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It was shown that the Lie algebra underlying higher-spin holography admits a contraction including a
Poincaré subalgebra in any space-time dimensions. The associated curvatures, however, do not reproduce
upon linearization those that are usually employed to formulate the equations of motion of free massless
particles in Minkowski space. We show that, despite this mismatch, the new linearized curvatures can also
be used to describe massless higher-spin fields. This suggests a new way to build interacting higher-spin
gauge theories in Minkowski space that may admit a holographic description.
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Introduction. The interactions of massless particles of spin
greater than two, also known as higher-spin particles, are
strongly constrained by several no-go results; see, e.g., [1] for
a review. In spite of this, positive results accumulated over the
years in an effort motivated, for instance, by the long-held
conjecture that string theory might be a broken phase of a
higher-spin gauge theory and, more recently, by applications
in holography. We refer to [2,3] for reviews on these two
research directions and to [4] for a recent status overview of
higher-spin theories. In particular, nonlinear equations of
motion for massless higher-spin fields on constant-curvature
backgrounds were built by Vasiliev and collaborators [5,6].
Later on, these have been conjectured to provide the bulk
duals of certain weakly interacting conformal field theories
within the AdS=CFT correspondence [7,8]. These develop-
ments led to the common lore that higher-spin gauge theories
do exist in the presence of a cosmological constant, provided
one is ready to accept some unconventional features, like,
e.g., an infinite spectrum of fields.
Vasiliev’s equations and higher-spin holography rely

upon an infinite-dimensional Lie algebra that we shall
denote by hsD, with D the space-time dimension. This
algebra is essentially unique when the dimension of space-
time is greater than three [9,10], modulo supersymmetric

extensions and Chan-Paton factors [11–13]. For instance,
Vasiliev’s equations describe the dynamics of massless
higher-spin fieldswith a set of differential forms generalizing
the vielbein and spin connection of Cartan’s formulation of
general relativity. The equations of motion are built by
constraining hsD-valued curvature two-forms, in analogy
with Cartan’s approach to gravity where the equations of
motion are constraint equations for the curvatures of the
isometry algebra of the vacuum. This approach to the
interactions of fields of arbitrary spin is referred to as unfolded
formulation; see, e.g., [14,15] for a review. In one of the
founding papers of the unfolded formulation, it was observed
that the algebra hs4 admits a contraction containing a
Poincaré subalgebra [9]. The result, however, was discarded
as a candidate higher-spin algebra in Minkowski space—i.e.,
as a starting point for developing nonlinear unfolded equa-
tions in flat space—because the associated linearized curva-
tures for spin s > 2 do not agree with those of [16], based on
which Vasiliev’s equations were built [5,6].
This observation was long considered as an additional no-

go argument against higher-spin interactions in Minkowski
space: no appropriate symmetry algebra seemed to exist,
at least for the same spectrum of fields as in Vasiliev’s
equations. This view was also supported by direct analyses
of interactions within Fronsdal’s metriclike approach [17] in
which a particle of spin s is described starting from a rank-s
symmetric tensor, therefore generalizing the metric formu-
lation of linearized gravity. In this setup, various studies
pointed out the inconsistency of the non-Abelian, two-
derivative, minimal gravitational coupling of Fronsdal’s
gauge fields in flat space; see, e.g., [1,18], and references
therein. As discussed in [1], Weinberg’s famous low-energy
theorem [19] as well as the generalized Weinberg-Witten
theorem of [20] can also be reinterpreted in these terms.
On the other hand, positive results giving non-Abelian
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were also obtained. For instance, in [21,22], a consistent non-
Abelian cubic coupling between massless spin-s and spin-2
fields aroundMinkowski space containing a total of (2s − 2)
derivatives was obtained in Fronsdal’s formulation. It was
also shown to induce a consistent deformation of the free
gauge algebra satisfying Jacobi identities [22]. More
recently, a complete interacting higher-spin gauge theory
on four-dimensional flat manifolds with Euclidean or split
signature has been built employing a different set of fields
[23,24]. The role of these models in flat-space holography
also begins to be explored [25–27]. Besides, an analog of
the contraction of the algebra hs4 discussed in [9] was
recently defined in any space-time dimension [28]. The
contracted algebra, that we shall denote by ihsD, can also be
obtained from the Poincaré algebra following a construction
close to that relating hsD to the conformal algebra [28,29].
These indications naturally lead to reconsider the lin-

earized curvatures of ihsD. In this paper, we propose a new
system of first-order equations of motion built upon them,
that describes the free propagation of massless particles of
arbitrary spin on Minkowski space. Our equations follow
the same pattern as in the usual unfolded formulation: for
any spin s we set to zero all corresponding curvatures but
one and impose that the latter is proportional to a tensor that
encodes the propagating degrees of freedom of the massless
spin-s field and that generalizes to higher spins the Weyl
tensor of linearized gravity. We then prove that, even if our
curvatures have a nonstandard form, the resulting equations
of motion are equivalent to the standard ones [16], that we
shall review below.
When expressed in terms of curvatures, the structure of

our equations is the same as that of the customary free
unfolded equations in anti–de Sitter (AdS) space-time. This
strongly suggests the option to deform our linear equations
into an interacting theory following the path that led
from [9] to [5,6] or, equivalently, the cohomological
approach of [30,31]. We defer a detailed analysis to future

work, but we wish to stress that this program is expected to
provide a model for interacting higher-spin gauge fields
propagating in Minkowski space-time, possibly describing
a subsector of the unbroken phase of string theory and
admitting a holographic description. Indeed, the simplest
instance of higher-spin holography within the AdS=CFT
correspondence features a free scalar field at the boundary
of AdSD space-time, whose global symmetries are given
by the algebra hsD [32,33] (see, e.g., [34] for a review).
Similarly, ihsD appears as a subalgebra of the global
symmetries of a Carrollian scalar living on null infinity
[29], which is defined by the limit of vanishing speed of
light of a free scalar living at the boundary of AdSD.
This observation fits within the active field of flat-space
holography (see, e.g., [35–40] for an overview of various
approaches), where it has been realized that the limit of
vanishing cosmological constant in the bulk, gravitational
theory, corresponds to a limit of vanishing speed of light in
the boundary, conformal field theory. Any nonlinear
deformation of our free equations of motion will therefore
provide a candidate gravitational dual of the simplest
Carrollian field theory, thus fitting within the urgent quest
for concrete dual pairs in flat-space holography, that is
currently mainly driven by symmetry considerations.

Basics of unfolding. In [16], Lopatin and Vasiliev formu-
lated the equations of motion of a free particle of arbitrary
spin s on a space-time of constant curvature in terms of a
set of one-forms ωaðs−1Þ;bðtÞ, with 0 ≤ t ≤ s − 1, where the
shorthand aðkÞ denotes a set of k symmetrized indices.
They satisfy ηcdω

aðs−3Þcd;bðtÞ ¼ 0 and ωaðs−1Þ;abðt−1Þ ¼ 0,
where repeated indices denote a symmetrization with
strength one, and correspond to representations of the
Lorentz algebra labeled by two-row Young tableaux. For
s ¼ 2, ωa and ωa;b correspond, respectively, to the vielbein
and the spin connection.

The equations of motion read

∇ωaðs−1Þ;bðtÞ þ hc ∧ ωaðs−1Þ;bðtÞc þ λ2cs;thfb ∧ ωaðs−1Þ;bðt−1Þg ¼ 0; 0 ≤ t ≤ s − 2; ð1aÞ

∇ωaðs−1Þ;bðs−1Þ þ λ2cs;s−1hfb ∧ ωaðs−1Þ;bðs−2Þg ¼ hc ∧ hdCaðs−1Þc;bðs−1Þd; ð1bÞ

where ∇ ¼ dxμ∇μ denotes the Lorentz-covariant derivative of the (A)dS background, with ∇2Va ¼ −σλ2ha ∧ hbVb in

terms of the vielbein ha of the background. The cosmological constant is Λ ¼ −σλ2 ðD−1ÞðD−2Þ
2

, where σ ¼ �1. The
coefficients cs;t are fixed by requiring the invariance of these equations under

δωaðs−1Þ;bðtÞ ¼ ∇ϵaðs−1Þ;bðtÞ þ hcϵaðs−1Þ;bðtÞc þ λ2cs;thfbϵaðs−1Þ;bðt−1Þg; ð2Þ

where the gauge parameters ϵaðs−1Þ;bðtÞ are Lorentz-irreducible tensors as the one-forms. In Eqs. (1) and (2), braces denote
the projection on the Lorentz-irreducible tensor representation carried by ωaðs−1Þ;bðtÞ. The precise form of both cs;t and
the projectors will not be relevant in the ensuing discussion where we focus on the λ → 0 limit. The zero-form CaðsÞ;bðsÞ

BOULANGER, CAMPOLEONI, and PEKAR PHYS. REV. D 108, L101904 (2023)

L101904-2



entering (1b) is a gauge-invariant and Lorentz-irreducible
tensor interpreted as the spin-sWeyl tensor; see, e.g., [14,15].
For s ¼ 2, Eqs. (1) are the linearized vacuum Einstein
equations, where the vanishing of the Ricci tensor is refor-
mulated by equating the Riemann curvature with the Weyl
tensor. In the following we shall refer to the limit λ → 0 of
Eqs. (1) as the Lopatin-Vasiliev equations in flat space.
For s ¼ 3, the latter read

deab þ hc ∧ ωab;c ¼ 0; ð3aÞ

dωab;c þ hd ∧ Xab;cd ¼ 0; ð3bÞ

dXab;cd ¼ he ∧ hfCabe;cdf; ð3cÞ

where we renamed the fields ωab → eab and ωab;cd →
Xab;cd and we chose Cartesian coordinates so that the
background vielbein reads hμa ¼ δμ

a and the background
spin connection vanishes. Equations (3) are invariant under

δeab ¼ dξab þ hcλab;c; ð4aÞ

δωab;c ¼ dλab;c þ hdρab;cd; ð4bÞ

δXab;cd ¼ dρab;cd: ð4cÞ

To prove that Eqs. (3) propagate the degrees of freedom of a
spin-three particle, one can first use the parameter λab;c to
gauge away the corresponding component of hμceμab, so as
to recover a Fronsdal field φμνρ ¼ hðμahνbeρÞab. The con-
straint (3a) then allows one to express ωab;c in terms of the
first derivatives of φμνρ, except for a pure-gauge component
which is gauged away using ρab;cd. The constraint (3b)
plays a double role: some of its irreducible components
only involve ωab;c and impose Fronsdal’s equation on φμνρ,
while the others express Xab;cd in terms of the first
derivatives of ωab;c and, eventually, in terms of two
derivatives of φμνρ. The same mechanism applies for any
value of the spin; see, e.g., [41–43] for more details.
The first step to introduce interactions in the unfolded

approach is then to look for non-Abelian algebras whose
curvature two-forms reproduce the lhs of (1) upon lineari-
zation around the gravitational background. The latter
requirement fixes the commutators of all generators with
the Poincaré or (A)dS subalgebra, and one can check if
non-Abelian algebras reproducing these commutators
exist, e.g., by solving the Jacobi identities. Following this
strategy, in [9] it was shown that the algebra hs4 provides
the unique solution to this problem in AdS4, while no
solution was found in Minkowski space. The full hs4-
valued curvatures then constituted the basis of 4D
Vasiliev’s nonlinear equations [5].

Higher-spin extension of the Poincaré algebra. The higher-
spin algebra ihsD can be obtained as an İnönü-Wigner
contraction of the algebra hsD [28]. As previously men-
tioned, the latter can be built by solving the Jacobi identities
with the initial data provided by the Lopatin-Vasiliev
equations. In modern terms, it corresponds to the universal
enveloping algebra of soð2; D − 1Þ evaluated on Dirac’s
singleton module [33,44–46]. In correspondence with the
spectrum of gauge fields, its generators can be collected in
irreducible and traceless tensors MaðsÞ;bðtÞ with s ≥ 0 and
0 ≤ t ≤ s, that have the same Lorentz symmetries as the
one-forms ωaðsÞ;bðtÞ presented above. Their commutators
take the form

h
Maðs1Þ;bðt1Þ;Mcðs2Þ;dðt2Þ

i
∝

Xs1þs2−1

s3¼js1−s2jþ1

Xs3
t3¼0

Meðs3Þ;fðt3Þ ð5Þ

with ðs1þs2þs3Þmod 2¼1 and ðt1þ t2þ t3Þmod 2¼1.
For s ¼ 1 one recovers the soð2; D − 1Þ conformal algebra
and explicit structure constants can be found in [46].
The generators MaðsÞ;bðtÞ with s − t even thus form a

subalgebra and one can rescale the others as

MaðsÞ;bðs−2n−1Þ → ε−1MaðsÞ;bðs−2n−1Þ ∀ s; n∈N: ð6Þ

In the limit ε → 0 all commutators involving only gen-
erators with s − t odd vanish, while the others remain
untouched. The soð2; D − 1Þ subalgebra contracts into a
isoð1; D − 1Þ subalgebra and one obtains a non-Abelian
higher-spin extension of the Poincaré algebra. We chose to
present this algebra as a contraction of the AdS higher-spin
algebra hsD, although one can also build it as a quotient of
the universal enveloping algebra of isoð1; D − 1Þ [28,29].
One can also prove that, in a generic space-time dimension
D > 3, ihsD is the only algebra with the same set of
generators as hsD that can be built with this procedure
[28]. When D ¼ 3, the option to build sensible higher-spin
algebras in Minkowski space from contractions of the AdS
ones was already observed in [47] (see also [28,48–50]), and
Vasiliev-like equations of motion were proposed in [51].

New equations of motion in Minkowski space. We now
consider a one-form taking values in the Lie algebra ihsD:

A ¼
X∞
s¼0

Xs
t¼0

ωaðsÞ;bðtÞMaðsÞ;bðtÞ ð7Þ

and its Yang-Mills curvature:

dAþ A ∧ A ¼
X∞
s¼0

Xs
t¼0

FaðsÞ;bðtÞMaðsÞ;bðtÞ: ð8Þ

We wish to build equations of motion describing free
massless particles using the linearization of the curvatures
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FaðsÞ;bðtÞ around the Minkowski background, linearization
that we shall denote as F̄aðsÞ;bðtÞ. We thus split the vielbein
as ωa ¼ ha þ ea and, for simplicity, we choose again
Cartesian coordinates. The following discussion can be
extended to arbitrary coordinates by introducing a flat
background Lorentz connection, but working in Cartesian
coordinates makes some arguments more transparent.
The linearized curvatures only depend on the commu-

tators between the higher-spin generators MaðsÞ;bðtÞ and
those of the Poincaré subalgebra. With our choice of
coordinates, they read

F̄aðsÞ;bðtÞ ¼ dωaðsÞ;bðtÞ for s − t even; ð9aÞ

F̄aðsÞ;bðtÞ ¼ dωaðsÞ;bðtÞ þ hfb ∧ ωaðsÞ;bðt−1Þg

þ hc ∧ ωaðsÞ;bðtÞc for s − t odd; ð9bÞ

where braces denote a two-row Young projection together
with a traceless projection as explained after Eq. (2). Notice
that the second term on the rhs of (9b) is absent for t ¼ 0
when this value is allowed by the parity condition. The
curvature with t ¼ s, instead, always fits in the class (9a).
The linearized curvatures (9) are invariant under the gauge
transformations

δωaðsÞ;bðtÞ ¼ dϵaðsÞ;bðtÞ for s − t even; ð10aÞ

δωaðsÞ;bðtÞ ¼ dϵaðsÞ;bðtÞ þ hfbϵaðsÞ;bðt−1Þg

þ hcϵaðsÞ;bðtÞc for s − t odd: ð10bÞ

To describe a particle with spin s we propose to impose
the equations of motion

F̄aðs−1Þ;bðtÞ ¼ 0; 0 ≤ t ≤ s − 2; ð11aÞ

F̄aðs−1Þ;bðs−1Þ ¼ hc ∧ hdCaðs−1Þc;bðs−1Þd; ð11bÞ

whereCaðsÞ;bðsÞ is a gauge-invariant and Lorentz-irreducible
tensor. In the following, we prove that they describe the free
propagation of a massless particle of spin s by showing that
they are equivalent to the Lopatin-Vasiliev equations on
Minkowski space.
Alternatively, one can obtain Eqs. (11) by rescaling

ωaðs−1Þ;bðs−2nÞ → εωaðs−1Þ;bðs−2nÞ in Eqs. (1) and sending
ε → 0 while keeping their dependence on the cosmological
constant fixed. The latter can then be absorbed in a
redefinition of the connections ωaðs−1Þ;bðs−2n−1Þ. If one
instead keeps ε fixed while sending the cosmological
constant to zero, one obtains the Lopatin-Vasiliev equations
in flat space.

Equivalence with the Lopatin-Vasiliev equations. To prove
that Eqs. (11) are equivalent to the Lopatin-Vasiliev
equations [16] and, therefore, to the Fronsdal equation in

Minkowski space [17], we begin with the instructive spin-
three example. We then extend the proof to any spin.

The spin-three example: For s ¼ 3, Eqs. (11) read

F̄ab ≔ deab ¼ 0; ð12aÞ

F̄ab;c ≔ dωab;c þ hfc ∧ eabg þ hd ∧ Xab;cd ¼ 0; ð12bÞ

F̄ab;cd ≔ dXab;cd ¼ he ∧ hfCabe;cdf; ð12cÞ

where, for clarity, we renamed the fields as in (3). These
equations are invariant under

δeab ¼ dξab; ð13aÞ

δωab;c ¼ dλab;c þ hfcξabg þ hdρab;cd; ð13bÞ

δXab;cd ¼ dρab;cd: ð13cÞ

Thanks to the Poincaré lemma, Eq. (12a) implies that eab is
pure gauge. We can thus set it to zero using the gauge
symmetry generated by ξab. In this gauge, Eqs. (12b)
and (12c) take the same form as Eqs. (3b) and (3c). To show
that these two equations suffice to describe a massless
particle, notice that, in the gauge eab ¼ 0, Eq. (12b) implies

hc ∧ F̄ab;c ¼ hc ∧ dωab;c ¼ −dðhc ∧ ωab;cÞ ¼ 0: ð14Þ

This is the case because Xab;cd is symmetric in the last two
indices and with our choice for the background vielbein,
dha ¼ 0. The Poincaré lemma then allows one to introduce
the one-form ẽab as

−hc ∧ ωab;c ¼ dẽab: ð15Þ

This relation is valid for all ωab;c, in particular for a
pure-gauge infinitesimal configuration δωab;c for which we
denote the corresponding rhs of the previous equation by
dδẽab. The configuration δẽab is then seen to be identically
equal to

δẽab ¼ dξ̃ab þ hcλab;c ð16Þ

(recall that we used ξab to fix the gauge eab ¼ 0, so that ξ̃ab

is a new gauge parameter that does not affect ωab;c). The
fields ẽab, ωab;c and Xab;cd then manifestly satisfy Eq. (3).

Arbitrary spin: For an arbitrary value s of the spin, from
Eq. (9a) one finds that F̄aðs−1Þ;bðs−2n−1Þ ¼ 0 implies that
ωaðs−1Þ;bðs−2n−1Þ can be set to zero for n ≥ 1 with a gauge
transformation (10a), thanks to the Poincaré lemma. In this
gauge, most of the other torsionlike equations become
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closure conditions too, so that the fields ωaðs−1Þ;bðs−2nÞ for
n ≥ 2 can also be eliminated by gauge fixing. Eventually,
one is left with

F̄aðs−1Þ;bðs−2Þ ≔ dωaðs−1Þ;bðs−2Þ þ hc ∧ ωaðs−1Þ;bðs−2Þc ¼ 0;

ð17aÞ
F̄aðs−1Þ;bðs−1Þ ≔ dωaðs−1Þ;bðs−1Þ ¼ hc ∧ hdCaðs−1Þc;bðs−1Þd:

ð17bÞ
The first equation implies

hc ∧ F̄aðs−1Þ;bðs−3Þc ¼ −dðhc ∧ ωaðs−1Þ;bðs−3ÞcÞ ¼ 0 ð18Þ
and, thanks to the Poincaré lemma,

−hc ∧ ωaðs−1Þ;bðs−3Þc ¼ dω̃aðs−1Þ;bðs−3Þ: ð19Þ
The procedure can be iterated to obtain

−dðhc ∧ ω̃aðs−1Þ;bðs−kÞcÞ ¼ 0

⇒ −hc ∧ ω̃aðs−1Þ;bðs−kÞc ¼ dω̃aðs−1Þ;bðs−kÞ ð20Þ

for all 4 ≤ k ≤ s, thus reconstructing the full Lopatin-
Vasiliev equations on Minkowski space, i.e., the λ → 0
limit of Eqs. (1) written in Cartesian coordinates.

Discussion. We proposed new first-order equations of
motion for free massless particles of arbitrary spin in
Minkowski space, built upon the linearized curvatures of
the flat-space higher-spin algebra ihsD introduced in [28,29].
The set of fields that we use in our equations is the same as
in Lopatin-Vasiliev’s equations on (A)dS background [16],
that are the free equations of motion on top of which
Vasiliev’s unfolded formulation for interacting higher-spin
fields is constructed. Nevertheless, we stress that the precise
expressions of our equations differ from the zero cosmo-
logical constant limit of those in [16]. In spite of this
difference, that a priori could prevent one from eliminating
some auxiliary fields, we showed that our equations propa-
gate the degrees of freedom of a massless field inMinkowski
space-time of dimensionD ≥ 4. This is so because all fields
ωaðs−1Þ;bðtÞ with t ≤ s − 3 are actually pure gauge, while the
field equations involving ωaðs−1Þ;bðs−1Þ, which encode the
degrees of freedomvia theWeyl tensor, take the same form in
both systems of equations.
As a result, the nonlinear curvatures of the non-

Abelian, flat-space higher-spin algebra ihsD of [28] can

be considered as the building blocks to construct an
interacting higher-spin gauge theory in Minkowski space
in the unfolded formalism, along the purely algebraic lines
of [5,6] or of its reformulation in [30,31]. The fact that the
flat-space higher-spin algebra ihsD possesses an Abelian
ideal, contrary to the AdS algebra hsD, suggests even more
freedom in introducing interactions via the cohomological
approach of [30,31].
Another remark supporting the proposal to build a

nonlinear theory based on the algebra ihsD is that such
a theory should include the (2s − 2)-derivative coupling
of a massless spin-s field to gravity of [21,52]. In [21] it
was shown that this cubic vertex induces a non-Abelian
deformation of the free gauge algebra, leading to a
contribution proportional to the translation generator
Pa in the commutator ½Maðs−1Þ;bðs−1Þ;Mcðs−1Þ;dðs−2Þ�. As
explained below Eq. (6), the latter commutator is unaf-
fected by the contraction leading from hsD to ihsD and
does contain a contribution proportional to Pa. Moreover,
as discussed in [21], the (2s − 2)-derivative vertex pos-
sesses the highest number of derivatives among those that
constitute the Fradkin-Vasiliev gravitational coupling in
AdS [53], which is included in the unfolded formulation.
Only this top vertex survives the flat limit, coinciding
with the high-energy limit, thereby evading the low-energy
no-go results [19,20].
Finally, let us stress that a non-linear theory based on the

algebra ihsD is also expected to play the role of holo-
graphic dual of a Carrollian scalar at null infinity, thanks to
the matching of their symmetries that we discussed in the
introduction. Symmetry matching is a necessary condition
to establish a dual holographic pair and we plan to further
investigate the holographic dictionary between these two
models, along the lines of, e.g., [39,40,54], in future work.
See also [55] for similar bulk and boundary realizations of
higher-spin symmetries in D ¼ 3.
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