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Figure 1: AutoEncoder-based Fréchet Motion Distance. First, a latent representation of motion is learnt to gather relevant 
information about motion data. Then, Fréchet distance is computed between the whole set of encoded ground truth � and 
synthesized motion samples �̃ .

ABSTRACT 
Automatically generating character motion is one of the technolo-
gies required for virtual reality, graphics, and robotics. Motion 
synthesis with deep learning is an emerging research topic. A key 
component of the development of such an algorithm involves the 
design of a proper objective metric to evaluate the quality and di-
versity of the synthesized motion dataset, two key factors of the 
performance of generative models. The Fréchet distance is nowa-
days a common method to assess this performance. In the motion 
generation feld, the validation of such evaluation methods relies 
on the computation of the Fréchet distance between embeddings of 
the ground truth dataset and motion samples polluted by synthetic 
noise to mimic the artifacts produced by generative algorithms. 
However, the synthetic noise degradation does not fully represent 
motion perturbations that are commonly perceived. One of these 
artifacts is foot skating: the unnatural foot slides on the ground 
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during locomotion. In this work-in-progress paper, we tested how 
well the Fréchet Motion Distance (FMD), which was proposed in 
previous works, is able to measure foot skating artifacts, and we 
found that FMD is not able to measure efciently the intensity of 
the skating degradation. 
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1 INTRODUCTION 
Motion synthesis is a popular feld in graphics and robotics. That 
research area also impacts the development of realistic immersive 
space. In many interactive media experiences, virtual characters 
are animated to interact with human users [25, 33, 39]. Hence, 
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animating a virtual character with realistic and plausible motions is 
a task that matters in computer vision. Recent generative methods 
are able to produce diverse motions with outstanding quality in 
various context [10, 14, 22, 30, 37, 44, 46]. 

One crucial component in developing generative models is an 
evaluation metric that measures how well the models generate 
realistic and natural-looking movements. Since the ability to create 
virtual characters that appear genuine and realistic is paramount to 
delivering an immersive and convincing user experience [20], being 
able to evaluate the generative models’ performance and point out 
the motion artifacts in the avatar animation is an important task in 
the immersive experience design. 

Unlike the tasks where ground truth or goal exist (e.g., clas-
sifcation, game playing), there is usually no single answer for 
generative tasks, and this makes assessing the performance of gen-
erative models difcult. The quality and diversity of synthesized 
samples from a generative model are key indexes in the evalua-
tion. Assessing precisely these two is then fundamental to being 
able to compare the performance of generative algorithms. One 
instinctive manner to achieve this goal is to involve humans in 
the loop of the generative method evaluation. Humans observe 
and rate the quality of the generated samples through user studies. 
These subjective measurements rely on human perception so that 
the metric is highly correlated with the ultimate goal of the genera-
tive model that generates indistinguishable and pleasing results for 
humans. The human-based evaluation was usually performed to 
clearly and efectively identify the quality of the samples of motion 
synthesized from their proposed generative models [1, 38]. How-
ever, this kind of evaluation has signifcant drawbacks as pointed 
out in [4]: the subjectivity of judges, low reproducibility issues and 
the non-neglectable amount of time and resources to conduct the 
evaluation hinder fast comparison at low cost with other previous 
methods. For these reasons, there is a need for objective evaluation 
metrics that evaluate qualitatively and at low cost. The need for 
evaluation metrics is even greater in recent learning-based gener-
ative models because those involve numerous training attempts 
and an evaluation tool to compare attempts is necessary for faster 
development. 

One popular metric that aims to assess the quality and diversity 
of a set of generated modalities is by measuring the Fréchet Distance 
(FD) [8] between the distribution of ground truth and synthesized 
sample datasets and is computed as 

�� = | |�� − �� | |2
2 + �� (Σ� + Σ� − 2(Σ� Σ�) 

1
2 ) (1) 

where (�� , Σ� ) and (��, Σ�) are the mean and covariance matrix 
pairs of respectively ground truth and generated sample distribu-
tions. This equation assumes that the distributions are multivari-
ate Gaussian. In the image synthesis feld, the standard method 
employed to estimate the real and synthesized distributions is by 
extracting the last activation maps from the Inception network [36]. 
The distribution parameters are estimated from these sets of feature 
maps and FD is computed with these parameters. This score is called 
Fréchet Inception Distance (FID) and is now the de-facto standard in 
evaluating image synthesis models [7, 35]. The audio synthesis feld 
adopted a modifed version of FID called Fréchet Audio Distance 
[18]. The motion synthesis feld also used FD to evaluate the quality 
and diversity of the generated samples [11, 40, 42]. However, these 

works proposed diferent methods to compute the score and very 
few analyses have been done on these methods to evaluate the va-
lidity of the proposed metric [27, 44]. These analyzes showed that 
the proposed metric is efcient to capture spatial noise on motion 
data but lacks of reliability regarding temporal disturbance. How-
ever, these artifacts do not represent any real artifacts produced by 
generative models or during a standard motion capture recording. 
In this paper, we propose to validate the FMD on foot skating arti-
facts. Foot skating is a motion artifact where the character’s foot 
slides when on contact with the ground. In deep neural animation, 
it is often caused by a regressive model converging to the mean 
pose. This work aims to analyze the FMD behavior on motion data 
polluted by foot skating artifacts with various intensity. We hope 
this work will be helpful in the development of a robust metric for 
the evaluation of motion generative models. 

2 RELATED WORK 

2.1 Metrics in Motion Generation Evaluation 
Several techniques have been employed to assess the quality of 
synthetic motions. In short-term human motion prediction i.e., pre-
dicting future frames given a motion prefx, Euclidean distance 
between the generated motion and the ground truth evaluates the 
model accuracy [9, 17, 28, 29]. A popular use case in the interactive 
motion generation feld is the development of methods that animate 
and control in real time the motion of a biped or quadruped char-
acter given its path [14, 46]. In this context, foot skating artifacts 
(the unnatural foot sliding when it is in contact on the ground) 
are commonly perceived and measured as an evaluation metric. 
Subjective evaluation protocols have been conducted by several 
works in the motion generation context such as in walk cycle gener-
ation to evaluate the expression naturalness [38]. More recently, in 
music-driven motion generation model, virtual characters learn to 
perform a dance that matches with the input music and user studies 
have been performed to measure the motion samples rhythmic and 
aesthetic consistency [1, 15, 21, 23, 48]. Diversity and multimodality 
metrics are used to evaluate if the method is able to generate a 
wide range of motion from a text prompt [37, 47]. However, these 
metrics are task-oriented and only apply in specifc contexts of 
motion generation. For example, they cannot be used in generative 
models that take no context in input to synthesize motion. 

2.2 Fréchet Inception Distance 
The Fréchet Distance [8], known as Wasserstein 2 distance is intro-
duced in [13] to evaluate GAN on image modalities. This measures 
the discrepancy between two multivariate Gaussian distributions 
by Equation 1. Considering the two distributions respectively as 
the real and synthesized data distribution, it shows that the FID 
score efectively assesses the quality and diversity of a generated 
dataset of images. The statistics needed to compute the FID (see 
Equation 1) are estimated from the real and generated feature maps 
computed from InceptionV3 [36] when being fed by the data. The 
advantages of the FID are the following: (1) it works a single-value 
metric that evaluate the performance of generative models and in 
contrast to IS and (2) it is sensitive to intra-class mode collapse i.e., 
generating very similar samples. However, the FID exhibits some 
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limitations: It is inconsistent with human judgment when evalu-
ating on other image dataset than Imagenet [31], sensitive to the 
number of samples to estimate FID and even the particular model 
being evaluated [6]. Many works proposed an improved version of 
this metric [3, 6, 24, 26]. These limitations make the use of FID as a 
single and unifed metric to assess the performance of a generative 
model difcult. This is why other metrics such as Precision and 
Recall have been proposed in [19, 34] that respectively measure the 
average sample quality and the coverage of sample manifold. 

2.3 FID in Motion Generation Evaluation 
Nowadays, most of the recent works mentioned in Section 2.1 em-
ployed an adapted version of the FID as a metric to benchmark the 
proposed model in motion generation where the feature manifold 
is related to motion data instead of image modalities. In action 
motion generation, the methods in [11, 42] train an action classifer 
model as proposed in [43] to embed the motion data. The FD is 
then computed on the output of the fnal layer of the feature extrac-
tor network. Chang et al. [5] used the action classifer part of the 
proposed backbone generative models as the feature network. How-
ever, this method explicitly requires labels of motion data to train 
the action classifer network which is not suitable for unlabeled and 
unstructured data. Instead, Wang et al. [40] propose to train the 
LSTM-based motion prediction network in [9] to extract a feature 
space that captures relevant information on motion. The generation 
of co-speech gesture is also evaluated using FID by [2, 44] from an 
unsupervised training of an AutoEncoder and the FD is computed 
between the latent spaces of real and synthesized gesture. [27, 44] 
establish a analysis of this method and conclude that the latent 
space is efcient to identify spatial motion degradation but fails to 
capture temporal discontinuities. Finally, [41] evaluate their action 
motion generative model using InceptionV3 [36] pretrained on the 
Imagenet dataset but no analysis on the validity of this metric has 
been performed. 

3 ANALYZES 

3.1 Foot Skating Artifacts 
To identify if the FMD is sensitive to foot skating artifacts, we 
frst need to build datasets with diferent skating intensities. To 
achieve this goal, we employ the method in [46] that animates a 
virtual quadruped and controls its trajectory in real-time. All the 
materials used in this work are provided here 1. The overview of the 
model is shown in Figure 2. This model architecture is composed 
of a pose regression network Ψ and a gating network Φ based on 
fully connected layers. The pose regression network takes as input 
motion features at frame � and aims to generate motion features at 
frame � + 1. To avoid mean pose regression inducing foot skating 
artifacts, Mixture-of-Experts technique [16] is used to compute the 
parameters � of the regression network: � is obtained by blending 
� expert parameters by the coefcients � computed by the gating 
network Φ. The input of this model is a subset �̃ of the input motion 
features � . This subset gathers the information of leg features such 
as feet position, orientation and velocity. It helps to learn multiple 
gait cycles of dog locomotion [46]. 

1https://github.com/pauzii/AnimationAuthoring 

Pose regression
network

MoE + Gating network

Figure 2: Model proposed in [46] to control in real-time the 
trajectory of a virtual quadruped. At each frame, the motion 
of the dog � = � (� + 1) is computed by the pose regression net

= Σ� work Ψ� . Ψ is dynamic model where its parameters � �� �� .� 
The � coefcients �1, ...�� blended the � expert parameters 
�1, ..., �� learned during the training process. The gating net
work Φ computes the set of coefcients � from a subset of 
input motion features �̃ . 

� (� + 1) = Ψ� (� (� )) �ℎ��� � = Σ�� ���� ��� � = Φ(�̃ (� ))
(2) 

The architecture of the pose regression network Ψ consists of 3 
fully connected layers. The number of units in each layer is ℎ���� 
(which was 512 in [46]). Reducing the number of parameters, ℎ���� , 
leads to underftting: the reduced model to learn the complex be-
havior of diferent dog gait cycles tends to converge to a mean pose 
that minimizes the regression error. This efect induces foot skating 
artifacts because the resulting motion is stifer, especially regarding 
the legs. Hence, reducing ℎ���� deteriorates the motion quality and 
the motion is polluted with more foot skating. Examples of this 
phenomenon are shown in Figure 3 and we recommend to watch 
the videos of the degraded motion here.2 

We generated 5582 frames for each motion using the models with 
ℎ���� = 512, 256 and 64. The input control signal (i.e., trajectory of 
dog locomotion) was the same for the three motions. The skating 
intensity increases as the number of parameters decreases. And we 
expect that an objective metric is able to penalize motion with foot 
skating. For the FMD, which measures the discrepancy between 
the ground truth and synthesized motion distributions, an efective 
FMD is expected to increase with the skating intensity. 

3.2 Fréchet Motion Distance 
While the evaluation in [11, 42] relies on a trained action classifer of 
human motion to compute the Fréchet distance between the ground 
truth and generated motion dataset, the method in [27, 44] trains 
an autoencoder-based feature extractor in an unsupervised manner. 
Using this autoencoder-based method, there is no need for labeled 
motion data to build a feature extractor which is essential in FMD. 
We performed our analyzes on this method with the architecture 
proposed in [27] since we focus on locomotion data where no extra 
label (e.g., action class) exist. 
2https://www.youtube.com/watch?v=kXnghjpyj_U 
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Figure 3: Training loss of the model implemented in [46]. 
Reducing ℎ���� impacts negatively the training curve and 
leads to more foot skating in the resulting motion. The dog 
motion becomes stif when removing network parameters. 

The overview of the method to compute FMD is in Figure 1. The 
motion is � is represented as a sequence of pose �0, ...,�� −1. Each 
pose is a set of bone position � , orientation � , and position velocity 
� . The orientations are expressed in exponential map. We followed 
the strategy of representing feature vectors as images introduced 
in [27]. But in the previous work, only the Cartesian positions were 
used to represent the motion features, so the motion was converted 
into an image following the similarity between the Cartesian and 
��� space: � ≡ �, � ≡ � , � ≡ �. In our case, we extended this 
method for orientations and velocities. The same conversion is used 
for the velocities since it is defned in Cartesian space. Considering 
the orientations, the exponential maps representation ∈ R3 which 
is suitable for the motion-to-image conversion, here denoted as � . 

A ResNet-34-based autoencoder is frst trained to reconstruct 
the initial image � (�). The motion dataset is split into the training 
(80% of the whole dataset) and validation set (20%). Then, the set 
of ground truth � and synthesized motions �̃ are encoded into 
latent vectors. This latent space embodies an efcient set of motion 
features that is able to identify motion polluted by spatial noise and 
temporal discontinuities when computing the Fréchet distance be-
tween the latent spaces of the ground truth and artifcially degraded 
motion [27]. In our work, we aim to analyze this metric behavior 
on motion data polluted by foot skating i.e., determine if the FMD 
computed between the latent spaces is sensitive to the skating inten-
sity. In this case, the synthesized motion �̃ = �ℎ���� where �ℎ���� 

denotes the motion produced by the model with the hidden layer 
size = ℎ���� . Similarly, ���ℎ���� represents the Fréchet distance 
between the latent vectors of the ground truth validation set and 
the motion generated by the model whose hidden layer size is ℎ���� . 

4 RESULTS AND PERSPECTIVES 
The results of the evaluation are shown in Table 1. We observed 
that the FMD did not assess the quality of the motion samples 
successfully: the best score, i.e., the smallest FMD, is given to the 
motion dataset with ℎ���� = 256 which is uncorrelated with the 

0 20 40 60 80
frame

h256

0 20 40 60 80
frame

h64

Figure 4: Samples of motion converted into an image rep
resentation: � (�512), � (�256) and � (�64). Since each motion 
feature is expressed in R3, the ��� conversion is straightfor
ward: the image width and height respectively represent the 
motion features and the temporal dimension. The set of fea
tures (position, orientation and position velocity) are stacked 
vertically. The stifness of the motion when decreasing ℎ���� 
is also observed in the image: the horizontal color transition 
is smoother pointing out the unnatural rigidity of motion. 

intensity of the foot skating degradation. The latent representation 
learned during the training procedure of the autoencoder in [27] 
can be a major factor that makes that method not reliable to capture 
relevant motion information so that the FMD is sensitive to foot 
skating artifacts. In further research, it may be necessary to fnd 
a latent space or embeddings that are suitable for the evaluation 
of motion generative models. We need to carefully design this 
evaluation metric to measure precisely the performance of these 
models with respect to foot skating artifacts 

However, foot skating is not the only perturbation generative 
models produce on the resulting motion. We may extend our analy-
sis to other common artifacts such as pose freezing, sudden turning, 
or unbalanced poses. In interactive avatar context, since it seems 
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Generation model size (ℎ���� ) Fréchet Motion Distance ↓ 
64 
256 
512 

89.99 
83.18 
101.60 

Table 1: Fréchet Motion Distance evaluation of motion gen
erated by model with ℎ���� = 64, 256 and 512 (lower is better). 
The FMD in [27] is not proportional to foot skating intensity 

impossible to list exhaustively all the artifacts that a neural network 
might induce on the synthesized motion, large-scale user studies 
are often performed to identify which model performs better in 
term of motion generation as in [45]. A relevant objective metric 
should be correlated with the human perception on the motion 
samples quality. 

Finally, the inefciency of the latent representation might come 
from the encoding process: The autoencoder used in this work 
is based on the ResNet-34 architecture [12]. Recent works have 
addressed and improved the encoding motion into a latent compact 
representation process as in [32]. Taking advantage of improved 
autoencoder architectures might lead to a better understanding on 
the latent information. 

5 CONCLUSION 
The evaluation of motion-generative models requires objective met-
rics that are capable of efectively penalizing any degradation in the 
motion samples. We validated the FMD proposed in [27] with more 
realistic motion artifacts, foot skating, and showed that FMD was 
not successful in capturing foot skating artifacts, a common per-
turbation in deep neural animation, which highlights the need for 
further metric development that can identify and account for such 
nuances. Developing an objective metric for evaluating the perfor-
mance of motion-generative models is advantageous for designing 
interactive and immersive applications that involve human-avatar 
interaction. This is because the naturalness and realism of avatar 
animation signifcantly contribute to enhancing the overall user 
experience. Any new objective metric developed should consider 
these types of analyses to ensure that there is no bias or mismatch 
between human judgment and the designed objective score. The ul-
timate goal of developing such metrics is to facilitate the creation of 
motion-generative models that can produce high-quality, realistic 
motion that is indistinguishable from real-world motion. 
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