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Figure 1: Overview of the objective evaluation metric using Fréchet distance (FD) between the distributions of embeddings
of the synthetic and real motions. This gives a score that assesses the quality and diversity of the generated motion samples,
allowing the evaluation and comparison of motion-generative models. As an embedding network that maps raw motion data
into latent feature spaces, two autoencoder architectures (one with 1D convolutions and another one with Transformer layers)
are tested.

ABSTRACT
Nowadays, Deep Learning-powered generative models are able to
generate new synthetic samples nearly indistinguishable from natu-
ral data. The development of such systems necessarily involves the
design of evaluation protocols to assess their performance. Quan-
titative objective metrics, such as Fréchet distance, in addition to
human-centered subjective surveys, have become a standard for
evaluating generative algorithms. Although motion generation is a
popular research field, only a few works addressed the problem of
the design and validation of a robust objective evaluation metric
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for motion-generative models. These previous works proposed to
degrade ground truth motion samples with synthetic noises (e.g.,
Gaussian, Salt& Pepper) and studied the behavior of the proposed
metric. However, this degradation does not mimic common motion
artifacts produced by generative models. In this work, we propose
(1) to validate Fréchet distance-based objective metrics on motion
datasets degraded by two realistic motion artifacts, foot skating and
over-smoothing, often found in motion synthesis results, and (2) a
Fréchet Motion Distance (FMD), using Transformer-based feature ex-
tractor, able to capture the motion artifacts and also robust towards
the variation of motion length.
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1 INTRODUCTION
Generative models are designed to produce new data samples that
are similar to real samples. Recent deep learning (DL)-based models
have the ability to generate unseen but plausible modalities, en-
abling them to create realistic and meaningful samples in diverse
domains such as images [Gao et al. 2023; Kim et al. 2022; Ramesh
et al. 2022; Rombach et al. 2021], texts [Brown et al. 2020; Guo
et al. 2017; Wolf et al. 2020] and audio [Dhariwal et al. 2020; Lee
et al. 2021; Leng et al. 2022]. In a motion generation context, the
synthesis of realistic motion is a relevant task in a broad range
of industrial applications such as in robotics or video games in-
dustry. Speech- [Yoon et al. 2020], text- [Petrovich et al. 2021] or
music-driven [Starke et al. 2022] motion generation, motion style
transfer [Aberman et al. 2020a,b] or trajectory-controlled locomo-
tion [Holden et al. 2017; Ling et al. 2020; Zhang et al. 2018] are
examples of popular use cases in this context.

An essential element in the development of generative mod-
els is the establishment of an appropriate evaluation metric that
measures the performance of the model. This evaluation typically
considers factors such as quality, i.e., the similarity between the
generated and real samples, as well as diversity of the generated
samples in terms of their variability. For generative tasks, objective
evaluation is not straightforward unlike other paradigms that have
ground truths such as classification. The nature of one-to-many
relationships in generative tasks (for example, many different but
plausible dance motions can be synthesized for the same input
music) and the human subjectivity regarding the quality of the
synthetic modalities are factors that hinder the generative model
evaluation and comparison.

Subjective surveys are a common method to assess the perfor-
mance of generative models [Tilmanne et al. 2012; Yoon et al. 2022].
It involves human judges that rate the plausibility and naturalness
of synthetic samples. However, this type of evaluation has signif-
icant drawbacks as pointed out in [Borji 2018]. First, relying on
human judgment implies, in essence, being sensitive to the sub-
jectivity of judges. Indeed, some individuals might not have the
same perception of the quality of the generated modality, which
will result in a large variance in the collected results if the num-
ber of participants is not sufficient. In addition, gathering a large
group of judges requires a non-neglectable amount of time and
resources to conduct the evaluation. This method of evaluation also
suffers from low reproducibility issues that hinder comparison with
other previous methods. For these reasons, objective evaluation
metrics are needed that evaluate qualitatively and at low cost. The
need for evaluation metrics is even greater in recent learning-based

generative models, as they involve numerous training attempts.
An evaluation tool to compare the attempts is necessary for faster
development.

In that sense, objective evaluation metrics play a crucial role
in assessing the quality and diversity of the generated samples in
various domains. In the language field, perplexity is a widely used
metric that measures confidence in the prediction of the model and
has proven to be effective [Liu et al. 2019; Shoeybi et al. 2019; Xu
et al. 2020]. Task-specific metrics like BLEU [Papineni et al. 2002]
and ROGUE [Lin 2004] are popular in machine translation and text
summarization, respectively [Aghajanyan et al. 2020; Vaswani et al.
2017]. In the image synthesis domain, the Inception Score (IS) [Sali-
mans et al. 2016] is used to assess the quality of generated images
[Berthelot et al. 2017; Ma et al. 2017]. IS uses the Inception image
classifier to compute the Kullback-Leibler (KL) divergence between
the conditional and marginal distributions estimated by the classi-
fier. However, IS may overlook mode collapses, where generated
samples appear natural but lack diversity within specific categories.
To address this, the Fréchet Distance (FD) [Dowson and Landau
1982] was introduced as an objective evaluation metric. The FD
measures the distance between the distribution of the embeddings
of real and synthesized samples. The calculation of FD involves the
pairs of mean and covariance matrix, denoted (𝜇𝑟 , Σ𝑟 ) and (𝜇𝑔, Σ𝑔),
respectively, for the distributions of the embeddings of real and
generated samples (see Equation 1). This equation assumes that
these distributions are Gaussian.

𝐹𝐷 = | |𝜇𝑟 − 𝜇𝑔 | |22 +𝑇𝑟 (Σ𝑟 + Σ𝑔 − 2(Σ𝑟Σ𝑔)
1
2 ) (1)

In practice, the real and synthesized embeddings are obtained by
extracting the last activationmaps from the Inception network in the
image synthesis field. Distribution parameters are estimated using
these feature maps, and the FD, called Fréchet Inception Distance
(FID), is computed using these parameters. FID has become the
standard metric for evaluating image synthesis models [Dhariwal
and Nichol 2021; Shah and Bharaj 2022]. A similar approach, known
as Fréchet Audio Distance (FAD) [Kilgour et al. 2019], has been
adopted in the field of audio synthesis.

In motion synthesis, FD-based metrics, as shown in Figure 1, are
commonly used to evaluate the quality and diversity of generated
motion samples [Guo et al. 2020; Wang et al. 2021; Yan et al. 2019].
However, only a limited number of studies have thoroughly vali-
dated the proposed metrics [Maiorca et al. 2022b; Yoon et al. 2020].
These validation protocols typically involve the degradation of mo-
tion samples using synthetic noise such as Gaussian or Salt&Pepper.
The expected behavior of the score is that the FD increases (higher
is worse) according to the intensity of the noises. However, this syn-
thetic motion degradation method does not necessarily capture the
common artifacts produced by DL-based motion-generative models.
To address this limitation, it is crucial to develop evaluation metrics
that are sensitive to real motion artifacts, making them more appli-
cable to a large-scale evaluation of motion-generative models. Such
a metric should effectively capture the specific types of artifacts
introduced by DL-based motion-generative models, enabling more
accurate and relevant assessments of their performance.

Lastly, an objective evaluation metric should be aligned with
human perception of the synthesized modalities, since the ultimate
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goal of generative models is to generate synthetic samples that
are plausible to humans. Therefore, in this work we measure the
correlations between the designed objective metric and subjective
human ratings.

In this work, we:
• Introduce a validation protocol that involves common mo-
tion artifacts: (1) foot skating and (2) over-smoothing. A mo-
tion dataset is polluted by different intensities of both ar-
tifacts, and we analyze objective metrics’ responses to the
degraded motions. To the best of our knowledge, this is the
first attempt to validate objective metrics using common
motion artifacts.

• Propose a Transformer-based autoencoder (AE) as an unsu-
pervised feature extractor for FD-based metrics. We show
that the proposed setting is more robust than the previous
one [Yoon et al. 2020] to the variation of motion length,
which is a desired property of an objective metric.

2 RELATEDWORK
2.1 Evaluating Motion Generative Model
One common method to assess the motion-generative model is by
conducting subjective evaluation protocols. These rely on human-
based surveys that rate the quality of the generated motion samples.
Thesemethods can be applied in various contexts, such as in stylized
walk cycle generation to assess expression naturalness [Tilmanne
et al. 2012] or in music-driven motion generation to measure rhyth-
mic and aesthetic consistency of motion samples [Au et al. 2022;
Huang et al. 2020; Li et al. 2020, 2021b; Zhuang et al. 2022].

In parallel, various methods have been utilized to evaluate the
plausibility of synthetic motions based on objective measures. Re-
garding human motion prediction whose task is to forecast future
frames given a motion prefix, the Euclidean distance is computed
between the few generated frames and the ground truth [Fragki-
adaki et al. 2015; Jain et al. 2016; Mao et al. 2019; Martinez et al.
2017]. It measures the ability of the network to predict precisely
the future poses. The Diversity and Modality metrics are common
in the field of text-driven motion generation to evaluate if the al-
gorithm is able to generate a wide and diverse range of motion
samples from a text prompt [Tevet et al. 2022; Zhang et al. 2022]. In
trajectory-controlled animation of virtual characters, Foot Skating
is an artifact that is perceived as the character’s foot sliding when
on contact with the ground. This can be measured considering the
foot velocity below a height threshold [Zhang et al. 2018]. How-
ever, these metrics are only relevant in specific tasks and cannot be
applied in every motion generation context. Moreover, they do not
encapsulate solely the naturalness and likeliness of the generated
samples perceived by human judges.

Then, an evaluation metric based on Fréchet Distance [Dowson
and Landau 1982] has first been introduced in [Heusel et al. 2017] to
assess the performance of Generative Adversarial Networks (GANs)
on image modalities and is called the Fréchet Inception Distance
(FID). It relies on InceptionV3 [Szegedy et al. 2015] to extract the
activation maps from the last convolution layer. The mean and
covariance matrices are estimated on these features and the FID
score is further computed by Equation 1. Its strength comes from
its ability to penalize degradation of synthesized samples, as well

as the lack of diversity in the generated samples. Since its biased
have been exposed e.g., the mismatch between human perception
and objective score when it comes to evaluate an unseen dataset
[Morozov et al. 2020], the FID sensitivity to the number of samples
composing the dataset or even the particular generativemodel being
evaluated [Chong and Forsyth 2020], many works have proposed
an improvement of this metric reducing the impact of these biases
on the score [Bińkowski et al. 2018; Chong and Forsyth 2020; Liu
et al. 2018; Luzi et al. 2023].

In recent studies aforementioned in Section 1, scores built on the
Fréchet Distance have been widely used to assess the performance
of motion-generative models. In this case, the feature manifold
embodies relevant information on the motion modality. For action
motion generation, in the same philosophy as FID, an action classi-
fier [Yan et al. 2018] is trained and the mean and covariance matrix
pairs are estimated on activation maps [Chang et al. 2022; Guo et al.
2020; Yan et al. 2019]. A fine-tuned version of InceptionV3 is also
used to evaluate the action generative model using the Cartesian
position to RGB domain mapping (R3 → R3) [Xi et al. 2020].

However, this FD-based metric requires a training procedure
with labeled data, which makes this method unreliable to evaluate
motion where no defined action is performed such as in co-speech
gesticulation. To tackle this problem, an unsupervised training par-
adigm is used: an LSTM based motion prediction network [Fragki-
adaki et al. 2015] is trained to predict the next frames of motion. The
evaluation is performed using hidden states of the LSTM [Wang
et al. 2021]. Automatic generation of co-speech gesture evaluation
uses AE to learn a motion latent space [Yoon et al. 2020, 2022]. The
statistics are estimated on this manifold, and the FD measures the
distance between the set of ground truth and synthesized latent
vectors. However, these metrics suffer from the lack of a validation
protocol that aims to analyze the behavior of the score to any per-
turbation perceived on generated samples. Yoon et al. [Yoon et al.
2020] validated the score based on the degradation of ground truth
motion samples by synthetic noise such as Gaussian or Salt&Pepper.

More importantly, Kucherenko et al. [Kucherenko et al. 2023]
analyzes the rank correlation between several objective metrics and
user-based subjective evaluation in the context of co-speech upper-
body gesture evaluation. They claim that, among the objective
metrics tested, only the FD score proposed in [Yoon et al. 2020]
achieves a statistically significant effect.

2.2 Transformer-based AutoEncoders
With the Transformer came a new area of AE. Transformer archi-
tecture has first been introduced in the Natural Language Process-
ing (NLP) context [Vaswani et al. 2017] and takes advantage of
self-attention mechanisms. It allows the model to assign different
weights or importance to different positions in the input sequence.
The Transformer’s encoder focuses on relevant parts of the se-
quence while processing it. The decoder attends to the encoded
representations to extract relevant information to complete the
defined task, e.g., generating the next word. The input sequence of
words 𝑠 = [𝑠0, ..., 𝑠𝑇 ] is first converted into tokens 𝑘 = [𝑘0, ..., 𝑘𝑇 ]
for computational and representation purposes. This family of neu-
ral networks achieves state-of-the-art performance in NLP [Brown
et al. 2020; Devlin et al. 2018], computer vision [Bao et al. 2021; Gao
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et al. 2023] or audio processing [Baade et al. 2022; Baevski et al.
2020; Gong et al. 2022; Huang et al. 2022a,b].

BERT [Devlin et al. 2018] is a Transformer-based architecture
that introduced the use of a 𝑐𝑙𝑠 (classification) token in addition to
𝑘 . This token supposedly holds enough information of the entire
input to discriminate between several classes. In this case, the 𝑐𝑙𝑠
is used to classify whether two sentences are paired or not. The
𝑐𝑙𝑠 token has shown its efficiency in various domains such as NLP
[Beltagy et al. 2020] or in computer vision [Dosovitskiy et al. 2020;
Yu et al. 2022].

In the field of motion synthesis, frameworks employ Transform-
ers to leverage the human motion synthesis problem in various
context [Aksan et al. 2020; Hou et al. 2023; Wang et al. 2022a].
action-conditioned human motion synthesis is performed using
a combination of Transformer-based architecture and variational
encoding [Petrovich et al. 2021; Wang et al. 2022b]. The action tags
are first embedded and then processed by the encoder. Two inde-
pendent fully-connected layers are used to regress the distribution
parameters (𝜇, 𝜎) based on the output of the encoder corresponding
to the action token. Our method is inspired by the one proposed in
[Petrovich et al. 2021]. Instead of encoding action tags, we add a 𝑐𝑙𝑠
token to the input sequence in order to combine the information
contained in it and the capability of the decoder to reconstruct the
input motion sequence. This method is explained in Section 3.

3 PROPOSED OBJECTIVE EVALUATION
METRIC

We propose an FD-based objective score using a Transformer ar-
chitecture to extract a latent representation of motion data. More
precisely, we employed a modified version of the human action
conditioned Transformer architecture [Petrovich et al. 2021], which
consists of two components: encoder and decoder. The encoder
takes an input sequence and processes it by applying multiple lay-
ers of self-attention and feed-forward neural networks. The decoder,
on the other hand, generates an output sequence based on the en-
coded representation, attending to the relevant parts of the input
during the decoding process.

In the original work [Petrovich et al. 2021], the Transformer-
basedmodel works as a VAEwhere the action label is first embedded
into learnable mean and variance tokens, respectively 𝜇𝑎

𝑡𝑜𝑘𝑒𝑛
and

Σ𝑎
𝑡𝑜𝑘𝑒𝑛

. These are further aligned with the input motion through
the Transformer encoder, and the KL loss is computed on the en-
coded tokens (𝜇𝑎 and Σ𝑎) to fit the statistics of the desired normal
distribution N(0, 1). However, in our context, no action labels are
provided with the motion samples. The original framework is hence
modified to fit this requirement. Instead of encoding action tokens,
a latent vector 𝑐𝑙𝑠 is learned during the training process. Then, the
encoded 𝑐𝑙𝑠 , denoted as 𝑧, guides the reconstruction of the input
motion samples in the decoder. Hence, the vector 𝑧 acts as a la-
tent representation of the input motion as in AE architectures. The
related architecture is presented in Figure 2.

The input motion is denoted as 𝑚 and is a sequence of poses
𝑚0, ...,𝑚𝑇 .𝑚 is first projected linearly. Then, the poses embeddings
and the 𝑐𝑙𝑠 vector are concatenated and feed the positional encoding
(PE) layer. In Transformer-based architectures, PE is a technique
that is used to provide information about the positions of elements

Transformer Encoder

Linear layer

+ + + + + +
PE Transformer Decoder

Linear layer

𝑚 = 𝑚0, … ,𝑚𝑇

Encoder Decoder

𝑦 = 𝑦0, … , 𝑦𝑇

𝑎

𝜇𝑡𝑜𝑘𝑒𝑛
𝑎

Σ𝑡𝑜𝑘𝑒𝑛
𝑎

𝜇𝑎 Σ𝑎

z b𝑡𝑜𝑘𝑒𝑛
𝑎

+

Transformer Encoder

Linear layer

+ + + + + +
PE Transformer Decoder

Linear layer

𝑚 = 𝑚0, … ,𝑚𝑇

Encoder Decoder

𝑦 = 𝑦0, … , 𝑦𝑇

𝑐𝑙𝑠

z

Figure 2: Top: action-conditioned Transformer-based VAE
[Petrovich et al. 2021]. - Bottom: our method. The action
token is replaced by the 𝑐𝑙𝑠 and the variational behavior of
the initial network is removed. Our method aims to learn a
latent representation of the motion high-dimensional space
so that the latent space can be used to extract the statistics
needed to compute the FD.

in an input sequence. The purpose of positional encoding is to in-
ject position-related information into the input embeddings before
feeding them into the Transformer network. This allows the model
to consider the order and position of the poses in the sequence
during self-attention computations. Next, the decoder, with the
information provided by the latent vector 𝑧, aims to reconstruct the
input motion𝑚. The mean squared error loss is computed between
the decoder output 𝑦 and the input motion𝑚 during the training
process.

Finally, the latent vectors 𝑧 compose a low-dimensional latent
space learned to efficiently represent the high-dimensional motion
samples information. FD statistics i.e., 𝜇 and Σ for the real and
generated motion datasets are estimated in this latent space. The
FMD is then computed, giving a score on the quality and diversity
of the synthesized motion datasets.
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4 ANALYZES
4.1 Datasets
The experiments were performed on two different motion capture
(MoCap) datasets of different nature. These datasets have been
curated with the specific goal of addressing two key challenges:
firstly, the animation of quadrupeds based on their trajectories,
and secondly, the development of speech-driven motion generation
models. By leveraging these datasets, we can effectively demon-
strate the robustness of our proposed FMD in two critical aspects:
(1) its ability to handle variations in skeleton structure and (2) its
adaptability to different types of motion samples.

4.1.1 Dog LocomotionDataset. The dog locomotion dataset [Zhang
et al. 2018] is a MoCap dataset composed of various quadruped loco-
motion gaits e.g., walking or running, as well as a few actions such
as lying or drinking. 27 bones structure the dog skeleton. Moreover,
the pose features for each joint 𝑗 are the Cartesian positions, the
orientations, expressed in exponential maps, towards the forward
and upward direction and velocities.

4.1.2 Human Gesture Motion Dataset. The GENEA (Generation
and Evaluation of Non-verbal Behaviour for Embodied Agents)
Challenge [Yoon et al. 2022] was hosted to compare speech-driven
gesture generation systems. Ten participating teams designed their
own co-speech gesture-generation system built on the same speech
motion datasetmodified from the TalkingWithHands 16.2M dataset
[Lee et al. 2019]. The challenge dataset has 18 hours of full-body
motion capture, including fingers, of different people engaging
in dyadic conversation. The challenge had two tiers: full- and
upper-body gesticulation. For each tier, both the human-likeness
of gesture motion and its appropriateness for the specific speech
have been evaluated through large-scale subjective human surveys
[Kucherenko et al. 2023]. Therefore, these sets of human and synthe-
sized motion samples and their human ratings are useful resources
for analyzing the correlation between the proposed objective metric,
FMD, and human preferences. The evaluation of this dataset was
based on the 3D Cartesian coordinates of the motion. The skeleton
for the upper- and full-body tiers is composed of, respectively, 54
and 58 joints.

The evaluation in [Kucherenko et al. 2023] employs a specific
syntax to identify each set of motion. For upper-body gestures,
UNA tier gathers real human gestures, UBA and UBT are set of
motion generated by two models considered as baselines for the
challenge, and US(J—Q) are tiers submitted by each participating
team. Similarly, for full-body gestures, FNA is the set of real human
motion, FBT the motion samples of the baseline and the synthetic
motion produced by each proposed method are referred to as FS(B—
I). FSE is absent because the E team decided to withdraw their
submission.

4.2 Motion Artifacts
4.2.1 Foot Skating. When animating virtual characters using DL-
powered methods, several motion artifacts can arise due to the
complexity and challenges of modeling human or quadruped mo-
tion. Among others, foot skating has been shown to be a common
artifact in deep neural animation, especially in trajectory-controlled
locomotion [Henter et al. 2020; Ling et al. 2020; Zhang et al. 2018].

Foot skating is defined as the sliding of the character’s foot when
the joint is in contact with the ground. This is perceived as an
artifact that degrades the motion quality as it is considered as an
unnatural behavior. An example of foot skating is shown in Figure 3
and in videos here 1. To create the motion dataset polluted with foot
skating, we rely on a state-of-the-art deep neural motion-generative
model that animates in real time a quadruped with different loco-
motion gaits given its trajectory controlled by an external user
[Zhang et al. 2018]. This model architecture is made up of a pose
regression network Ψ and a gating network Φ based on fully con-
nected layers. The pose regression network takes as input motion
features at frame 𝑓 and aims to generate motion features at frame
𝑓 + 1. To avoid mean pose regression inducing foot skating arti-
facts, Mixture-of-Experts technique [Jacobs et al. 1991] is used to
calculate the parameters 𝜃 of the regression network: 𝜃 is obtained
by blending 𝑛 expert parameters with the coefficients 𝜔 calculated
by the gating network Φ. The input of this model is a subset 𝑥 of
the input motion features 𝑥 . This subset gathers the information of
leg features such as feet position, orientation, and velocity. It helps
to learn multiple gait cycles of dog locomotion. The architecture of
the pose regression network Ψ consists of 3 fully connected layers.
The number of units in each layer is ℎ𝑠𝑖𝑧𝑒 (which was 512 in [Zhang
et al. 2018]).

𝑥 (𝑓 + 1) = Ψ𝜃 (𝑥 (𝑓 ))
where 𝜃 = Σ𝑛𝑖 𝜃𝑖𝜔𝑖 and 𝜔 = Φ(𝑥 (𝑓 )) (2)

Reducing the number of parameters, ℎ𝑠𝑖𝑧𝑒 , leads to underfitting:
the reduced model to learn the complex behavior of different dog
gait cycles tends to converge to a mean pose that minimizes the
regression error. This effect induces foot skating artifacts as the
resulting motion is stiffer, especially regarding the legs. Hence,
reducing ℎ𝑠𝑖𝑧𝑒 deteriorates the motion quality and the motion is
polluted with more foot skating as shown in [Maiorca et al. 2022a].
All materials used to animate the quadruped character come from
here 2.

Foot Skating

Figure 3: Visualization of foot skating artifacts. The pur-
ple arrow represents the foot velocity when in contact with
the ground. Here, the skating is intense while the virtual
quadruped is walking because the feet’s velocity are high.

4.2.2 Motion Over-smoothing. In the context of motion generation,
over-smoothing refers to an undesirable characteristic where the
generated samples appear excessively smooth, lacking in sharpness
and fine details. Over-smoothing can be seen as a result of excessive
1https://figshare.com/s/f4f2e64fac44f9b1bece
2https://github.com/pauzii/AnimationAuthoring

https://figshare.com/s/f4f2e64fac44f9b1bece
https://github.com/pauzii/AnimationAuthoring
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low-pass filtering. When a motion feature e.g., Cartesian position
is excessively low-pass filtered, the high-frequency details, which
contribute to sharpness and fine variations, are attenuated. This
leads to a smoothed-out appearance on the resulting motion. It is a
common artifact encountered in motion-generative models [Chen
et al. 2020; Li et al. 2021a]. To mimic the over-smoothing effect, the
joint positions are processed by a 1D-Gaussian filter with different
intensities 𝜁 . The impact of this process on the resulting motion is
shown in Figure 4.
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Figure 4: Top: Visualization of ground truth (in black) and
filtered motion samples with 𝜁 = 5 and 𝜁 = 25 (in blue and
orange respectively). Bottom: Impact on 𝜁 parameter in a
Gaussian filter smoothing on 1D signals. The motion sample
looks unnatural when the smoothing process is too intense
due to the loss of the high-frequency information. With
𝜁 = 25, the filtered motion looks almost static.

4.2.3 Subjective Study Correlation. While it seems impossible to
list and measure precisely every type of motion artifact that can
occur in the various motion-generative systems, the evaluation of
these is often performed by user studies as we expect people to
consider multiple factors comprehensively, including naturalness,
pleasantness, and appropriateness to the input context. As explained
in Section 4.1.2, the GENEA dataset allows us to explore and analyze
the correlation between the proposed objective score and the human
rates. More concretely, we compute the Kendall rank correlation

[Kendall 1948] between the median user rates and FMDs in a similar
way in [Kucherenko et al. 2023]. The Kendall-𝜏 correlation is a
statistical measure used to assess the strength and direction of
association between two variables. It is particularly well-suited for
data that involve rankings or ordinal scales, where the order or
ranking of data points is more important than their actual numerical
values.

4.3 Experimental Protocol
To evaluate the quality and diversity of a generated motion dataset,
the FMD is computed between the distribution of the generated and
ground truth embeddings using Equation 1. The embeddings are
the samples 𝑧 of the latent space computed from the Transformer
AE. To validate if the proposed FMD efficiently evaluate motion-
generative models, we test if the metric is sensitive to common
motion artifacts. Moreover, since it appears difficult to exhaustively
point out and reproduce each motion artifact that makes motion
samples unpleasant for humans, we also measure the correlation
between the results of the subjective evaluation protocol and the ob-
jective FMD score.We compare the results of our proposed objective
evaluation metric and the method in [Yoon et al. 2020] that relies
on Conv1D-based AE to learn a latent representation of motion
data.

The motion dataset is split into fixed length samples. We consider
them of length 15, 28, 30, 32, 45 and 60 frames. It allows us to
challenge the robustness of the method towards the number of
frames and the selection of 28 and 32 frames enables us to assess if
motion of similar durations leads to similar FMD outcomes. In fact,
the metric must not be sensitive to the number of motion frames. A
robust metric ensures that generative models are evaluated based
on their inherent motion generation capabilities, rather than being
influenced by the length of the motions they produce.

80% and 20% of the dog locomotion set are respectively used
as the training and validation set. Considering the human mo-
tion gesture dataset, the training set is composed of 18 h of ges-
tures and 40 min for the validation set. We trained the proposed
model with Pytorch/Fastai frameworks with a batch size of 256,
during 100 epochs, estimating the learning rate and using the super-
convergence training method [Smith and Topin 2019]. We stacked 8
attention + feed-forward encoder and decoder layers and employed
multi-head attention with 8 heads.

5 RESULTS
5.1 Motion Reconstruction
The AEs were trained by reconstructing the input motion. Figure 5
presents the mean squared error (MSE) between the ground truth
and reconstructed motion samples from the validation set for all
the configurations tested. Videos about the motion reconstruction
are shared here 3 4. We observed that the Transformer-AE is more
powerful to reconstruct the input motion sample regardless of the
length of the motion samples. We believe that this is due to self-
attention mechanism that allows one to attend to relevant parts of
the input sequence and capturing long-range dependencies.

3Co-speech gestures motion reconstruction video
4Dog locomotion reconstruction video

https://figshare.com/articles/media/Motion_reconstruction_using_AutoEncoders/24153072
https://figshare.com/articles/media/Dog_motion_reconstruction_using_AutoEncoders/24153177
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Figure 5: Top: Examples of pose reconstruction in upper body gesticulation (left) and dogwalking (right). Bottom: Reconstruction
error by Transformer- (red) and Conv1D- (blue) based AE on the validation set of upper- (left), full- (mid) body gestures and
dog locomotion (right). The Transformer AE is better at reconstructing the input motion in every tested configurations.

5.2 Fréchet Motion Distance
The FMD is computed between each generated set of motion and
the validation set of theMoCap dataset. Bothmean-covariance pairs
for the validation (real) and submitted (generated) set, respectively
(𝜇𝑟 , Σ𝑟 ) and (𝜇𝑔, Σ𝑔), are estimated on the latent dimension. The
FMD is further computed by Equation 1.

5.2.1 Foot Skating. To validate the proposed metric on foot skating
artifacts, we need to verify whether the FMD has an appropriate
behavior toward this kind of artifacts i.e., scoring higher motion
samples with more intense foot skating. Figure 6 shows the evo-
lution of the score with the hidden size of the animation model
ℎ𝑠𝑖𝑧𝑒 . Reducing the size of the network increases the intensity of
foot-skating of the resulting animation. First, the score from both
models is sensitive to skating artifacts, except when decomposing
the motion into 32-frame samples and using Conv1D-AE as feature
extractor. Then, the scores given by the Transformer model are rel-
atively steady regarding the motion frames compared to the scores
measures using the convolutional model. Therefore, considering
foot skating, the proposed Transformer-based FMD is more stable
to the variation of motion length than the original FMD in [Yoon
et al. 2020].

5.2.2 Over-smoothing. The dataset polluted by over-smoothing
artifacts are the ground truth full- and upper-body gestures tiers
UNA and FNA from the GENEA challenge. The FD is computed
between the validation and the filtered dataset. We study the im-
pact of the 𝜁 parameter i.e., the intensity of the smoothing process
on the metric. Figure 6 shows the variation in the score with 𝜁 .
First, for both models, a plateau occurs in the score profile when
analyzing motion samples of 15 frames for full- and upper-body
gestures. This means that, in this configuration, the metric scores

similarly dataset polluted by higher degree of over-smoothness.
However, considering the analyzes for 28 to 60 frames, both scores
are sensitive to the intensity of smoothing degradation. We observe
that the motion length has less impact on the score value when
the Transformer is employed as a feature extractor, which makes
this method more stable to the variation of motion duration to
over-smoothing artifacts.

5.2.3 User Rates Correlation. While it is essential for a metric
to effectively capture perceptual motion artifacts, it needs to ex-
hibit a significant correlation with human judgments. It should
not only detect motion artifacts accurately but also align with how
humans perceive and evaluate the plausibility of the motions. Table
1 presents the FMD score for each set of motion considering dif-
ferent length of motion samples. We use the subjective evaluation
results presented in [Kucherenko et al. 2023]: the median user rates
indicates the human-likeliness of the motion set (higher is better).
Table 1 has been arranged in descending order according to user
ratings. The motion samples with higher user scores appear at the
top, while those with lower scores are listed towards the bottom.
There was a system (USQ) rated higher than human motion (UNA);
the authors in [Kucherenko et al. 2023] highlighted the multi-factor
constraints that could explain that score e.g., motion artifacts in
the ground truth motions from the difficulty to record clean fingers
motion in motion capture systems. The same observation is made
concerning FSA and FNA.

We calculated the Kendall-𝜏 correlation between the user and
objective scores, reported in Figure 7. Each correlation value is
negative since the FMD gives a low score for close synthetic mo-
tion distribution, but Figure 7 reports the absolute value of the
correlation. We found a statistically significant correlation in the
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Figure 6: FMD scores on foot skating (left) and over-smoothing (right) motion artifacts. The dashed lines represent the score for
full-body gestures. The score computed by both methods effectively penalizes the motion artifact in every tested configuration,
except for the Conv1D-AE with a motion length of 32 frames. The Transformer-AE feature extractor allows the score to be
more stable with respect to motion samples length than the score from Conv1D-AE.

upper-body tier between the median user rating and the proposed
objective metric (Transformer FMD) regardless of the motion length
(p-value < 0.05). However, using Conv1D-AE as a feature extrac-
tor, the significant effect did not appear in every motion length
tested. For the full-body tier, even if the correlation profile of the
Transformer-based FMD seems more stable toward the variation
of motion length than the Conv1D, the significant effect was not
observed for a number of motion frames smaller than 45.

Moreover, both Transformer- and Conv1D-based models seem
to fail to assess efficiently some of the submitted dataset e.g., USN
or FSH. We observed a large gap between the user ratings and the
objective score. Concerning USN, we also observed that the mean
reconstruction error is higher than the other upper-body systems:
0.63 ± 0.24 for USN and 0.075 ± 0.031 in all other systems. This
problem of not properly evaluating out-of-distribution samples (but
plausible) is due to the fact that the feature extractor is trained on a
small motion dataset, and we believe it can be improved by training
on a larger and general motion dataset.

6 DISCUSSION AND PERSPECTIVES
This work introduced a motion-generative model evaluation met-
ric, the FMD score, which is designed to address two prevalent
motion artifacts–foot skating and oversmoothing–and is robust to
the length of motion samples. We believe that this effect is due to
the strength of the Transformer architecture. It makes use of the
attention mechanism that dynamically weights the importance of
different parts of the input sequence. This adaptive attention allows
the model to focus on the most relevant spatio-temporal features.
1D convolutions, on the other hand, apply fixed filters across the en-
tire input, which may limit their ability to adapt to varying patterns.
Furthermore, Transformers outperform CNN-based methods in the
understanding of global context in computer vision [Hatamizadeh
et al. 2023] or NLP [Lauriola and Moschitti 2021]. It makes Trans-
former suitable for capturing long-term dependencies in a sequence
rather than 1D convolutions.

However, it is important to acknowledge the limitations associ-
ated with objective evaluationmetrics based on the Fréchet distance,
despite their widespread usage. First, the FD-based evaluation is
designed to jointly estimate the quality and diversity of synthetic
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Figure 7: Kendall rank correlation between FMD and user
median rates regarding the length of each motion sample.
The p-value is indicated at each related point on the graph.
The dashed lines refer to the full-body tier correlation.

modalities. Moreover, the Fréchet distance measures the overall
similarity between two distributions, but does not explicitly capture
semantic alignment or meaningful differences between generated
samples and real data. It may not account for specific features or
artifacts that should be relevant to capture in the evaluation of
generative models.

In addition, we must take into account that Equation 1 which
computes FD is built upon the hypothesis that the distributions
are multivariate Gaussian. Hence, the Gaussian structure of the
latent space is an essential feature in this case. In this work, we
did not take into account the latent space distribution, but we
observed the expected behavior for the metric on the tested artifacts
and found a statistically significant rank correlation between it
and the user rates. Nevertheless, the non-Gaussian nature of the
tested distributions may induce an inaccurate FD score e.g., that is



Validating Fréchet Motion Distance on Foot Skating and Over-smoothing Artifacts MIG ’23, November 15–17, 2023, Rennes, France

Table 1: FMD scores given conditions of the upper and full body tier. The FMD is computed between the motion in the validation
set of the GENEA dataset and the motions in each condition. Higher user rate is better, and lower FMD is better. The conditions
were presented in descending order of the median user rates.

Cond.
in
Upper-
body
Tier

Median
User
Rate ↑

𝐹𝑀𝐷15 ↓ 𝐹𝑀𝐷28 ↓ 𝐹𝑀𝐷30 ↓ 𝐹𝑀𝐷32 ↓ 𝐹𝑀𝐷45 ↓ 𝐹𝑀𝐷60 ↓

Trans. Conv. Trans. Conv. Trans. Conv. Trans. Conv. Trans. Conv. Trans. Conv.
USQ 69 35.15 17.23 31.9 14.57 27.34 18.89 33.47 56.17 32.29 32.06 30.01 56.93
UNA 63 5.49 1.91 5.29 1.52 4.4 2.348 5.51 7.46 5.2 5.199 4.85 7.28
USJ 53 52.64 29.17 50.42 25.58 41.69 23.1 51.75 84.06 49.31 43.3 44.5 81.44
USO 48 53.56 29.95 48.83 15.76 40.17 18.5 49.97 79.80 45.87 69.97 43.1 110.19
USN 44 353.01 354.54 320.86 274.18 279.38 236.29 337.79 787.68 318.5 589.1 329.72 1227.08
USK 41 65.04 29.5 60.75 17.41 51.29 20.04 63.86 87.59 59.51 59.33 56.63 110.41
USM 41 26.77 12.13 25.55 7.38 20.9 11.07 26.28 44.73 25.25 24.22 23.87 37.84
UBT 36 141.93 82.76 136.5 59.05 112.38 63.85 135.87 234.86 127.08 151.34 122.18 196.88
UBA 33 158.8 92.07 154.54 113.11 126.83 90.75 156.45 262.89 145.34 254.33 139.23 374.76
USP 29.5 88.64 70.71 87.88 75.7 74.52 69.61 90.95 194.63 82.58 193.94 83.35 275.86
USL 22 145.77 83.06 138.52 41.6 116.83 52.94 143.87 225.51 132.56 141.04 125.34 199.41
Cond.
in Full-
body
Tier

Median
User
Rate ↑

𝐹𝑀𝐷15 ↓ 𝐹𝑀𝐷28 ↓ 𝐹𝑀𝐷30 ↓ 𝐹𝑀𝐷32 ↓ 𝐹𝑀𝐷45 ↓ 𝐹𝑀𝐷60 ↓

Trans. Conv. Trans. Conv. Trans. Conv. Trans. Conv. Trans. Conv. Trans. Conv.
FSA 71 37.41 13.13 36.51 26.98 33.28 29.08 33.28 25.06 30.28 48.41 32.03 40.26
FNA 70 6.168 1.41 5.97 4.07 5.52 5.07 5.52 2.43 5.05 8.7 5.21 5.36
FSC 53 56.22 13.41 52.96 44.87 49.51 36.07 56.22 20.24 43.04 105.76 43.58 55
FSI 46 41.16 18.07 38.07 43.25 35.59 41.21 38.07 26.92 32.33 83.64 32.77 43.6
FSF 38 29.72 12.92 28.75 23.3 26.14 28.24 28.75 30.27 24.33 50.08 25.04 46.62
FSG 38 52.81 16.87 52.6 40.51 47.3 56.59 52.6 32.19 44.04 106.01 44.8 61.73
FSH 36 27.48 6.14 27.4 16.71 24.86 20.06 27.4 13.45 22.44 34.51 23.27 24.68
FSD 34 110.17 38.99 103.18 133.66 100.19 171.5 103.18 141.11 81.17 289 81.84 244.92
FSB 30 81.73 36.68 78.36 135.5 74.24 169.78 81.73 146.06 68.84 249.51 63.21 242.11
FBT 27.5 144.27 40.78 142.57 122.28 131.4 118.06 131.4 80.86 119.71 271.97 117.78 129.97

sensitive to imperceptible perturbations [Luzi et al. 2023]. Further
investigations are needed on this side.

Moreover, we believe that ensuring similarity between the orig-
inal (high-dimensional) and latent (low-dimensional) spaces e.g.,
while maintaining proximity between similar samples is beneficial
for FMD. However, the training procedure aiming to reduce the
mean squared error between the ground truth and the decoded
motion does not provide this feature. One solution could be the
use of Graph Neural AE regularized with a structure-preserving
distance as proposed in [Ahmed et al. 2021].

7 CONCLUSION
In this paper, we tackled the challenge of objectively evaluating
motion-generative models and, more specifically, the validation of
such ametric. We analyzed the behavior of the FMD to two common
artifacts in this context, the foot skating and over-smoothing arti-
facts. Additionally, we studies the relationship between FMD and
human judges’ rating of motion likeliness. We found that FMD is
sensitive to any artifacts tested and proportional to the intensity of

degradation. Moreover, FMD achieved a statistically significant cor-
relation with the user study in every motion length tested with re-
spect to upper body gesticulation, but not for full-body gestures. We
also conducted experiments on FMD robustness to motion length
variation and proposed a Transformer-based AutoEncoder leading
to a more robust FMD than the metric proposed in [Yoon et al.
2020]. Even though these results seem encouraging, we believe that
there is room for improvement: considering other motion artifacts,
datasets, and analyzing its robustness to framerate variation will be
a relevant addition to this work. We hope that this work will pave
the way for the design of a consistent objective metric to evaluate
the performance of motion-generative models.
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