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Notations et rappels

On note :
m X un espace de Banach complexe;

m T un opérateur linéaire borné défini sur X.
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Notations et rappels

On note :
m X un espace de Banach complexe;
m T un opérateur linéaire borné défini sur X.
Soit M un sous-espace de X. On dit que M est
m non trivial si M # X et M # {0};
m invariant sous T si T(M) C M;

m hyperinvariant sous T si M est invariant pour tout opérateur linéaire
borné défini sur X commutant avec T.
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Notations et rappels

On note :
m X un espace de Banach complexe;
m T un opérateur linéaire borné défini sur X.
Soit M un sous-espace de X. On dit que M est
m non trivial si M # X et M # {0};
m invariant sous T si T(M) C M;

m hyperinvariant sous T si M est invariant pour tout opérateur linéaire
borné défini sur X commutant avec T.

Pour la suite : SINT = sous-espace invariant non trivial et SHNT =
sous-espace hyperinvariant non trivial
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Introduction

Le probleme :

Le probleme du sous-espace invariant

Si X est un espace de Banach complexe séparable réflexif de dimension

infinie et si T € B(X), existe-t-il un sous-espace fermé non trivial invariant
sous T 7

Fougnies Noémie UMONS



Introduction Théoreme de Lomonosov Probléme du demi-espace presque invariant Références
s _u} oo OIITTm

Introduction

Le probleme :
Le probleme du sous-espace invariant

Si X est un espace de Banach complexe séparable réflexif de dimension

infinie et si T € B(X), existe-t-il un sous-espace fermé non trivial invariant
sous T 7

m si X est de dimension finie n > 2 on considére x un vecteur propre
pour T et M = span{x} est un SINT fermé pour T
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Introduction

Le probleme :
Le probleme du sous-espace invariant

Si X est un espace de Banach complexe séparable réflexif de dimension

infinie et si T € B(X), existe-t-il un sous-espace fermé non trivial invariant
sous T 7

m si X est de dimension finie n > 2 on considére x un vecteur propre
pour T et M = span{x} est un SINT fermé pour T

m si X non séparable : on considére x # 0 et M =span{T"x ; n >0}
est un SINT fermé pour T
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Introduction

Le probleme :

Le probleme du sous-espace invariant

Si X est un espace de Banach complexe séparable réflexif de dimension

infinie et si T € B(X), existe-t-il un sous-espace fermé non trivial invariant
sous T 7

m si X est de dimension finie n > 2 on considére x un vecteur propre
pour T et M = span{x} est un SINT fermé pour T

m si X non séparable : on considére x # 0 et M =span{T"x ; n >0}
est un SINT fermé pour T

m si X non réflexif : des contre-exemples ont été trouvés
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m premier contre-exemple énoncé par Enflo en 1976 (publié en 1987)

Fougnies Noémie UMONS



Introduction Théoréme de Lomonosov Probléme du demi-espace presque invariant Références
om oo oo

Un mot sur les contre-exemples :

m premier contre-exemple énoncé par Enflo en 1976 (publié en 1987)

m autre contre-exemple (plus accessible) trouvé par Read en 1984
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Un mot sur les contre-exemples :

m premier contre-exemple énoncé par Enflo en 1976 (publié en 1987)
m autre contre-exemple (plus accessible) trouvé par Read en 1984

= Read trouve un contre-exemple sur £* (1985)
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Un mot sur les contre-exemples :

premier contre-exemple énoncé par Enflo en 1976 (publié en 1987)
autre contre-exemple (plus accessible) trouvé par Read en 1984

Read trouve un contre-exemple sur /1 (1985)

Read construit un opérateur sur ¢! ne possédant aucun sous-ensemble
fermé invariant non trivial (1988)
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Un mot sur les contre-exemples :

premier contre-exemple énoncé par Enflo en 1976 (publié en 1987)
autre contre-exemple (plus accessible) trouvé par Read en 1984

Read trouve un contre-exemple sur /1 (1985)

Read construit un opérateur sur ¢! ne possédant aucun sous-ensemble
fermé invariant non trivial (1988)

Grivaux et Roginskaya en 2014 : méthode générale pour construire
des opérateurs sans SINT fermé
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Un mot sur les contre-exemples :

premier contre-exemple énoncé par Enflo en 1976 (publié en 1987)
autre contre-exemple (plus accessible) trouvé par Read en 1984

Read trouve un contre-exemple sur /1 (1985)

Read construit un opérateur sur ¢! ne possédant aucun sous-ensemble
fermé invariant non trivial (1988)

m Grivaux et Roginskaya en 2014 : méthode générale pour construire
des opérateurs sans SINT fermé

Remarque : Tous les contre-exemples trouvés sont des opérateurs définis
sur des espaces de Banach non réflexifs
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Théoreme et Lemme de Lomonosov

Résultat important concernant le probleme :

Théoreme de Lomonosov (1973)

Soient X un espace de Banach complexe et T € B(X) non scalaire. Si T
commute avec un opérateur compact non nul K alors T possede un
sous-espace fermé non trivial hyperinvariant.

Fougnies Noémie UMONS



Introduction Théoréme de Lomonosov Probléme du demi-espace presque invariant Références
[mmm] s _nun} oI

Théoreme et Lemme de Lomonosov

Résultat important concernant le probleme :

Théoreme de Lomonosov (1973)

Soient X un espace de Banach complexe et T € B(X) non scalaire. Si T
commute avec un opérateur compact non nul K alors T possede un
sous-espace fermé non trivial hyperinvariant.

Idée : Utiliser un théoréme de point fixe
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Théoreme et Lemme de Lomonosov

Résultat important concernant le probleme :

Théoreme de Lomonosov (1973)

Soient X un espace de Banach complexe et T € B(X) non scalaire. Si T
commute avec un opérateur compact non nul K alors T possede un
sous-espace fermé non trivial hyperinvariant.

Idée : Utiliser un théoreme de point fixe

Théoreme du point fixe de Schauder

Soient X un espace vectoriel normé et C un sous-ensemble convexe non
vide de X. Alors toute application continue de C dans une partie
compacte de C posséde un point fixe.
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Théoreme et Lemme de Lomonosov

Preuve :
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre.
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre. On a :
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre. On a :

m dxp € X tel que 0 ¢ K(B) et 0 ¢ B avec B = B(xp, 1)
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre. On a :

m dxp € X tel que 0 ¢ K(B) et 0 ¢ B avec B = B(xp, 1)

m On pose A I'algebre des opérateurs de B(X) commutant avec T
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre. On a :

m dxp € X tel que 0 ¢ K(B) et 0 ¢ B avec B = B(xp, 1)

m On pose A I'algebre des opérateurs de B(X) commutant avec T

= But : montrer que Jyp € X non nul tq ||Ayo — xo|| = 1 pour tout A € A
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre. On a :

m dxp € X tel que 0 ¢ K(B) et 0 ¢ B avec B = B(xp, 1)
m On pose A I'algebre des opérateurs de B(X) commutant avec T

= But : montrer que Jyp € X non nul tq ||Ayo — xo|| = 1 pour tout A € A

m Par I'absurde : Vyp € X non nul, 3A € A tq ||Avo — X0l < 1
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre. On a :

m dxp € X tel que 0 ¢ K(B) et 0 ¢ B avec B = B(xp, 1)
m On pose A I'algebre des opérateurs de B(X) commutant avec T

= But : montrer que Jyp € X non nul tq ||Ayo — xo|| = 1 pour tout A € A
m Par I'absurde : Vyp € X non nul, 3A € A tq ||Avo — X0l < 1

= X\{0} € Upe s A7(B)
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre. On a :

m dxp € X tel que 0 ¢ K(B) et 0 ¢ B avec B = B(xp, 1)
m On pose A I'algebre des opérateurs de B(X) commutant avec T
= But : montrer que Jyp € X non nul tq ||Ayo — xo|| = 1 pour tout A € A

m Par I'absurde : Vyp € X non nul, 3A € A tq ||Avo — X0l < 1

= X\{0} € Upe s A7(B)

= 0¢ K(B)
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre. On a :

m dxp € X tel que 0 ¢ K(B) et 0 ¢ B avec B = B(xp, 1)
m On pose A I'algebre des opérateurs de B(X) commutant avec T
= But : montrer que Jyp € X non nul tq ||Ayo — xo|| = 1 pour tout A € A

m Par I'absurde : Vyp € X non nul, 3A € A tq ||Avo — X0l < 1

= X\{0} € Upe s A7(B)

m 0¢ K(B) = K(B) C UAeAA_l(B)
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Théoreme et Lemme de Lomonosov

Preuve : Si T posséde une valeur propre : ok — supposons que T ne
possede aucune valeur propre. On a :

= 3xp € X tel que 0 ¢ K(B) et 0 ¢ B avec B = B(xp, 1)

m On pose A I'algebre des opérateurs de B(X) commutant avec T

= But : montrer que Jyp € X non nul tq ||Ayo — xo|| = 1 pour tout A € A

m Par I'absurde : Vyp € X non nul, 3A € A tq ||Avo — X0l < 1

= X\{0} € Upe s A7(B)

compacité
) —

= 0¢ K(B) — K(B) C Uncs A (B
ou T1,...,Th € A

K(B) CUL: T 1(B)

Fougnies Noémie UMONS



Introduction Théoreme de Lomonosov Probléme du demi-espace presque invariant Références
oo s u} oo

Théoreme et Lemme de Lomonosov

m On définit ¢ : K(B) — B par ¢(y) = >_7_; \i Tiy avec \; bien
choisis — continue
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Théoreme et Lemme de Lomonosov

m On définit ¢ : K(B) — B par ¢(y) = >_7_; \i Tiy avec \; bien
choisis — continue

m On adonc oK : B — 1(K(B)) ou par continuité, 1»(K(B)) est une
partie compacte de B
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Théoreme et Lemme de Lomonosov

m On définit ¢ : K(B) — B par ¢(y) = >_7_; \i Tiy avec \; bien
choisis — continue

m On adonc oK : B — 1(K(B)) ou par continuité, 1»(K(B)) est une
partie compacte de B

Thmp:dgt fixe Ix #0tq ¢ o K(x) = x
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Théoreme et Lemme de Lomonosov

m On définit ¢ : K(B) — B par ¢(y) = >_7_; \i Tiy avec \; bien
choisis — continue

m On adonc oK : B — 1(K(B)) ou par continuité, 1»(K(B)) est une
partie compacte de B

Thm pomt fixe

Ix #0tq o K(x)=xie, Y  NiTiKx=x
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Théoreme et Lemme de Lomonosov

m On définit ¢ : K(B) — B par ¢(y) = >_7_; \i Tiy avec \; bien
choisis — continue

m On adonc oK : B — 1(K(B)) ou par continuité, 1»(K(B)) est une
partie compacte de B

Thm pomt fixe

Ix #0tq o K(x)=xie, Y  NiTiKx=x

m Donc, x € Ker(D[_; i TiK —Id)
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Théoreme et Lemme de Lomonosov

On définit ¢ : K(B) — B par ¢(y) = 3.7, \; T;y avec \; bien
choisis — continue

m On adonc oK : B — (K(B)) oli par continuité, 1)(K(B)) est une
partie compacte de B

Thm pomt fixe

Ix #0tq o K(x)=xie, Y  NiTiKx=x

Donc, x € Ker(3>27_; i T;K — Id)
On pose G = Ker(>_7_; A\iTiK —Id)
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Théoreme et Lemme de Lomonosov

On définit ¢ : K(B) — B par ¢(y) = 3.7, \; T;y avec \; bien
choisis — continue

m On adonc oK : B — (K(B)) oli par continuité, 1)(K(B)) est une
partie compacte de B

Thm pomt fixe

Ix #0tq o K(x)=xie, Y  NiTiKx=x

Donc, x € Ker(3>27_; i T;K — Id)
On pose G = Ker(>_7_; A\iTiK —Id)

= G # {0} et de dimension finie tel que T(G) C G
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Théoreme et Lemme de Lomonosov

On définit ¢ : K(B) — B par ¢(y) = 3.7, \; T;y avec \; bien
choisis — continue

m On adonc oK : B — (K(B)) oli par continuité, 1)(K(B)) est une
partie compacte de B

Thm pomt fixe

Ix #0tq o K(x)=xie, Y  NiTiKx=x

Donc, x € Ker(3>27_; i T;K — Id)
On pose G = Ker(>_7_; A\iTiK —Id)

= G # {0} et de dimension finie tel que T(G) C G

= T, possede une valeur propre — contradiction
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Théoreme et Lemme de Lomonosov

Généralisation du théoréme :
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Théoreme et Lemme de Lomonosov

Généralisation du théoréme :
Lemme de Lomonosov (1991)

Soient X un espace de Banach et A une sous-algebre d'opérateurs de
B(X) telle que A est transitive et K un opérateur compact non nul sur X
alors il existe A € A tel que 1 est une valeur propre de AK.
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Théoreme et Lemme de Lomonosov

Généralisation du théoréme :
Lemme de Lomonosov (1991)

Soient X un espace de Banach et A une sous-algebre d'opérateurs de
B(X) telle que A est transitive et K un opérateur compact non nul sur X
alors il existe A € A tel que 1 est une valeur propre de AK.

A est transitive s'il n’existe aucun sous-espace non trivial fermé étant
invariant pour chaque opérateur de A.
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Théoreme et Lemme de Lomonosov

Généralisation du théoreme :
Lemme de Lomonosov (1991)

Soient X un espace de Banach et A une sous-algebre d'opérateurs de
B(X) telle que A est transitive et K un opérateur compact non nul sur X
alors il existe A € A tel que 1 est une valeur propre de AK.

A est transitive s'il n’existe aucun sous-espace non trivial fermé étant
invariant pour chaque opérateur de A.
Généralisation car : Notons A les opérateurs commutant avec T
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Théoreme et Lemme de Lomonosov

Généralisation du théoreme :
Lemme de Lomonosov (1991)

Soient X un espace de Banach et A une sous-algebre d'opérateurs de
B(X) telle que A est transitive et K un opérateur compact non nul sur X
alors il existe A € A tel que 1 est une valeur propre de AK.

A est transitive s'il n’existe aucun sous-espace non trivial fermé étant
invariant pour chaque opérateur de A.
Généralisation car : Notons A les opérateurs commutant avec T

m A est transitive
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Théoreme et Lemme de Lomonosov

Généralisation du théoréme :
Lemme de Lomonosov (1991)

Soient X un espace de Banach et A une sous-algebre d'opérateurs de
B(X) telle que A est transitive et K un opérateur compact non nul sur X
alors il existe A € A tel que 1 est une valeur propre de AK.

A est transitive s'il n’existe aucun sous-espace non trivial fermé étant
invariant pour chaque opérateur de A.
Généralisation car : Notons A les opérateurs commutant avec T

m A est transitive = il existe A commutant avec T tel que 1 vp de AK
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Théoreme et Lemme de Lomonosov

Généralisation du théoréme :
Lemme de Lomonosov (1991)

Soient X un espace de Banach et A une sous-algebre d'opérateurs de
B(X) telle que A est transitive et K un opérateur compact non nul sur X
alors il existe A € A tel que 1 est une valeur propre de AK.

A est transitive s'il n’existe aucun sous-espace non trivial fermé étant
invariant pour chaque opérateur de A.
Généralisation car : Notons A les opérateurs commutant avec T

m A est transitive = il existe A commutant avec T tel que 1 vp de AK

m M = Ker(AK — Id) est de dimension finie tel que M # {0} et
T(M)C M
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Théoreme et Lemme de Lomonosov

Généralisation du théoréme :
Lemme de Lomonosov (1991)

Soient X un espace de Banach et A une sous-algebre d'opérateurs de
B(X) telle que A est transitive et K un opérateur compact non nul sur X
alors il existe A € A tel que 1 est une valeur propre de AK.

A est transitive s'il n’existe aucun sous-espace non trivial fermé étant
invariant pour chaque opérateur de A.
Généralisation car : Notons A les opérateurs commutant avec T

m A est transitive = il existe A commutant avec T tel que 1 vp de AK
m M = Ker(AK — Id) est de dimension finie tel que M # {0} et
T(M)C M

m T posséde une vp et le sous-espace propre associé est un SHNT fermé
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Introduction

Idée : laisser plus de liberté au probleme du sous-espace invariant
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Introduction

Idée : laisser plus de liberté au probleme du sous-espace invariant
Probleme du sous-espace presque invariant

Si X est un espace de Banach complexe et si T € B(X), existe-t-il un

sous-espace fermé Y non trivial et F un opérateur de rang fini tels que Y
est invariant pour T + F?
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Idée : laisser plus de liberté au probleme du sous-espace invariant
Probleme du sous-espace presque invariant

Si X est un espace de Banach complexe et si T € B(X), existe-t-il un

sous-espace fermé Y non trivial et F un opérateur de rang fini tels que Y
est invariant pour T + F?

— le probléme peut étre reformulé
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Introduction

Idée : laisser plus de liberté au probleme du sous-espace invariant
Probleme du sous-espace presque invariant

Si X est un espace de Banach complexe et si T € B(X), existe-t-il un
sous-espace fermé Y non trivial et F un opérateur de rang fini tels que Y
est invariant pour T + F?

— le probléme peut étre reformulé
On a besoin de la définition suivante :
Définition
On dit que Y est presque invariant pour T s'il existe un sous-espace de
dimension finie E tel que TY C Y + E.
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On a aussi besoin de la proposition suivante :

Proposition

Un sous-espace Y est presque invariant pour T si et seulement s'il existe
un opérateur F de rang fini tel que Y est invariant pour T + F.
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Introduction

On a aussi besoin de la proposition suivante :
Proposition

Un sous-espace Y est presque invariant pour T si et seulement s'il existe
un opérateur F de rang fini tel que Y est invariant pour T + F.

On obtient alors :
Probléme du sous-espace presque invariant : Nouvelle formulation

Si X est un espace de Banach complexe et si T € B(X), existe-t-il un
sous-espace Y fermé non trivial presque invariant pour T ?
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Cas triviaux

m si Y de dimension finie ou de codimension finie : Y est toujours
presque invariant pour T
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Cas triviaux

m si Y de dimension finie ou de codimension finie : Y est toujours
presque invariant pour T

—— Y de dimension et de codimension infinies
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Cas triviaux

m si Y de dimension finie ou de codimension finie : Y est toujours
presque invariant pour T

— Y de dimension et de codimension infinies, i.e., Y demi-espace
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Cas triviaux

m si Y de dimension finie ou de codimension finie : Y est toujours
presque invariant pour T

— Y de dimension et de codimension infinies, i.e., Y demi-espace

m si X non séparable : on considére Y =3span{ T"xx ; n, k € N} avec
(xn)neN une suite linéairement indépendante
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presque invariant pour T

— Y de dimension et de codimension infinies, i.e., Y demi-espace

m si X non séparable : on considére Y =3span{ T"xx ; n, k € N} avec
(xn)neN une suite linéairement indépendante

— Y est un demi-espace invariant
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Cas triviaux

m si Y de dimension finie ou de codimension finie : Y est toujours
presque invariant pour T

— Y de dimension et de codimension infinies, i.e., Y demi-espace

m si X non séparable : on considére Y =3span{ T"xx ; n, k € N} avec
(xn)neN une suite linéairement indépendante

— Y est un demi-espace invariant
Le probleme revient donc a :

Probléme du demi-espace presque invariant

Si X est un espace de Banach complexe séparable et si T € B(X),
existe-t-il un demi-espace fermé presque invariant pour T 7
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Cas triviaux

m si Y de dimension finie ou de codimension finie : Y est toujours
presque invariant pour T

— Y de dimension et de codimension infinies, i.e., Y demi-espace

m si X non séparable : on considére Y =3span{ T"xx ; n, k € N} avec
(Xn)nen une suite linéairement indépendante

— Y est un demi-espace invariant
Le probleme revient donc a :
Probléme du demi-espace presque invariant
Si X est un espace de Banach complexe séparable et si T € B(X),

existe-t-il un demi-espace fermé presque invariant pour T 7

— probléme résolu par Tcaciuc en 2019
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Résolution du probleme

Théoreme (Tcaciuc, 2019)

Soit X un espace de Banach complexe séparable. Alors chaque opérateur
T € B(X) possede un demi-espace fermé presque invariant
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Théoreme (Tcaciuc, 2019)

Soit X un espace de Banach complexe séparable. Alors chaque opérateur
T € B(X) possede un demi-espace fermé presque invariant i.e., il existe F

un opérateur de rang fini tel que T + F possede un demi-espace fermé
invariant.
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Théoreme (Tcaciuc, 2019)

Soit X un espace de Banach complexe séparable. Alors chaque opérateur
T € B(X) possede un demi-espace fermé presque invariant i.e., il existe F

un opérateur de rang fini tel que T + F possede un demi-espace fermé
invariant.

Il est possible de faire mieux!
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Résolution du probleme

Théoreme (Tcaciuc, 2019)

Soit X un espace de Banach complexe séparable. Alors chaque opérateur
T € B(X) possede un demi-espace fermé presque invariant i.e., il existe F

un opérateur de rang fini tel que T + F possede un demi-espace fermé
invariant.

Il est possible de faire mieux!
Théoreme (Tcaciuc, 2019)

Soient X un espace de Banach complexe et T € B(X). Alors, pour tout
e > 0, il existe F un opérateur de rang fini tel que ||F|| < € et tel que
T + F posséde un demi-espace fermé invariant.
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Preuve du théoreme

La preuve est découpée en 3 parties :
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Preuve du théoreme

La preuve est découpée en 3 parties :
m cas ot I € do(T)\op(T);
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Preuve du théoreme

La preuve est découpée en 3 parties :
m cas ot dp € o (T)\op(T);
m cas ol 3p € Ao (T*)\op(T*);
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Preuve du théoreme

La preuve est découpée en 3 parties :
m cas ot dp € o (T)\op(T);
m cas ol 3p € Ao (T*)\op(T*);

Pour les 2 cas : spdg on suppose =0
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Preuve du théoreme

La preuve est découpée en 3 parties :
m cas ot I € do(T)\op(T);
m cas ot dp € Do (T*)\op(T*);
Pour les 2 cas : spdg on suppose =0

m cas ot Oo(T) et Oo(T*) ne contiennent que des valeurs propres
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Preuve du théoreme

La preuve est découpée en 3 parties :

m cas ot I € do(T)\op(T);

m cas ot dp € Do (T*)\op(T*);
Pour les 2 cas : spdg on suppose =0

m cas ot Oo(T) et Oo(T*) ne contiennent que des valeurs propres
Remarque : Ici : on s’intéresse aux 2 premiers cas.
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Preuve du théoreme

La preuve est découpée en 3 parties :
m cas ot I € do(T)\op(T);
m cas ot dp € Do (T*)\op(T*);
Pour les 2 cas : spdg on suppose =0
m cas ot Oo(T) et Oo(T*) ne contiennent que des valeurs propres

Remarque : Ici : on s’intéresse aux 2 premiers cas.
Un outil important pour la construction de DE : les suites basiques
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Preuve du théoreme

La preuve est découpée en 3 parties :

m cas ot I € do(T)\op(T);

m cas ot dp € Do (T*)\op(T*);
Pour les 2 cas : spdg on suppose u =0

m cas ot Oo(T) et Oo(T*) ne contiennent que des valeurs propres
Remarque : Ici : on s’intéresse aux 2 premiers cas.
Un outil important pour la construction de DE : les suites basiques
Définition
Une suite (x,)n>1 dans X est appelée suite basique si c'est une base pour
span{x, ; n>1}.
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Preuve du théoreme

La preuve est découpée en 3 parties :

m cas ot dp € o (T)\op(T);

m cas ot dp € Do (T*)\op(T*);
Pour les 2 cas : spdg on suppose u =0

m cas ot Oo(T) et Oo(T*) ne contiennent que des valeurs propres
Remarque : Ici : on s'intéresse aux 2 premiers cas.
Un outil important pour la construction de DE : les suites basiques
Définition
Une suite (x,)n>1 dans X est appelée suite basique si c'est une base pour
span{x, ; n>1}.

On a en fait : (xp)n>1 est une suite basique = span{xz, ; n > 1} est un
demi-espace
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Preuve du théoreme

Idée de la preuve (cas 1) :
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Preuve du théoreme

Idée de la preuve (cas 1) :
m (Ay) Cp(T) tel que A\ — 0
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Preuve du théoreme

Idée de la preuve (cas 1) :
m (\n) Cp(T) tel que Ay — 0 = [|[(Apld=T)7Y| — +o0
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Preuve du théoreme

Idée de la preuve (cas 1) :
m (\n) Cp(T) tel que Ay — 0 = [|[(Apld=T)7Y| — +o0
= par Banach-Steinhaus Je € X tel que ||(\,1d —T)te|| — +o0
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Preuve du théoreme

Idée de la preuve (cas 1) :
m (\n) Cp(T) tel que Ay — 0 = [|[(Apld=T)7Y| — +o0
= par Banach-Steinhaus Je € X tel que ||(\,1d —T)te|| — +o0

= on note h, = (A, Id —T)"Le et on montre que (h,)nen possede une
suite basique
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Preuve du théoreme

Idée de la preuve (cas 1) :
m (\n) Cp(T) tel que Ay — 0 = [|[(Apld=T)7Y| — +o0
= par Banach-Steinhaus Je € X tel que ||(\,1d —T)te|| — +o0

= on note h, = (A, Id —T)"Le et on montre que (h,)nen possede une
suite basique

— Y =span{ha, ; n > 0} est un demi-espace tel que
TY C Y + span{e}
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