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Université de Mons, 20 place du Parc, 7000 Mons, Belgium

c Lebedev Institute of Physics,

Leninsky ave. 53, 119991 Moscow, Russia

d Moscow Institute of Physics and Technology,

Institutskiy per. 7, Dolgoprudnyi, 141700 Moscow region, Russia

Abstract

Recently, a unique class of local Higher Spin Gravities with propagating massless fields

in 4d – Chiral Higher Spin Gravity – was given a covariant formulation both in flat and

(A)dS4 spacetimes at the level of equations of motion. We unfold the corresponding ho-

mological perturbation theory as to explicitly obtain all interaction vertices. The vertices

reveal a remarkable simplicity after an appropriate change of variables. Similarly to for-

mality theorems the A∞/L∞ multi-linear products can be represented as integrals over a

configuration space, which in our case is the space of convex polygons. The A∞-algebra

underlying Chiral Theory is of pre-Calabi–Yau type. As a consequence, the equations of

motion have the Poisson sigma-model form.
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1 Introduction

Despite decades of efforts [1] there is only one class of Higher Spin Gravities (HiSGRA) with

propagating massless fields whose existence does not require relaxing basic field theory concepts

such as locality and does not face any open problem [2–6]. This is Chiral HiSGRA [7–11]. Other

well-defined examples of HiSGRA with either topological or conformal fields are 3d models with

(partially-)massless and conformal higher spin fields [12–19] and a higher spin extension of 4d

conformal gravity [20–22]. Further interesting ideas include [23, 24] and [25–27].

Chiral Theory is an explicit counter-example to many folklore no-go-type statements re-

garding higher spin theories: (i) it exists in flat space, thus avoiding (or rather obeying in a

delicate way) the Weinberg and Coleman–Mandula theorems [28, 29]; (ii) it smoothly deforms

to (A)dS4, whereas the need for the cosmological constant and singularity of the flat limit are

usually overstated; (iii) it is perturbatively local, even though many results indicate that generic

HiSGRA have to go beyond the usual modest definitions of locality [3–6]; (iv) its holographic

S-matrix cannot coincide with a free CFT [30] as it is generally the case for HiSGRA [31–38].

The main price to pay for all these properties is an apparent lack of unitarity even though

it gets restored [10, 11, 39] in flat space. In AdS4 Chiral Theory can be used to obtain unitary

results [30] due to the fact that it should be a consistent truncation of the holographic dual

of (Chern–Simons) vector models [30, 40]. The latter faces open challenges [2–6] that prevent

one to give a bulk definition of the theory. Being a consistent truncation entails many useful

properties: all classical solutions to Chiral Theory are simultaneously solutions to the full

theory and the same is true for amplitudes, i.e. the amplitudes of Chiral Theory are subsets of

unitary amplitudes. More generally, any nice property, e.g. one-loop finiteness [10, 11, 39], can

be tested first in Chiral Theory and, if true, it has a chance to hold in the complete theory.

Originally, Chiral Theory was found in the light-cone gauge in flat space [7–9] and conjec-

tured to have a smooth deformation to (A)dS4 [9]. The latter was supported [30, 41] by an

extension of the light-cone analysis to AdS4 [41]. Nevertheless, one can hardly deny that a

covariant form of the theory would be more than useful. While a covariant action of Chiral

Theory is an open problem (see [42] for the recent progress) its classical equations of motion

were constructed in [43, 44] for vanishing cosmological constant and in [40] for a nonvanishing

one. Significantly, the equations of motion appear to be perturbatively local.

The covariant form of Chiral Theory was constructed via the standard homological pertur-

bation theory: there is a differential graded Lie algebra that encodes the free theory, whereas

its simple deformation leads to a nontrivial L∞-algebra L that encodes the interaction ver-

tices. It was shown in [40, 44] that the vertices are local, and hence, well-defined; this was

2



also illustrated with examples that go well beyond the state of the art. Nevertheless, concrete

applications call for an explicit form of all interaction vertices, which we provide in the present

paper, see [45] for a short summary.

First of all, the aforementioned L∞-algebra L is obtained by symmetrization of a certain

A∞-algebra Â. It is the latter algebra which structure maps (or products) we compute. An-

other observation is that all nontrivial algebraic structures defining the interaction vertices are

effectively low-dimensional. To put it more formally, the A∞-algebra Â is given by a tensor

product of a smaller A∞-algebra A with some associative algebra B. While B enters trivially

and can be replaced with any other associative algebra, e.g. MatN , the theory based on A is

effectively low-dimensional. The effective dimension can be seen from the functional dimension

of the vector space underlying A, which is 2. By definition, both Â and A have natural pairings

that make them into cyclic A∞-algebras, or more specifically, pre-Calabi–Yau algebras of degree

two [46]. This cyclic structure appears to be very useful in linking different interaction vertices

to each other.

A

B

Figure 1: A convex polygon

B and a swallowtail A.

Secondly, the vertices that come out of homological pertur-

bation theory can be considerably simplified by performing a

certain change of variables, which, among other things, makes

the cyclic structures of Â and A explicit. Remarkably, the final

result is that, pretty much like in Kontsevich [47] and Shoikhet–

Tsygan–Kontsevich Formality [48], the structure maps can be

written as integrals over a certain configuration space. The con-

figuration space, which will be defined in detail in Section 4, can

be described as the space of concave polygons (region A in Fig.

1), which we call swallowtails. Alternatively, it is the space of

convex polygons with one edge corresponding to the diagonal of

the square, i.e., polygons B inscribed into a protractor triangle (45◦ − 90◦ − 45◦). The area

of region A also plays a role and appears in front of the cosmological constant term in the

A∞-structure maps. The example in Fig. 1 corresponds to quintic structure maps that are

given by an integral over the six-dimensional configuration space, the positions of the three

points in between A and B. The compactness of the configuration space implies that the ver-

tices are formally well-defined. Importantly, the vertices also obey an additional property that

translates into locality from the field theory vantage point. The vertices we found turn out to

be maximally local, which corresponds to a certain distinguished coordinate system from the

A∞/L∞-perspective.
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The outline of the paper is as follows. In Section 2, we recall some basic aspects of Chiral

Theory [40, 43, 44] and of the well-known formalism which dates back to [49, 50] in the HiSGRA

context. In Section 3, we first present a few vertices already known explicitly and then proceed

to getting a general formula for vertices in all orders. We also identify a change of variables

that drastically simplifies the vertices and allows us to represent them via integrals over a

simple configuration space. This is discussed in Section 4. The derivation is supported by a

few technical Appendices A, B, and C. We end up with some conclusions in Section 5.

2 Initial data

It can be shown within the light-front approach that Chiral Theory is a unique class of theories

that completes a single nontrivial higher spin self-interaction to a Lorentz invariant local theory.

The spectrum of the theory contains fields of all spins including the graviton and scalar field,

see [7–9, 11] for more detail. Chiral Theory admits two simple contractions [51] where fields

interact via either Yang–Mills or gravitational interactions (they are defined as one- and two-

derivative vertices, respectively). These interactions are not binding enough, do not fix the

spectrum uniquely, and the spin-zero field can be dropped. Nevertheless, the contractions

are very useful since they have a simple manifestly Lorentz invariant actions both in flat and

(A)dS4 spacetimes [52]. It turned out that the field variables suitable for Chiral Theory are not

Fronsdal fields, i.e., symmetric tensors Φµ1···µs
, rather they originate from the twistor approach

to massless helicity fields [53–55]. The free action reads [52]

S =

∫
ΨA(2s) ∧ eAB′ ∧ eA

B′

∧ ∇ωA(2s−2) , (2.1)

where ωA(2s−2) ≡ ω
A(2s−2)
µ dxµ is a one-form that is a symmetric rank-(2s− 2) spin-tensor2 and

ΨA(2s) is a zero-form that is a symmetric spin-tensor of rank 2s. In case s = 1, these two

fields represent the gauge potential Aµ and the self-dual part ΨAB of the strength two-form

Fµν (treated as an independent field). For s = 2 they correspond to the self-dual part of the

spin-connection ωAB and of the Weyl tensor ΨABCD (treated as an independent field). The set

of one forms eAA′

≡ eAA′

µ dxµ defines a vierbein compatible with the spin-connection, ∇eAA′

= 0.

2Following Penrose and Rindler [56], A,B, . . . = 1, 2 and A′, B′, . . . = 1, 2 are the indices of the two 2-
dimensional representations of the Lorentz algebra, e.g. of the fundamental and anti-fundamental of sl(2,C) in
the case of the Lorentz signature. A group of symmetric (or to be symmetrized) indices A1 . . . Ak is abbreviated
as A(k).
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The action enjoys a gauge symmetry of the form

δωA(2s−2) = ∇ξA(2s−2) + eAC′ ηA(2s−3),C′

, δΨA(2s) = 0 , (2.2)

where ξA(2s−2) and ηA(2s−3),C′

are zero-forms. The action is gauge invariant on any self-dual

background, i.e., where ∇2χA ≡ 0 for an arbitrary test spinor χA; this is more general than

Flat or (A)dS spaces the Fronsdal fields can consistently propagate on. The challenge is to

complete the free action (2.1) with appropriate interaction vertices. A much simpler problem

is to construct the associated field equations, which was solved in [40, 43, 44]. The equations

were sought for in the form of a Free Differential Algebra, the idea that was put forward in the

higher spin context long ago [50]. Doing so requires infinitely many auxiliary fields, which are

model independent and determined by the physical degrees of freedom one wants to describe

rather than a specific structure of interactions. Therefore, they are exactly the same as in

[49, 50] and can be packaged into generating functions

ω(y, y) =
∑

n+m=even

1
n!m!

ωA(n),A′(m) y
A · · · yA yA

′

· · · yA
′

for one-forms and, likewise,

C(y, y) =
∑

n+m=even

1
n!m!

CA(n),A′(m) y
A · · · yA yA

′

· · · yA
′

for zero-forms. The dynamical fields that appear in (2.1) can be identified with Ψ(y) = C(y, y =

0) and ω(y) = ω(y, y = 0). That the sum n + m is even means that the fields are bosonic.

Super-symmetric extensions can be studied without much effort as well as Yang–Mills gaugings.

Naturally, C has room for the scalar field C(0, 0), which is necessarily present in Chiral Theory.

With one-form ω and zero-form C the most general equations of the Free Differential Algebra

form read

dω = V(ω, ω) + V(ω, ω, C) + V(ω, ω, C, C) + . . . , (2.3a)

dC = U(ω,C) + U(ω,C, C) + . . . . (2.3b)

The structure maps V and U satisfy the L∞-relations, which ensure the formal consistency

of the equations and lead to a natural gauge symmetry. The equations are more compactly

written in the form dΦ = Q(Φ), where Φ(x) = {ω(x), C(x)} are maps from space-time to the

target space (a supermanifold) with coordinates Φ = {ω,C} and the latter space is equipped
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with an odd nilpotent vector field Q (a homological vector field). As is well-known [57], the

nilpotency condition QQ = 0 is equivalent to L∞-relations in the formal neighbourhood of a

stationary point. Since we access the Q of Chiral Theory perturbatively, it is more convenient

to use the L∞-language.

With the help of the generating function, the equations of motion that follow from (2.1)

(together with the scalar field and auxiliary fields) can be reformulated as

∇ω = eBB′

(λ yB′∂B + yB∂B′)ω + eA
B′

∧ eAB′

∂B′∂B′C(y = 0, y) , (2.4a)

∇C = eBB′

(λ yByB′ − ∂B∂B′)C . (2.4b)

Here ∇ is the Lorentz covariant derivative and the parameter λ is related to the cosmological

constant. The free equations should be compared with the linearization of (2.3) over a purely

gravitational background

ω0 =
1
4
ωAB yAyB + 1

2
eAA′

yAyA′ + 1
4
ωA′B′

yA′yB′ . (2.5)

The linearized equations read

dω = V(ω0, ω) + V(ω, ω0) + V(ω0, ω0, C) , dC = U(ω0, C) . (2.6)

Eqs. (2.6) vs. (2.4) set the boundary conditions for V(ω0, ω), V(ω0, ω0, C) and U(ω0, C). Pro-

ceeding from these boundary conditions, the whole set of vertices was explicitly constructed in

[40, 43, 44]. This was achieved via homological perturbation theory starting with an appropri-

ate multiplicative resolution. Even though it is quite easy to show that the vertices obtained

this way are well-defined [40, 44], an explicit form is required for practical applications. This is

the problem we address in the present paper. We also show that, after an appropriate change

of variables, the vertices reveal a remarkable simplicity and allow us to identify the underlying

configuration space in a form that is reminiscent of the Formality theorems.

3 Vertices

For completeness we begin with explicit examples of low order vertices. In order to present

the results in the most compact way we employ the language of symbols of poly-differential

operators. The recipe on how to unfold the homological perturbation theory in order to get

the actual vertices is briefly explained in Appendix A, but see Appendices in [40, 44] for more
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detail. Below we concentrate on the final form of the vertices.

Poly-differential operators. Vertices V and U encode certain contractions of indices of

their arguments, e.g.

V(ω, ω, C, . . . , C) =
∑

yA · · · yA ωA···
B···M ··· ∧ ωA···B···

N ···C
A···M ···N ··· . . . , (3.1)

where we omitted the y’s. It is convenient to represent such structures via poly-differential

operators

V(f1, . . . , fn) = V(y, ∂1, . . . , ∂n) f1(y1) · · · fn(yn)
∣∣∣
yi=0

. (3.2)

We prefer to work with the corresponding symbols, obtained by replacing the arguments ac-

cording to yA ≡ pA0 , ∂
yi
A ≡ piA. The Lorentz symmetry requires the symbols to depend only on

pij ≡ pi ·pj ≡ −ǫABp
A
i p

B
j = pAi pjA. These scalars are defined so that exp[p0 ·pi]f(yi) = f(yi+y)

represents the shift operator. We will also use the q’s for poly-differential operators in y’s, e.g.

yA
′

≡ qA
′

0 , ∂
yi
A′ ≡ qiA′ . We will often omit the sign |yi=0 as well as the arguments of the vertices,

writing down only the corresponding symbols.

V(ω,ω) and higher spin algebra. Given that the very first L∞-map is always trivial, the

first nontrivial vertex V(ω, ω) defines a Lie algebra since the corresponding L∞-relation reduces

to the Jacobi identity. It turns out that the relevant (Lie) higher spin algebra hs originates

from an associative one, still denoted by hs. The last fact leads to considerable simplifications.

Indeed, there is a number of arguments that allow one to upgrade the L∞-structure to A∞:

(a) Chiral Theory admits Yang–Mills gaugings of U(N)-type;3 (b) within the AdS/CFT context

Chiral Theory should be dual to a subsector of (Chern–Simons) vector models [9, 30, 40],

where it is always possible to introduce further global symmetries of the same type. One

way or another, the Lie algebra originates from an associative one, hs, via the commutator

and in order to account for (a) or (b) one needs to start with a bigger associative algebra

hs⊗MatN . In practice, for N large enough one can recover the initial hs associative structure

from the commutator, i.e., from V(ω, ω). Moreover, all the L∞-maps (vertices) result from the

symmetrization of certain A∞-maps. It is the latter we will be looking for.

In what follows we assume that the higher spin algebra is of the form hs = Aλ ⊗ B. Here,

Aλ is the Weyl algebra, that is, the algebra of a polynomial functions f(ŷ) in the operators

3as well as O(N) and USp(N) [11], which are simple reductions.
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ŷA subject to the canonical commutation relations [ŷA, ŷB] = −2λǫAB. Note that all Aλ are

isomorphic to each other whenever λ 6= 0 and the commutative limit Aλ=0 coincides with C[yA].

One can also understand Aλ as the result of deformation quantization of the polynomial algebra

A0, the quantum product being the Moyal–Weyl star-product. The symbol of the star-product

is defined by

V(f, g) = exp [p01 + p02 + λ p12]f(y1) g(y2)
∣∣∣
yi=0

≡ (f ⋆ g)(y) . (3.3)

The parameter λ has the meaning of the cosmological constant. All vertices of Chiral Theory

depend smoothly on λ.

In principle, the factor B may be any associative algebra. However, in order to have a

proper 4d field theory interpretation, B has to be A1 ⊗MatN . Nevertheless, the construction

below works for any associative noncommutative B and other possible choices are discussed in

Section 5. We also assume that the product (or trace, wherever needed) over B is taken. For

example, all vertices have the factorized form

V(f1, . . . , fn) = v(f ′
1(y), . . . , f

′
n(y))⊗ f ′′

1 ∗ · · · ∗ f ′′
n , (3.4)

where fi = f ′
i(y)⊗ f ′′

i , f
′′
i ∈ B, and ∗ denotes the product in B. In case B = A1 ⊗MatN , all

y-dependent factors are multiplied via the star-product:

f ′′
1 (y) ⋆ · · · ⋆ f

′′
n(y) = exp

[
∑

0=i<j=n

qi · qj

]
f ′′
1 (y1) · · · f

′′
n(yn)

∣∣∣
yi=0

. (3.5)

Here q for y is the same as p for y. Due to additional matrix factors, all f ′′
i = {f ′′

i (y)
A
B } are

also multiplied as matrices in the same order as with ⋆.

As a vector space, the A∞-algebra of Chiral Theory is given by the sum A = A0 ⊕ A−1.

Coordinates on A−1 and A0 correspond to ω and C, respectively. Algebraically, the lowest

A∞-relations imply (i) an associative algebra structure on A−1, which is the higher spin algebra

hs; (ii) an hs-bimodule structure on A0.
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U(ω,C) and the dual module. Thanks to the A∞-structure this bilinear vertex splits into

the sum of two vertices4

U(ω,C) = U1(ω,C) + U2(C, ω) (3.6)

The A∞-relations imply that U1(ω,C) and U2(C, ω) define an hs-bimodule structure on C.

Action (2.1) suggests that zero-forms C take values in the space dual to the space of one-forms

ω, see [40, 43, 44, 52]. Therefore, we define the nondegenerate pairing

〈ω|C〉 = −〈C|ω〉 = exp[p12]ω(y1)C(y2)
∣∣
yi=0

(3.7)

between the hs-bimodule of fields C and the higher spin algebra hs of fields ω. With the help

of this pairing we can define the bimodule structure by the following symbols:

U1(ω,C) = + exp [λ p01 + p02 + p12]ω(y1)C(y2)
∣∣∣
yi=0

,

U2(C, ω) = − exp [p01 − λ p02 − p12]C(y1)ω(y2)
∣∣∣
yi=0

.
(3.8)

Consider, for example, the left action. At λ = 0 the symbol corresponds to U1(ω,C)(y) =

ω(∂y)C(y), i.e., the commutative algebra A0 = C[yA] acts on the dual space by differential

operators.5

It is worth noting that the bilinear structure maps defined so far satisfy the boundary

conditions imposed by the free limit (2.4). The next vertex will generate the trilinear term in

(2.4), thereby, we do reproduce the L∞-algebra determined by the free action (2.1).

V(ω,ω, C). Since the A∞-algebra is concentrated in only two degrees, A0 ⊕ A−1, there are

three structure maps hidden in V(ω, ω, C):

V(ω, ω, C) = V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω) . (3.9)

4By a slight abuse of notation V(ω, ω, C, . . . , C) and U(ω,C, . . . , C) denote the whole collections of
vertices/A∞-products at a given order that differ by the order of the arguments. When a detailed structure is
discussed we enumerate various orderings by subscripts.

5For λ = 1 one can recognize the twisted-adjoint action [58]. The twisted-adjoint representation, however,
does not admit the flat limit. It is also not very useful for Chiral Theory with cosmological constant: the
zero-form should be treated differently, whereas the twisted-adjoint interpretation suggests to deal with C as
an element of hs and this immediately entails some problems with locality.
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For example, one of the L∞-relations reads

V1(V(ω, ω), ω, C)− V(ω,V1(ω, ω, C)) + V1(ω, ω,U1(ω,C))− V1(ω,V(ω, ω), C) = 0 . (3.10)

It originates from the A∞-relation

V1(V(a, b), c, u)− V(a,V1(b, c, u)) + V1(a, b,U1(c, u))− V1(a,V(b, c), u) = 0 , (3.11)

where a, b, c ∈ A−1 and u ∈ A0. It is, of course, much more constraining than the one of L∞.

Indeed, in (3.10) the ω’s, being one-forms, anti-symmetrize over the first three arguments. To

solve the A∞-relation, it is useful to rewrite it in terms of symbols:

0 = −V1(p0 + λ p1, p2, p3, p4)e
p01 + V1(p0, p1 + p2, p3, p4)e

λ p12

− V1(p0, p1, p2 + p3, p4)e
λ p23 + V1(p0, p1, p2, λ p3 + p4)e

p34

and similarly for the rest of the A∞-relations, some of which mix V with different orderings of

the arguments. The resulting equations are not difficult to solve directly [40, 43]:

V1(ω, ω, C) = +p12

∫

∆2

exp[(1− u) p01 + (1− v) p02 + up13 + vp23 + λ(1 + u− v)p12] ,

V2(ω,C, ω) = −p13

∫

∆2

exp[(1− v) p01 + (1− u) p03 + vp12 − up23 + λ(1− u− v)p13]

− p13

∫

∆2

exp[(1− u) p01 + (1− v) p03 + up12 − vp23 + λ(1− u− v)p13] ,

V3(C, ω, ω) = +p23

∫

∆2

exp[(1− v) p02 + (1− u) p03 − vp12 − up13 + λ(1 + u− v)p23] .

Here ∆2 denotes the 2-simplex 0 ≤ u ≤ v ≤ 1. From the homological perturbation theory point

of view, these vertices correspond to6

V1(ω, ω, C) = ω(y) ⋆ h[ω(y) ⋆ Λ[C]]|z=0 =

µ

ω µ

ω Λ[C]

h

6We refer to Appendix A for basic definitions and to [40, 44] for more details on how homological perturbation
theory works.
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its mirror image

V3(C, ω, ω) = h[Λ[C] ⋆ ω(y)] ⋆ ω(y)|z=0 =

µ

µ ω

Λ[C] ω

h

and the middle vertex receives contributions from two graphs

V2(ω,C, ω) = ω(y) ⋆ h[Λ[C] ⋆ ω(y)]|z=0 + h[ω(y) ⋆ Λ[C]] ⋆ ω(y)|z=0 =

=

µ

ω µ

Λ[C] ω

h

⊕

µ

µ ω

ω Λ[C]

h

Let us illustrate the process of evaluation of a tree on the example of V(a, b, c) with a, b ∈ A−1

and c ∈ A0, see also [44]. One begins with (here κ = exp (zAyA))

Λ[c] = dzAzA

∫ 1

0

t dtκ(tz, y + p3) c(y3) . (3.12)

Next, we evaluate the star-product:

b(y) ⋆ Λ[c] = dzA(zA + p2A) e
yp2

∫ 1

0

t dtκ(tz + tp2, y + p3 + λ p2) b(y2)c(y3) .

This is a one-form and we apply h to it:

h[b(y) ⋆ Λ[c]] = (z · p2) e
yp2

∫ 1

0

dt′ t dtκ(tt′z + tp2, y + p3 + λ p2) b(y2)c(y3) .

In the last step we evaluate one more product and set z = 0 to find

a ⋆ h[b ⋆ Λ[c]]|z=0 = p12 e
yp1+yp2

∫ 1

0

dt′ t dtκ(tt′p1 + tp2, y + p3 + λ p1 + λ p2) a(y1)b(y2)c(y3).

11



After renaming y → p0 and changing the integration domain to the 2d simplex ∆2, u = tt′,

v = t, we arrive at

V1(a, b, c) = p12 e
p01+p02

∫

∆2

κ(up1 + vp2, p0 + p3 + λ p1 + λ p2) a(y1)b(y2)c(y3)
∣∣
yi=0

.

This coincides with V1 on the previous page. We will derive the result for an arbitrary tree

later on.

U(ω,C,C). The next group of structure maps is

U(ω,C, C) = U1(ω,C, C) + U2(C, ω, C) + U3(C,C, ω) . (3.13)

The A∞-relations can also be written down and solved directly [40, 43]. It is remarkable that

one does not have to do that. There is a canonical way to generate all U-vertices from V-

vertices. We refer to this recipe as a duality map since it relies on the fact that A0 = (A−1)
∗, as

hs-bimodules. This is a particular manifestation of a (hidden) cyclicity of the underlying A∞-

algebra Â; we discuss it in Appendix B. Given a V-vertex at some order, one can canonically

pair it with C to build a scalar. By cyclicity/duality,

〈V(ω, ω, C, . . . , C)|C〉 = 〈ω|U(ω,C, . . . , C)〉 . (3.14)

A consistent U-vertex can be obtained by peeling off one ω, which is again a canonical operation.

The duality map gives automatically local U-vertices, provided that the V-vertices are local.7

In the simplest case we find

U1(p0, p1, p2, p3) = +V1(−p3, p0, p1, p2) , (3.15a)

U2(p0, p1, p2, p3) = −V2(−p1, p2, p3, p0) , (3.15b)

U3(p0, p1, p2, p3) = −V3(−p1, p2, p3, p0) . (3.15c)

For example, the first one reads

U1 = p01

∫

∆2

exp [λ (1 + u− v) p01 + up02 + (1− u) p03 + vp12 + (1− v) p13] . (3.16)

7There is another canonical recipe [50] in case A0 ≃ A−1. However, this one gives nonlocal U ’s out of local
V ’s. This recipe is built-in into [59] and leads to one of the open problems pointed out in [2].
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It is a local vertex because no p23 enters the exponent. For completeness, the other two read

U2 = −p02

∫

∆2

exp [(1− v) p01 + vp03 − (1− u) p12 + up23 − λ (1− u− v) p02]

− p02

∫

∆2

exp [(1− u) p01 + up03 − (1− v) p12 + vp23 − λ (1− u− v) p02] ,

U3 = +p03

∫

∆2

exp [(1− u) p01 + up02 − (1− v) p13 − vp23 − λ (1 + u− v) p03] .

V(ω,ω, C,C). The brute-force approach above is less efficient starting from this vertex.

First of all, there are 6 different orderings for ω2C2. Secondly, the defining equations (A∞-

algebra relations) are inhomogeneous w.r.t. the sought-for quartic vertices. A complete all-order

solution follows immediately from homological perturbation theory [40, 44].8 The vertices at

this order read

V1(ω, ω, C, C) = (p12)
2

∫

D1

exp((1− u1 − u2)p01 + (1− v1 − v2)p02 + u1p13 + u2p14 + v1p23 + v2p24+

+ λp12(1 + u1 + u2 − v1 − v2 + u1v2 − u2v1)) ,

V2(ω,C, ω, C) = −(p13)
2

∫

D1

exp(p01(1− u1 − u2) + (1− v1 − v2)p03 + u2p12 + u1p14 − v2p23 + v1p34+

+ λp13(1 + u1 − u2 − v1 − v2 − u1v2 + u2v1))

− (p13)
2

∫

D1

exp(p01(1− u1 − u2) + (1− v1 − v2)p03 + u1p12 + u2p14 − v1p23 + v2p34+

+ λp13(1− u1 + u2 − v1 − v2 + u1v2 − u2v1))+

− (p13)
2

∫

D2

exp((1− uR − vL)p01 + (1− uL − vR)p03 + vLp12 + uRp14 − uLp23 + vRp34

+ λp13(1− uL + uR − vL − vR − uLuR + vLvR)) ,

V3(ω,C, C, ω) = (p14)
2

∫

D1

exp((1− u1 − u2)p01 + (1− v1 − v2)p04 + u2p12 + u1p13 − v2p24 − v1p34+

8The light-cone approach operates only with the physical degrees of freedom and, for this reason, may allow
one to see certain structures that are not self-evident in a given covariant approach, see e.g. [7–9, 30]. It was
shown in [7, 8, 41] that the cubic vertices can be split into chiral and anti-chiral ones. The cubic vertices from the
Lagrangian point of view have overlap with a great deal of the vertices, V(ω, ω), U(ω,C), V(ω, ω, C), U(ω,C,C)
and even V(ω, ω, C,C). Indeed, we should be looking at all vertices that have any number of background
insertions ω0 and are bilinear in the fluctuations. For example, V(ω0, ω0, C, C) is a kind of stress-tensor’s
contributions. For all these vertices, it should be possible to find a split into chiral and anti-chiral ones plus,
possibly, other contributions that come from higher orders in the Lagrangian. Therefore, we expect that various
truncations/subsectors like chiral/self-dual/holomorphic are closely related to each other, if not identical at
these orders. In this regard it is worth mentioning some partial low order results in the literature [60–63].
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+ λp14(1− u1 − u2 − v1 − v2 − u1v2 + u2v1))−

+ (p14)
2

∫

D1

exp((1− v1 − v2)p01 + (1− u1 − u2)p04 + v1p12 + v2p13 − u1p24 − u2p34+

+ λp14(1− u1 − u2 − v1 − v2 − u1v2 + u2v1))−

+ (p14)
2

∫

D2

exp((1− uR − vL)p01 + (1− uL − vR)p04 + vLp12 + uRp13 − uLp24 − vRp34

+ λp14(1− uL − uR − vL − vR − uLuR + vLvR)) ,

V4(C, ω, ω, C) = (p23)
2

∫

D2

exp((1− uR − vL)p02 + (1− uL − vR)p03 − vLp12 − uLp13 + uRp24 + vRp34

+ λp23(1 + uL + uR − vL − vR − uLuR + vLvR)) ,

V5(C, ω, C, ω) = −(p24)
2

∫

D1

exp((1− v1 − v2)p02 + (1− u1 − u2)p04 − v2p12 − u2p14 + v1p23 − u1p34+

+ λp24(1− u1 + u2 − v1 − v2 + u1v2 − u2v1))+

− (p24)
2

∫

D1

exp((1− v1 − v2)p02 + (1− u1 − u2)p04 − v1p12 − u1p14 + v2p23 − u2p34+

+ λp24(1 + u1 − u2 − v1 − v2 − u1v2 + u2v1))+

− (p24)
2

∫

D2

exp((1− uR − vL)p02 + (1− uL − vR)p04 − vLp12 − uLp14 + uRp23 − vRp34

+ λp24(1 + uL − uR − vL − vR − uLuR + vLvR)) ,

V6(C,C, ω, ω) = (p34)
2

∫

D1

exp((1− v1 − v2)p03 + (1− u1 − u2)p04 − v2p13 − u2p14 − v1p23 − u1p24+

+ λp34(1 + u1 + u2 − v1 − v2 + u1v2 − u2v1)) ,

where we have introduced the integration variables

u1 ≡
t1t2(1− t3)t4
1− t1t2t3

, v1 ≡
t1(1− t2t3)

1− t1t2t3
,

u2 ≡
(1− t1t2)t3t4
1− t1t2t3

, v2 ≡
(1− t1)t3
1− t1t2t3

,

which correspond to the domain of integration D1 and

uL ≡
t1t2(1− t3)

1− t1t2t3t4
, vL ≡

t1(1− t2t3t4)

1− t1t2t3t4
,

uR ≡
(1− t1)t3t4
1− t1t2t3t4

, vR ≡
t3(1− t1t2t4)

1− t1t2t3t4
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for the domain D2. All times ti are integrated over [0, 1]. In terms of u’s and v’s the domains

of integration can be found by inverting the above relations. We start with D1:

t1 =
u2v1(1− v1 − v2) + u1v2(v1 + v2)

u1v2 + u2(1− v1 − v2)
, t3 =

v2
1− v1

,

t2 =
u1v2

u2v1(1− v1 − v2) + u1v2(v1 + v2)
, t4 = u1 + u2

1− v1
v2

.

The fact that the ti’s take values in the interval [0, 1] translates into restrictions on the u and

v variables. In Appendix C.2, we prove that these variables belong to a subinterval of [0, 1].

Some of these restrictions merely confirm this. The other restrictions

0 ≤ v2 ≤ 1 , 0 ≤ u1 ≤ v1 ≤ 1− v2 ,
u1

v1
≤

u2

v2
≤

1− u1

1− v1

define the integration domain as

∫

D1

≡

∫ 1

0

dv2

∫ 1−v2

0

dv1

∫ v1

0

du1

∫ v2
1−u1
1−v1

u1v2
v1

du2 .

For D2 we obtain

t1 =
uLuR − vLvR + vL

1− vR
, t3 =

uLuR − vLvR + vR

1− vL
,

t2 =
uL

uLuR − vLvR + vL
, t4 =

uR

uLuR − vLvR + vR
.

This gives the restrictions

0 ≤ uL ≤ 1 , 0 ≤ uL ≤ vL ≤ 1− uR ,

uL

vL
≤

1− vR

1− uR
,

uR

vR
≤

1− vL

1− uL
,

which determine the domain of integration to be

∫

D2

≡

∫ 1

0

duL

∫ 1−uL

0

duR

∫ 1−uR

uL

dvL
∫ 1−

uL(1−uR)

vL

uR 1−uL

1−vL

dvR .

Hence, both D1 and D2 are compact and the corresponding integrals converge. In the language

of trees emerging from homological perturbation theory, there are only two nontrivial topologies
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given by

G1 = ω ⋆ h[h[ω ⋆ Λ[C]] ⋆ Λ[C]]|z=0 =

µ

ω µ

µ Λ[C]

ω Λ[C]

h

h

and

G2 = h[ω ⋆ Λ[C]] ⋆ h[ω ⋆ Λ[C]]|z=0 =

µ

µ µ

ω Λ[C] ω Λ[C]

h h

All other graphs can be derived from these by swapping incoming edges at any vertex. Eval-

uation of all diagrams leads to the quartic vertices above. For Chiral HiSGRA with vanishing

cosmological constant all quartic vertices have been written down in [44].

U(ω,C,C,C). This group of structure maps can effortlessly be obtained via the duality

map. For example,

U1(ω,C,C, C)(p0, p1, p2, p3, p4) = G1(−p4, p0, p1, p2, p3) =

= (p01)
2

∫

D1

exp
[
u1p02 + u2p03 + (1− u1 − u2)p04 + v1p12 + v2p13 + (1− v1 − v2)p14

+ λ(1 + u1 + u2 − v1 − v2 + u1v2 − u2v1)p01
]
.

All other U-vertices can be derived in a similar manner. This completes the low order analysis,

which can be useful for a number of reasons: to get an idea of how interaction vertices look

like; to compute low order holographic correlation functions; to be compared with the all order

analysis that follows. The rest of this section is occupied with the evaluation of all trees coming

out of the homological perturbation theory.
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3.1 All vertices with vanishing cosmological constant

Thanks to the duality map, it suffices to work out vertices of type V(ω,C, . . . , C, ω, C, . . . , C),

but we will provide a complete description of all non-zero vertices. Given the specific nuts and

bolts of homological perturbation theory it can be shown [44] that only a very limited class of

trees makes nonvanishing contributions. They can be described as ‘trees with two branches’.

Either branch has one leaf decorated by an element of A−1 and the other leaves by elements of

A0. Such trees can be depicted as

µ

µ µ

. . . Λ[cm+1] . . . Λ[cm]

µ µ

µ Λ[cm+n−1] µ Λ[c2]

a Λ[cm+n] b Λ[c1]

h h

h h

h h

h h

with ci ∈ A0 and a, b ∈ A−1. As a first step we need to understand what a single branch of

arbitrary length looks like, after which we can join two such branches together to obtain a tree.

In general, leaves with ci can be attached at the left or at the right, which results in a variety of

trees for a certain choice of the length of the branches. Our approach is to construct trees with

all these leaves attached on the right and then find a recipe to derive all permutations from this.

In this section, we are only concerned with integrands and do not care about the domains of

integration in terms of the new variable. We will return to the question of domain in Section 4.

Otherwise, the initial integration variables that emerge from homological perturbation theory,

ti, are integrated over [0, 1].
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A single branch of length n has the form

Bn = h[. . . h[h[a ⋆ Λ[c1]] ⋆ Λ[c2]] ⋆ · · · ⋆ Λ[cn]] =

µ

µ Λ[cn]

. . . Λ[cn−1]

µ Λ[c2]

a Λ[c1]

h

h

h

The low-order considerations suggest that such a branch is evaluated as

Bn =(zp1)
n

∫
exp

[
(1− Vn)(yp1) + Un(zy) +

n∑

i=1

un,i(zpi+1) +

n∑

i=1

vn,ip1,i+1

]
, (3.17)

where

Un =

n∑

i=1

un,i , Vn =

n∑

i=1

vn,i ,

and un,i, vn,i are the integration variables with i = 1, . . . , n. To verify this ansatz, we attach

another leaf decorated by cn+1 to the right of the branch, creating a branch of length n + 1,

which then reads

Bn+1 =
t2n+1t

n
2n+2(1− t2n+1)

n(1− Vn)

(1− t2n+1Un)n+3
(zp1)

n+1×

×

∫
exp

[(1− t2n+1)(1− Vn)

1− t2n+1Un

(yp1) +
(1− t2n+1)Un + t2n+1(1− Un)

1− t2n+1Un

t2n+2(zy)+

+
(1− t2n+2)t2n+2

1− t2n+1Un

n∑

i=1

un,i(zpi+1) +
1− Un

1− t2n+1Un

t2n+1t2n+2(zpn+2)+

+

n∑

i=1

(vn,i − un,i

t2n+1(1− Vn)

1− t2n+1Un

)p1,i+1 +
1− Vn

1− t2n+1Un

t2n+1p1,n+2

]
.

(3.18)
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One can bring this into much simpler form

Bn+1 = (zp1)
n+1

∫
exp

[
(1− Vn+1)(yp1) + Un+1(zy) +

n+1∑

i=1

un+1,i(zpi+1) +
n+1∑

i=1

vn+1,ip1,i+1

]
,

(3.19)

where the new integration variables are given by the recurrence relations

un+1,i ≡
(1− t2n+1)t2n+2

1− t2n+1Un

un,i , i = 0, 1, . . . , n ,

un+1,n+1 ≡
1− Un

1− t2n+1Un

t2n+1t2n+2 ,

vn+1,i ≡ vn,i − un,i

t2n+1(1− Vn)

1− t2n+1Un

, i = 0, 1, . . . , n ,

vn+1,n+1 ≡
t2n+1(1− Vn)

1− t2n+1Un

,

(3.20)

where we have to set U0 = V0 = 0 to match our initial values

u1,1 = t1t2 v1,1 = t1 .

All the ti’s run from 0 to 1. In Appendix C, we prove that the Jacobian associated with the

change of variables from {un,1, vn,1, . . . , un,n, vn,n, t2n+1, t2n+2} to {un+1,1, vn+1,1, . . . , un+1,n+1, vn+1,n+1}

is exactly the prefactor in (3.18). Since (3.19) fits the ansatz (3.17), we conclude that the ansatz

is correct for all branches. We also make the observation that the variables satisfy the remark-

able chain of inequalities,

un,1

vn,1
≤

un,2

vn,2
≤ · · · ≤

un,n

vn,n
≤

1− Un

1− Vn

,

which is proven in Appendix C.3. This pattern allows one to easily retrieve the domain of

integration associated to this choice of variables.

We can now compute a tree by evaluating the star-product of two branches with length n and

m. In order to obtain the most symmetric form, assume that the left branch contains only zero-

forms attached to the left and we denote this branch by Bn. This does not limit the generality:

for λ = 0 attaching zero-forms to the left or right gives the same result since the product

is commutative. An important remark is that notation eventually becomes very cumbersome

if we want the labels on pij to consistently refer to the position of the elements a, b ∈ A0
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and c1, . . . , cn ∈ A−1, read from left to right. Therefore, it is convenient to always assign

p1, p2 and a(y1), b(y2) to the first and second one-form, respectively, and assign p3, . . . , pn+2

and c1(y3), . . . , cn(yn+2) to elements of A0 based on the position on the branches that they

originated from, starting from the bottom of the right branch, to the top and then from the top

of the left branch to the bottom. We then leave the reshuffling of the labels according to the

respective positions as seen in the tree as the last step in the recipe of finding vertices. Vertices

should be z-independent, so we set z = 0 at the end. This gives

Bn ⋆ Bm|z=0 =
(−1)n(1− V R

m )n(1− V L
n )m

(1− UL
n U

R
m)

n+m+2
pn+m
12 ×

×

∫
exp

[(1− UR
m)(1− V L

n )

1− UL
n U

R
m

p01 +
(1− V R

m )(1− UL
n )

1− UL
n U

R
m

p02

+
1− V L

n

1− UL
n U

R
m

m∑

i=1

uR
m,ip1,2+i +

n∑

i=1

(
vLn,i − uL

n,i

UR
m(1− V L

n )

1− UL
n U

R
m

)
p1,m+n+3−i

+
m∑

i=1

(
vRm,i − uR

m,i

UL
n (1− V R

m )

1− UL
n U

R
m

)
p2,2+i +

1− V R
m

1− UL
n U

R
m

n∑

i=1

uL
n,ip2,m+n+3−i

]
.

(3.21)

Here we distinguish between variables coming from the left and the right branch by the super-

scripts L and R, as both branches have their own set of recurrence relations (3.20), in which

the ti’s in the left branch run from tm+1 to tn+m, going from top to bottom. To simplify (3.21)

we introduce new variables

rLn,i ≡
1− V R

m

1− UL
nU

R
m

uL
n,i , rRm,i ≡

1− V L
n

1− UL
n U

R
m

uR
m,i ,

sLn,i ≡ vLn,i − uL
n,i

UR
m(1− V L

n )

1− UL
n U

R
m

, sRm,i ≡ vRm,i − uR
m,i

UL
n (1− V R

m )

1− UL
n U

R
m

,

(3.22)

which allows us to rewrite (3.21) as

Bn ⋆ Bm|z=0 = (−1)npn+m
12

∫
exp

[(
1−

n∑

i=1

sLn,i −

m∑

i=1

rRm,i

)
p01 +

(
1−

m∑

i=1

sRm,i −

n∑

i=1

rLn,i
)
p02+

+

m∑

i=1

rRm,ip1,2+i +

n∑

i=1

sLn,ip1,m+n+3−i +

m∑

i=1

sRm,ip2,2+i +

n∑

i=1

rLn,ip2,m+n+3−i

]
.

(3.23)

In Appendix C, we show that the Jacobian resulting from the change of variables from the coor-

dinates {uL
n,1, . . . , v

L
n,n, u

R
m,1, . . . , v

R
m,m} to {rLn,1, . . . , s

L
n,n, r

R
m,1, . . . , s

R
m,m} is exactly the prefactor
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in (3.21).

In order to specify a domain of integration in (3.23), we rename the variables as

{u1, . . . , um, um+1, um+2, . . . , um+n, um+n+1}

= {rRm,1, . . . , r
R
m,m,1−

n∑

i=1

sLn,i −

m∑

i=1

rRm,i, s
L
n,n, . . . , s

L
n,1} ,

{v1, . . . , vm, vm+1, vm+2, . . . , vm+n, vm+n+1}

= {sRm,1, . . . , s
R
m,m,1−

n∑

i=1

rLn,i −
m∑

i=1

sRm,i, r
L
n,n, . . . , r

L
n,1} ,

(3.24)

where um+n+1 = 1 −
∑m+n

i=1 ui and vm+n+1 = 1 −
∑m+n

i=1 vi. In Appendix C.3, we prove that

these variables satisfy the inequalities

u1

v1
≤

u2

v2
≤ · · · ≤

um+n

vm+n

≤
um+n+1

vm+n+1

. (3.25)

Now (3.23) takes the form

Bn ⋆ Bm|z=0 = (−1)n(p12)
n+m

∫
exp

[
um+1p01 + vm+1p02 + (1− Um+n)p1,m+n+

+ (1− Vm+n)p2,m+n +

m∑

i=1

uip1,2+i +

m∑

i=1

vip2,2+i +

n−1∑

i=1

um+1+ip1,m+2+i+

+
n−1∑

i=1

vm+1+ip2,m+2+i

]
.

(3.26)

Constructing vertices. There are still a few differences between the trees that we have

constructed above and the vertices that solve for the A∞-relations. Above we associated p1

and p2 with the two leaves decorated by elements of A−1 and the other pi acted on the ci that

were labeled from bottom right to bottom left on the branches. However, in the expressions for

vertices the pi’s are assigned from left to right. Moreover, we have only considered trees with

elements of A0 attached to the left(right) on the left(right) branch. Obviously, general vertices

are not restricted to this choice. As will become clear in the next section, the only change as

compared to (3.26) is by relabeling of the pij ’s when elements of A0 are attached differently in

the absence of a cosmological term.

To simplify the procedure of obtaining expressions for trees, let us consider the trees in

Fig.2. We assign vectors ~ai = (ui, vi), ~ri = (p1,i, p2,i) to ci and ~r0 = (p01, p02), ~a0 = (1 −
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cm+1

a c0cm+n cm+n−1c∗ b c1c2 c3c4

T T0

c0

a b c1 c2 cm+n

Figure 2: A generic tree T in the left panel with elements of A0 attached left and right arbitrarily
and the ‘base’ tree T0 in the right panel with only elements of A0 attached to the right on the
right branch. T can be obtained form T0 through flipping ci’s to the left of the right branch
and/or shifting them to the left branch.

∑m+n
i=1 ui, 1−

∑m+n
i=1 vi) to c0. We also introduce the matrices

P = (~0,~0, ~r1, . . . , ~rm+n, ~r0) , Q = (−~e1,−~e2,~a1, . . .~am+n,~a0) , (3.27)

where ~e1 =

(
1

0

)
, ~e2 =

(
0

1

)
. The expression for the symbol associated with the basic tree T0

can now be written as

B0 ⋆ Bm+n|z=0 = (p12)
m+n

∫

Vm+n

exp(tr[PQt]);

it is understood to yield the vertex V (ω, ω, C, . . . , C) when acting on

a(y1)b(y2)c(y3) . . . (ym+n+2)|yi = 0 . (3.28)

The configuration space Vm+n is given by the chain of inequalities in (3.25). A generic tree T can

be obtained from T0 through two types of operations: (i) flipping ci to the left of the right branch

and (ii) a counterclockwise shift of all ci’s along the cord connecting a and b. Importantly, in the

latter case c0 also moves along the cord, while another ci takes its place. To express the symbol

corresponding to T we define PT = (~0,~0, ~r1, . . . ,−~rm+1, . . . , ~rn,−~r0). For vertices, the labels on

pi and the corresponding arguments yi of a, b and the cj ’s are read off from the tree from left

to right. Since we have labeled them from bottom right to top left, we require a permutation

σT that relabels the pi’s and yi’s accordingly. Moreover, σT also shuffles the elements in (3.28)
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corresponding to their respective position in the tree T . In the absence of a cosmological

constant, a generic tree T contributes to the vertex V(C, . . . , C, ω, C, . . . , C, ω, C, . . . , C) by

sTσT (p12)
m+n

∫

Vm+n

exp(tr[PTQ
t])a(y1)b(y2)c1(y3) . . . cym+n

(ym+n+2)|yi=0 .

Here, sT = (−1)k and k is the number of zero-forms C in between the two ω’s. The sign sT

is the combination of the sign factor we get by evaluating the product of two branches with a

sign coming from homological perturbation theory.

3.2 All vertices with cosmological constant

All the main properties discussed in the previous section remain true if we turn on the cosmolog-

ical constant, which is a smooth deformation of Chiral Theory in flat space. Most importantly,

the deformation maintains locality. In particular, we have to evaluate exactly the same graphs

as before. It will turn out, as the low order examples illustrate, that switching on the cosmo-

logical constant adds one term to the exponent, e.g. λp12(. . .) for V(ω, ω, C, . . . , C) vertices.

More specifically, a single branch takes the form

Bn = (zp1)
n

∫
exp

[
(1− Vn)yp1 + Un(zy) + λ(zp1)(Un +

n∑

i,j=1

sign(j − i)un,ivn,j)+

+

n∑

i=1

un,i(zpi+1) +

n∑

i=1

vn,ip1,i+1

]
.

(3.29)

In the presence of the cosmological constant the construction of general vertices from the trees

is more complicated than on the flat background. For example, attaching a leaf decorated by

cn+1 to the left of a branch of length n yields

h[Λ[cn+1], Bn] = (zp1)
n+1

∫
exp

[
(1− Vn+1)yp1 + Un+1(zy) +

n+1∑

i=1

un+1,i(zpi+1) +

n+1∑

i=1

vn+1,ip1,i+1+

+ λ(zp1)(

n∑

i=1

un+1,i − un+1,n+1 +

n∑

i,j=1

sign(j − i)un+1,ivn+1,j −

n∑

i=1

un+1,ivn+1,n+1+

+

n∑

j=1

un+1,n+1vn+1,j)
]
,
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i.e., the variables un+1,n+1 and vn+1,n+1 enter the cosmological term with a minus sign as opposed

to when the leaf is attached to the right. Otherwise, the expression remains the same. This

coincides with the statement that the ordering of the leaves is irrelevant in the absence of the

cosmological constant. Since the presence of the cosmological constant does not modify the

piece of the expression we found in (3.26), we will only consider the cosmological term for the

following discussion. For a branch with leaves attached to the left and right arbitrarily, the

cosmological term reads

λ(Ũn +

n∑

i<j

un,iṽn,j −

n∑

j<i

ũn,ivn,j)(zp1) , (3.30)

where x̃ ≡ σix, i corresponds to the label of the element of A0, and

σi ≡





−1 if Λ[Ci] is attached to the left (right) in the right (left) branch ,

+1 if Λ[Ci] is attached to the right (left) in the left (right) branch .

The cosmological term ‘remembers’ how the leaves were attached. In terms of the coordinates

(3.22), the cosmological term of a generic tree reads

λ
(
1 +

n∑

i=1

r̃Ln,i +

m∑

i=1

r̃Rm,i −

n∑

i=1

sLn,i −

m∑

i=1

sRm,i −

n∑

i=1

rLn,i

m∑

j=1

rRm,j+

+
n∑

i=1

sLn,i

m∑

j=1

sRm,j +
m∑

i<j

rRm,is̃
R
m,j −

m∑

j<i

r̃Rm,is
R
m,j +

n∑

i<j

rLn,is̃
L
n,j −

n∑

j<i

r̃Ln,is
L
n,j

)
p12 .

(3.31)

In order to apply the change of coordinates (3.24), we need to differentiate between two cases:

n = 0 and n > 0. In the former case we find the cosmological term to be

λ
(
1 + Ũm − Vm +

m∑

i=1

sign(j − i)σmax{i,j}uivj

)
p12 ,

where we introduced

σmax{i,j} =

{
σi , if i > j ,

σj , if i < j .
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In case n > 0, we obtain

λ
(
σm+n +

m∑

i=1

σiui + um+1 +
n−1∑

i=1

σm+ium+1+i − σm+n

m+n∑

i=1

vi +
m∑

i,j=1

sign(j − i)σmax{i,j}uivj+

+

m∑

i=1

uivm+1 −

m∑

i=1

um+1vi +

n−1∑

i=1

σm+ium+1vm+1+i −

n−1∑

i=1

σm+ium+1+ivm+1+

+

m∑

i=1

n−1∑

j=1

σm+juivm+1+j −

n−1∑

i=1

m∑

j=1

σm+ium+1+ivj +

n−1∑

i,j=1

sign(j − i)σmax{i,j}um+1+ivm+1+j

)
p12 .

At the end of Section 3.1, we expressed the contribution to a vertex in terms of the matrices PT

and Q. It turns out that, despite its complicated form, the cosmological term can be expressed

in a similar fashion that is consistent with both aforementioned cases. We define a matrix QT

by filling up its columns, starting with ~e1, corresponding to a in Fig.2 and from there on with

~ai following through the tree counterclockwise. As an example, for the tree in the left panel of

Fig.2 this looks like

QT = (−~e1,~am+n−1, . . . ,~a4,~a2,−~e2,~a1,~a3, . . . ,~am+1, . . . ,~am+n) . (3.32)

The cosmological term for a generic tree is then given by λp12|QT |, where |QT | is the sum of

minors of QT . A generic tree with cosmological constant contributes to a vertex by

sTσT (p12)
m+n

∫

Vm+n

exp(tr[PTQ
t] + λp12|QT |)a(y1)b(y2)c1(y3) . . . cym+n

(ym+n+2)|yi=0 . (3.33)

The simplest example is given by a single tree contributing to V(ω, ω, C, . . . , C), see Eq. (4.1)

below.

3.3 Duality map and homological perturbation theory

A very helpful idea put forward in [40, 44] is that of a duality map. This map allows one to

automatically generate all U-vertices from V-vertices. Moreover, the duality map manifestly

preserves locality. Nevertheless, it is important to check that homological perturbation theory

leads to exactly the same U-vertices as the duality map. Additionally, the duality map also

allows one to relate various V-vertices to each other.
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U-vertices. First of all, as it is shown in Appendix A, all the trees that contribute to U-

vertices are made up of a single branch (in contrast to the V-vertices that consist of two-branch

trees). According to (A.6) the differentials dzA annihilate the module where the zero-forms C

take their values, so that dzA ◦C ≡ 0 and the module action ◦ can only appear at the very last

step. For example, for the vertex U(ω,C, C) with the symbol (3.16) we should have

U(ω,C, C) = h[ω ⋆ Λ[C]] ◦ C . (3.34)

The reason is that any expression that acts on the bare C has to be dz-independent to be

different from zero and this can only occur at the end of the branch. The symbol of a branch

Bn of length n is given by (3.29). There is a subtlety in computing the module action (A.8) for

Bn ◦ C ≡ (Bn ⋆ C
τ )τ ≡ ezy

[
Bn(y, z) ⋆ e

zyC(z)
]∣∣∣

y↔z
, (3.35)

τ being the involution defined by (A.7). The point is that the expressions (3.35) involve star-

products of nonpolynomial functions like etz·y, which, as is well-known, are ill-defined in general.

For example, the product

etz·y ⋆ esz·y =
e

z·y(t+s−2ts)
1−ts

(1− ts)2

features a singularity as t, s → 1. As a result, the integrals corresponding to the expressions

(3.35) are not absolutely convergent. This, however, does not cause much trouble since ◦

appears only in the very last step and can easily be resolved with any simple regularization.

Specifically, we choose the following definition:

Bn ◦ C ≡ (Bn ⋆ C
τε)τε ≡ lim

ε→+0
e(1−ε)zy

(
Bn(y, z) ⋆ e

(1−ε)zyC(z)
)∣∣∣

y↔z
, (3.36)
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which just modifies the τ -involution (A.7). Plugging (3.29) into (3.36), we get after a straight-

forward calculation

(
1− ε

1− Un(1− ε)

)2(
ε

1− Un(1− ε)

)n

(p01)
n×

∫
exp

[
λ
(1− Vn)(1− ε) + ε(Un +

∑n
i,j=1 sign(j − i)un,ivn,j)

1− Un(1− ε)
p01+

+ ε
n∑

i=1

un,i

1− Un(1− ε)
p0,i+1 +

1− Un

1− Un(1− ε)
p0,n+2+

n∑

i=1

(vn,i − un,i

(1− Vn)(1− ε)

1− Un(1− ε)
)p1,i+1 +

1− Vn

1− Un(1− ε)
p1,n+2

]
.

(3.37)

Then, by analogy with the V-vertices, we introduce the new variables

Tn,i ≡ un,i

ε

1− Un(1− ε)
, Sn,i ≡ vn,i − un,i

(1− Vn)(1− ε)

1− Un(1− ε)
,

Tn,n+1 ≡
1− Un

1− Un(1− ε)
, Sn,n+1 ≡

1− Vn

1− Un(1− ε)
.

(3.38)

Again, the determinant of the Jacobian corresponding to this change of variables (note that we

do not integrate Tn,n+1, Sn,n+1) cancels the exponential prefactor, see Appendix C.1. In terms

of the new coordinates, the symbol (3.37) takes the form

(p01)
n

∫
exp

[
λ
(
1 +

n∑

i=1

Tn,i −
n∑

i=1

Sn,i +
n∑

i,j=1

sign(j − i)Tn,iSn,j+

− εSn,n+1

)
p01 +

n+1∑

i=1

Tn,ip0,1+i +

n+1∑

i=1

Sn,ip1,i+1

]
.

(3.39)

At the same time, the duality map implies

〈V1(a, b, c1, . . . , cn)|cn+1〉 = 〈a|U1(b, c1, . . . , cn, cn+1)〉 , (3.40)
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whence U1(p0, p1, . . . , pn+1) = V1(−pn+1, p0, p1, . . . , pn) with

V1(p0, p1, . . . , pn+2) = (p12)
n exp

[
(1−

n∑

i=1

un,i)p01 + (1−

n∑

i=1

vn,i)p02+

n∑

i=1

un,ip1,i+2 +
n∑

i=1

vn,ip2,i+2 + λ
(
1 +

n∑

i=1

un,i −
n∑

i=1

vn,i +
n∑

i,j=1

sign(j − i)un,ivn,j
)
p12

]
.

We thus conclude that (3.39) approaches U1(p0, p1, . . . , pn+1) as ε → +0. Of course, the domain

of integration for the U-vertices is correct and coincides with that for the V-vertices. In the

same way we can evaluate C ◦ Bn, which gives almost the same expression as before, up to a

small change in the cosmological term. The final result reads

(p01)
n

∫
exp

[
− λ
(
1−

n∑

i=1

Tn,i −

n∑

i=1

Sn,i −

n∑

i,j=1

sign(j − i)Tn,iSn,j+

− ε(1−
n∑

i=1

Sn,i)
)
p01 +

n+1∑

i=1

Tn,ip0,1+i +
n+1∑

i=1

Sn,ip1,i+1

]
.

In the same way as before, we get rid of the ε-dependent term by setting ε = 0. This coincides

with the result obtained from the duality map, i.e.

〈V(a, cn+1, b, c1, . . . , cn−1)|cn〉 = 〈a|U(cn+1, b, c1, . . . , cn)〉 .

To obtain a generic branch, the other elements of A0 could also be attached on the left. Here,

as before, we have adapted the convention of labeling the pi’s from the bottom to the top of the

branch and we need to perform a permutation σT to rearrange them accordingly and shuffle

the elements a(y1)c1(y2), . . . cn(yn+1)|yi=0. In the limit when ε → +0, a generic contribution to

U-vertex with zero-forms attached left and right arbitrarily approaches

U(ci+1, . . . , cn+1, a, c1, . . . , ci) = σT (p01)
n

∫
exp

[
λ
(
σn+1 +

n∑

i=1

T̃n,i − σn+1

n∑

i=1

Sn,i+

+
n∑

i<j

Tn,iS̃n,j −
n∑

j<i

T̃n,iSn,j

)
p01 +

n+1∑

i=1

Tn,ip0,1+i+

+

n+1∑

i=1

Sn,ip1,i+1

]
× a(y1)c1(y2), . . . cn(yn+1)|yi=0 .
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Naturally, a generic U-vertex is related to a class of V-vertices by

〈V(a, c1, . . . , ci, b, ci+1, . . . , cn)|cn+1〉 = 〈a|U(c1, . . . , ci, b, ci+1, . . . , cn)〉 . (3.41)

V-V-duality. The duality map also operates as a map between various V-vertices via

〈V(cj+1, . . . , cn, a, c1, . . . , ci, b, ci+1 . . . , cj−1|cj〉 =

〈V(cj−k+1, . . . , cn, a, c1, . . . , ci, b, ci+1, . . . , cj−k−1|cj−k〉 ,

where we rotated the arguments by k units and j ≥ i+ 1. Through this duality all V-vertices

with the same number of elements of A0 between a and b and the same total number of A0

elements are related to each other, which vastly reduces the number of vertices to be computed.

In particular, it suffices to only determine V-vertices of the type V(a, c1, . . . , ci, b, ci+1, . . . , cn)

and one can relate all V-vertices in the class of vertices characterized by (n, i). In hindsight,

some hints of this duality were hidden in the expression for V-vertices that we presented in

(3.33), namely (i) the overall sign is determined by the number of elements of A0 between

a and b, which is an invariant within a class, (ii) the matrix QT in the cosmological term is

constructed similarly for all vertices belonging to the same class and (iii) the configuration

space of trees that share the same number of total elements of A0 is identical.

U-U-dualities. A natural generalization of the idea discussed above is to introduce dualities

between U-vertices themselves. However, this can only be done if a U-vertex is contracted with

an element of A−1 and subsequently the other element of A−1 is stripped off. This leaves only

one duality relation for the U-vertices, namely,

〈a|Un+2(c1, . . . , cn+1, b)〉 = 〈U1(a, c1, . . . , cn+1)|b〉 = −〈b|U1(a, c1, . . . , cn+1)〉 . (3.42)

Consistency of this duality can be checked either using the explicit expressions for the relevant

vertices or through various dualities. The latter method is particularly easy to implement, as

its consistency implies that the following diagram commutes:

V(a, b, c1, . . . , cn) U(b, c1, . . . , cn+1)

V(c1, . . . , cn, a, b) U(c1, . . . , cn+1, b)

V-V

V-U

V-U

U-U
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(the type of duality is specified on the arrows).

Z2-transformation. When discussing the duality between V- and U-vertices we only con-

sidered taking out a, while for the duality among V-vertices themselves we always took out a

ci that appeared at the right of b. There is a natural pairing 〈a(y)|c〉 = −〈c|a(−y)〉 between

a ∈ A−1 and c ∈ A0, which allows us to take out b or ci to the left of a in the aforementioned

cases. As a consequence, some of the dualities can take place through two different routes, e.g.

〈V2(a, c1, b)|c2〉 = 〈a|U2(c1, b, c2)〉 ,

〈V2(a, c1, b)|c2〉 = −〈U2(c2, a, c1)|b(−y)〉 .

Both cases evaluate to different expressions, but they are related to each other by a Z2-

transformation that preserves the domain of integration, i.e.,

u1

v1
≤

u2

v2
≤ · · · ≤

un

vn
≤

un+1

vn+1

.

This maps {vn+1, . . . v1} → {u1, . . . , un+1} and {un+1, . . . u1} → {v1, . . . , vn+1}.

To summarize, we have directly checked that our A∞-algebra A has the remarkable property

we called the duality map in [40, 44]. This implies that the A∞-algebra A underlying Chiral

Theory is a pre-Calabi–Yau algebra [46, 64], see Appendix B for more detail. In practical

terms, this implies that there are few independent multi-linear products with a given number

of arguments.

4 Configuration space

By construction, each contracting homotopy h entering an interaction vertex brings one inte-

gration variable ti ∈ [0, 1], so that the whole integration domain appears to be the hypercube

[0, 1]2n. However, in terms of ‘times’ ti the ‘propagators’ in front of pij as well as the pre-

exponential factors look ugly (see [40, 44] and the change of variables in the previous section).

In addition, it is not immediately obvious that the integrals converge. In terms of the new vari-

ables u’s and v’s all integrands are obviously smooth functions and the question of convergence

reduces to the compactness of the new integration domain. In Appendix C.2, we prove that

the domain is compact indeed.

With the help of the new integration variables the vertices simplify a lot. In particular,

the propagators are linear except for the only λ-term in the exponent where it is no more
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than bilinear and the pre-exponential factor is completely eliminated by the Jacobians of the

coordinate transformations. These drastic simplifications should convince one that the variables

we have chosen above are the preferred ones. It is time to describe the integration domain in

more detail. Let us concentrate on vertices of type V(ω, ω, C, . . . , C), of which the symbol is

given by [40]

G =(p12)
n exp

[
(1−

∑

i

ui)p01 + (1−
∑

i

vi)p02 +
∑

i

uip1,i+2 +
∑

i

vip2,i+2+

+ λ
(
1 +

∑

i

(ui − vi) +
∑

i,j

uivj sign(j − i)
)
p12

]
.

(4.1)

We will first consider this family of vertices at lower orders in Section (4.1), then provide a

straightforward generalization to all orders with details left to Appendix C.3. A more formal

description of the configuration space together with its relation to Grassmannians is presented

in Section 4.2.

4.1 Order by order analysis

1

1

0v

uA

B

Figure 3: Cubic order.

Let us start from the cubic vertex V(ω, ω, C), for which the

integration domain has been identified as the simplex 0 < u <

v < 1 in the Cartesian plane, see Fig. 3. The configuration

space is constituted by points lying below the diagonal of the

unit square. A simple plane geometry exercise identifies the

multiplier 1 + u − v of the cosmological constant as twice the

area of the shaded region A. The volume of the configuration

space is 1/2 since any point below the diagonal is admissible.

At the quartic order, V(ω, ω, C, C), the integration domain

is defined by more complicated inequalities:

0 ≤ v2 ≤ 1 , 0 ≤ u1 ≤ v1 ≤ 1−v2 ,
u1

v1
≤

u2

v2
≤

1− u1

1− v1
.

In order to clarify their geometric meaning it is convenient to introduce the pair of new variables

v3 and u3 subject to the relations

u1 + u2 + u3 = 1 , v1 + v2 + v3 = 1 . (4.2)
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With these variables we can rewrite the inequalities above in a more symmetric form:

0 ≤ v2 ≤ 1 , 0 ≤ u1 ≤ v1 ≤ 1− v2 ,
u1

v1
≤

u2

v2
≤

u3

v3
.

1

v1 + v2 v1

u1

u1 + u2

0

A

B

Figure 4: Quartic order.

The last group of inequalities implies that the cor-

responding segments, see Fig. 4, form a concave shape

(the upper boundary of region A). In other words, the

quadrilateral B is convex and one of its edges coincides

with the diagonal of the unit square. Again, the mul-

tiplier of the cosmological constant, 1 + u1 + u2 − v1 −

v2+ u1v2−u2v1, can be recognized as twice the area of

the shaded region A. For an obvious reason we will call

such concave polygons A swallowtails. It is easy to see

that the volume of this four-dimensional configuration

space is equal to 1/24.

Now the generalization to all orders is straightfor-

ward, see Appendix C.3 for the proof: vertex V(ω, ω, C, . . . , C) with n zero-forms C is given

by 2n-tuple integral over the configuration space of swallowtails with n + 3 vertices, three of

which are fixed to be the corners of the unit square. Since the integration domain is obviously

compact, the interaction vertices are well-defined at least as A∞ structure maps. The positions

of the n points inside the wedge, which are the actual degrees of freedom of a swallowtail,

correspond to coefficients in front of p1,i+2 and p2,i+2 that connect the two one-forms ω to n

zero-forms C. In case λ 6= 0, the coefficient of the cosmological term λp12 is given by twice the

area of the swallowtail. As discussed at length in [40, 44], the fact that no other differential

operators pij appear that would connect pairs of zero-forms implies space-time locality.

Regarding trees with other topologies, first of all the configuration space is exactly the

same as above, see Appendix C.3. This, among other things, implies that the homological

perturbation theory, even though yielding a solution, does not reveal all hidden symmetries of

the vertices.

Trees with different ordering of zero-forms on either branch within the same topology have

the same configuration space. The term in the exponential proportional to the cosmological

constant changes however by flipping one or more signs. For instance, changing the order of

both zero-forms in V(ω, ω, C, C) gives a tree for the vertex V(ω,C, C, ω). The multiplier of the

cosmological constant reads 1−u1−u2− v1− v2−u1v2+u2v1 and is equal to twice the area of

region ‘+’ minus region ‘−’ in Fig. 5. The edges whose coordinates correspond to the flipped
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1 = u1 + u2 + u3

v1 + v2 v1

u1

u1 + u2

0

1 = v1 + v2 + v3

A

B

a3

a2

a1

1

1
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−u1
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+

−

a3
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a1

Figure 5: Quartic order with various orderings of the zero-forms. On the top panel we have
the swallowtail that determines V(ω, ω, C, C). The coefficient of the cosmological term is twice
the area of region A, which is made of two segments of unit length followed by a1, a2, a3. On
the bottom right panel we flipped the position of two zero forms, which makes a contribution
to V(ω,C, C, ω). Accordingly, the order of the segments is changed: a1 and a2 are inserted
in between the first one and the second one that are of unit length. The coefficient of the
cosmological term is twice the oriented area: the area below the mid-line contributes with
minus sign. Similarly, on the bottom left panel one zero-form is flipped giving a contribution to
V(ω,C, ω, C). The edge a1 is placed in between the segments of unit length and the coefficient
of the cosmological constant again follows from twice the oriented area.
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zero-forms create a new structure, which turns out to be a swallowtail itself. Meanwhile, these

vectors are removed from the original swallowtail, which preserves the defining features of a

swallowtail. Thus, for a tree with mixed ordering of its zero-forms, the term proportional to the

cosmological constant is related to the difference between the area of two swallowtails, which is

an oriented area. Also notice that for a mixed ordering this term can become negative. There

is a simple algebraic interpretation of these manipulations as the sum |QT | of minors of matrix

QT , (3.32), see also below. Now we proceed to a more formal discussion of the configuration

space and its relation to Grassmannians.

4.2 Measuring swallowtails

Consider a Euclidean plane E2 with its natural metric topology. It will be convenient on occasion

to forget about Euclidean structure and treat E2 as an affine space with the automorphism group

Aff(2,R) = GL(2,R)⋉R
2. By the Jordan curve theorem each simple polygon chain separates

E2 into two disconnected regions, called exterior and interior. Consequently, to each vertex of

a simple polygon one can assign exterior and interior angles. We say that a vertex is convex

(concave) if its interior angle is ≤ π (> π). A polygon is called convex if all its vertices are

convex. By definition, a concave polygon has at least one concave vertex.

A

B
C

Figure 6: A simple concave 6-gon. The vertices A, B, and C are convex, the other three are
concave.

It is clear that for a simple concave polygon the minimal number of convex vertices is

equal to 3 (hence, every triangle is convex). We are interested in simple concave polygons with

exactly three convex vertices that go one after another. As in the previous section, these will be

referred to as swallowtails, see Fig.6. It is known that convexity is an affine property, meaning

that the affine transformations of Aff(2,R) map swallowtails to swallowtails. We say that two

swallowtails are equivalent to each other if they are related by an affine transformation.
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−10

−e1

−e2

Figure 7: A canonical swallowtail with six vertices.

In order to describe the equivalence classes of swallowtails modulo affine transformations

we fix an origin 0 and an orthonormal basis (e1, e2) in E
2. Then, we translate the middle of the

three convex vertices to the origin 0 ∈ E2. Finally, applying a linear transformation of GL(2,R),

we can match the edges forming the convex vertex with the (reversed for convenience) unit basis

vectors −e1 and −e2. In such a way each swallowtail appears to be equivalent to one of the

forms depicted in Fig. 7. Although the last step does not specify the linear transformation

uniquely, the only ambiguity concerns the permutation of the basis vectors e1 and e2. To fix

this ambiguity one needs to choose an orientation in E2. We will indicate each of two possible

orientations by putting arrows on the edges of polygons as in Fig. 8. The affine transformations

that preserve either orientation form a subgroup Aff+(2,R) = GL+(2,R)⋉R2 of the full affine

group Aff(2,R). We will denote the space of all nonequivalent oriented swallowtails with n

vertices by Vn.

b1

b2

a6

a5 a4

a3

Figure 8: An oriented swallowtail.
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Considering now the oriented edges of an n-gon as affine vectors in E2, we can arrange their

coordinates into a 2× n array P ∈ MatR(2, n); in so doing, the order of vectors corresponds to

the order of edges.9 For instance, the array corresponding to the swallowtail in Fig.8 looks as

P = (b1, b2, a3, a4, a5, a6) =

(
b11 b12 a13 a14 a15 a16

b21 b22 a23 a24 a25 a26

)
.

Clearly, each array P determines the corresponding polygon up to translations in E2 and cyclic

permutations of its columns does not affect the polygon. For oriented swallowtails we can fix

the order completely by writing the coordinates of the right edge of the middle convex vertex

in the first column. Applying the transformation

G = −

(
b11 b12

b12 b22

)−1

∈ GL+(2,R)

brings the matrix P into the canonical form

GP = (−e1,−e2, a3, a4, a5, a6) =

(
−1 0 a13 a14 a15 a16

0 −1 a23 a24 a25 a26

)

that corresponds to the swallowtail in Fig. 7. We will refer to such swallowtails as canonical

representatives. Notice that the remaining entries a’s are not arbitrary. First of all, the closeness

of the polygon chain implies that the sum of column vectors is equal to zero, i.e.,

b1 + b2 + a3 + · · ·+ an = 0 . (4.3)

This allows us to express one of the vectors ai as the sum of the others. The concavity condition

imposes further restrictions on a’s. Let [a, b] denote the determinant of a 2 × 2-matrix (a, b).

Then an array

P = (b1, b2, a3, . . . , an) ∈ MatR(2, n)

defines a oriented swallowtail iff its entries satisfy Eq.(4.3) together with the following inequal-

ities:
p12 = [b1, b2] > 0 , p1i = [b1, ai] < 0 , p2i = [b2, ai] > 0 ,

pij = [ai, aj ] < 0 , 3 ≤ i < j ≤ n .

(4.4)

9By altering the order of vectors/edges one can easily get a polygon with crossed edges as in Fig. 5
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The introduced variables pij are convenient to express the area of a swallowtail:

Area(P ) =
1

2

∑

i<j

pij .

Eqs. (4.3) and (4.4) define Vn – the space of all nonequivalent oriented swallowtails with

n > 3 vertices – as a bounded domain in R2(n−3). The space Vn enjoys a natural measure given

by the volume form

ωn =
n−1∏

k=3

da1k ∧ da2k , (4.5)

where the coordinates (a1k, a
2
k) correspond to a canonical representative P with b1 = −e1 and

b2 = e2 as in Fig. 7. With this measure one can easily find that Vol(V4) = 1/2 and Vol(V5) =

1/24.

Geometrically, there are two natural ways to look at a 2×n-array: either as a set of n vector

in R2 or as a pair of vectors in Rn. So far we have followed the former interpretation; now let

us try the latter. By definition, taking the quotient of full rank matrices of MatR(2, n) by the

left action of GL+(2;R) gives the oriented Grassmannian G̃R(2, n). It can also be visualized

as the space of all oriented 2-planes in Rn.10 This allows us to think of Vn as a subset of

the oriented Grassmannian G̃R(2, n). The subset is defined by the linear equation (4.3) and

inequalities (4.4). From this perspective the variables {pij}, where i, j = 1, . . . , n and i < j,

are nothing but the Plücker coordinates defining the embedding of G̃R(2, n) into the oriented

projective space P̃N = G̃R(1, N) of dimension N = 1
2
n(n− 1)− 1. (As a smooth manifold P̃N

is diffeomorphic to the standard N -sphere, which is the universal covering space of PN .) It is

known that the image of the Plücker embedding i : G̃R(2, n) → P̃N is given by the intersection

of the projective quadrics

Qijkl : pijpkl − pikpjl + pjkpil = 0 , ∀i < j < k < l . (4.6)

These are known as the Plücker relations. Among other things the relations say that the inequal-

ities (4.4), which single out an open domain in the intersection
⋂
Qijk, are highly redundant.

For instance, the relation

p13p24 = p12p34 + p23p14

10More generally, one defines G̃R(k, n) to be the space of all oriented k-planes in Rn. Topologically, G̃R(k, n)
is just the universal double cover of the Grassmann manifold GR(k, n).
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implies that p13 < 0 whenever

p24 > 0 , p12 < 0 , p23 < 0 , p34 > 0 , p14 > 0 .

The above geometric interpretation in terms of swallowtails suggests that it would be enough

to specify the signs of only consecutive minors pi,i+1 and p1n provided Eq. (4.3) holds. As to

the remaining relation (4.3), it is clearly equivalent to the pair of linear equations

p12 = −

n∑

i=3

p1i =

n∑

i=3

p2i , (4.7)

which define a plane Π of codimension two in P̃N . Summarizing all of the above, we can

identify the space of swallowtails Vn with an open region in the intersection of the projective

codimension-two plane (4.7) with the projective quadrics (4.6); the region is specified by pre-

scribing signs (4.4) to the Plücker coordinates. In terms of the projective coordinates pij the

volume form (4.5) on Vn ⊂ P̃N is obtained as the restriction of the form

Ωn =
n−1∏

i=3

dp1i ∧ dp2i

(p12)
2

of degree 2(n−3) on P̃N . The closure Vn ⊂ P̃N defines the integration domain for the interaction

vertices of order n. Topologically, Vn is a smooth manifold with corners. Hence, it admits a

smooth stratification. For example, the stratum of codimension one corresponds to degenerate

canonical swallowtails where exactly one concave (or convex) internal angle becomes π (or 0).

In the last decade, much attention has been paid to the so-called positive Grassmannians be-

cause of their remarkable applications in statistical physics, integrable models, and scattering

amplitudes. For a recent account of the subject we refer the reader to [65, 66]. By defini-

tion, a positive Grassmannians is just an open region of a real Grassmann manifold where all

Plücker coordinates are strictly positive. Our considerations show that other distributions of

signs among the Plücker coordinates may also be of interest, at least for some field-theoretical

problems.

5 Discussion and Conclusions

In this paper, we have obtained all vertices of Chiral Theory with and without cosmological

constant. As it was already pointed out in [40, 44] the final form of the vertices is remarkably
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simple: the exponents become linear in the new variables (or quadratic for nonzero cosmo-

logical constant) and complicated exponential prefactors are eliminated by the corresponding

Jacobians. Another result is an explicit description of the configuration space. It is given by

what we call swallowtails – concave polygons that have two edges coinciding with two adjacent

edges of the unit square. Another way to describe the same geometric shape is to consider the

space of convex polygons that can be inscribed into a unit square with one edge coinciding with

the diagonal. The area of the swallowtail also has a meaning and determines the coefficient of

the cosmological term.

There is an intriguing relation [67, 68] to the formality theorems, in particular to Shoikhet–

Tsygan–Kontsevich formality [47, 48]. This indicates that with the help of the simple configu-

ration space we have now the A∞/L∞-relations can be proved via Stokes theorem, which we will

address elsewhere. A more intriguing question is whether the configuration space we identified

can be generalized and extended into the ‘bulk’. Indeed, the Poisson structure π we begin with

is just ǫAB, i.e., symplectic and constant. For this reason, all Kontsevich–Shoikhet’s graphs

where π is hit by derivatives disappear. What remains of undifferentiated π is the Moyal–

Weyl star-product and the Feigin–Felder–Shoikhet cocycle [69] that justifies the existence of

cubic vertices as well as higher order vertices. These structures are also closely related to the

deformation quantization of Poisson Orbifolds [68, 70]. There should also exist an extension

of our construction to Feigin’s glλ [71]. Another direction is due to a surprising appearance

of pre-Calabi–Yau algebras [46, 64], see Appendix B. Eventually, all of this should admit a

description in terms of a certain two-dimensional topological field theory.

Another interesting direction is to uncover what is special about the multi-linear products

we found as compared to other representatives of the same A∞/L∞-algebra. From the viewpoint

of a sigma-model dΦ = Q(Φ), different choices of coordinates for the underlying homological

vector field Q translate into redefinitions of fields Φ, most of which are too nonlocal to give

meaningful interactions. In other words, most of coordinates for Q violate the equivalence

theorem. It is tempting to say that there should always exist a coordinate system that leads

to maximally local interactions. For every field theory, one can think of Q as a deformation of

a ‘free’ homological vector field Q0 that defines a certain graded Lie algebra (via the bilinear

maps of the associated L∞-algebra) and the first order deformation corresponds to a certain

Chevalley–Eilenberg cocycle. Therefore, the maximal locality requirement selects one specific

representative of the Chevalley–Eilenberg cohomology. It is easy to see that the vertices we

found are maximally local (any field redefinition can only increase the number of derivatives). It

would be interesting to find out exactly which property of the Chevalley–Eilenberg cohomology
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is equivalent to maximal locality in the field theory language.

The immediate applications of the obtained results are obvious: (a) it would be interesting

to look for exact solutions building upon the general tools [72–74] worked out in the context of

formal HiSGRA;11 (b) it is important to compute holographic correlation functions as to com-

pare with (Chern–Simons) vector models (Chiral Theory should be dual to a closed subsector

of Chern–Simons vector models [40]); (c) presymplectic AKSZ actions along the lines of [77]

can be constructed as well as possible counterterms and anomalies can be classified [78]; (d)

the study of integrability of Chiral Theory [51] and its relation to twistors [26] should also be

a fruitful direction.

In the regard to item (d) let us point out that the A∞-algebra of Chiral Theory Â naturally

defines a two-dimensional theory, which should be closely related to an important observation

made in [51] that the equations of Chiral Theory in flat space can be cast into the form of

the principal chiral model. Indeed, the higher spin algebra hs is given by the tensor product

Aλ⊗A1⊗MatN , where Aλ is the Weyl algebra, with λ being the parameter of noncommutativity

(effective cosmological constant). Clearly, all the higher products of Â owe their existence to

the first factor Aλ and its bimodule A∗
λ, while the rest part, B = A1⊗MatN , enters via the usual

associative product. What makes the system four-dimensional is the functional dimension of hs.

If we simply drop A1 and take B = MatN (or any other associative algebra with zero functional

dimension), we can write the same sigma-model dΦ = Q(Φ), but on a two-dimensional space.12

The factor Aλ implies that AdS2 is a natural vacuum for such a system. According to [51]

this system (as well as the whole Chiral Theory) should be integrable. Its exact solutions

can perhaps be obtained by adapting the techniques from [80] and it would be interesting to

compare it with the standard techniques from integrable models. With B = Mat2 one can

get a 3d interpretation. The functional dimension of Aλ, which is 2, corresponds to off-shell

equations in 2d and to on-shell in 3d, which seem to be the most natural dimensions for the

theory underlying the Chiral one. It would be interesting to uncover the properties of this

parent theory.

Lastly, let us present the Chiral HiSGRA equations of motion in a concise form.13 As it has

11By a formal HiSGRA we mean the sigma-models above, dΦ = Q(Φ), without taking locality into account.
Interestingly, the equations may have nicely looking solutions even for physically nonsensical vertices hidden in
Q (see [75, 76] for the careful treatment of a black brane solution).

12The functional dimension of Aλ implies that the theory is off-shell in 2d or, perhaps similarly to [79], can
be understood as an on-shell one for infinitely-many fields. In 3d the theory would be on-shell to begin with.

13In this regard one can mention the very recent Didenko equations [81] that are claimed to give a local theory
in AdS4. Provided the vertices are explicitly extracted from [81] it would be interesting to compare them with
Chiral Theory in AdS4. A closely related interesting open question is whether there are more than one local
higher spin gravity in AdS4. Without taking locality into account there are infinitely many formal deformations
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been discussed, the V-vertices come from trees with two branches and U-vertices originate from

trees with just one branch. The expression for the most general branch Bn[C, . . . , ω, . . . C] is

given in (3.33). Let us introduce the sum

B[ω,C] =

∞∑

n=0

Bn[C, . . . , ω, . . .C]

over all possible branches and orderings of zero-forms C therein. With this we can write the

equations of motion as

dω = B[ω,C] ⋆ B[ω,C]
∣∣∣
z=0

, dC = B[ω,C] ◦ C − C ◦B[ω,C] .

As is seen, upon switching on interaction, the one-form field ω on the right is just replaced with

B = ω + O(C). One can regard the full branch B as an effective field ω ‘dressed’ by C. The

equations can also be understood as a Poisson sigma-model, see Appendix B.
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A Homological perturbation theory: a recipe

In [40, 44], a detailed description was given of how to construct vertices in Chiral HiSGRA

from homological perturbation theory. Here we present only the practical steps required for

at higher orders [58, 78]. Also, similar ambiguities are present for low spin theories. Therefore, the question of
(non-)uniqueness of local theories remains open, which is also relevant for the study of quantum consistency of
Chiral Theory.
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explicit calculations and focus upon the case of nonzero cosmological constant as the flat limit

naturally arises from this.

As a first step, one needs to find a suitable multiplicative resolution of the higher spin

algebra. To this end, we introduce the algebra C[yA, zA] of complex polynomial functions in

y1, y2, z1, z2.14 The algebra is equipped with the Weyl–Moyal star-product

(f ⋆ g)(Y ) = exp(Y a∂1
a + Y a∂2

a + Ωab∂1
a∂

2
b )f(Y1)g(Y2)|Y1,2=0 , (A.1)

where Y a ≡ (yA, zA) and the matrix Ωab is given by

Ωab = −

(
λǫ ǫ

−ǫ 0

)
.

The symbol of the star-product operator is given by

exp(p01 + p02 + r01 + r02 + p1 · r2 − r1 · p2 + λp12) ,

where r to z is the same as p to y. One can also write the star-product in the integral form

(f ⋆ g)(y, z) =

∫
du dv dp dq f(y + u, z + v)g(y + q, z + p) exp(v · q − u · p+ λ p · v) . (A.2)

The generators of the algebra, yA and zA, act as

yA ⋆ f = (yA − λ ∂y
A − ∂z

A)f ,

f ⋆ yA = (yA + λ ∂y
A − ∂z

A)f ,
zA ⋆ f = f ⋆ zA = (zA + ∂y

A)f .

Recall that all indices A are raised and lowered with the help of the ǫ-symbol. With these

14As a historical comment, it should be pointed out that a highly nontrivial idea of getting vertices via solving
simple equations with respect to an appropriately introduced z-extension was put forward in [58, 59]. However,
an important physical condition to have well-defined interactions instead of just formally consistent ones was
not imposed in [58, 59], see e.g. [2, 82–84] for explicit checks that revealed this fact, which is a difference between
an ansatz for interactions and an actual theory. It was also understood [3–6] that the whole class of theories
aimed for in [58, 59] is subtle due to featuring stronger nonlocalities than the standard field theory techniques
allow for. This class is supposed to be dual to Chern–Simons vector models [32–34, 85], which makes it a very
interesting target. The main point of [40, 44] and of the present paper is that Chiral Theory is a well-defined
(i.e., local and smoothly depending on the cosmological constant) theory, which for λ 6= 0 should be a closed
subsector of Chern–Simons vector models’ dual theory that is yet to be found. A detailed discussion of the key
differences between the proposals of [58–63] and the present one can be found in [40]. For instance, according
to [58] there is no flat limit for higher-spin interactions, which is certainly not the case for Chiral Theory.
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relations one can find that the function κ = exp(zAyA) satisfies the relations15

zA ⋆ κ = κ ⋆ zA = 0 . (A.3)

Then we extend the star-product algebra C[yA, zA] to the exterior algebra of polynomial

differential forms R = C[yA, zA, dzA] endowed with the exterior differential dz in z’s. The

product in R is the combination of the star-product and the usual exterior product of the basis

differentials dzA. The latter will be denoted by the dot product, not by the wedge ∧. The

Poincaré Lemma gives then solutions to the equations dzf
(1) = f (2) and dzf

(0) = f (1) for any

closed one-form f (1) = dzAf
(1)
A (z) and a two-form f (2) = 1

2
ǫABf

(2)(z)dzAdzB. They read

f (1) = h[f (2)] = dzAzA

∫ 1

0

tdtf (2)(tz) , f (0) = h[f (1)] = zA
∫ 1

0

dtf
(1)
A (tz) .

We also set h[f (0)] = 0 for any zero-form f (0). These relations define h as the standard con-

tracting homotopy for the de Rham complex of polynomial differential forms:

dzh + hdz = 1− π , (A.4)

π being the natural projection onto the subspace of z independent zero-forms. The form degree

and the exterior differential dz giveR the structure of a differential graded algebra (or dg-algebra

for short). Rel. (A.4) implies that the cohomology of the dg-algebra (R, dz) is concentrated

in degree zero and is described by z- and dz-independent polynomials. Hence, H(R, dz) ≃ Aλ

and (R, dz) define a multiplicative resolution (aka model) of the algebra Aλ. Starting with

the differential graded algebra R one can systematically construct resolutions for many other

algebras. For example, taking the tensor product of R with an associative algebra B yields the

dg-algebra R ⊗ B, where dz extends to B by zero. The algebra R ⊗ B defines then a model

of the tensor product algebra Aλ ⊗ B. Another possibility is to consider the trivial extension

of R by a differential R-bimodule M concentrated in a single degree. The result is given by a

dg-algebra R⊕M with the product

(b, a)(b̃, ã) = (bb̃, bã + ab̃) ∀b, b̃ ∈ R, ∀a, ã ∈ M . (A.5)

Since the differential necessarily annihilates M , the algebra R ⊕ M defines a model for the

15Here we tacitly extend the star-product from polynomials to some analytic functions of z’s and y’s for which
the integral (A.2) makes sense.
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trivial extension Aλ ⊕M . In application to Chiral Theory we combine both the operations ⊗

and ⊕. Specifically, we take B = A1 ⊗MatN and define the bimodule structure on the space

of formal power series M = C[[yA]] by setting16

yA ◦ a = (−∂A
y + λyA)a , zA ◦ a = a ◦ zA = 0 ,

a ◦ yA = (−∂A
y − λyA)a , dzA ◦ a = a ◦ dzA = 0

(A.6)

for all a ∈ M . As is seen the left and right actions of R on M are different unless λ 6= 0. The

quickest way to check the bimodule axioms is with the τ -involution introduced in [40, App. A].

For any function a(y, z) we set

aτ (y, z) = a(z, y)ez
AyA . (A.7)

Clearly, τ 2 = 1. Then one can equivalently define the above ◦-product by the relation

b ◦ a ◦ b̃ = (b ⋆ aτ ⋆ b̃)τ , ∀b, b̃ ∈ R, a ∈ M , (A.8)

and the condition that dzA ◦ a = 0 = a ◦ dzA. In this form, the bimodule axioms for the

◦-product hold due to the associativity of the star-product.

The elements of the bimodule M are assigned the degree one. Then the differential graded

algebra

R = (R⊕M)⊗ A1 ⊗MatN = R⊗ A1 ⊗MatN
⊕

M ⊗ A1 ⊗MatN = R
⊕

M

defines a multiplicative resolution of the algebra

A = H(R, dz) = Aλ ⊗A1 ⊗MatN
⊕

M ⊗A1 ⊗MatN = A
⊕

M . (A.9)

The left summand A is given by the matrix extension of the higher spin algebra hs = Aλ ⊗A1,

the algebra where the one-form field ω assumes its values. The right summand M defines then

a bimodule over the algebra hs⊗MatN , the target space of the zero-form field C. Recall that

the differential in the algebra R is given by the trivial extension of the exterior differential dz.

As observed in [40], the differential dz admits a nontrivial perturbation by another differential

δ of degree one. The latter is defined as

δ(b, a) = (δa, 0) , δa = aτdz1dz2 ∀b ∈ R, ∀a ∈ M . (A.10)

16The quickest way to check the bimodule axioms is with the τ -involution introduced in [40, App. A].
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It is clear that δ2 = 0 and dzδ = −δdz = 0. Eq. (A.3) ensures the graded Leibniz identity for the

differential (A.10) and the product (A.5). Therefore, the sum D = dz+δ endows the algebra R

with a new differential of degree one. It is not hard to see that the cohomology of the perturbed

differential is given by the same algebra (A.9), that is, H(R, D) ≃ H(R, dz) = A. Having the

same cohomology, the dg-algebras (R, dz) and (R, D) are not quasi-isomorphic to each other:

the former algebra is formal, whereas the latter is not. The last fact implies that in addition

to the binary product m2 (induced by that in R) the cohomology space H(R, D) enjoys higher

multi-linear products mk making it into an A∞-algebra. (For the definition of an A∞-algebra

see e.g. [86], [64].) This A∞-algebra, let us denote it by Â, is called the minimal model of the

dg-algebra (R, D). By definition, the binary product m2 coincides with the associative product

in A and the triple product m3 is given by a nontrivial Hochschild cocycle representing a class

of HH3(A,A).

Homological perturbation theory (which details can be found in Refs. [87–89]) provides

explicit formulas for the multi-linear products m2, m3, m4, . . . of the A∞-algebra Â. All the

products are constructed as compositions of two basic operations: the contracting homotopy

h and the associative product in the multiplicative resolution R. The latter gives rise to the

coderivation µ defined by

µ(b, b̃) = (−1)deg b−1b ⋆ b̃ , µ(b, a) = (−1)deg b−1b ◦ a , µ(a, b) = −a ◦ b ,

for all b, b̃ ∈ R and a ∈ M. Suitable compositions are conveniently depicted by rooted planar

trees. Each such a tree graph consists of vertices, internal edges, and external edges. Both ends

of an internal edge are on two vertices. All edges are oriented and orientation is indicated by

an arrow. Each vertex has two incoming and one outgoing edge. An external edge has one end

on a vertex and another end is free. The graphs are supposed to be connected. All the vertices

correspond to the product µ, whereas the internal edges depict the action of the contracting

homotopy h:

µ
µ

µ

h

By definition, the algebra A and the A-bimoduleM have degrees −1 and 0, respectively, whereas

all the products mk of the A∞-algebra Â are of degree one17. By degree considerations, each

nonzero product mk may have either one or two arguments in A and the other in M. In the first

17In [45] we used a different convention according to which all mk’s are of degree −1. In that case, the
elements of M have still degree 0, whereas A is placed in degree 1.
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µ

µ µ

Λ[a1] b1 µ Λ[a3]

b2 Λ[a2]

h h

h

µ

µ a3

Λ[a1] µ

Λ[a2] b

h

h

Figure 9: A planar rooted tree on the left panel corresponds to the analytical expression
h(hδa1 ⋆ b1) ⋆ h(h(b2 ⋆ hδa2) ⋆ hδa3)|z=0 contributing to m5(a1, b1, b2, a2, a3); here b1, b2 ∈ A and
a1, a2, a3 ∈ M. The right panel shows a planar tree for the expression h(hδa1⋆h(hδa2⋆b))◦a3|z=0,
which contributes to m4(a1, a2, b, a3); here b ∈ A and a1, a2, a3 ∈ M. Notice the ‘bare’ argument
a3.

case the image of mk belongs to the algebra A, whereas in the second to the bimodule M. In

field-theoretical terms, these two components of the product mk correspond to the interaction

vertices of V and U types. Let us consider them separately.

Two arguments in A. The corresponding component of mk is described by the sum of

trees with two branches, see left panel in Fig. 9. The incoming external edges (or leaves)

correspond to the arguments of mk. More precisely, the arguments b1, b2 ∈ A may decorate

only the four end leaves on different branches. The other leaves are decorated by the expressions

Λ[ai] = hδai for ai ∈ M. The only outgoing external edge (or root) corresponds to the value

of the product mk(a1, . . . , b1, . . . , b2, . . . , ak−2) that arises after setting z = 0. The order of

arguments is determined by the natural order of incoming edges at each vertex of a planar tree.

The contributions of different trees are added up (with unit weight) to obtain the desired mk.

One argument in A. The product mk(a1, . . . , b, . . . , ak−1) is obtained by summing up the

one-branch trees; an example of such a tree is shown in the right panel of Fig. 9. The only

argument b of A decorates one of the two end leaves, whereas the leaf incoming the root vertex

is decorated by a ‘bare’ element a ∈ M. As above, the order of arguments is determined by the

natural order of incoming edges at each vertex and the root edge symbolizes setting z = 0 in

the final expression for mk. Unlike the previous case, the integrals defining the corresponding

analytical expressions require a minor regularization as explained in the main text.

Finally, performing graded symmetrization of the arguments of the products mk makes

our A∞-algebra Â into a minimal L∞-algebra L. At the level of interaction vertices such
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symmetrization is automatically achieved by substituting the form fields ω and C instead of

the arguments b’s and a’s. It is the L∞-algebra L that governs the interaction in Chiral Theory.

B Pre-Calabi–Yau algebras and duality map

The above construction of the A∞-algebra Â by means of homological perturbation theory is

absolutely insensitive to the choice of the tensor factor B = A1 ⊗ MatN . For any associative

algebra B we get Â = A⊗B, where the minimal A∞-algebra A extends the binary product in

Aλ ⊕ M . Furthermore, the Aλ-bimodule M is actually dual to the algebra Aλ viewed as the

natural bimodule over itself, i.e., M ≃ A∗
λ. The corresponding nondegenerate pairing is given

by

〈a|u〉 = ep12a(y1)u(y2)|yi=0 , ∀a ∈ Aλ , ∀u ∈ M . (B.1)

One can easily verify that 〈b ⋆ a ⋆ c|u〉 = 〈a|c ◦ u ◦ b〉. Recall that the elements of the algebra

Aλ are prescribed, by definition, the degree −1, whereas the elements of the bimodule M live

in degree 0. With this convention all the products mk in A have degree one. By the above

isomorphism, we can write18 Aλ ⊕M ≃ Aλ ⊕A∗
λ[1]. The pairing (B.1) gives rise to a canonical

symplectic form ω on the graded vector space Aλ ⊕ A∗
λ[1]. This is defined as

ω(a+ u, ã+ ũ) = 〈a|ũ〉 − 〈ã|u〉 . (B.2)

Clearly, deg ω = 1. Define the sequence of multi-linear forms

Sk(α0, α1, . . . , αk) = ω
(
α0, mk(α1, . . . , αk)

)
, k = 2, 3, . . . , (B.3)

where α = a+ u ∈ Aλ ⊕A∗
λ[1]. By definition, the A∞-algebra A is called cyclic (w.r.t. ω) if

Sk(α0, α1, . . . , αk) = (−1)α0(α1+···+αk)Sk(α1, . . . , αk, α0) , (B.4)

where α = degα− 1. A direct verification shows that the above identities are indeed satisfied.

Hence, A is a cyclic A∞-algebra. The other two properties of A – shifted duality M = A∗
λ[1]

and the fact that Aλ is a subalgebra of A – allows us to classify A as a 2-pre-Calabi–Yau algebra

[64], [46]. The general definition is as follows.

18Dualization inverts the Z-degree, while the symbol [1] shifts the degree of the dual module by one.
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Definition B.1. A d-pre-Calabi–Yau structure on an A∞-algebra A is a cyclic A∞-structure

on A⊕ A∗[1 − d], associated with the natural pairing between A and A∗[d − 1], such that A is

an A∞-subalgebra in A⊕ A∗[1− d].

In our case, d = 2 and the role of an A∞-algebra A is played by the associative algebra Aλ.

The latter is clearly a subalgebra in A. The cyclicity property (B.4) relates various structure

maps mk among themselves. In particular, it connects the components of the mk’s with one

and two arguments in Aλ:

〈a1|mk+1(u1, . . . , a2, . . . , uk)〉 = −〈mk+1(u2, . . . , a2, . . . , uk, a1)|u1〉 .

In the main text, we use these relations to express the U-vertices via V-vertices.

In the case that the associative algebra B enjoys a trace, one can easily extend the 2-pre-

Calabi–Yau structure from A to the tensor product Â = A ⊗ B. The symplectic structure

extends as

Ω(α⊗ b, α̃⊗ b̃) = ω(α, α̃)Tr(bb̃) ∀α, α̃ ∈ A , ∀b, b̃ ∈ B , (B.5)

and the multi-linear functions (B.3) take the form

Sk(α0 ⊗ b0, . . . , αk ⊗ bk) = Sk(α0, . . . , αk)Tr(b0 · · · bk) . (B.6)

The cyclic invariance (B.4) of the Sk’s is obvious.

Following the ideas of noncommutative geometry [90], one can regard the cyclic forms

(B.6) as functions on a noncommutative manifold associated with Â. The constant symplectic

structure (B.5) gives then rise to a kind of Gerstenhaber bracket on the space of such functions,

called necklace bracket [46]. This can be viewed as a noncommutative counterpart of the

Schouten–Nijenhuis bracket on polyvector fields. It is convenient to combine the functions (B.6)

into a single non-homogeneous function S =
∑∞

k=2 Sk. With the help of the necklace bracket

all A∞-structure relations for Â can be compactly encoded by the equation [S,S]nec = 0 . On

passing from the A∞-algebra Â to the associated L∞-algebra L, the last equation turns into

the Batalin–Vilkovisky equation for the ‘classical master action’ S(ω,C) of ghost number 2 on

the target space of form fields ω and C. Geometrically, one can regard S(ω,C) as a Poisson

bivector on the space of fields C. Upon this interpretation the field equations (2.3) define a

Poisson sigma-model in four dimensions. Schematically,

dC i = πij(C)ωj , dωk =
1
2
∂kπ

ij(C)ωi ωj , (B.7)
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where the Poisson bivector πij(C) is read off from S = πij(C)ωiωj .

C All order vertices

C.1 Jacobians

Here we compute the Jacobians introduced in sections 3.1 and 3.3.

Single branch. Eqs. (3.18) and (3.19) are related by a change of variables

{un,1, vn,1, . . . , un,n, vn,n, t2n+1, t2n+2} to {un+1,1, vn+1,1, . . . un+1,n+1, vn+1,n+1} with the Jacobian

|Jn| =

∣∣∣∣∣∣∣∣∣∣

(1−t2n+1)t2n+2

1−t2n+1Un
δij 0 0 un,iδjj

− t2n+1(1−Vn)
1−t2n+1Un

δij δij 0 0
t2n+1t2n+2(t2n+1−1)

(1−t2n+1Un)2
δjj 0 t2n+2(1−Un)

(1−t2n+1Un)2
t2n+1(1−Un)
1−t2n+1Un

t22n+1(1−Vn)

(1−t2n+1Un)2
δjj − t2n+1

1−t2n+1Un
δjj

1−Vn

1−t2n+1Un
0

∣∣∣∣∣∣∣∣∣∣

, (C.1)

where i, j = 1, . . . , n. Keeping in mind that some entries are vectors or matrices, Gaussian

elemination allows one to find a diagonal form. To give an example of the steps taken during

this process, one can multiply the matrix in the second row of (C.1) by t2n+1

1−t2n+1Un
and add each

of its rows to the last row in (C.1). After a few manipulations, one arrives at

|Jn| =
∣∣∣diag

(
(1−t2n+1)t2n+2

1−t2n+1Un
δij +

(1−t2n+1)t2n+1t2n+2

(1−t2n+1Un)2
un,iδjj, δij +

t2n+1

1−t2n+1Un
un,iδjj,

1−Vn

1−t2n+1Un
, t2n+1

)∣∣∣ .

Notice that the matrix is not completely diagonal as not all of its blocks are proportional to

δij . We obtain

|Jn| =
t2n+1(1− Vn)

1− Un

det
(

(1−t2n+1)t2n+2

1−t2n+1Un
δij +

(1−t2n+1)t2n+1t2n+2

(1−t2n+1Un)2
un,iδjj

)
det
(
δij +

t2n+1

1−t2n+1Un
un,iδjj

)
.

Applying Sylvester’s determinant theorem, det(I + xyT ) = 1 + xTy, gives

|Jn| =
t2n+1

(1− t2n+1Un)2

(
(1− t2n+1)t2n+2

1− t2n+1Un

)n
1− Vn

1− t2n+1Un

,

which is exactly the prefactor in (3.18).

Two branches. Another change of coordinates was applied to go from (3.21) to (3.23). Here

the coordinates {uL
n,1, . . . , v

L
n,n, u

R
m,1, . . . , v

R
m,m} were replaced with {rLn,1, . . . , s

L
n,n, r

R
m,1, . . . , s

R
m,m}.
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The corresponding Jacobian reads

|Jn| =

∣∣∣∣∣∣∣∣∣∣

1−Vm

1−UmUn
δij +

(1−Vm)Um

(1−UmUn)2
un,iδjj 0 (1−Vm)Un

1−UmUn
un,iδjj −

un,iδjj
1−UmVn

−Um(1−Vn)
1−UmUn

δij δij 0 0
Um(1−Vn)
(1−UmUn)2

um,iδjj −
um,iδjj
1−UmUn

1−Vn

1−UmUn
δij +

Un(1−Vn)
(1−UmUn)2

um,iδjj 0

0 0 −Un(1−Vm)
1−UmUn

δij δij

∣∣∣∣∣∣∣∣∣∣

.

Gaussian elimination allows one to rewrite this as

|Jn| =

∣∣∣∣∣∣∣∣∣∣

A 0 0 0

B C 0 0

0 0 D 0

0 0 E F

∣∣∣∣∣∣∣∣∣∣

= |A||C||D||F | ,

where

A =
1− Vm

1− UmUn

δij +
(1− Vm)Um

(1− UmUn)2
un,iδjj , D =

1− Vn

1− UmUn

δij +
Un(1− Vn)

(1− UmUn)2
um,iδjj ,

B = −
Um(1− Vn)

1− UmUn

δij , E = −
Un(1− Vm)

1− UmUn

δij ,

C = δij , F = δij .

Sylvester’s determinant theorem now states that

|Jn| = |A||D| =
1

(1− UmUn)2

(
1− Vm

1− UmUn

)n(
1− Vn

1− UmUn

)m

,

which is the prefactor in (3.21) up to the alternating minus sign.

U-vertices. The determinant of the Jacobian corresponding to the change of variables (3.38)

reads

|J | =

∣∣∣∣∣
+ ǫ

1−Un(1−ǫ)
δij +

ǫ(1−ǫ)
(1−Un(1−ǫ))2

un,iδjj 0

− (1−Vn)(1−ǫ)
1−Un(1−ǫ)

δij −
(1−Vn)(1−ǫ)2

(1−Un(1−ǫ))2
un,iδjj δij +

1−ǫ
1−Un(1−ǫ)

un,iδjj

∣∣∣∣∣ .

Using Sylvester’s determinant theorem yields |J | = ( 1
1−Un(1−ǫ)

)2( ǫ
1−Un(1−ǫ)

)n. This is identified

with the prefactor in (3.37) in the limit ε → 0.
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C.2 Compactness of integration domain

Single branch. The change of variable (3.20) determines the domain of integration in (3.19).

We are interested in knowing if this domain is compact or not. It is useful to start with deriving

some properties of Un and Vn. The ti’s run from 0 to 1, hence

1− Un+1 ≥
(1− t2n+1)(1− Un)

1− t2n+1Un

≥ 0

whenever Un ≤ 1. Since U1 = t1t2 ≤ 1, it follows that Un ≤ 1 for all n ≥ 1. Using this result,

we find

Un+1 =
(1− t2n+1)Un + (1− Un)t2n+1

1− t2n+1Un

t2n+2 ≥ 0 .

Similarly,

1− Vn+1 =
(1− Vn)(1− t2n+1)

1− t2n+1Un

≥ 0

if Vn ≤ 1. Since V1 = t1, we conclude that Vn ≤ 1 for all n ≥ 1.

Vn+1 =
Vn(1− t2n+1) + t2n+1(1− Un)

1− t2n+1Un

≥ 0

for Vn ≥ 0. As V1 = t1 we conclude that Vn ≥ 0 for all n ≥ 1. Using the above result we see

that

Vn+1 − Un+1 =
(Vn − Unt2n+1)(1− t2n+1) + t2n+1(1− Un)(1− t2n+2)

1− t2n+1Un

≥ 0

provided that Vn ≥ Un. Since U1 = t1t2, V1 = t1, and V1 ≥ U1, we conclude by induction that

Vn ≥ Un for all n ≥ 1.

Now the restrictions on the individual variables should be more obvious. It is useful to think

of the variable un+m,n, with m ≥ 1, as originating from un,n when the first relation in (3.20)

is applied m times. The same is true for vn+m,n. It is therefore convenient to first study the

properties of un,n and vn,n. It is easy to see that

0 ≤ un+1,n+1 =
1− Un

1− t2n+1Un

t2n+1t2n+2 ≤ 1
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and

0 ≤ vn+1,n+1 =
1− Vn

1− t2n+1Un

t2n+1 ≤ 1 .

Then

0 ≤ un+m,n =
1− Un+m−1

1− t2(n+m)−1Un+i−1
un+m−1,n ≤ 1

whenever 0 ≤ un+m−1,n ≤ 1. By induction we find that 0 ≤ un+m,n ≤ 1, as 0 ≤ un,n ≤ 1. As a

result all u variables belong to the interval [0, 1]. For the v variables we find

vn+m,n = vn+m−1,n − un+m−1,n

t2(n+m)−1(1− Vn+m−1)

1− t2(n+m)−1Un+m−1

≤ vn+m−1,n .

Again, proceeding by induction and using the fact that vn,n ≤ 1 we conclude that vn+m,n ≤ 1.

To prove that these variables are also nonnegative requires a bit more work. We will use the

relation

1− Un

1− Un−1
≥

1− t2n−1

1− t2n−1Un−1
=

1− Vn

1− Vn−1
. (C.2)

We have

vn+m,n ≥ vn+m−1,n − un+m−1
1− Vn+m−1

1− Un+m−1
=

= vn+m−2,n − un+m−2(
t2(n+m)−3(1− Vn+m−2)

1− t2(n+m)−3Un+m−2
+

(1− t2(n+m)−3)t2(n+m)−2

1− t2(n+m)−3Un+m−2

1− Vn+m−1

1− Un+m−1
) ≥

≥ vn+m−2,n − un+m−2,n
1− Vn+m−2

1− Un+m−2

≥ · · · ≥ vn,n − un,n

1− Vn

1− Un

.

The equalities arise from setting ti = 1 for even i and going from the second to the third line

we used (C.2). It only remains to show that

vn,n − un,n

1− Vn

1− Un

≥
t2n−1(1− Vn−1)

1− t2n−1Un−1
(1− t2n+2) ≥ 0 ,

which proves that vn+m,n ≥ 0. Ultimately, we have shown that all u and v variables belong

to the interval [0, 1], although they obey even stricter restrictions, which will be discussed in

the next section. Moreover, the Un and Vn are restricted to the interval [0, 1] as well and the

domain of integration for a single branch is thus a subspace of the hypercube [0, 1]2n.
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Trees. Another change of variables is proposed in (3.22). As we know that all u and v

variables and their sums Un and Vn belong to the interval [0, 1] and that Vn ≥ Un, it is not hard

to see that

0 ≤ rLn,i =
1− V L

n

1− UL
n U

R
m

uL
n,i ≤ 1

and

sLn,i ≤ vLn,i ≤ 1 .

We also find that

sLn,i ≥ vLn,i − uL
n,i

1− V L
n

1− UL
n

≥ 0 ,

where the latter relation coincides with vn+1,i ≥ 0 for a single branch. Obviously, the same

properties hold for rRm,i and sRm,i and consequently the domain of integration for a tree consisting

of two branches with length n and m belongs to the interval [0, 1]2(n+m).

C.3 Full domain of integration

In Section 3, we explicitly constructed the configuration space for the quartic vertices. We will

establish an analogous configuration space for branches of arbitrary length and eventually for

all trees.

A single branch. Let us start by considering Rel. (3.20). Keeping in mind that all u and v

variables and their sums Un and Vn belong to the interval [0, 1], some relations may be derived.

It is, however, hard to prove any relations between the variables at the same level n. It is

therefore useful to think of un,i as originating from ui,i and having moved up n− i levels using

the first relation in (3.20). The same is true for vn,i. Thus, we first start by evaluating

un+1,n+1

vn+1,n+1

=
t2n+2(1− Un)

1− Vn

≤
1− Un

1− Vn

≤
1− Un+1

1− Vn+1

,

where we have used (C.2) and equality is obtained for t2n+2 = 1. Next, we consider

vn+1,i

un+1,i
=

1− t2n+1Un

(1− t2n+1)t2n+2

vn,i
un,i

−
t2n+1(1− Vn)

1− t2n+1Un

≥
1

t2n+2

vn,i
un,i

(C.3)
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and inverting this gives

un+1,i

vn+1,i
≤ t2n+2

un,i

vn,i
≤

un,i

vn,i
.

By induction we find

un+1,i

vn+1,i
≤ t2n+2

un,i

vn,i
≤ · · · ≤ t2n+2

ui,i

vi,i
≤

≤ t2n+2
1− Ui−1

1− Vi−1
≤ t2n+2

1− Un

1− Vn

=
un+1,n+1

vn+1,n+1
,

where again we made use of (C.2). Equality is obtained if t2k+1 = 0 and t2k = 1 for all k ∈ [i, n].

Now we consider the relation between
un+1,i

vn+1,i
and

un+1,j

vn+1,j
for i < j < n+1. Following (C.3) we can

bring the latter down to the level where it emanated from, which can be written schematically

as

vn+1,j

un+1,j
= A

vj,j
uj,j

−B =
A

t2j

1− Vj−1

1− Uj−1
− B , (C.4)

with A ≥ 1 and B ≥ 0. We then bring the former to the same level, which reads

vn+1,i

un+1,i

= A
vj,i
uj,i

−B . (C.5)

Since i < j, we have not reached the lowest level yet, so continuing this process yields

vj,i
uj,i

≥
1

t2j

vi,i
ui,i

≥
1

t2j

1− Vi−1

1− Ui−1

≥
1

t2j

1− Vj−1

1− Uj−1

,

and altogether

vn+1,i

un+1,i
≥

A

t2j

1− Vj−1

1− Uj−1
− B =

vn+1,j

un+1,j
.

Thus, we find

un+1,i

vn+1,i

≤
un+1,j

vn+1,j

, i < j .
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In particular, the equality sign occurs when t2k = 1 and t2k+1 = 0 for all k ∈ [i, j − 1].

Summarizing the above results, we can write

un+1,1

vn+1,1
≤

un+1,2

vn+1,2
≤ · · · ≤

un+1,n

vn+1,n
≤

un+1,n+1

vn+1,n+1
≤

1− Un+1

1− Vn+1
.

Lastly, we derive a relation between the first u and v variable at each level. Consider

vn+1,i − un+1,i = vn,i − un,i(
t2n+1(1− Vn)

1− t2n+1Un

+
(1− t2n+1t2n+2)

1− t2n+1Un

) ≥ (C.6)

≥ vn,i − un,i

1− t2n+1Vn

1− t2n+1Un

≥ vn,i − un,i . (C.7)

Hence, if vn,i ≤ un,i, then vn+1,i ≥ un+1,i. From the initial values we know that v1,1 ≥ u1,1,

which then extends through first terms to all orders, i.e., un+1,1 ≤ vn+1,1. Together with (C.6)

this determines the domain of integration for a branch of arbitrary length, analogous to the

domain of integration D1 in Section 3.

Trees. For the construction of trees we performed the coordinate transformation (3.22). In

the following discussion the statements for rLn,i, s
L
n,i and rRm,i, s

R
m,i are mostly the same. When

both sets of variables obey a similar relation, we will mention only the former. In Appendix

C.2, we have already shown that rLn,i ≤ 1 and sLn,i ≤ 1, so we can introduce new variables rLn , s
L
n

that satisfy

n∑

i=1

rLn,i + rLn = 1 ,
n∑

i=1

sLn,i + sLn = 1 .

From the analysis of a single branch we know that
vn,i

un,i
≥

vn,j

un,j
if i < j. Hence

sLn,i
rLn,i

=
1− UL

n U
R
m

1− V R
m

vLn,i
uL
n,i

− UR
m

1− V L
n

1− V R
m

≥
sLn,j
rLn,j

, if i < j ,

with equality occurred for
vn,i

un,i
=

vn,j

un,j
. Setting v0 ≡ rLns

R
m, u0 ≡ rRms

L
n , we find

sLn,n
rLn,n

=
1− UL

nU
R
m

1− V R
m

1

t2n

1− V L
n−1

1− UL
n−1

− UR
m

1− V L
n

1− V R
m

≥
1− UL

n U
R
m

1− V R
m

1− V L
n

1− UL
n

− UR
m

1− V L
n

1− V R
m

=

=
(1− UR

m)(1− V L
n )

(1− UL
n )(1− V R

m )
=

1−
∑m

i=1 r
R
m,i −

∑n

i=1 s
L
n,i

1−
∑m

i=1 s
R
m,i −

∑n

i=1 r
L
n,i

,
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with equality for t2n = 1, and

sRm,m

rRm,m

≥
1−

∑m

i=1 r
R
m,i −

∑n

i=1 s
L
n,i

1−
∑m

i=1 s
R
m,i −

∑n

i=1 r
L
n,i

.

Combining the above results yields

u1

v1
≤

u2

v2
≤ · · · ≤

um+n

vm+n

≤
um+n+1

vm+n+1

. (C.8)

where we used the variables defined in (3.24). Moreover, u1 = rRm,1, v1 = sRm,1, so we have

sRm,1

rRm,1

=
1− UL

n U
R
m

1− V L
n

vRm,1

uR
m,1

−
UL
n (1− V R

m )

1− V L
n

≥
1− UL

n (1 + UR
m − V R

m )

1− V L
n

≥
1− UL

n

1− V L
n

≥ 1 ,

where in the first inequality we used that uR
m,1 ≤ vRm,1 and in the second we used V R

m ≥ UR
m, which

were both previously derived. This leads to the inequalities 0 ≤ u1 ≤ v1 ≤ 1. This collection of

inequalities defines the configuration space for a tree. Notice that the configuration space of a

general tree looks very similar to the configuration space of a ‘single-branch’ tree. In fact, up

to relabeling, the configuration space of a ‘two-branch’ tree with the lengths of branches n1 and

n2 coincides with the configuration space of a single branch of length n1 + n2. It follows that

the domain of integration of trees can be related between different topologies by relabeling of

variables.
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