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Abstract
The Internet adopts a layered architecture where IP addresses are
used to identify endpoints and port numbers serves as application
multiplexers over a single host. Nowadays, names are usually used
to expose a service to public access. However, even with the current
DNS architecture, nodes must still know what the running host’s
IP address and service’s port number are to access the service.
In fact, any node can directly contact a publicly available node,
sometimes for other purposes than accessing its public services.
This is specially a challenge in IoT as highlighted by numerous
high-profile DDoS attacks which leverage Internet scanning to find
vulnerable IoT nodes. Defending against this is often a challenge
for service operators. This paper questions this current architecture
and calls for an alternative called URLink, where names are used as
the sole identifier and access door towards a service. Through a new
network abstraction called URLSocket, clients are no longer aware
of the public service’s IP address and port number. We argue that
such an approach is beneficial for IoT networks, as it can be used
to address various security and privacy issues in these network.
While such an architecture calls for changes in the client application
stacks, existing applications (e.g. those running on an IoT node)
can still leverage the proposed system in the current Internet.

CCS Concepts
• Networks→ Network privacy and anonymity; Network manage-
ability; Denial-of-service attacks; • Security and privacy →
Malware and its mitigation.
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1 Introduction
Our cyberspace, historically dominated by personal computing
devices, is now being shared with IoT devices of all shapes and sizes
at a growing rate. It is estimated that the number of IoT connections
exceeded 13 billion in 2022 [13, 38]. With each device having an
autonomous network identity and a significant number of them
lacking basic security capabilities [26, 34, 39], IoT devices have been
linked to numerous security incidents [9, 15, 25, 27, 28, 31, 33, 35, 42].
Scanning attacks, where entities want to identify all the running
services over the Internet [7, 11, 12], has been the stepping stone for
many of these security incidents. In addition, based on the network
packets’ metadata, a monitoring third party may infer the running
application and the types of IoT devices in a network [1, 36], raising
privacy concerns.

In this paper, we question OSI model which rely on IP addresses
and port numbers for identify nodes and services. We propose a
new network abstraction called URLSocket, in which the clients of a
service (e.g., an IoT node) are no longer aware of the public service’s
IP address and port number. Instead, URLSocket takes names as the
sole identifiers of an application service over the Internet. Our key
insight is that by eliminating the use of the tuple (IP address, port
number) as the application identifier of a service, we make the net-
work easier to manage, less complex and less exposed to scanning
attacks. While this paper is not the first proposal for a name-based
addressing for the Internet [16, 24, 29], our proposal harnesses the
potentials of QUIC, a recent addition to the networking landscape.
This paradigm shift in networking protocols enable us to build a so-
lution that is compatible with the current Internet architecture and
incorporates security, exceptional agility, and robust performance
compared to previous works.

We argue that such an approach is beneficial for IoT networks,
as it tackles various security and privacy issues. Solving IoT se-
curity problem is a formidable challenge because of the peculiar
characteristics of these devices, including limited power and com-
putational resources, and difficulties in modifying the software
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components running on these devices. While earlier works called
for such named-centric network management [17, 24, 30] we ar-
gue that the recent introduction of encrypted protocols such as
QUIC [21] makes this idea eventually practical. The modifications
that URLSocket imposes are all within the user space (i.e. the client
application stacks) which leaves services running on IoT nodes
unmodified. We first discuss how applications became dependent
on the tuple (IP address, port number) in Section 2.1. We then pro-
pose our system, URLink, in Section 3 and discuss its advantages
for the IoT ecosystem in Section 4. We finally discuss deployment
considerations and early evaluations in Section 5 and conclude the
paper in Section 7.

2 Background
2.1 The Socket Architecture
Building a large-scale network such as the Internet, containing het-
erogeneous devices and technologies, was complex and took years.
To achieve this, network designers adopted a layered approach
known as the OSI model to abstract this heterogeneity and make
distant communication with devices using different technologies
(Wi-Fi, cellular, Ethernet, . . . ) possible. Establishing such an abstrac-
tion required defining interfaces between the different network
layers. Driven by its evolution, the Internet chose to rely on IP
addresses to identify nodes. However, it is often unpractical for
applications to directly rely on a numerical IP address to contact
a specific device. Instead, users prefer to rely on human-readable
names, making the DNS infrastructure be a key element of the In-
ternet connectivity to resolve names into IP addresses. Still, several
application flows can take place between the same devices. The
multiplexing of such different data streams is handled by the trans-
port protocols that add port numbers. Today, application developers
are mostly stuck with two main options: either TCP if the service
needs a reliable bytestream, or UDP otherwise.

Because networked applications are programs, they need some
interface with the network. In line with the layered approach at that
time, the established Socket API provides a application network
channel, given the IP address and port number. Yet, many applica-
tions, such as Web browsing, rely on names to identify a service. To
initiate communication to such a named service, client applications
follow the process as depicted in Figure 1. To find out the device on
which the service is running, the client application first needs to
resolve the name into an IP address. Under the hood, the device will
have a socket sending UDP packets to an IP address known to run a
DNS resolver over port 53. The DNS response then provides the IP
address that the application should contact to fetch the service. For
this, it creates a socket over the resolved IP address along with the
transport protocol used and the associated port number. Both the
protocol and the port numbers are determined in an out-of-band
way, the application often defining the transport protocol and port
number on which the service runs. This ensures that any client
can seamlessly contact a given public service. Once the socket is
created, the application can then exchange data over the socket,
making a flow with the remote service being contacted.

While this process drove the creation of exchanges on the Inter-
net, we argue that it has flaws for both clients and service operators.
For each of the contacted a service, besides its name, the client
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Figure 1: The current communication architecture using the
Socket API. The application needs to know the IP of the
service it wants to reach, the port number often being defined
by the application itself.

first requires the IP address on which it runs through the DNS.
Another downside relies on the arbitrary allocation of port num-
bers to specific services. Running multiple web services on a single
server is common, and the handling of these services running on
the same port needs to be performed at higher layer, e.g., by re-
lying on the TLS Server Name Indication (SNI) [40] or the HTTP
Host header [14]. For service operators, running services on a port
number different from the IANA assigned one requires some out-
of-band communication with clients to let them discover them (e.g.,
the SRV records in DNS [18]). All these elements (IP resolution,
TLS SNI, HTTP Host, port number attribution, . . . ) introduce both
complexity and potential points of failure.

To provide the required service, we believe the Internet should
adopt the principle of “the less said, the better”. Currently, in ad-
dition to the service name, the clients know its running host’s IP
address and its running port. Such information does not only ex-
pose the application service, but also the running host itself. This
may pose security issues by enabling attacks on other services run-
ning on that host. This also enables scanning attacks where entities
want to identify all the running services over the Internet [7, 11, 12].
To tackle these issues, when a service needs to be available to a
restricted user set on a potentially public network, a workaround
consists in running a service on a different port number. Such an ap-
proach is often applied to, e.g., SSH [22]. However, in addition to the
limitations described before, with the increasing network speed and
the limited 32-bit wide addressing space of IPv4, recent works [23]
show that those services can still be discovered, even though they
might use non-conventional ports. IPv6 offers a much larger 128-bit
addressing space. Still, researchers managed to build target lists of
IPv6 addresses and there are now efficient IPv6 scanners [4].

2.2 The QUIC Protocol
QUIC [21] is a recently standardized transport protocol providing
the services of TCP (reliability) and TLS (encryption) atop UDP.
Although initially designed for HTTP/3 [5], QUIC allows explicit
application protocol negotiation, enabling broader use cases [20].
Unlike TCP whose whole header is visible by the network entities,
the built-in QUIC encryption leaves minimal clear-text metadata to
the network — only a few flags and a Connection ID. The encrypted
part of QUIC packets contains the core QUICmessages called frames.
While application data can be reliably exchanged through STREAM
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Figure 2: Establishing a URLink session and creating a reli-
able flow to proto://s.com.

frames, there are many other control frames such as ACK (to ac-
knowledge packets for loss recovery) and MAX_DATA (to advertise
the receive buffer size) frames. In addition, QUIC negotiates exten-
sions during the connection handshake. For instance, the Datagram
extension [32] enables endpoints to send data in a unreliable way
through DATAGRAM frames, providing a UDP-like service with a
QUIC-provided encryption layer. There are more than 20 publicly
known QUIC implementations and QUIC represents more than a
third of the Google network traffic on the Internet [6].

3 The URLink Paradigm
This paper questions two core design decisions of the current Inter-
net. The first relates to the arbitrary link between applications and
(destination) port numbers. The second concerns the communica-
tion meta data that a client needs to know (such as the IP address
and port number) to access some named service, such as a web page.
Such public network information exposition introduces concerns
about unwanted communications such as bot traffic [41].

To address these, this paper proposes a paradigm shift by ab-
stracting applications from the IP addresses and port numbers used.
The introduced URLink enables them to rely on names, and more
specifically, URLs, as human-readable service identifiers across a
network. Such services would run in a private network only reach-
able through a gateway. Figure 2 illustrates how the URLink connec-
tion process takes place. To prevent clients from directly accessing
the servers, those are deployed in a private network, directly un-
reachable from the public one. Clients can still access the services
running on these servers, but only by passing through gateways con-
nected to both networks. There may be multiple gateway instances
deployed in the network. To find out these gateways, gateway re-
solvers in URLink are deployed in the public network. In URLink,
these gateways resolvers have a role similar to the DNS resolvers
in the Internet, although the communication between clients and
gateway resolvers are not done over plain DNS due to integrity and
authentication concerns. There may be multiple gateway instances
deployed in the network to serve both geographical and load bal-
ancing purposes. The gateway resolver then provides to the client
the IP address of the gateway along with a challenge/authenticating
value. This serves as a way to authenticate the tunnelling connec-
tion between the client and its gateway. A specific multiplexing
protocol is used between the client and the gateway, such that a
unique session between them can serve various same client to differ-
ent services’ flows. The gateway first queries the internal resolver
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Figure 3: URLSockets Architecture. The client URLSocket
only requires the IP address of the gateway resolver.

in the private network to figure out the actual service address (e.g.,
proto://s.com) and forward traffic information through the host
providing the requested service. For the client, such an approach
abstracts the service name from its running hosts, enabling trans-
parent moves of the services to different internal servers and port
numbers.

Such a network paradigm calls for an adapted networking API.
URLink introduces the URLSocket API. Figure 3 depicts the es-
tablishment of a connection-oriented transfer using a URLSocket.
Instead of requiring the IP address and port, usually passed by a
struct sockaddr, the application can directly communicate the
full URL of the service to the URLSocket. This URL can contain the
textual identifier of the application protocol used by the contacted
service. Under the hood, the URLSocket will perform the steps as
described in Figure 2 to establish a flow towards a service, and
provides back network events to the application.

To prevent direct communication between a client and a gate-
way, the gateway resolver can provide some authentication data
that should be provided by the client to contact the gateway. This
authentication data can also be used to log the client’s activities,
notably when abnormal behaviors are detected.

Non-goals
The core idea of URLink lies in hiding low-level network informa-
tion of running services from clients to ease the service manage-
ment by operators. It is not meant to act as an anonymity network
such as Tor [10]. However, the proposed architecture could be ex-
tended to add a second gateway, similar to MASQUE [3], such that
none of the gateways know both the exact client IP and accessed
service [37]. Such an extension would require coordinating mecha-
nisms between hop gateways to retrieve a misbehaving client when
a service’s operator wants to further audit specific traffic. Note
that URLink gateway does not have access to the payload of the
communication if the original communication is already encrypted
(e.g., HTTPS) as depicted in Fig. 4. Therefore, it is not intended to
prevent attacks based on malicious payloads or act as a deep packet
inspector.

4 Benefit for IoT Deployments
Consider an IP-based IoT video-surveillance camera. Such a device
provides a video stream service accessible on a given port. Directly
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connecting such a device on a public network would enable any-
one on the Internet to discover its presence and potential running
services using network scanning tools. Furthermore, the device
itself often lacks the necessary security protections, to address the
potential attacks that may rise from being publicly accessible. For
example e.g., it might have unnecessary open ports and exposed
services are vulnerable to network attackers such as brute force
attacks and default credentials. In fact, Internet-wide scanning of
IP-based surveillance camera and the prevalent use of insecure
default passwords in these devices have been used in Mirai botnet
for lunching DDoS attacks [2]. As shown by a recent study [39],
vulnerable IoT devices still exists on the Internet with more than
1.8 million devices that could get exploited by adversaries.

Our URLink proposal especially help with IoT deployments
where access to services running on IoT devices will be made
through a unique service name, instead of devices being directly
accessible. For example in Fig. 5, let us consider IoT A device to be
a surveillance camera. Such device would run a video streaming
service which enables users to remotely connect to camera. To
access the video stream service on this device, a dedicated name
is assigned to the services, http://video.iot-b.mynetwork.org. The
legitimate clients of a service know the corresponding service name.
Using the gateway resolver (Fig. 5), they can reach the gateway and
possibly acquire the authentication data. The gateway verifies the
authentication data confirming that the client is authorized to reach
the service, and based on the network information provided by the
internal resolver, it reaches the actual service running on device IoT
B. Then, service-specific communication takes place as if URLink
was not used, including any application-level authentication.

Despite its simple idea, URLink effectively addresses numerous
security problems that could arise if the services on device IoT

B were publicly accessible. Notably, the risk of scanning attacks
is mitigated, as probing clients are unaware of the actual service
names and the vast namespace makes brute-forcing impractical.
This alone significantly reduces the risk of IoT malware targeting
publicly accessible vulnerable devices. Even if a malicious client
becomes aware of a specific service name, the potential harm is
reduced. First, the client is unable to gain direct network knowl-
edge of other services running on the device, whereas previously
it could use different port numbers associated on the same IP to
find them. Additionally, the authenticated connection makes harder
to succeed any brute-force attack attempts on the service. Since
the authentication data expires at a specific time or after a cer-
tain number of round trips, the client must repeatedly acquire new
authentication data, further impeding its progress and making sus-
tained attacks more difficult to perform. Finally, we note that the
gateway’s visibility into the traffic enables it to actively monitor
and search for malicious behaviors during communication. If any
suspicious activity is detected, the gateway is capable of taking nec-
essary measures to halt the communication and prevent potential
harm. This proactive anomaly detection approach adds an addi-
tional resilience-layer against malicious parties. Although these
security measures do complicate the responsibilities of the gateway,
they provide a valuable benefit in scenarios such as IoT, where
devices lack sufficient built-in protection. By assuming these pro-
tective roles, the gateway plays a crucial role in safeguarding the
network and enhancing the overall security posture, compensating
for the inherent vulnerabilities often found in IoT devices.

5 Deployment Considerations
From a network viewpoint, the node’s URLSocket and the service
gateway need to define a protocol atop which they can bridge
communications between the public network and the private one.
Given the system and privacy requirements, the protocol behind
URLSocket should support reliable stream multiplexing (for TCP
transfers), unreliable data streams (for UDP communications) and
encryption (for potentially cleartext traffic as discussed in Section 4).
To provide these requirements, the QUIC transport protocol [21]
is a relevant base protocol given that the aforementioned require-
ments are supported by design, if the DATAGRAM extension is
negotiated [32]. An application protocol should however be built
to make the link between the public flows and the private ones.

From an endpoint perspective, applications need to adopt the
approach taken by URLink. We identify two kinds of served applica-
tions: (i) those with a native URLSocket support, and (ii) unmodified
ones behind a client-side proxy.

When the benefits of URLink are known before the birth of an
application, it can start using the URLSocket API from day one.
To provide such native support for URLSocket, several approaches
are possible. One consists in providing a library that applications
can leverage to implement the application URLSocket as depicted
in Figure 3. The provided library will perform all the required
connectivity operations on behalf of the application. The library
can provide a API very similar to the Socket API, the main changes
being the URLSocket creation, its connect() and bind() functions
(as they rely on URLs instead of sockaddr). Such a URLSocket API
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can be provided by a user-space library that would leverage a user-
space QUIC implementation. On the long run, if a large adoption is
met, operating systems may eventually integrate a native support
for the URLSocket API. Still, such native applications will only form
a marginal fraction of the potential URLink traffic.

On the other hand, there are many existing applications where
the proposed scheme could bring advantages to the service providers,
but would require incentives and deployment time at client side.
Assuming that many client applications will adopt the URLSocket
API in a short time span is unrealistic, specially in IoT networks, as
client applications and systems need to be updated. Still, it remains
possible to keep the network advantages brought by the URLink
architecture without modifying the existing applications. Such a so-
lution requires a proxy-based architecture. The deployment process
consists in a two-step process. First, the client application must be
configured to forward its traffic to a client-side proxy. This proxy
may run on the client host itself. For instance, web browsers can be
configured to use some proxy (e.g., SOCKS proxy) and networking
rules may redirect host-generated DNS traffic towards the proxy
solution. The client-side proxy can provide a backward-compatible
solution (i.e., bypass the proposed solution) while the service’s
server is still only accessible through its IP address and port num-
ber. Later, at an announced date, the server can migrate behind the
service resolver and rely on the URLink system.

5.1 Implementation
To demonstrate the feasibility of our approach, we implement the
proxy-based URLink (Fig. 6) using two pieces of software. The first
is the URLink gateway bridging the private network with the public
one. The second is a client-side daemon enabling client applications
to take advantage of the URLink. Concretely, the client daemon lis-
ten on a dedicated, local port incoming traffic (either TCP or UDP).
It then proxies the incoming traffic into URLink flows over a long-
lived QUIC [21] connection. This connection notably exchanges
control information about the state of the flow requests (client re-
quest connection to a specific service, gateway replies whether it
is accepted or denied). When accepted, each TCP connection is
mapped to a QUIC stream, while UDP packets are mapped to QUIC
datagrams. The gateway then proxies each flow to the appropriate
private server (the internal resolver is currently co-located with, but
uniquely accessible by, the gateway). Clients try to establish flow
communications by sending requests through the encrypted QUIC
tunnel (Fig.4). Even if the base service’s protocol is not encrypted,
the QUIC tunnel ensures that the communication is protected from
any external monitoring node, thus providing additional security
and privacy for the communication. Our Proofs-of-Concept (PoC)
are written in Rust, rely internally on the quiche [8] QUIC imple-
mentation and are made of about 5000 lines of code. We performed

10B 100B 1KB 10KB 100KB 1MB 10MB
Response size

0.011

0.012

0.013

0.014

0.015

0.016

Re
sp

on
se

 T
im

e 
[s

]

Baseline
URLink

Figure 7: Comparing latency according to different response
sizes with and without URLink when making requests to the
webserver.

a simple evaluation of our PoC to access a simple web server. For
this basic evaluation, all components (i.e., gateway, client, and web-
server) run on localhost. We repeat our evaluations for varying
server’s response size (between 10B to 10MB) and repeat each re-
quest 100 times. Under the same test conditions, we compare the
average response time when the server is reached through URLink
gateway, and when its directly reached in Fig. 7. The difference
between the response time with and without URLink is statistically
significant in each case (Welch’s t-test 𝑝 < 0.05).

6 Discussion and Future Work
In the previous section, we presented early performance test results
for a PoC implementation of URLink which indicate the feasibil-
ity of our approach. However, our current implementation lacks
crucial security features. Specifically, we have not implemented
authentication data that clients need to present to the gateway.
We outline two different methods for obtaining this authentication
data, which we plan to address in future work. In both approaches,
we will rely on the gateway resolver to provide the authentication
data to the client. This reliance emphasizes the importance of se-
curing communication between the client and the gateway resolver.
For instance, when using DNS, we will rely on mechanisms such
as DNSSEC [19] or DNS-over-QUIC [20]. As for the authentica-
tion data itself, the first alternative involves using proof-of-work
schemes in a challenge/response process between the gateway and
the client. The second option is to use a cryptographic scheme
based on digital signatures, in which the resolver signs attributes
related to the client’s connection.

Even with the implementation of the authentication data, gate-
ways and gateway resolvers remain susceptible to DoS attacks.
For instance, attackers can establish connections with the gateway
while presenting fraudulent authentication data, with the aim of
rendering the services inaccessible hoping that the gateway would
waste CPU resources during the verification process. In a way,
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URLink transfers the responsibility of countering scanning attacks
from the service nodes to the gateways and gateway resolvers. We
argue that this shift in responsibility is advantageous especially in
application domains such as IoT in which modifying the service
nodes might be challenging. Introducing a gateway to the private
network, which has sufficient computational power and can be
readily extended, serves as an additional layer of protection for
all nodes within the private network. We should also note that,
in its current design, URLink does not provide protection against
attackers within the private network. One way to tackle this is by
configuring the services to exclusively handle requests originating
from the gateway. We leave this for future works.

7 Conclusion
This paper proposed URLink, a paradigm shift in how network
services can be made accessible over the Internet. It revealed that
services can be exposed only with their names, i.e., without com-
municating the running host’s IP address and port. This paper
discussed the possible security issues that URLink may introduce
and described how an implementation can handle them. Finally, it
described how applications could leverage URLink, either through
native URLSocket support or using a proxy-based solution. Our fu-
ture works consist in concretely designing the tunnelling protocol
proposed by URLink, implementing it and evaluating URLink using
IoT testbeds.
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