weighted) edges indicate whether two observations are simi-

lar. The way this graph is constructed depends on the application. For example, in

imaging, the graph could be constructed connecting neighboring pixels. In gener-

al, this graph is constructed using some similarity measure between observations

and the NMF model takes this information by requiring that similar observations

have similar activation coefficients (as shown above for the spatial information).

This type of structure can take into account many different priors and is a very

flexible way to add prior knowledge in the NMF model [70].

• Sum-to-one constraints. In several applications, the mixing coefficients corre-

spond to a proportions (e.g., in hyperspectral imaging) in which case the entries

on each row of A should sum to one.

The additional constraints added into the NMF model are in general taken into

account by adding a penalty term in the objective function, with some penalty pa-

rameter balancing the importance between the fitting error and the regularization

term.

For example, to obtain sparser A and S, it is standard to use the ℓ1-norm as a

proxy for the ℓ0-‘norm’ that counts the number of nonzero entries [52], and consider

a model of the type

min
A�0,S�0

||X −AS||2F + λA||A||1 + λS ||S||1

where ‖Y ‖1 =
∑

i,j |yij |. Doing so, the algorithms described in the previous sec-

tion 4.5 can usually be adapted to handle these situations. For example, if the penalty

term is convex then the NNLS subproblems remain convex hence efficiently solv-

able. For gradient-based methods, it suffices to account for the additional term(s) in
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the objective function and update the way the gradient is computed. Note that, in

general, it will be necessary (and non trivial) to properly tune the (penalty) param-

eters of the model to obtain good solutions, although some general strategies can

sometimes be designed; see, e.g., [71] for sparse NMF. We refer the reader to the

references above, and the references therein, for more details on these methods.

Another way these constraints can be taken care of is by using a projection. If

the projection onto the feasible set can be computed efficiently, then gradient-based

method can be adapted easily. For example, non-negativity constraints along with

the sum-to-one constraint amounts to optimizing over the unit simplex for which the

projection can be computed efficiently [72]. For sparsity, Hoyer [73] introduced a

projection onto the set of matrices of a given sparsity level, based on the following

measure of sparsity: for a nonzero vector y ∈ R
N ,

spar(y) =

√
N − ‖y‖1/‖y‖2√

N − 1
∈ [0, 1],

where spar(y) = 1 when y has a single nonzero entry (hence ‖y‖1 = ‖y‖2),

and spar(y) = 0 when all entries of y are positive with similar values (hence

‖y‖1 =
√
N‖y‖2).

To summarize, when using NMF for a particular application, it is crucial to first

think carefully about the constraints that the sources and the mixing coefficients

should satisfy. This will allow to design a dedicated NMF algorithm that will be

able to recover the sought solution.

4.5.3

Geometrical approaches and separability

Another class of NMF problems that has gathered much attention lately is based on

intuitions coming from the geometric interpretation of NMF.

This class is referred to as separable NMF and requires that the input matrix

X satisfies the following separability condition: there exists an index set K ⊂
{1, 2, . . . , P} of size R, that is, Card(K) = R, and a non-negative matrix A � 0
with R columns such that

X = A X(K, :)
︸ ︷︷ ︸

=S

.

This means that the sources can be found among the observations. The problem

therefore boils down to identifying the rows of X corresponding to the sources.

Geometrically, this means that, if the observations are scaled, we are looking for

the vertices of conv{X}. This can be done efficiently, even in the presence of

noise [74]; see also [75, 76, 77] and the references therein for some recent devel-

opments. This assumption makes sense in several applications such as document

classification [78], and hyperspectral imaging (this is the so-called pure-pixel as-

sumption). These approaches are described and analyzed in details in Chapter ??.
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4.6

Applications of NMF chemical sensing. Two examples of reducing admissible

solutions

As mentioned several times before, NMF is a difficult problem in general, being NP-

hard. However, this does not imply that all NMF instances are difficult to solve. In

some applications, the input matrix X can have a specific structure or results from a

measurement process that makes the NMF problem less difficult, hence taking this

structure into account allows to design much more effective algorithms. For exam-

ple, we have already seen in section 4.2 that the NMF problem can be solved easily

if rank{X} ≤ 2. This observation has been used to solve the NMF problem in

a hierarchical way, and has been shown to perform well in several situations: ana-

lyzing Magnetic Resonance Spectroscopy and Imaging (MRSI) data [79], document

classification [80] and hyperspectral unmixing [81].

In real-world applications, the given data matrix is not guaranteed to obey the

established uniqueness conditions, thereby limiting the practical success of NMF

algorithms. Hence, it motivates the development of algorithms to constrain the solu-

tion space of a given NMF problem as presented in section 4.5.2). However, in some

situations, additional information can be taken into account to reduce the set of ad-

missible solutions. We consider first a data augmentation strategy which consists in

coupling multiple data sets. This approach is illustrated on a polarized Raman spec-

troscopy application. An alternative approach is to perform a data pre-processing

stage [82, 83, 84]. To illustrate this later approach, we consider the blind unmixing

of spectroscopy imaging data.

4.6.1

Polarized Raman spectroscopy: a data augmentation approach

This section is adapted from [85]. Raman scattering is a light-matter interaction

process which reflects the molecular vibration properties of molecules and materi-

als, thus characterizing the chemical composition of the analyzed sample [86, 87].

For materials presenting a regular atomic or molecular structure, a more accurate

characterization of the sample can be achieved by using polarizers [88]. In particu-

lar, this is the case for crystals as their response to the polarized light excitation will

reflect the crystallographic structure of the sample, motivating the development of

polarized Raman spectroscopy. This is the type of problem addressed here since we

are considering the polarized Raman spectroscopy of a Rutile (TiO2) crystal. It is

worth mentioning that polarized Raman spectroscopy has other possible uses. For

example, it can also be used for determining the molecular orientation distribution

of polymeric materials [89].

4.6.1.1 Raman data description

The Raman measurements presented in this section were carried out in back scat-

tering geometry with the same objective for excitation and collection of light. The

confocal Raman spectrometer was equipped with a cooled CCD camera and the laser
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source was an ionized argon laser emitting at a wavelength λ = 514.5 nm. The

analyzed crystal sample is fixed on a rotating stage as shown in Fig.4.6. Two coor-

dinate systems are used, one associated with the laboratory space-fixed coordinates

(O,X, Y, Z) and another attached to the analyzed sample (O, x, y, z). The incident

light is polarized such that the electric field arriving on the sample is oriented along

the Y direction. The scattered light is analyzed by positioning an analyzer in front of

the entrance slit of the spectrometer. The analyzer is oriented either along the Y -axis

(parallel polarization) or the X-axis (crossed polarization). Thus, the acquisition in

one point of the sample yields a pair of spectra, one for the parallel polarization, in-

dexed by Y and another for the crossed polarization, indexed by X . The rotational

diversity scheme consists in rotating the sample around the Z-axis (Fig.4.6) with a

fixed angular step (typically 10◦) and acquiring two polarized spectra for each step

of the rotation. For the rotational diversity acquisition scheme, m polarized spectra

are acquired for m different rotation angles (θθθ1, . . . , θθθm) of the analyzed sample.

For this angular diversity data, the ‘sources" are represented by vibrational modes.

Indeed, the vibrational modes are characterized by specific displacements of the

atoms from their equilibrium position, which dictate the magnitude of the compo-

nents of the Raman polarizability tensor. The change of polarized Raman intensity

versus rotational angle, for a specific vibrational mode, will therefore be different

from another one. Each mode in polarized Raman spectra will thus contribute as

one source in the full spectrum.

Figure 4.6 Polarized Raman spectroscopy set-up in backscattering geometry

Under the assumption of instantaneous linear mixture, the acquired data can be
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structured as two m×n matrices, corresponding to the two polarization orientations:

X1 = A1S1 +E1. (4.29)

and

X2 = A2S1 +E2. (4.30)

In (4.29) and (4.30), matrices E1 and E2 accounts for the additive noise on the

sensors and the model errors.

If we further analyze the underlying physico-chemical phenomenon generating

the two data sets, the spectra of pure compounds are the same for the crossed and

the parallel polarization [86, 87], since the vibrational modes are imposed by the

structure of the crystal. This implies S1 = S2 = S, which is quite intuitive if

we consider a geometrical point of view in which the crossed and parallel polarized

spectra are projections of the same signal on two orthogonal axes. By injecting this

information into (4.29) and (4.30), we can write:

(
X1

X2

)

=

(
A1

A2

)

S +

(
E1

E2

)

. (4.31)

Eq. (4.31) points out a mixing model for the polarized spectra with rotational diver-

sity considering both polarized spectra families jointly. Besides the fact that this is

a more natural and compact representation of the data, the sample size is doubled in

(4.33) compared to (4.29), (4.30) and the number of unknowns is lower; this should

improve the accuracy of the estimated source parameters. In order to simplify the

presentation we use the following notations:

X =

(
X1

X2

)

, A =

(
A1

A2

)

, E =

(
E1

E2

)

. (4.32)

Equation (4.31) can thus be re-written in a more concise manner as:

X = AS +E. (4.33)

4.6.1.2 Raman data processing

Given the nature of the data, the sources and the mixing coefficients are non-

negative, meaning that (4.33) expresses a NMF model. It should be noticed that

stacking the data matrices X1 and X2 into a bigger matrix X corresponds to a

data augmentation strategy. This kind of technique was already proposed for diverse

problems such as the analysis of multiple runs of gasoline blending processes [90].

Another example is the joint analysis of UV-visible spectra related to the complexa-

tion of the aluminum by caffeic acid and the titration of caffeic acid [91]. Actually,

the benefit of matrix augmentation strategy is threefold: it allows to decrease es-

timation error uncertainties, it may remove rank deficiency and helps in reducing

rotational ambiguities.
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Figure 4.7 Polarized Raman data versus rotational angle χ for rutile T iO2 (110) single
crystal

The approach was applied to a rutile T iO2 crystal, as shown in Fig.4.6. The

crystallographic face (110) (Hermann-Mauguin international crystallographic sym-

bols) is analyzed. The sample is rotated with respect to Z axis only, meaning

θθθ = (0, 0, χ). Fig.4.7 presents the acquired polarized data for the parallel and

crossed polarizations (matrices X1 and X2). The data was acquired in a spectral

range of 100 cm−1 − 800 cm−1, with an angular rotation step of 10 degrees be-

tween 0◦ and 190◦.

In the case of T iO2, four Raman active modes denoted as A1g , Eg , B1g and B2g

(Mulliken symbols for symmetry groups [86]) are expected from theory. Howev-

er, the B2g mode at 826 cm−1 is out of the spectral window used in the present

work (and anyway the B2g has a very low Raman crossed section and is often not

detected). The B1g mode with the (110) oriented crystal plane is inactive either in

parallel or crossed polarizations. Consequently, one can expect two Raman active

modes, i.e. two sources, in the data collected here. Nevertheless, three sources are

necessary to properly describe the data, as indicated by the magnitude analysis of

the singular values of data matrices X1,X2 and X . A theoretical explanation for

the presence of this third source is provided in [85].

We illustrate the effect of the joint use of the crossed and parallel polarization da-

ta sets on the reduction of the NMF admissible solutions set. The NMF algorithm

[92] was used to estimate the three source vectors and the corresponding mixing
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coefficients. The two data sets were processed separately and jointly and the results

are presented on Fig.4.8 for the source spectra and on Fig.4.9 and Fig.4.10 for the

mixing coefficients. To evaluate the size of the admissible solutions set, we used 25

independent runs for each plot, with different random initial values for the matrices

A and S. As one can see, by processing jointly both polarization data sets (Fig.4.8

(c) and Fig.4.10) the admissible solution domain is largely reduced as compared to

the case when only one polarization is used (Fig.4.8 (a),(b) and Fig.4.9). Howev-

er, the solution is still not unique, which motivated the use of some regularization

techniques. In [85], a penalized NMF algorithm derived from a Bayesian source

separation approach (called BPSS) [93] was used to further reduce the set of admis-

sible solution. The results and the physical interpretation of the obtained results are

not reported here. The interested reader is referred to [85] for the detailed analysis.
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Figure 4.8 Source spectra estimated by NMF (25 runs)

4.6.2

Unmixing blurred Raman spectroscopy images

Hyperspectral images may be viewed as a collection of highly resolved spectra. In

many cases, the image contains a small number of pure materials - termed endmem-

bers - whose spectral signatures are mixed in each pixel because of limited spatial
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Figure 4.9 Estimated coefficients by NMF for each polarization data set separately
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Figure 4.10 Estimated coefficients by NMF for both polarization data sets jointly (25
runs)



31

resolution. Blind spectral unmixing usually refers to the estimation of endmembers

and their fractional contribution to each pixel, named abundances. A geometrical

framework for spectral unmixing has attracted a lot of attention from researchers in

the past two decades. In this approach, each pixel spectrum belongs to a simplex

whose vertices are the endmembers we seek. In some cases, the data are known

to contain at least one pure pixel per endmember, which are subsequently extracted

from the hyperspectral scene; this is equivalent to separable NMF; see Section 4.5.3.

When the pure pixel hypothesis does not hold, the geometrical approach to unmixing

then consists in finding the Minimum Volume Simplex (MVS) enclosing the data us-

ing one of many MV algorithms [94, 95, 96]; see Chapter ?? for more details. Once

endmembers have been extracted from the scene, abundances can be estimated us-

ing constrained least squares algorithms [97, 98]. However, highly mixed data are

beyond the reach of geometrical algorithms because spectral signatures are located

near the center of the true endmember [99].

4.6.2.1 Blurring effect modeling

Consider an hyperspectral image measuring radiance on L different spectral bands

(channels) and N pixels. We gather the data in a L × N matrix X and use the

following notations:

1) xℓ is the ℓ-th row of X , that is the 2D image at spectral band ℓ after lexicograph-

ical ordering into a row vector of length N ;

2) xp is the p-th column of X , i.e. the L× 1 spectrum of the p-th pixel (also termed

spectral vector or pixel vector).

Each spectral vector in the image is a linear combination of an known number R
of endmembers {s1, . . . , sR}. When unknown, R can be obtained by some model

order estimation method such as virtual dimensionality [100]. Ignoring noise for

now, the linear mixing model (LMM) writes

X = SA

where the r-th column of L × R source matrix S indexes endmember sr and the

p-th column ap of P × R abundance matrix A contains the fractional abundance

coefficients for xp:

xp = Sap =
R∑

r=1

aprsr. (4.34)

The linear mixing model in spectral imaging is generally based on the following

assumptions [101]:

i) The number of endmembers R is much smaller than the number of bands L, that

is R≪ L;

ii) Matrix S is of full column rank, i.e. endmembers {s1, . . . , sR} are linearly in-

dependent;
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iii) Abundance Nonnegativity Constraint (ANC) : apr ≥ 0 for all p and r;

iv) Abundance Sum Constraint (ASC) :
∑R

r=1 apr = 1 for all p.

Assumptions (i) and (ii) seem very reasonable in hyperspectral imaging since many

bands are collected and the image is made up of a few distinct materials. Assump-

tions (iii) and (iv) come from the physical interpretation of abundance coefficient

apr as the fractional spatial area occupied by the r-th endmember in the p-th pixel.

We now account for the fact that the image is degraded during the acquisition

process. Under the common linear blur assumption, the 2D image yℓ observed at a

given channel ℓ is obtained as the 2D convolution product of the true image and the

channel point-spread functionHℓ:

yℓ = xℓHℓ
(4.35)

where the N × N matrix Hℓ
is a convolution matrix corresponding to Hℓ. For

instance, when the blur is space-invariant for different pixels, (Hℓ)T is a block-

Toeplitz matrix where each block is Toeplitz [102]. Each entry of the observed data

matrix Y is given by

yp(ℓ) =
N∑

n=1

hℓ
pnxn(ℓ) (4.36)

Using equations (4.34) and (4.36), the overall model combining noise, observation

blurring and linear mixing of endmembers writes

yp(ℓ) =
N∑

n=1

R∑

r=1

hℓ
pnaprsr(ℓ) + ep(ℓ) (4.37)

where E is the noise term and model (4.37) assumes that the SNR is high enough

for the noise to be additive and i.i.d. Gaussian. We observe that the blurred data do

not satisfy the linear mixing model since the mixing coefficients
(
∑N

n=1 h
ℓ
pnapr

)

depend on the channel index ℓ. However, in the specific case where the PSF is

invariant across channels, the model reduces to the following linear mixing model

Y = SAH +E (4.38)

with fixed matrix H .

How does the observation process affect the distribution of pixel vectors inside the

simplex? The answer to the question obviously depends on the nature of the PSF.

Since the entries of H are known to be non-negative, the blurring process tends

to average neighboring pixel intensities.This phenomenon causes observed spectral

vectors to cluster towards the center of S . This contraction property has important

practical consequence: directly applying a NMF algorithms to the observed data

may produce incorrect sources, and thus the subsequent estimation of abundances

will also be biased. To improve the unmixing performance, it is necessary to decon-

volve the data before applying any NMF algorithm.
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4.6.2.2 Application to Raman spectroscopy images

In this section, we illustrate the impact of the deblurring process on the performances

of the separation of real Raman spectroscopy data. This dataset comprises images of

size 98× 131 pixels, each pixel being 100 nm× 100 nm, acquired on 337 spectral

bands ranging from 800 cm−1 to 1200 cm−1. The scene of interest consists in a

grain of sodium acetate (CH3COONa) covered with sodium carbonate (Na2CO3)

laying on a silicon layer (Si). Part of the sodium carbonate reacts with water va-

por to yield hydrated sodium carbonate. These four chemical compounds are the

endmembers we seek. A thorough inspection of the data reveals that the silicon

compound contributes to all pixels of the image. The extraction of these endmem-

bers is a challenging problem, since silicon is the only compound for which the pure

pixel assumption is fulfilled. Because of the inherent high mixing of the data, even

minimum volume methods are not supposed to produce good results on this data set.

Given the limited spectral range, the point spread function is considered to be in-

variant across channels and mixels. It is modeled as a 2D Gaussian function [103]

with an experimentally measured full-width at half maximum of 300 nm. We apply

our deconvolution algorithm to the data by setting regularization parameters through

a trial-and-error process to µ = 20 and ν = 5 using the algorithm proposed in [102].

Non-negative Matrix Factorization with volume constraints (NMF-vol) [99] was ap-

plied for the data processing. The algorithm operates on both the raw data (where

negative pixels have been clipped to zero since the algorithm imposes a nonnegative

data matrix) and restored data.

The resulting abundance maps and endmembers are given in figure 4.11. The

first extracted endmember corresponds to the silicon layer, which presents a broad

band at 910 − 960 cm−1 due to the 2TO harmonic phonon mode of bulk silicon.

The deconvolution step allows to denoise its abundance map and more importantly,

uncovers structure that was distributed throughout other abundance maps. The sec-

ond endmember is sodium acetate, with a peak at 930 cm−1 due to the intense C-C

stretching mode of the acetate molecule [104]. The sodium acetate endmember dis-

plays more undesirable contribution from the silicon compound. The spectral shapes

of endmembers extracted from the raw data appear noisier, a problem solved by the

deconvolution step. Moroevet, the algorithm is able to separate the sodium carbon-

ate compound (third endmember, characterized by the peak at 1080 cm−1) from the

hydrated sodium carbonate compound (fourth endmember, peak at 1060 cm−1) ;

both are mixed with the sodium benzoate, as expected. The main gain of decon-

volution clearly appears on the third endmember, where the silicon contribution is

completely suppressed. Another benefit of the restoration step is to reveal structure

hidden in raw abundance maps (first and third endmember) that was not displayed

by applying NMF-vol to the raw data.



34

NMF-vol on raw data
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Figure 4.11 Spectral signatures and spatial abundances of the sources obtained by
applying NMF with minimum volume contraint on both the raw Raman data and the
deblurred data.

4.7

Conclusions

This chapter described the concept of non-negative matrix factorization and its ap-

plication in the context of source separation in chemical-physical sensing. Although

the NMF problem is described in a simple mathematical way, the theoretical formu-

lation of its solution existence and uniqueness remains an active area of study. More-

over, the resolution algorithms are generally application dependent since additional

constraints (to non-negativity) should be firstly determined and then accounted for

to get an acceptable solutions. Actually, these additional contraints are exploited by

developing dedicated factorization algorithms calling to some algebraic tools, opti-

mization techniques, geometrical concepts and statistical inference methods. Active

open problems in the NMF field rely on the reduction of the numerical complexity

of the algorithms through the development of sequential factorization methods and

data compression techniques.
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