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HOMOTOPY CARTAN CALCULUS AND INNER

DEFORMATIONS OF A∞-ALGEBRAS

ALEXEY A. SHARAPOV AND EVGENY D. SKVORTSOV

Abstract. We consider inner deformations of families of A∞-algebras.
With the help of noncommutative Cartan’s calculus, we prove the in-
variance of Hochschild (co)homology under inner deformations. The
invariance also holds for cyclic cohomology classes that satisfy some ad-
ditional conditions. Applications to dg-algebras and QFT problems are
briefly discussed.

1. Introduction

Strong homotopy algebras, mostly L∞, but A∞ too, have a long track
record of applications in physics. Every gauge theory, for one, leads naturally
to an L∞-algebra within the Batalin–Vilkovisky formalism [1, 2]. A∞/L∞-
algebras are at the heart of open/closed string field theory [3, 4, 5]. It is
hardly possible to overestimate the organizing role of L∞-algebra language
in the final solution of the deformation quantization problem [6].

Our motivation for this work stems from the two recent incarnations of
L∞-algebras: (i) there is a large class of integrable models [7] relied on L∞-
algebras; (ii) L∞-algebras occur as generalized global symmetries of certain
conformal field theories (CFT). In both cases the relevant L∞-algebras orig-
inate from A∞ ones through the symmetrization map (see Theorem 2.9,
below). The study of observables and invariants in the models of (i) and (ii)
calls for algebraic techniques we develop in the present paper. Let us elabo-
rate on item (ii), which is, perhaps, the first occurrence of L∞ structures as
a kind of global symmetry in physics. In quantum field theory (QFT), by an
(infinitesimal) symmetry one usually means a Lie algebra action on a set of
fields or operators which form, thereby, its module. One may regard these
data as a very degenerate L∞-algebra with bilinear structure maps only. For
example, this situation is realized for Chern–Simons matter vector models
in the large-N limit. What happens when one departs from this limit is that
the Lie algebra and its module deform into an L∞-algebra, providing thus
mathematical grounds [8] to what was dubbed slightly broken higher-spin
symmetry in [9]. One application of the present paper is construction of
various invariants, e.g. correlation functions, in such models [10].

All A∞-algebras underlying the L∞-algebras of items (i) and (ii) share
one important property: each of them is obtained by inner deformation of a
family of dg-algebras. The concept of inner deformation was introduced in
our recent paper [11]. In that paper, we show how to construct a minimal
A∞-algebra starting from any one-parameter family of dg-algebras A. The
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resulting A∞-structure extends the binary multiplication in A by higher
structure maps1. The construction is algorithmic and requires no extra
data, hence the name. From the physical viewpoint, adding a coherent set of
higher products is equivalent to inclusion of interaction in a free gauge model.
One may wonder what happens to the (co)homology of A, regarded as a
graded associative algebra, upon inner deformations. In Sec. 7, we answer
this question by showing that every inner deformation of an A∞-algebra
extends to a deformation of its Hochschild (co)cycles (Theorem 7.1). In
other words, Hochschild (co)homology is invariant under inner deformations
of families. Furthermore, the statement holds true for some classes of cyclic
(co)homology, as is show in Sec. 8.

Our proofs make significant use of the noncommutative Cartan’s calculus
up to homotopy, as developed in Refs. [12, 13, 14, 15, 16]. Therefore, in the
next Sec. 2-5, we recall relevant definitions and constructions. Guidance is
also given, whenever necessary or helpful, on further reading. The original
results of the paper are exposed in Sec. 6-8, where we consider deformation
flows on families of A∞-algebras and their (co)homology.

2. Gerstenhaber Algebras up to Homotopy

Throughout the paper we work over a fixed ground field k of characteristic
zero. All unadorned tensor products ⊗ and Hom’s are defined over k. When
dealing with graded vector spaces and algebras, we tend to write down all
sign factors explicitly. However, one can easily keep track of all signs using
the Koszul rule: whenever two graded objects a and B are swapped, the
factor of (−1)|a||B| appears.

Given a pair of cochain complexes (C, δ) and (K,∂), we say that a homo-
morphism f : C⊗n → K of degree |f | ∈ Z is a δ∂-morphism if

∂f = (−1)|f |fδn ,

where

δn(a1 ⊗ · · · ⊗ an) =

n∑

k=1

(−1)|a1|+···+|ak−1|a1 ⊗ · · · ⊗ δak ⊗ · · · ⊗ an

is the standard differential in the n-th tensor power of the complex C.
Clearly, a δ∂-morphism of degree zero is just a cochain transformation.

A δ∂-morphism f : C⊗n → K is said to be homotopic to zero (in writing
f ≃ 0) if there exists a homomorphism g : C⊗n → K of degree |g| = |f | − 1
such that

f = ∂g − (−1)|g|gδn .

In the special case that C = K and δ = ∂ we speak about δ-morphisms.

Definition 2.1. A Gerstenhaber algebra up to homotopy is a cochain com-
plex (G, δ) composed of k-vector spaces and endowed with a pair of binary
multiplication operations: a cup product ∪ of degree 1 and a bracket [ , ]

1Therefore it is not just a minimal model of A.
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of degree 0. In addition to k-bilinearity the multiplication operations are
supposed to satisfy the following set of axioms:

(hG1) δ(a ∪ b) = δa ∪ b+ (−1)|a|+1a ∪ δb,

(hG2) δ[a, b] = [δa, b] + (−1)|a|[a, δb],
(hG3) (a ∪ b) ∪ c ≃ a ∪ (b ∪ c) ,

(hG4) a ∪ b ≃ (−1)(|a|+1)(|b|+1)b ∪ a ,

(hG5) [a, b] ≃ −(−1)|a||b|[b, a] ,
(hG6) [a, [b, c]] ≃ [[a, b], c] + (−1)|a||b|[b, [a, c]] ,

(hG7) [a, b ∪ c] ≃ [a, b] ∪ c+ (−1)|a|(|b|+1)b ∪ [a, c]

for all homogeneous elements a, b, c ∈ G.

In what follows, we will abbreviate the verbose term ‘Gerstenhaber alge-
bra up to homotopy’ to hG-algebra.

The first two axioms imply that either multiplication operation defines a
δ-morphism from G ⊗ G to G. More precisely, the cup product gives the
δ-morphism m(a, b) = (−1)|a|−1a∪b, while the bracket defines a δ-morphism
as it is2. Then, relations (hG3,4) say that the cup product is associative and
graded commutative up to homotopy. For example, unfolding the term ‘up
to homotopy’ for (hG3) we get

(2.1) (a ∪ b) ∪ c− a ∪ (b ∪ c)

= δA(a, b, c) +A(δa, b, c) + (−1)|a|A(a, δb, c) + (−1)|a|+|b|A(a, b, δc)

for some homomorphism A : G ⊗G ⊗G → G of degree 1. Axioms (hG5,6)
identify the bracket as a Lie bracket up to homotopy. Finally, relation
(hG7) expresses compatibility between the two multiplication operations
(the derivation property up to homotopy).

Example 2.2. Every cochain complex (C, δ) of k-vector spaces is an hG-
algebra whose cup product and bracket are equal to zero.

Example 2.3. Every commutative dg-algebra (A, δ) gives rise to an hG-
algebra on G = A[1] w.r.t. the cup product a∪b = a·b and the zero bracket3.
Similarly, one can think of each dg-Lie algebra (L, δ) as an hG-algebra with
zero cup product.

Example 2.4. If δ = 0, the above definition of an hG-algebra reduces to
that of a Gerstenhaber algebra, see [17]. This is defined by Axioms (hG3-
7) with ≃ replaced by the strict equality. In the general case, both the
cup product and the bracket pass through the δ-cohomology and induce a
Gerstenhaber algebra structure on H(G).

A prototypical example of Gerstenhaber algebras is the algebra of poly-
vector fields V(M) on a smooth manifold M . If Vn(M) is the space of
n-vector fields, then we set Gn−1 = Vn(M). The role of cup product is

2Notice that the graded Leibniz rules (hG1) and (hG7) are compatible with Koszul’s
sign convention if one thinks of ∪ as an object of degree 1.

3By definition, A[m] is a graded vector space with A[m]n = An+m.
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played here by the wedge product on polyvectors and the Lie bracket is
given by the Schouten–Nijenhuis bracket.

In the examples above, all Axioms (hG1-7) were satisfied in the strong
sense, and not just ‘up to homotopy’. To come up with genuine examples
of hG-algebras, we need to introduce the notions of A∞- and L∞-algebras.
These are defined as follows.

Let V =
⊕

Vn be a Z-graded vector space over k. Denote by C•(V ) the
linear space of the reduced tensor algebra

TV =
∞⊕

n=1

V ⊗n

and let C•(V ) denote the space of homomorphisms Hom(TV, V ). The latter
is known to carry the structure of a graded Lie algebra w.r.t. the Gersten-
haber bracket:

(2.2) [A,B] = A ◦B − (−1)|A||B|B ◦ A ,

where

(2.3) (A ◦B)(a1, a2, . . . , am+n−1)

=

n−1∑

k=0

(−1)|B|(|a1|+···+|ak|)A(a1, . . . , ak, B(ak+1, . . . , ak+m), . . . , am+n−1)

for all homogeneous A ∈ Cn(V ) and B ∈ Cm(V ). Here |A| denotes the
degree of A as a homomorphism of graded vector spaces. It follows from the
definition that [A,A] = 2A ◦ A for every odd A.

Definition 2.5. An A∞-algebra structure on a graded vector space V =
⊕

Vn is given by a Maurer–Cartan element m of the graded Lie algebra
(C•(V ), [ , ]), that is,

(2.4) m ◦m = 0 , |m| = 1 .

The pair (V,m) is called an A∞-algebra.

By definition, each A∞-structure m is given by an (infinite) sum

(2.5) m = m1 +m2 +m3 + . . .

of multi-linear maps mn ∈ Cn(V ) of degree 1. It follows from (2.4) that the
first structure mapm1 : V → V squares to zero; and hence, it makes V into a
cochain complex with differential δ = m1. An A∞-algebra is called minimal
if m1 = 0. The second structure map m2 : V ⊗ V → V defines the multipli-
cation operation a∪b = (−1)|a|−1m2(a, b), which is a cochain transformation
of the complexes, i.e., δ differentiates the cup product by the Leibniz rule.
The product obeys Rel. (2.1) with A(a, b, c) = (−1)|b|−1m3(a, b, c), meaning
associativity up to homotopy. Thus, we arrive at the following statement.
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Proposition 2.6. Let (V,m) be an A∞-algebra with m2 obeying the relation

(2.6) m2(a, b) = −(−1)|a||b|m2(b, a)

for all homogeneous a, b ∈ V . Then V is a hG-algebra with

δa = m1(a) , a ∪ b = (−1)|a|−1m2(a, b) , and [a, b] = 0 .

The skew-symmetry condition (2.6) admits a coherent extension to all
higher structure maps leading to the notion of a C∞-algebra, see e.g. [18],
[19]. Therefore, each C∞-algebra generates an hG-algebra with trivial bracket.

Like A∞-algebras, L∞-algebras can be expressed in terms of n-ary oper-
ations subject to a coherent set of quadratic relations.

Definition 2.7. An L∞-algebra structure on a graded vector space V =
⊕

Vn is given by a sequence of homomorphisms ln : V ⊗n → V , n = 1, 2, . . .,
of degree 1 that are graded symmetric,

ln(a1, . . . , ai, ai+1, . . . , an) = (−1)|ai||ai+1|ln(a1, . . . , ai+1, ai, . . . , an) ,

and satisfy the ‘generalized Jacobi identities’:
∑

i+n=m

∑

σ∈Sh(i,n)

(−1)κln+1(li(aσ(1), . . . , aσ(i)), aσ(i+1), . . . , aσ(i+n)) = 0

for all m = 1, 2, . . . Here (−1)κ is the Koszul sign resulting from permuta-
tions of homogeneous vectors a1, . . . , an ∈ V and the second sum is over all
(i, n)-shuffles, that is, permutations σ ∈ Si+n satisfying σ(k) < σ(k + 1) for
k 6= i.

It follows from the definition that l1 is a differential of degree 1, i.e., l
2
1 = 0.

The second structure map l2 endows V [−1] with the skew-symmetric bracket

[a, b] = (−1)|a|+1l2(a, b), which is differentiated by l1 and obeys the Jacobi
identity up to homotopy. Explicitly,

[[a, b], c] + (−1)(|a|+1)(|b|+|c|)[[b, c], a] + (−1)(|c|+1)(|a|+|b|)[[c, a], b]

= δJ(a, b, c) + J(δa, b, c) + (−1)|a|J(a, δb, c) + (−1)|a|+|b|J(a, b, δc) ,

where δa = l1(a) and J(a, b, c) = (−1)|b|+1l3(a, b, c). As with A∞-algebras,
one can combine all the structure maps {ln} into a single non-homogeneous
map l = l1 + l2 + l3 + · · · ∈ C•(V ) of degree 1.

Proposition 2.8. Every L∞-algebra (V, l) gives G = V [−1] the structure
of an hG-algebra with

δa = l1(a) , [a, b] = (−1)|a|+1l2(a, b) , and a ∪ b = 0

for all a, b ∈ V .

The next theorem states that full symmetrization of an A∞-algebra gives
an L∞-algebra, see e.g. [20, Th. 3.1], [21].
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Theorem 2.9. Every A∞-algebra (V,m) induces an L∞-structure on the
space V with

(2.7) ln(a1, . . . , an) =
∑

σ∈Sn

(−1)κmn(aσ(1), . . . , aσ(n)) ∀n > 0 ,

(−1)κ being the Koszul sign of the permutation σ.

For n = 2, Eq. (2.7) takes the form

(2.8) l2(a, b) = m2(a, b) + (−1)|a||b|m2(b, a) .

Comparing this with Eq. (2.6), we arrive at the following alternatives that
are true for every A∞-algebra (V,m) with m2 6= 0: Either V is an hG-
algebra with a non-trivial cup product and the zero bracket (Prop. 2.6)
or V [−1] is an hG-algebra with a non-trivial bracket and the cup product
identically zero (Prop. 2.8, Eq. (2.8)).

Both the A∞- and L∞-algebras form categories, whose morphisms are
most concisely defined in terms of coderivations, see Sec. 5.

As the last example of hG-algebras we mention, without going into detail,
a homotopy Gerstenhaber algebra on the Hochschild complex of an associa-
tive algebra [22], see Example 3.3 below.

3. Homotopy Cartan Calculus

If (K,∂) is a cochain complex of k-vector spaces, then the space End(K)
has the structure of a dg-algebra w.r.t. the composition of endomorphisms
and the differential ∂̂ defined by

∂̂A = [∂,A] ∀A ∈ End(K) .

Definition 3.1. A homotopy Cartan precalculus over an hG-algebra (G, δ,∪, [ , ])
is a cochain complex of vector spaces (K,∂) together with a pair of k-linear
homomorphisms

(3.1) i : G → End(K) , L : G → End(K)

of degree 1 and 0, respectively, with the following properties:

(hC1) iδa = −∂̂ia,

(hC2) Lδa = ∂̂La,
(hC3) iaib ≃ ia∪b,
(hC4) [La, Lb] ≃ L[a,b],
(hC5) [ia, Lb] ≃ i[a,b],

(hC6) Laib − (−1)|a|iaLb ≃ La∪b

for all a, b ∈ G. The first two conditions say that the maps (3.1) are δ∂̂-
morphisms and L is a cochain transformation.

The name ‘homotopy Cartan precalculus’ comes from a special, albeit
important, example where both the differentials δ and ∂ are zero (no homo-
topy). In that case, the remaining nontrivial Axioms (hC3-6) take the form
of equalities satisfied by the operators of Lie derivative and interior product
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in the algebra of differential forms Λ(M) on a smooth manifold M ; in so do-
ing, G is identified with the Gerstenhaber algebra of polyvector fields V(M)
(Example 2.4), while K−n = Λn(M). One more important ingredient of
the conventional Cartan’s calculus is the exterior differential d, which enters
the ‘Cartan magic formula’. Its natural extension to the ‘up-to-homotopy’
setting leads us to the following definition.

Definition 3.2. A homotopy Cartan precalculus is called calculus, if there
exists an operator d : K → K of degree −1 such that

(hC7) d∂ = −∂d ,
(hC8) d2 ≃ 0,
(hC9) dia + (−1)|a|iad ≃ −La.

Axiom (hC7) says that d is a ∂-morphism of K. Together Axioms (hC7-9)
and (hC1) give one more familiar relation

(3.2) dLa − (−1)|a|Lad ≃ 0 .

As a result, all the maps i, L, and d pass through δ- and ∂̂-cohomology,
inducing the conventional Cartan’s calculus relations in H(End(K)) for the
Gerstenhaber algebra H(G).

In the sequel, we abbreviate ‘homotopy Cartan (pre)calculus’ to hC-
(pre)calculus.

Example 3.3. Let A be a graded associative algebra and let V = A[1].
The spaces C•(V ) and C•(V ) are identified, respectively, with the spaces of
Hochschild chains and cochains of the algebra A with coefficients in itself.
The corresponding Hochschild differentials are given by

(δD)(a0, . . . , an)

= (−1)|D|+ā0+···+ān−1D(a0, . . . , an−1)an + (−1)(|D|+1)ā0a0D(a1, . . . , an)

−

n−1∑

i=0

(−1)|D|+ā0+···+āiD(a0, . . . , ai−1, aiai+1, ai+2, . . . , an)

for all D ∈ Cn(V ) and
∂(a0 ⊗ a1 ⊗ · · · ⊗ an)

= (−1)ān(ā0+···+ān+1)ana0 ⊗ a1 ⊗ · · · ⊗ an−1

+
n−1∑

i=0

(−1)ā0+···+āia0 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ an .

Here ā = |a| − 1 is the degree of a ∈ A as an element of V = A[1]. Notice
that δD = [m2,D], where m2(a, b) = (−1)āab.

As was first observed in [17], the cochain complex C•(V ) carries the struc-
ture of an hG-algebra for the Gerstenhaber bracket (2.2) and the cup product

(D ∪E)(a1, . . . , ak+l)

= (−1)(|E|+1)(ā1+···+āk)D(a1, . . . , ak)E(ak+1, . . . , ak+l)
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for all D ∈ Ck(V ) and E ∈ C l(V ).
Natural action of Hochschild cochains on chains gives rise to an hC-

precalculus with

(3.3) iD(a0 ⊗ · · · ⊗ an)

= (−1)(ā0+···+ān)(ān−k+1+···+ān)+|D|−1D(an−k+1, . . . , an)a0 ⊗ a1 ⊗ · · · ⊗ an−k

and

(3.4) LE(a0 ⊗ · · · ⊗ an)

=

n−k∑

i=0

(−1)|E|(ā0+···+āi)a0 ⊗ · · · ⊗ ai ⊗ E(ai+1, . . . , ai+k)⊗ ai+k+1 ⊗ · · · ⊗ an

+

n∑

i=n−k

(−1)(ā0+···+ān+1)(āi+1+···+ān)E(ai+1, . . . , an, a0, . . . , ai+k−n−1)

⊗ai+k−n ⊗ · · · ⊗ ai

for all D,E ∈ Ck(V ). Direct verification shows that the operators (3.3) and
(3.4) obey Axioms (hC3,4) with strict equalities.

For a unital algebra A, one can also define the normalized Hochschild
complexes C̄•(V ) and C̄•(V ) together with the Connes–Rinehart boundary
operator

(3.5)

B(a0 ⊗ · · · ⊗ an)

=

n∑

i=0

(−1)(ā0+···+āi)(āi+1+···+ān)e⊗ ai+1 ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ ai .

Here e is the unit of A, a0 ∈ A, and a1, . . . , an ∈ Ā = A/ke. This makes the
above hC-precalculus into an hC-calculus with differential d = B. Notice
that d2 = 0 and the l.h.s. of Rel. (3.2) vanishes in the usual sense. For more
detail, see [12], [23], [24, Sec. 3].

4. hG-algebra structure and hC-calculus on the Hochschild
complex of an A∞-algebra

In this section, we extend Example 3.3 to an arbitrary A∞-algebra (V,m).
First of all, the Gerstenhaber bracket (2.2) makes C•(V ) into a dg-Lie alge-
bra with the differential given by the adjoint action of m, i.e., δA = [m,A].
To define a cup product on C•(V ), we need the construction of braces [25],
[13], [22].

Definition 4.1. For homogeneous elements A,A1, . . . , Am ∈ C•(V ) and
a1, . . . , an ∈ V , define the braces A{A1, . . . , Am} ∈ C•(V ) by the formula

A{A1, . . . , Am}(a1, . . . , an)

=
∑

0≤k1≤···≤km≤n

(−1)κA(a1, . . . , ak1 , A1(ak1+1, . . .),

. . . , akm , Am(akm+1, . . .), . . . , an) ,
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where κ =
∑m

i=1 |Ai|
∑ki

j=1 |aj |. It is assumed that A{∅} = A.

It follows from the definition that A{A1} = A ◦A1 and one may think of
the braces as a generalization of the composition product (2.3). The braces
obey the higher pre-Jacobi identities [22]:

(4.1)

A{A1, . . . , Am}{B1, . . . , Bn}

=
∑

AB-shuffles

(−1)κA{B1, . . . , Bk1 , A1{Bk1+1, . . .},

. . . , Bkm , Am{Bkm+1, . . .}, . . . , Bn} ,

where κ =
∑m

i=1 |Ai|
∑ki

j=1 |Bj|. Here summation is over all shuffles of the

A’s and B’s (i.e., the order of elements in either group is preserved under
permutations) and the case of empty braces Ak{∅} is not excluded.

In [13], Getzler shows that every A∞-structure m on V induces an A∞-
structure M on C•(V ). The latter is given by

(4.2)

M0(∅) = 0 ,

M1(A) = m ◦ A− (−1)|A|A ◦m,

Mk(A1, . . . , Ak) = m{A1, . . . , Ak} , k > 1 .

Indeed, applying (4.1) one finds

(4.3) (M ◦M)(A1, . . . , An) = (m ◦m){A1, . . . , An} = 0 .

Notice that

(4.4) δA = [m,A] = M1(A) .

Proposition 4.2. The dg-Lie algebra (C•(V ), δ, [ , ]) is an hG-algebra for
the cup product

(4.5) A ∪B = (−1)|A|−1M2(A,B) .

Proof. By the definition of an A∞-structure,

(4.6) M1 ◦M1 = 0 , [M1,M2] = 0 , M2 ◦M2 = −[M1,M3] .

The first relation identifies the operator (4.4) as differential, i.e., δ2 = 0.
Then the second equality amounts to Axiom (hG1) of Definition 2.1. Axiom
(hG3) – associativity up to homotopy – is equivalent to the third relation.
The commutativity up to homotopy (hG4) follows from the identity

M2(A,B) + (−1)|A||B|M2(B,A)

= −M1(A ◦B) +M1(A) ◦B + (−1)|A|A ◦M1(B) ,
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which is a consequence of the pre-Jacobi identities (4.1). The same pre-
Jacobi identities lead to the equality

[A,M2(B,C)]− (−1)|A|M2([A,B], C)− (−1)|A|(|B|+1)M2(B, [A,C])

= (−1)|A|
(

M1(A{B,C})−M1(A){B,C}

−(−1)|A|A{M1(B), C} − (−1)|A|+|B|A{B,M1(C)}
)

,

which is equivalent to Axiom (hG7). �

Now we would like to equip the hG-algebra above with an hC-calculus
following the pattern of Example 3.3. To this end, let us consider the
graded associative algebra of endomorphisms of C•(V ) as an A∞-algebra
End(C•(V ))[1].

Theorem 4.3 ([13]). There is a morphism from the A∞-algebra (C•(V ),M)
to End(C•(V ))[1].

By definition, the morphism in question is given by a map

I : TC•(V ) → End(C•(V ))[1]

obeying the sequence of relations

n∑

k=0

(−1)|A1|+···+|Ak|I(A1, . . . , Ak)I(Ak+1, . . . , An) = −(I ◦M)(A1, . . . , An) .

For n = 0, 1, 2 we get

I(∅)I(∅) = 0 , [I(∅), I(A)] = −I(M1(A)) ,

[I(∅), I(A,B)] + (−1)|A|I(A)I(B)

= −I(M1(A), B) − (−1)|A|I(A,M1(B))− I(M2(A,B)) .

Hence we will satisfy Axiom (hC3) of Definition 3.1, if set

∂ = I(∅) , iA = I(A) .

Here is an explicit expression for the morphism I:

(4.7) I(∅)(a0, . . . , an)

=

∞∑

l=1

n∑

j=n−l+1

(−1)(|a0|+···+|aj |)(|aj+1|+···+|an|)(ml(aj+1, . . . , an, a0, . . .), . . . , aj)

+

∞∑

l=1

n−l∑

j=0

(−1)|a0|+···+|aj |(a0, . . . ,ml(aj+1, . . . , aj+l), . . . , an)

(a0 is inside ml in the first double sum) and

(4.8) I(A1, . . . , Ak)(a0, . . . , an)
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=
∞∑

l=k+1

∑

j0,...,jk

(−1)(|a0|+···+|aj0 |)(|aj0+1|+···+|an|)+
∑k

i=1 |Ai|(|a0|+···+|aji |)

×(ml(aj0+1, . . . , A1(aj1+1, . . .), . . . , Ak(ajk+1, . . .), . . . , an, a0, . . .), . . . , aj0)

for k > 0. The sum is taken over all possible values of j0, . . . , jk such that
a0 is to the right of Ak and both are inside ml. Hereinafter we denote by
(a0, . . . , an) the chain a0 ⊗ · · · ⊗ an of Cn(V ).

In order to define the Lie derivative operation, consider the map

L : TC•(V ) → End(C•(V ))

given by

(4.9) L(A1, . . . , Ak)(a0, . . . , an) =
∑

j1,...,jk

(−1)
∑k

i=1 |Ai|(|a0|+···+|aji |)

×(a0, . . . , A1(aj1+1, . . .), . . . , Ak(ajk+1, . . .), . . . , an)

+
k∑

i=1

∑

j1,...,jk

(−1)(|A2|+···+|Ai|)(|Ai+1|+···+|Ak|)+(|a0|+···+|aj1 |)(|aj1+1|+···+|an|)

×(−1)
∑i

l=2 |Al|(|a0|+···+|ajl |+|aj1+1|+···+|an|)+
∑k

l=i+1 |Al|(|aj1+1|+···+|ajl |)

×(A1(aj1+1, . . . , Ai+1(aj1+1, . . .), . . . , Ak(ajk+1, . . .), . . . , a0, . . .),

. . . , A2(. . .), . . . , Ai(. . .), . . . , aj1) .

Summation is taken over all possible values j1, . . . , jk subject to the following
condition: in the first single sum a0 is to the left of A1, while in the second
double sum a0 is inside A1 and to the right of Ak. For a single cochain
A ∈ Cp(V ), Eq. (4.9) simplifies to

L(A)(a0, . . . , an) =

n−p
∑

j=0

(−1)|A|(|a0|+···+|aj |)(a0, . . . , A(aj+1, . . . , aj+p), . . . , an)

+
n∑

j=n−p+1

(−1)(|a0|+···+|aj |)(|aj+1|+···+|an|)(A(aj+1, . . . , a0, . . . , aj+p−n−1), . . . , aj).

Comparing the last expression with (4.7), we conclude that ∂ = L(m).
In [13], Getzler proved the following identity for I and L:

(4.10) L ◦M = IL− LI

Explicitly,

∞∑

k=1

n−k∑

j=0

(−1)|A1|+···+|Aj |I(A1, . . . , Aj ,Mk(Aj+1, . . . Aj+k), . . . , An)

=

n−1∑

j=0

I(A1, . . . , Aj)L(Aj+1, . . . , An)



12 ALEXEY A. SHARAPOV AND EVGENY D. SKVORTSOV

−
n∑

j=1

(−1)|A1|+···+|Aj |L(A1, . . . , Aj)I(Aj+1, . . . , An)

for n = 1, 2, . . . In particular,

I(∅)L(A) − (−1)|A|L(A)I(∅) = L(M1(A))

and
I(A)L(B)− (−1)|A|L(A)I(B) + [I(∅), L(A,B)]

= L(M1(A), B) + (−1)|A|L(A,M1(B)) + L(M2(A,B)) .

Therefore, we can satisfy Axioms (hC2) and (hC6) by setting LA = L(A).
The remaining two Axioms (hC4) and (hC5) can now be verified directly. As
shown in [13, Lem. 2.3], the assignment A 7→ LA defines a homomorphism
of graded Lie algebras, that is,

(4.11) [LA, LB ] = L[A,B] .

Axiom (hC5) can be written as

(−1)|A|[LA, iB ] = i[A,B] + ∂̂T (A,B)− T (δA,B) − (−1)|A|T (A, δB) ,

or equivalently,

(4.12) iBLA − (−1)|A|(|B|+1)LAiB = i[B,A]

+(−1)|A||B|
(

T (δA,B)+(−1)|A|T (A, δB)−∂T (A,B)+(−1)|A|+|B|T (A,B)∂
)

,

where the Gel’fand–Daletskii–Tsygan homotopy T (A,B) is given by

(4.13) T (A,B)(a0, . . . , an)

=
∑

j,i

(−1)κ(A(aj+1, . . . , B(ai+1, . . . , aq+1), . . . , a0, . . .), . . . , aj) .

Here (−1)κ is the standard Koszul sign and the sum is taken over all i and
j such that a0 is inside A but to the right of B. (As above, all permutations
preserve the cyclic order of a’s.) In a slightly different notation an explicit
expression for T (A,B) was given in [13] and [24, Ex. 3.13]; in the former
paper it is denoted by ρ.

The above operations of Lie derivative LA and contraction iA can further
be supplemented with a differential d to give an example of hC-calculus. To
this end, one adds a new element e of degree −1 and defines the augmented
vector space Ṽ = V ⊕ ke. The A∞-structure m extends to Ṽ by setting

m2(e, a) = (−1)|a|m2(a, e) = a , m2(e, e) = e , mk(. . . , e, . . .) = 0

for all k 6= 2 and a ∈ V . The space C̄n(V ) of normalized Hochschild n-

chains is spanned by the tensor products a0 ⊗ a1 ⊗ · · · ⊗ an, where a0 ∈ Ṽ
and a1, . . . , an ∈ V . The differential d, being independent of a particular
A∞-structure on V , is given by the Connes–Rinehart operator (3.5). Since
the symbol d is usually overloaded, we will denote this differential by B,
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which is more standard in the case of C̄•(V ). Axioms (hC8,9) of Definition
3.2 take now the form

B2 = 0 , [B, iA] = −LA − ∂̂SA − SδA ,

where

SA(a0, . . . , an) =
∑

j≤i

(−1)κ(e, aj+1, . . . , A(ai+1, . . . , ai+p), . . . , a0, . . . , aj)

and the Koszul sign is given by

κ = (|a0|+ · · ·+ |aj |)(|aj+1|+ · · ·+ |an|) + |A|(|aj+1|+ · · ·+ |ai|) .

The sum is taken over all cyclic permutations of a’s such that a0 appears to
the right of A ∈ Cp(V ).

5. Coderivations vs. Lie derivatives

Recall that, in addition to the associative algebra structure, the space
C•(V ) = TV carries the structure of a coassociative coalgebra with respect
to the (reduced) coproduct ∆ : TV → TV ⊗ TV ,

∆(a1 ⊗ · · · ⊗ an) =

n−1∑

i=1

(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ an) .

Coassociativity is expressed by the relation (1⊗∆)∆ = (∆⊗ 1)∆.
A linear map D : TV → TV is a coderivation, if it obeys the co-Leibniz

rule

∆D = (D ⊗ 1 + 1⊗D)∆ .

The space of coderivations is known to be isomorphic to the space C•(V ) =
Hom(TV, V ), so that any homomorphism A : TV → V induces a coderiva-
tion DA : TV → TV and vice versa: if A ∈ Cm(V ), then

DA(a1 ⊗ · · · ⊗ an) =

n−m+1∑

i=1

(−1)|A|(|a1|+···+|ai−1|)a1 ⊗ · · · ⊗ ai−1

⊗A(ai ⊗ · · · ⊗ ai+m−1)⊗ ai+m ⊗ · · · ⊗ an

for n ≥ m and zero otherwise. This allows one to interpret the Gerstenhaber
bracket (2.2) as the commutator of two coderivations. More precisely, the
assignment A 7→ DA defines a homomorphism from the Lie algebra C•(V )
for the Gerstenhaber bracket (2.2) to the Lie algebra of coderivations:

(5.1) [DA,DB ] = D[A,B] ∀A,B ∈ C•(V ) .

Thus, we have two representations of the graded Lie algebra (C•(V ), [ , ])
in the space C•(V ): by Lie derivatives (4.11) and by coderivations (5.1).
Neither representation is irreducible. To describe invariant subspaces, we
introduce the generator λ of cyclic permutations,

λ(a0 ⊗ a1 ⊗ · · · ⊗ an) = (−1)|a0|(|a1|+···+|an|)(a1 ⊗ · · · ⊗ an ⊗ a0) ,
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and let N = 1 + λ + λ2 + · · · + λn denote the associated norm map. Since
λn+1 = 1, we have N(1 − λ) = (1 − λ)N = 0 on Cn(V ). The operators N
and 1−λ intertwine the L- and D-representations of the Lie algebra C•(V ),
that is,

(5.2) NLA = DAN , LA(1− λ) = (1− λ)DA ∀A ∈ C•(V ) .

It follows from these relations that the subspace Im(1−λ) = kerN ⊂ C•(V )
is invariant under the action of LA, while ImN = ker(1− λ) ⊂ C•(V ) is an
invariant subspace for DA.

If (V,m) is an A∞-algebra, then the coderivation Dm squares to zero
and makes the coassociative coalgebra (TV,∆) into a codifferential coal-
gebra (TV,∆,Dm). This allows one to define morphisms of A∞-algebras
(V,m) and (V ′,m′) as homomorphisms h : TV → TV ′ of the corresponding
codifferential coalgebras.

The same language of coderivations applies to L∞-algebras and their mor-
phisms [26]. This time one starts with the symmetric algebra SV of a graded
space V . This is a subcoalgebra SV ⊂ TV spanned by symmetric tensors.
Upon restriction to SV one gets the coproduct

∆(a1∨· · ·∨an) =
n−1∑

i=1

∑

σ∈Sh(i,n−i)

(−1)κ(aσ(1)∨· · ·∨aσ(i))⊗(aσ(i+1)∨· · ·∨aσ(n)).

An L∞-structure on V can now be defined as a coderivation of (SV,∆)
that has degree one and squares to zero. Again, it is easy to see that each
coderivation D of (SV,∆) (and hence, L∞-structure) defines and is defined
by some element of Hom(SV, V ). Explicitly,

DA(a1 ∨ · · · ∨ an) =
∑

σ∈Sh(i,n−i)

(−1)κA(aσ(1) ∨ · · · ∨ aσ(i)) ∨ aσ(i+1) · · · ∨ aσ(n)

for all A ∈ Hom(SiV, V ). The generalized Jacobi identities of Definition 2.7
are equivalent to the condition D2

l = 0. Thus, there is a one-to-one corre-
spondence between L∞-structures on V and codifferentials on the coalgebra
(SV,∆). This makes possible to define the morphisms of L∞-algebras as the
homomorphisms of the corresponding codifferential coalgebras (SV,∆,Dl).
Theorem 2.9 provides then a functor from the category of A∞-algebras to
the category of L∞-algebras, the symmetrization map.

For every A∞-algebra (V,m) the operator of Lie derivative ∂ = Lm makes
the space C•(V ) into a complex, which we denote by C•(V,m). The complex
C•(V,m) is known as the Hochschild chain complex of the A∞-algebra (V,m)
with coefficients in itself. We let denote its homology groups by HH•(V,m).
For general definitions of A∞-(bi)modules and A∞-(co)homology we refer
the reader to [27], [28, Sec. 3], [19]. It follows from the second relation in
(5.2) that the subspace Im(1 − λ) ⊂ C•(V ) is a subcomplex of C•(V,m).
One may regard the corresponding quotient complex

Cλ
• (V,m) = C•(V,m)/Im(1− λ)



INNER DEFORMATIONS OF A∞-ALGEBRAS 15

as an A∞ generalization of the cyclic chain complex of an associative algebra
[29]. Its homology will be denoted by HCλ

• (V,m). Passing to the dual space
C•(V )∗, one can also define the corresponding cochain complexes C•(V,m)
and C•

λ(V,m) of an A∞-algebra (V,m). The latter consists of cochains
S : TV → k that obey the cyclicity condition S(1 − λ) = 0. We denote
the cohomology groups of these complexes by HH•(V,m) and HC•

λ(V,m),
respectively.

Remark 5.1. A word about terminology. In the above notation for the
(co)chain complexes and their (co)homology groups, we use the label • just
to distinguish between the spaces TV and Hom(TV, k), i.e., the Hochschild
chains and cochains. The usual simplicial degree associated with the number
of factors in tensor products a0⊗· · ·⊗an is not essential for our considerations
as the differential ∂ is not generally homogeneous relative to it. Since |∂| = 1,
all the aforementioned complexes are cochain complexes with respect to the
Z-degree, though this is not indicated in their notation explicitly. However,
as in the case of associative algebras, we still call the elements of C•(V,m)
chains (cycles) and the elements of C•(V,m) cochains (cocycles).

In much the same way one can define the (co)homology theory for L∞-
algebras with various coefficients. In particular, the complex (SV,Dl) above
computes the homology of an L∞-algebra with trivial coefficients. For fur-
ther references, we also introduce the corresponding cochain complex (SV )∗

and denote its cohomology groups by H•(V, l). A detailed discussion of
L∞-modules and L∞-(co)homology can be found in [20], [30].

6. Families of A∞-algebras and their inner deformations

Let (V,m) be formal n-parameter deformation of an A∞-algebra (V,m0),
that is, an A∞-structure m is given by a Maurer–Cartan element m ∈
C•(V )[[t1, . . . , tn]] such that m|t=0 = m0. For more generality we allow the
deformation parameters ti to carry even Z-degrees. We will refer to (V,m)
as a family of A∞-algebras. According to Proposition 4.2, the family (V,m)
gives rise to the family of hG-algebras Gt =

(
C•(V )[[t1, . . . , tn]], δ, [ , ],∪

)
.

Let us denote

m(i1i2···ik) =
∂km

∂ti1∂ti2 · · · ∂tik
∈ C•(V )[[t1, . . . , tn]] .

It is clear that |m(i1i2···ik)| = 1− |ti1 | − . . .− |tik |. We will also use this
notation for partial derivatives of other cochains. Differentiating the defining
relation m ◦m = 0 w.r.t. the parameters, we get

(6.1) [m,m(i)] = δm(i) = 0 .

Hence, m(i) is a δ-cocycle representing a cohomology class of H1−|ti|(Gt).
As discussed in Sec. 2, the bracket and the cup product pass through the
cohomology and make the graded spaceH•(Gt) into a Gerstenhaber algebra.
Let I =

⊕
Ip denote the subalgebra of Gt generated by the cocycles m(i).
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Passing to the δ-cohomology, we also define the subalgebra H•(I) of the
Gerstenhaber algebra H•(Gt).

Proposition 6.1. The Gerstenhaber bracket on Gt induces the trivial Lie
bracket on H•(I).

Proof. Differentiating identity (6.1) once again, we get

(6.2) − [m(i),m(j)] = [m,m(ij)] = δm(ij) .

Hence, the bracket [m(i),m(j)] is a δ-coboundary. By Axiom (hG7) this
conclusion extends to arbitrary cup products of m(i)’s.

�

Thus, the algebra H•(I) is generated by cup products of the partial
derivatives m(i), so that the general element of H•(I) is represented by
the cup polynomial

(6.3) Ψ =

L∑

l=0

cj1···jlm(j1) ∪m(j2) ∪ · · · ∪m(jl) ,

where cj1···jl ∈ k[[t1, . . . , tn]]. Since all t’s are supposed to be even, the
graded associative algebra H•(I)[−1] is commutative in the usual sense and
we may assume the coefficients cj1···jl to be fully symmetric in permutations
of indices. It should be borne in mind that the family of A∞-structures m
enters the polynomial (6.3) both through the partial derivatives m(j) and
through the cup products.

Theorem 6.2 ([11]). Let m ∈ C•(V )[[t1, . . . , tn]] be an n-parameter fam-
ily of A∞-structures and let Ψ be a cocycle representing an element of
Ip. Then one can define an (n + 1)-parameter family of A∞-structures
m̃ ∈ C•(V )[[t0, t1, . . . , tn]] as a unique formal solution to the differential
equation

(6.4) m̃(0) = Ψ[m̃]

subject to the initial condition m̃|t0=0 = m. Here the new formal parameter
t0 has degree 1− p.

Proof. 4 Suppose the cocycle Ψ is given by a polynomial of the form (6.3).
For definiteness we assume that all cup products in Ψ are performed from
right to left. Clearly, Eq.(6.4) has a unique formal solution that starts as

m̃(t0) = m+ t0Ψ[m] +O(t20) .

Writing identity (4.3) for m = m̃, A1 = m̃(j), and A2 = A we get

(6.5) [m̃, m̃(j) ∪A] = (m̃ ◦ m̃)(j) ∪A+ m̃(j) ∪ [m̃,A] + (m̃ ◦ m̃){m̃(j), A} .

4We provide the proof because that in [11] contains an unfortunate misprint.
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Here we also used the definition (4.5). On the other hand, differentiating
the cochain m̃ ◦ m̃ w.r.t. t0 we obtain

(m̃ ◦ m̃)(0) = [m̃, m̃(0)] = [m̃,Ψ[m̃]] .

Repeated use of identity (6.5) allows us to bring the last equality into the
form

(m̃ ◦ m̃)(0) =
L∑

l=0

cj1···jl

[
l∑

k=1

m̃(j1) ∪ · · · ∪ (m̃ ◦ m̃)(jk) ∪ · · · ∪ m̃(jl)

+(m̃ ◦ m̃){m̃(j1), m̃(j2) ∪ · · · ∪ m̃jl}

+

l−2∑

k=1

m̃(j1) ∪ · · · ∪ m̃(jk) ∪ (m̃ ◦ m̃){m̃(jk+1), m̃(jk+2) ∪ · · · ∪ m̃(jl)}

]

.

(Cup multiplication is performed from right to left.) We see that m̃ ◦ m̃
satisfies a linear differential equation. With account of the initial condition
m̃ ◦ m̃|t0=0 = m ◦ m = 0 this means m̃ ◦ m̃ = 0. Hence, m̃ defines an
(n+ 1)-parameter family of A∞-structures.

�

We call the deformations of Theorem 6.2 the inner deformations of fami-
lies of A∞-algebras. Each inner deformation of an A∞-algebra defines then
a deformation of the associated hG-algebra Gt.

Remark 6.3. As a small interlude let us explain in more detail some physical
motivations for the constructions discussed above and below. Consider a
collection of form-fields ΦA of various degrees living on a space-time manifold
M . Regarding these forms as dynamical fields, we can impose on them the
equations of motion

(6.6) dΦA =
∑

n≥2

lAA1···A2
ΦA1 ∧ . . . ∧ ΦAn ,

d being the exterior differential. Formal integrability of the field equations
(stemming from d2 = 0) requires the l’s to be structure constants of some
minimal L∞-algebra on the graded vector space dual to the space of form-
fields ΦA. It is not hard to see that every system of PDE can be brought to
the form (6.6) for a suitable (perhaps infinite) collection of form-fields ΦA.
Since the L∞-algebra is minimal, system (6.6) admits a consistent trunca-
tion setting lAA1···An

= 0 for all n > 2. The resulting theory is completely

determined by a graded Lie algebra L with structure constants lAA1A2
. In

physical terms, one may view the truncated system as a free field theory,
regarding all the higher terms in r.h.s. of (6.6) as interaction. Usually, the
Lie algebra L, being determined by fundamental symmetries of the theory,
is known in advance. Furthermore, in many interesting cases it comes from
the commutator of an associative algebra A. The main problem is then
to reconstruct all higher structure constants associated with the interaction
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vertices in (6.6). From the algebraic viewpoint, this amounts to deformation
of the Lie algebra L to a minimal L∞-algebra by adding a coherent set of
higher multi-brackets. One can also do this at the level of A∞-algebras: first
deform A to a minimal A∞-algebra and then apply the symmetrization map
(2.7). It is significant that even at the free level the field equations may
depend on some free parameters like masses of particles, mixing angles, etc.
The machinery of inner deformations suggests then a systematic way to con-
vert this dependence into higher structure maps of a minimal A∞-algebra,
that is, into interaction vertices.

Given a system of PDE, one can wounder about its characteristic cohomol-
ogy [31, 32]. Under certain assumptions [33] the characteristic cohomology
of (6.6) is generated by on-shell closed differential forms

(6.7) J =
∑

n

JA1···AnΦ
A1 ∧ . . . ∧ΦAn ,

meaning that dJ = 0 whenever ΦA satisfy the equations of motion (6.6).
In case deg J = dimM − 1, the form J defines a usual conserved current,
whose integral over a closed hypersurface in M gives a conserved charge; the
forms (6.7) of degree less than dimM − 1 define the so-called lower-degree
conservation laws, see e.g. [34, 35]. One may check that the form (6.7) is
on-shell closed iff its structure constants JA1···An define and are defined by
a cocycle of L∞-algebra cohomology with trivial coefficients. If the L∞-
algebra was obtained by an inner deformation of a graded Lie algebra L (or
the underlying associative algebra A), one can try to extend this deformation
to L∞-cohomology (resp. A∞-cohomology). It is this problem that we
address in the rest of this paper.

7. Inner deformations of Hochschild (co)cocycles

In this section, we show that all inner deformations of A∞-algebras are
accompanied by deformations of their Hochschild (co)cycles. Let us start
with some auxiliary identities. Repeated application of Axioms (hC1-6)
gives

Lm(j1)
∪···∪m(jn)

≃ Lm(j1)
im(j2)

∪···∪m(jn)
+ im(j1)

Lm(j2)
∪···∪m(jn)

≃
n∑

k=1

im(j1)
· · · im(jk−1)

Lm(jk)
im(jk+1)

· · · im(jn)

≃

n∑

k=1

(

im(j1)
· · · im(jk−1)

im(jk+1)
Lm(jk)

im(jk+2)
· · · im(jn)

−im(j1)
· · · im(jk−1)

i[m(jk),m(jk+1)
]im(jk+2)

· · · im(jn)

)

≃
n∑

k=1

(

im(j1)
· · · im(jk−1)

im(jk+1)
· · · im(jn)

Lm(jk)
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−

n−k∑

l=1

[Lm, im(j1)
· · · im(jk−1)

im(jk+1)
· · · im(jk+l−1)

im(jk,jk+l)
im(jk+l+1)

· · · im(jn)
]
)

.

Here we also used Eq. (6.2). Replacing the monomial m(j1) ∪ · · · ∪ m(jn)

above with a general cup polynomial (6.3) and restoring the strict equality
sign, we can write

(7.1) LΨ = [Lm,W ] +
n∑

j=1

V jLm(j)

for some W = W [m] ∈ C•(V )[[t1, . . . , tn]] and
5

V j =

L∑

l=1

lcj1...jl−1jim(j1)
· · · im(jl−1)

.

It is important that [Lm, V j ] = 0.
Suppose now that deformation generated by the flow (6.4) extends to

deformation of the corresponding Hochschild cycles, that is, for every cycle
α ∈ C•(V,m) there exists a cycle α̃ ∈ C•(V, m̃) such that α̃|t0=0 = α.

Differentiating the boundary ∂̃α̃ = Lm̃α̃ w.r.t. t0 we get

(∂̃α̃)(0) = (Lm̃α̃)(0) = Lm̃(0)
α̃+ Lm̃α̃(0) = LΨα̃+ Lm̃α̃(0) ,

where Ψ = Ψ[m̃]. With account of (7.1) this is equivalent to

(7.2) (∂̃α̃)(0) = Lm̃Wα̃+WLm̃α̃+

n∑

j=1

V jLm(j)
α̃+ Lm̃α̃(0)

for some W = W [m̃]. The r.h.s of this equality suggests to impose the
following differential equation on α̃:

(7.3) α̃(0) =
n∑

j=1

V jα̃(j) −Wα̃ .

Then Eq. (7.2) takes the form

(7.4) (∂̃α̃)(0) = W (∂̃α̃) +

n∑

j=1

V j(∂̃α̃)(j) .

We see that once a chain α̃ satisfies Eq. (7.3), its boundary ∂̃α̃ obeys the

linear homogeneous equation (7.4). For the zero initial condition ∂̃α̃|t0=0 =
∂α = 0, this means that α̃, being uniquely defined by Eq. (7.3), is a cycle
of C•(V, m̃). We thus arrive at the main result of this paper.

Theorem 7.1. Let m̃ be an inner deformation of a family of A∞-structures
m. Then each Hochschild cycle α of C•(V,m) deforms to a cycle α̃ of
C•(V, m̃).

5Recall that cj1 ...jl are symmetric in upper indices.
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This means stability of Hochcshild (co)homology under inner deforma-
tions of A∞-algebras. Let us write down a more explicit formula for the
flow (7.3) in a special case of quadratic deformation flow (6.4), namely,

(7.5) m̃(0) = m̃(1) ∪ m̃(2) ,

m̃(0, t1, t2) = m(t1, t2) being a two-parameter family of A∞-structures. The
associated flow (7.3) on chains takes then the form

α̃(0) = im̃(1)
α̃(2) + im̃(2)

α̃(1) +
(
im̃(1,2)

+ T (m̃(1), m̃(2))− L(m̃(1), m̃(2))
)
α̃,

where the endomorphisms L and T are defined by Eqs. (4.9) and (4.13).
Since I consists of δ-cocycles, each Ψ ∈ I generates an endomorphism of

the k[[t1, . . . , tn]]-vector space HH•(m,V ). At the level of chains, the endo-
morphism is defined by the assignment α 7→ iΨα for all α ∈ C•(V,m). This
makes the space of Hochschild homology into a module over the commuta-
tive algebra H•(I)[−1]. Generally, the algebra H•(I)[−1] is not free, and
the δ-cohomology classes of some polynomials (6.3) may vanish identically,
thereby defining relations in H•(I)[−1].

Theorem 7.2. Every relation [Ψ] = 0 in H•(I)[−1] gives rise to an endo-
morphism hΨ of the space HH•(V,m) .

Proof. If the polynomial (6.3) defines a relation, then Ψ = δU for some
U ∈ C•(V )[[t1, . . . , tn]]. Let α be a cycle of C•(V,m). By (4.11) and (7.1)

0 = LΨ−δUα = LΨα− [Lm, LU ]α

= [Lm,W − LU ]α+
n∑

j=1

V jLm(j)
α

= Lm

(

Wα− LUα−

n∑

j=1

V jα(j)

)

.

Hence, the expression in the round brackets is a cycle and we can define the
desired endomorphism hΨ by the formula

hΨ[α] =
[

Wα− LUα−

n∑

j=1

V jα(j)

]

.

�

Thus, the algebraH(I)[−1] gives rise to a set of operations onHH•(V,m),
both through the action of its generators and through relations among them.

Theorems 7.1 and 7.2 have obvious counterparts for the cochain complex
C•(V,m). In particular, if S is a cocycle of C•(V,m) and the inner deforma-
tion is generated by the quadratic flow (7.5), then the flow (7.3) is replaced
with the following one:

S̃(0) = S̃(1)im(2)
+ S(2)im(1)

+ S̃
(
im(1,2)

+ L(m(1),m(2)) + T (m(2),m(1))
)
.

It is easy to see that S̃∂̃ = 0 whenever S∂ = 0.
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8. An application to dg-algebras

By way of illustration, let us apply the above machinery of inner deforma-
tions to the case of dg-algebras. Recall that a dg-algebra is given by a triple
(A, ·, d), where A =

⊕
An is a Z-graded vector space over k endowed with

an associative dot product and a differential d : An → An−1. We also as-
sume the dg-algebra A to enjoy a closed trace, i.e., a linear map Tr : A → k
obeying the two conditions

(8.1) Tr(ab) = (−1)|a||b|Tr(ba) , Tr(da) = 0 .

For our purposes, it is convenient to regard the graded space V = A[1] as an

A∞-algebra with m = m2, where m2(a, b) = (−1)|a|−1ab. (There is no way
to include d into the A∞-structure m, as it has degree −1; notice, however,
that [m,d] = 0.) Extending the trace functional from A to the whole tensor
algebra TA by zero, we can write Rels. (8.1) as TrLm = 0 and TrLd = 0.
Define the sequence of multi-linear maps on V by setting

S0 = Tr , Sk+1 = Skid , k = 0, 1, 2, . . . ,

or, more explicitly,

(8.2) Sk(a0, a1, . . . , ak) = Tr(a0da1 · · · dak) .

We claim that all Sk’s are cocycles of the Hochschild complex C•(V,m).
Indeed,

Sk∂ = Tr(id)
k∂ = TrLm(id)

k = 0 .

Here we used (hC1). A more familiar form of the cocycle condition above is

(8.3)

k∑

j=0

(−1)ā0+···+ājSk(a0, . . . , ajaj+1, . . . , ak+1)

+(−1)āk+1(ā0+···+āk+1)Sk(ak+1a0, a1, . . . , ak) = 0 ,

where ā = |a| − 1 is the degree of a as an element of V = A[1]. Using the
explicit expression (8.2), one can easily verify the cyclicity property

(8.4) Sk(a0, a1, . . . , ak) = (−1)ā0(ā1+···+āk)Sk(a1, . . . , ak, a0) .

Together Rels. (8.3) and (8.4) identify Sk as a cyclic cocycle representing a
class of HCk

λ(A).
Suppose now that the dg-algebra A admits a formal deformation At =

A[[t]], the parameter t being of degree zero. It is known that neither cyclic
nor Hochschild (co)homology is homotopy invariant. Nevertheless, we as-
sume that the trace (8.1), representing a class of HC0

λ(A) = HH0(A),
survives deformation, so that the cyclic cocycles (8.2) make sense for the
deformed dg-algebra At as well.

The results of the previous section suggest that a kind of homotopy invari-
ance does take place for the Hochschild (co)homology, if we restrict ourselves
to inner deformations of families. Although there is no way to define inner
deformations of At as an associative algebra, such deformations are possible
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in a larger category of A∞-algebras [11]. The construction goes as follows.
First, we introduce an auxiliary formal variable v of degree two and define
the dg-algebra At[[v]], just extending the original differential and product by
k[[v]]-linearity. Multiplying the differential d by v gives then a differential
of degree one on At[[v]]. This allows us to regard At[[v]] as a two-parameter
family of A∞-algebras with m = m1 +m2, where

m1(a) = vda , m2(a, b) = (−1)āab .

The corresponding algebra of inner deformations I is generated by the co-
cycles m(t) and m(v) = d. Now we define the sequence of cocycles

(8.5) Ψ0 = m(t) , Ψn+1 = d ∪Ψn , n = 0, 1, 2, . . . ,

all are of degree one. According to Theorem 6.2, each cocycle Ψn gives rise
to the deformation flow m̃(s) = Ψn[m̃] on the space of A∞-structures, with
s being a new formal variable of degree zero. Since the parameter v plays
an auxiliary role in our construction, we can finally put it to zero to get a
family of A∞-structures m̄ = m̃|v=0 on V parameterized by t and s; both
the parameters are of degree zero. The family starts as

(8.6) m̄ = m2 + sΨ̄n +O(s2) ,

where

Ψ̄n(a0, a1, . . . , an+1) = (−1)n+ānda0 · · · dan−1(an ⋄ an+1)

and ⋄ stands for the t-derivative of the dot product in At. By construction,
Ψ̄n is a Hochschild cocycle representing a class of HHn+2(At, At). If the
class happens to be nontrivial, then (8.6) defines a nontrivial deformation
of the associative algebra At in the category of A∞-algebras6. Notice that
the resulting A∞-structure m̄ is minimal, for m̄1 = 0. We denote the
corresponding differential by ∂̄ = Lm̄.

As shown in Sec. 7, every inner deformation of an A∞-algebra extends to
Hochschild (co)cycles.

Proposition 8.1. The inner deformation (8.6) generates the following first-
order deformation of the cocycles (8.2):

(8.7) S̄k = Sk + s(Sk+n)(t) +O(s2) .

Proof. Computation is somewhat simplified due to specific properties of the
cocycles (8.2). First of all, we have

SkLΨ̄n+1
= SkLd∪Ψ̄n

= Sk(idLΨ̄n
+ LdiΨ̄n

+ [∂, L(d, Ψ̄n)]) .

Actually, the last two terms on the right vanish. It is immediate that

SkLd = TrLd(id)
k = 0 , Sk∂ = 0 .

6For Ψ0, the deformation boils down to the trivial shift t 7→ t+ s.
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The remaining term SkL(d, Ψ̄n)∂ of the commutator requires more work.
Since d is a unary map, it follows from the definition (4.9) that

(8.8)

L(d, Ψ̄n)(a0, . . . , ap)

=
∑

0≤i<j≤p−n−1

(−1)κ(a0, . . . , dai, . . . , Ψ̄n(aj , . . . , aj+n+1), . . . , ap),

whence

SkL(d, Ψ̄n)(a0, . . . , ak+n+1)

= Tr
(

d
k∑

j=1

(−1)κa0da1 · · · dΨ̄n(aj , . . . , daj+n+1) · · · dak+n+1

)

= 0 .

Therefore,

SkLΨ̄n+1
= Sk+1LΨ̄n

= . . . = Sk+n+1LΨ̄0
.

Now, verifying the cocycle condition for (8.7), we find

S̄k∂̄ =
(
Sk + s(Sk+n)(t) +O(s2)

)(
Lm2 + sLΨ̄n

+O(s2)
)

= s
(
(Sk+n)(t)Lm2 + SkLΨ̄n

)
+O(s2)

= s
(
(Sk+n)(t)Lm2 + Sk+nLΨ̄0

)
+O(s2)

= s(Sk+nLm2)(t) +O(s2) = O(s2) .

The proof is complete. �

Notice that the first-order deformation (8.7) enjoys cyclicity (8.4) as well.
It is not clear whether this property holds true in higher orders in s. Should
this be the case the deformed cocycles S̄k would define elements of the cyclic
cohomology group HC•

λ(V, m̄).
As mentioned in the Introduction, inner deformations of A∞ algebras play

a crucial role in construction of a new class of classical integrable theories
[7] and in applications to Chern–Simons matter theories and 3d bosoniza-
tion duality [8]. In this context, the most interesting are deformations of
dg-algebras that are generated by the first Hochschild cocycle Ψ1 of (8.5).
Furthermore, it is demanded that the deformed cocycles (8.7) be cohomol-
ogous to cyclic ones to be interpreted in terms of correlators of higher-spin
currents. In the rest of this paper, we show that the inner deformation
generated by Ψ1 does respect cyclicity under the two assumptions:

(I) At =
⊕

n∈Z(At)n is a family of unital dg-algebras with (At)n = 0 for
all n > 1,

(II) the differential d : (At)n → (At)n−1 is independent of t, i.e., d(t) = 0.

Again, this is enough for the applications mentioned above. Even with these
technical restrictions we need some preparation.

The main difficulty here is that the operator 1 − λ features no good al-
gebraic properties in hG-calculus and the cyclicity of deformed cochains is
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hard to control. Fortunately, there is an equivalent definition of cyclic coho-
mology, which fits perfectly well with hG-calculus. Following [28], [13], we
introduce a new formal variable u of degree 2 and endow the space C̄•(V )[u]
of polynomials in u with the differential D = ∂−uB, where B is the Connes–
Rinehart operator (3.5). Regarding C̄•(V )[u] as a k[u]-module, we define
the dual cochain complex C̄•(V )∗[u]. Assumption (I) above implies that the
space V is non-positively graded. As a consequence, the complex C̄•(V )∗[u]
is concentrated in non-negative degrees and each p-cochain c ∈ C̄•(V )∗[u] is
given by a polynomial

c = cp + cp−2u+ · · ·+ cp−2qu
q , |ci| = i,

of degree q ≤ p/2. We denote the cohomology of this complex byHC•
[u](V,m).

The following isomorphism is well known:

(8.9) HC•
[u](V,m) ≃ HC•

λ(V,m) .

See e.g. [36], [37]. The isomorphism allows us to work entirely in terms of
hG-calculus’ operations. It is natural to think of D as a perturbation of the
Hochschild differential ∂. We also introduce the operator IA = iA − uSA, a
perturbation of the contraction iA. Then, the following relations hold:

(1) D2 = 0 ,

(2) [D,LA] = LδA ,

(2) uLA = [D, IA] + IδA ,

(3) LA∪B = LAIB − (−1)|A|IALB

−(−1)|A|[D,L(A,B)] + (−1)|A|L(δA,B) + L(A, δB) ,

(4) (−1)|A|[LA, IB ] = I[A,B] + [D,T (A,B)] − T (δA,B)− (−1)|A|T (A, δB),

(5) uL(A,B) = (−1)|A|−1IA∪B + (−1)|A|IAIB + [D, I(A,B)]

+I(δA,B) + (−1)|A|I(A, δB) .

The reader can verify these identities either directly, using the definitions
of Sec. 4, or consult the papers [13], [24]. Comparing Rels. (1-5) with
Axioms (hC1-6), we see that the operations D, L, and I do not define
a precalculus because of the ‘curvature’ terms uLA and uL(A,B) in (2)
and (5). Nonetheless, these relations appear to be very helpful in practical
calculations, as we will see shortly.

Given a family of A∞-structures m = vd+m2 as above, we consider the
inner deformation generated by the cocycle

Ψ1 = m(v) ∪m(t) = d ∪m′
2.

Hereinafter the prime stands for the derivative with respect to t. Notice
that the r.h.s. of the equation m̃(s) = Ψ1[m̃] does not depend on v. As a
result, its formal solution has the form

m̃ = vd+ m̄ = m+ s(d ∪m′
2) +O(s2) ,
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where the cochain m̄ is independent of v either. It follows from [m̃, m̃] = 0
that m̄ = m̄(t, s) is a two-parameter family of minimal A∞-structures which
commutes with the differential d, i.e.,

[m̄, m̄] = 0 , [d, m̄] = 0 .

We are interested in cocycles Ŝ ∈ C̄•(V )∗[u] of the differential D̄ = ∂̄ − uB.

Proposition 8.2. With notation and assumptions above the deformation
flow

(8.10) m̄(s) = d ∪ m̄′ , Ŝ(s) = Ŝ′Id − ŜL(d, m̄′)

preserves the conditions

(8.11) ŜD̄ = 0 , ŜLd = 0 .

In other words, the flow maps the space of Ld-closed D̄-cocycles into itself.

Proof. Differentiating the cochain ŜD̄, we get

(ŜD̄)(s) = Ŝ(s)D̄ + ŜD̄(s) = Ŝ(s)D̄ + ŜLm̄(s)
= Ŝ(s)D̄ + ŜLd∪m̄′

= Ŝ(s)D̄ + Ŝ
(
LdIm̄′ + IdLm̄′ + [D̄, L(d, m̄′)]

)
.

Since d is a unary operator, T (d, m̄′) = 0. Furthermore, [d, m̄′] = [d, m̄]′ = 0,
by assumption (II). Combining these observations with the flow (8.10) for

Ŝ, we can proceed as follows

(8.12)

(ŜD̄)(s) = Ŝ(s)D̄ + Ŝ
(
LdIm̄′ + Lm̄′Id + [D̄, L(d, m̄′)]

)

= Ŝ′IdD̄ + ŜLdIm̄′ + ŜLm̄′Id + ŜD̄L(d, m̄′)

= Ŝ′D̄Id + uŜ′Ld + ŜLdIm̄′ + ŜLm̄′Id + ŜD̄L(d, m̄′)

= (ŜD̄)′Id + u(ŜLd)
′ + (ŜLd)Im̄′ + (ŜD̄)L(d, m̄′) .

In the same way we find

(ŜLd)(s) = Ŝ(s)Ld = Ŝ′IdLd − ŜL(d, m̄′)Ld = Ŝ′LdId − ŜL(d, m̄′)Ld .

The operator L(d, m̄′) acts according to Eq. (8.8) with Ψ̄n replaced by
m̄′. Since the differential d commutes with m̄′, one can easily see that
[L(d, m̄′), Ld] = 0. Therefore, we can write

(8.13) (ŜLd)(s) = (ŜLd)
′Id − (ŜLd)L(d, m̄

′) .

Taken together Eqs. (8.12) and (8.13) imply the invariance of the algebraic
constraints (8.11) under the flow (8.10). �

Returning to the Hochschild cocycles (8.2) of the dg-algebra A, one can see
that all of them are annihilated by the Connes–Rinehart operator, SkB = 0,
and hence, by the differential D = ∂ − uB. Furthermore, they are anni-
hilated by the Lie derivative Ld as well. By Proposition 8.2, the deformed
cocycles Ŝk define some cohomology classes of HC•

[u](V, m̄). It is apparent
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that the leading term S̄k = Ŝk|u=0 coincides with the Hochschild cocycle
(8.7) and should be cohomologous to a cyclic cocycle of C•

λ(V, m̄) due to the
isomorphism (8.9). In other words, the cohomology classes of S̄k belong to
the preimage of the canonical homomorphism I : HC•

λ(V, m̄) → HH•(V, m̄).

Let us denote a cyclic representative of the class [S̄k] ∈ HC•
λ(V, m̄) by S̄λ

k .

By definition, S̄λ
k (1− λ) = 0.

Now let l̄ be the L∞-structure on V associated with the A∞-structure m̄
according to Theorem 2.9. It is easy to see that the symmetrization map

(8.14) (ϑS)(a0 ∨ . . . ∨ an) =
∑

σ∈Sn

(−1)κS(a0, aσ(1), . . . , aσ(n))

commutes with the differentials Dl̄ in SV and ∂̄ in Cλ
• (V, m̄), inducing thus

a homomorphism in cohomology:

ϑ∗ : HH•
λ(V, m̄) → H•(V, l̄) .

Notice that the map ϑ is well-defined as the cochain S enjoys cyclicity.
Applying the symmetrization map (8.14) to the cyclic cocycles S̄λ

k yields

the sequence of Dl̄-cocycles Φk = ϑ(S̄λ
k ), which represent some classes of

L∞-cohomology H•(V, l̄), see Sec. 5. By definition, each cocycle Φk is given
by a collection of multi-linear maps Φn

k : Sn+1V → k with n ≥ k. The
functions Φn

k(a0, . . . , an), being symmetric, are completely specified by their
values Φn

k(a, . . . , a) on coinciding arguments a ∈ V . This allows us to encode
the cocycle Φk = {Φn

k}
∞
n=k by a single function on V :

(8.15) Φk(a) =

∞∑

n=k

Φn
k(a, . . . , a︸ ︷︷ ︸

n+1

) .

Similarly, one can define a generating function for the L∞-structure l̄. One
just regards V as a graded manifold and endow it with the homological
vector field Q whose action on ‘coordinate functions’ a ∈ V is given by

Qa =
∞∑

n=2

l̄n(a, . . . , a
︸ ︷︷ ︸

n

) .

In this geometric language the cocycle condition ΦkDl̄ = 0 amounts to the
Q-invariance of the function (8.15), i.e., QΦk = 0.

We conclude this paper by presenting an example where the deformation
flow Ψ1 for the cocycles Φk can be integrated explicitly. Let A = A0 ⊕ A1

be a one-parameter family of dg-algebras with trace. Suppose that the
differential d : A1 → A0 defines an isomorphism of vector spaces and the
trace Tr : A → k vanishes on A0. As is shown in [10], the cocycles (8.15)
are given then by the formula

(8.16) Φk(a) =

∞∑

n=0

1

k + n+ 1
Tr(a da · · · da

︸ ︷︷ ︸

k+n

)
⌋

sn
∀a ∈ A1 ,
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cf. Eq.(8.7). In this expression, the parameter t, which enters both the trace
and the product, is replaced with t+ s and the symbol

⌋

sn
instructs one to

take only the terms that are proportional to sn. We can also assemble all
Φk(a) into a single generating function Φ(a) =

∑

k≥0 ν
−k−1Φk(a) with an

auxiliary parameter ν to find

(8.17) Φ(a) = P.p.Tr
(
d−1 ln(1− ν−1da)

)
∣
∣
∣
t→t+sν

.

Here P.p. stands for the principal part of the Laurent series in ν.
The existence of compact expression (8.17) looks quite surprising because

no simple formula is known for the deformed A∞-structure m̄. Note also a
striking similarity of (8.17) with the partition function of a one-loop exact
QFT. In the applications to Chern–Simons matter vector models and three-
dimensional bosonization duality, one identifies V with the space of confor-
mally invariant tensor currents [10]. Conceivably all these might point to a
deeper relationship of the cocycles (8.16) with one-loop exact QFT models
yet to be found.
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