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Introduction

Fréchet Distance ...

Objective evaluation metric for motion generation is essential in the

development of immersive spaces that include animation of avatars.

Fréchet Distance (FD) is a popular metric used in generative methods

evaluation that assesses jointly the quality and diversity of a generated

dataset [2] (see Equation 1).

FD = ||µr − µg||22 + Tr(Σr + Σg − 2
√

ΣrΣg) (1)

... In Motion Generation

Validation protocol for Fréchet Motion Distance (FMD) in the context of

motion-generative models evaluation is limited.

No validation on common motion artifacts produced by deep generative

models.

Aim of this work

Identify if the metric proposed in [5] is sensitive enough to measure the

intensity of skating artifacts.

Definition: Foot Skating Artifacts

Foot skating artifacts refer to unnatural foot sliding when in contact with

the ground. (see Figure 1).

Mainly appears in regression models trained to minimize the reconstruction

error.

Poorly designed networks suffer from mean pose regression, resulting in

unnaturally rigid motion and induced foot skating.

Figure 1. Visualization of foot skating artifacts. The purple arrow represents the foot velocity. The top motion is

polluted with a higher degree of skating intensity than the bottom. Scan the QR code to visualize motion

samples polluted by foot skating.

Datasets

Deep neural animation model to animate quadruped [7].

The final loss is inversely proportional to hsize and the skating is more

intense in lower hsize models.

Scan the QR code in Figure 1 to see the output animations.

Figure 2. Training curves when reducing the number of parameters of the original model (hsize = 512). Decreasing
the number of parameters of the hidden layer has a negative impact on the resulting motion and increases the

skating intensity.

Method

Unsupervised method to learn motion underlying patterns (no labeled

data).

Resnet34-based autoencoder as in [5].

Since the autoencoder is based on 2D convolutional layers, the motion

samples are first converted into an image representation.
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Figure 3. Overview of the method designed in [5]. Top: training procedure. - Bottom: Usage to compute

FD-based score. The FD is computed by Equation 1 from the statistics of the latent spaces of ground truth

and generated motion data.
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Figure 4. Image representation of motion data. From left to right: motion produced by the model with

hsize = 512, 256 and 64.

Results

Table 1 shows the result of these analyzes. The mean and covariance matrix

is computed for the whole set of animation samples produced by each deep

generativemodel (hsize = 512, 256 and 64). The FD is computed between these

statistics and those from the ground truth dataset.

Generation model size (hsize) FMD ↓
64 89.99

256 83.18

512 101.60

Table 1. Fréchet Motion Distance evaluation of motion generated by model with hsize = 64, 256 and 512 (lower is
better). The FMD in [5] is not proportional to foot skating intensity

This table shows that the FD is not able to capture the intensity of the foot

skating artifacts in a synthesized motion dataset.

Perspectives

More powerful encoding-decoding process involving more recent

architectures such as transformers [6].

Analyzing the latent space structure and keeping the similarity between the

original and latent dimension [1].

In metric analysis, involving human ratings on the motion dataset quality.

Conclusion

This work presents an analysis of a metric designed to evaluate the quality and

diversity of synthesized motion datasets. It highlights one of the limitation of

this metric, which is its insensitivity to foot skating artifacts, a common anomaly

produced by deep motion-generative models.
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