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Introduction Théorème de Lomonosov Problème du demi-espace presque invariant Références

Notations et rappels

On note :

X un espace de Banach complexe ;

T un opérateur linéaire borné défini sur X .

Soit M un sous-espace de X . On dit que M est

non trivial si M ̸= X et M ̸= {0} ;
invariant sous T si T (M) ⊆ M ;

hyperinvariant sous T si M est invariant pour tout opérateur linéaire
borné défini sur X commutant avec T .

Pour la suite : SINT = sous-espace invariant non trivial et SHNT =
sous-espace hyperinvariant non trivial
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T un opérateur linéaire borné défini sur X .

Soit M un sous-espace de X . On dit que M est

non trivial si M ̸= X et M ̸= {0} ;
invariant sous T si T (M) ⊆ M ;

hyperinvariant sous T si M est invariant pour tout opérateur linéaire
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Introduction

Le problème :

Le problème du sous-espace invariant

Si X est un espace de Banach complexe et si T ∈ B(X ), existe-t-il un
sous-espace fermé non trivial invariant sous T ?

si X est de dimension finie n ⩾ 2 on considère x un vecteur propre
pour T et M = span{x} est un SINT fermé pour T

si X non séparable : on considère x ̸= 0 et M = span{T nx ; n ⩾ 0}
est un SINT fermé pour T

si X non réflexif : des contre-exemples ont été trouvés
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Introduction Théorème de Lomonosov Problème du demi-espace presque invariant Références
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si X non séparable : on considère x ̸= 0 et M = span{T nx ; n ⩾ 0}
est un SINT fermé pour T
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Un mot sur les contre-exemples :

premier contre-exemple énoncé par Enflo en 1976 (publié en 1987)

autre contre-exemple (plus accessible) trouvé par Read en 1984

Read trouve un contre-exemple sur ℓ1 (1985)

Read construit un opérateur sur ℓ1 ne possédant aucun sous-ensemble
fermé invariant non trivial (1988)

Grivaux et Roginskaya en 2014 : méthode générale pour construire
des opérateurs sans SINT fermé

Remarque : Tous les contre-exemples trouvés sont des opérateurs définis
sur des espaces de Banach non réflexifs
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Introduction Théorème de Lomonosov Problème du demi-espace presque invariant Références
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Read trouve un contre-exemple sur ℓ1 (1985)
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Remarque : Tous les contre-exemples trouvés sont des opérateurs définis
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Grivaux et Roginskaya en 2014 : méthode générale pour construire
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Théorème et Lemme de Lomonosov

Résultat important concernant le problème :

Théorème de Lomonosov (1973)

Soient X un espace de Banach complexe et T ∈ B(X ) non scalaire. Si T
commute avec un opérateur compact non nul K alors T possède un
sous-espace fermé non trivial hyperinvariant.

Idée : Utiliser un théorème de point fixe

Théorème du point fixe de Schauder

Soient X un espace vectoriel normé et C un sous-ensemble convexe non
vide de X . Alors toute application continue de C dans une partie
compacte de C possède un point fixe.
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compacte de C possède un point fixe.

Fougnies Noémie UMONS Autour du problème du sous-espace invariant 23 novembre 2023 7 / 17
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Théorème et Lemme de Lomonosov

Preuve :

Si T possède une valeur propre : ok → supposons que T ne
possède aucune valeur propre. On a :

∃x0 ∈ X tel que 0 /∈ K (B) et 0 /∈ B avec B = B(x0, 1)

On pose A l’algèbre des opérateurs de B(X ) commutant avec T

⇒ But : montrer que ∃y0 ∈ X non nul tq ∥Ay0 − x0∥ ⩾ 1 pour tout A ∈ A

Par l’absurde : ∀y0 ∈ X non nul, ∃A ∈ A tq ∥Ay0 − x0∥ < 1

⇒ X\{0} ⊆
⋃

A∈A A−1(B)

0 /∈ K (B) =⇒ K (B) ⊆
⋃

A∈A A−1(B)
compacité
=⇒ K (B) ⊆

⋃n
i=1 T

−1
i (B)

où T1, ...,Tn ∈ A
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Preuve : Si T possède une valeur propre : ok → supposons que T ne
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possède aucune valeur propre. On a :

∃x0 ∈ X tel que 0 /∈ K (B) et 0 /∈ B avec B = B(x0, 1)
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=⇒ K (B) ⊆

⋃n
i=1 T

−1
i (B)
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On pose A l’algèbre des opérateurs de B(X ) commutant avec T

⇒ But : montrer que ∃y0 ∈ X non nul tq ∥Ay0 − x0∥ ⩾ 1 pour tout A ∈ A

Par l’absurde : ∀y0 ∈ X non nul, ∃A ∈ A tq ∥Ay0 − x0∥ < 1

⇒ X\{0} ⊆
⋃

A∈A A−1(B)

0 /∈ K (B) =⇒ K (B) ⊆
⋃

A∈A A−1(B)
compacité
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possède aucune valeur propre. On a :

∃x0 ∈ X tel que 0 /∈ K (B) et 0 /∈ B avec B = B(x0, 1)

On pose A l’algèbre des opérateurs de B(X ) commutant avec T

⇒ But : montrer que ∃y0 ∈ X non nul tq ∥Ay0 − x0∥ ⩾ 1 pour tout A ∈ A

Par l’absurde : ∀y0 ∈ X non nul, ∃A ∈ A tq ∥Ay0 − x0∥ < 1

⇒ X\{0} ⊆
⋃

A∈A A−1(B)

0 /∈ K (B)

=⇒ K (B) ⊆
⋃

A∈A A−1(B)
compacité
=⇒ K (B) ⊆

⋃n
i=1 T

−1
i (B)

où T1, ...,Tn ∈ A
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possède aucune valeur propre. On a :

∃x0 ∈ X tel que 0 /∈ K (B) et 0 /∈ B avec B = B(x0, 1)
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Théorème et Lemme de Lomonosov

On définit ψ : K (B) → B par ψ(y) =
∑n

i=1 λiTiy avec λi bien
choisis → continue

On a donc ψ ◦ K : B → ψ(K (B)) où par continuité, ψ(K (B)) est une
partie compacte de B

Thm point fixe
=⇒ ∃x ̸= 0 tq ψ ◦ K (x) = x i.e.,

∑n
i=1 λiTiKx = x

Donc, x ∈ Ker(
∑n

i=1 λiTiK − Id)

On pose G = Ker(
∑n

i=1 λiTiK − Id)

=⇒ G ̸= {0} et de dimension finie tel que T (G ) ⊆ G

=⇒ T|G possède une valeur propre −→ contradiction
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On a donc ψ ◦ K : B → ψ(K (B)) où par continuité, ψ(K (B)) est une
partie compacte de B

Thm point fixe
=⇒ ∃x ̸= 0 tq ψ ◦ K (x) = x i.e.,

∑n
i=1 λiTiKx = x

Donc, x ∈ Ker(
∑n

i=1 λiTiK − Id)

On pose G = Ker(
∑n

i=1 λiTiK − Id)

=⇒ G ̸= {0} et de dimension finie tel que T (G ) ⊆ G
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Théorème et Lemme de Lomonosov

Généralisation du théorème :

Lemme de Lomonosov (1991)

Soient X un espace de Banach et A une sous-algèbre d’opérateurs de
B(X ) telle que A est transitive et K un opérateur compact non nul sur X
alors il existe A ∈ A tel que 1 est une valeur propre de AK .

A est transitive s’il n’existe aucun sous-espace non trivial fermé étant
invariant pour chaque opérateur de A.
Généralisation car : Notons A les opérateurs commutant avec T

A est transitive ⇒ il existe A commutant avec T tel que 1 vp de AK

M = Ker(AK − Id) est de dimension finie tel que M ̸= {0} et
T (M) ⊆ M

T possède une vp et le sous-espace propre associé est un SHNT fermé
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Fougnies Noémie UMONS Autour du problème du sous-espace invariant 23 novembre 2023 10 / 17
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alors il existe A ∈ A tel que 1 est une valeur propre de AK .

A est transitive s’il n’existe aucun sous-espace non trivial fermé étant
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B(X ) telle que A est transitive et K un opérateur compact non nul sur X
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Introduction

Idée : laisser plus de liberté au problème du sous-espace invariant

Problème du sous-espace presque invariant

Si X est un espace de Banach complexe et si T ∈ B(X ), existe-t-il un
sous-espace fermé Y non trivial et F un opérateur de rang fini tels que Y
est invariant pour T + F ?

−→ le problème peut être reformulé

On a besoin de la définition suivante :

Définition

On dit que Y est presque invariant pour T s’il existe un sous-espace de
dimension finie E tel que TY ⊆ Y + E .
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Définition

On dit que Y est presque invariant pour T s’il existe un sous-espace de
dimension finie E tel que TY ⊆ Y + E .

Fougnies Noémie UMONS Autour du problème du sous-espace invariant 23 novembre 2023 12 / 17
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Introduction

On a aussi besoin de la proposition suivante :

Proposition

Un sous-espace Y est presque invariant pour T si et seulement s’il existe
un opérateur F de rang fini tel que Y est invariant pour T + F .

On obtient alors :

Problème du sous-espace presque invariant : Nouvelle formulation

Si X est un espace de Banach complexe et si T ∈ B(X ), existe-t-il un
sous-espace Y fermé non trivial presque invariant pour T ?
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Cas triviaux

si Y de dimension finie ou de codimension finie : Y est toujours
presque invariant pour T

−→ Y de dimension et de codimension infinies, i.e., Y demi-espace

si X non séparable : on considère Y = span{T nxk ; n, k ∈ N} avec
(xn)n∈N une suite linéairement indépendante

−→ Y est un demi-espace invariant

Le problème revient donc à :

Problème du demi-espace presque invariant

Si X est un espace de Banach complexe séparable et si T ∈ B(X ),
existe-t-il un demi-espace fermé presque invariant pour T ?

−→ problème résolu par Tcaciuc en 2019
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Cas triviaux

si Y de dimension finie ou de codimension finie : Y est toujours
presque invariant pour T

−→ Y de dimension et de codimension infinies

, i.e., Y demi-espace
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Cas triviaux

si Y de dimension finie ou de codimension finie : Y est toujours
presque invariant pour T

−→ Y de dimension et de codimension infinies, i.e., Y demi-espace
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Résolution du problème

Théorème (Tcaciuc, 2019)

Soit X un espace de Banach complexe séparable. Alors chaque opérateur
T ∈ B(X ) possède un demi-espace fermé presque invariant

i.e., il existe F
un opérateur de rang fini tel que T + F possède un demi-espace fermé
invariant.

Il est possible de faire mieux !

Théorème (Tcaciuc, 2019)

Soient X un espace de Banach complexe et T ∈ B(X ). Alors, pour tout
ε > 0, il existe F un opérateur de rang fini tel que ∥F∥ < ε et tel que
T + F possède un demi-espace fermé invariant.
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Résolution du problème
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Preuve du théorème

La preuve est découpée en 3 parties :

cas où ∃µ ∈ ∂σ(T )\σp(T ) ;

cas où ∃µ ∈ ∂σ(T ∗)\σp(T ∗) ;

Pour les 2 cas : spdg on suppose µ = 0

cas où ∂σ(T ) et ∂σ(T ∗) ne contiennent que des valeurs propres

Remarque : Ici : on s’intéresse aux 2 premiers cas.
Un outil important pour la construction de DE : les suites basiques

Définition

Une suite (xn)n⩾1 dans X est appelée suite basique si c’est une base pour
span{xn ; n ⩾ 1}.

On a en fait : (xn)n⩾1 est une suite basique ⇒ span{x2n ; n ⩾ 1} est un
demi-espace
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cas où ∃µ ∈ ∂σ(T )\σp(T ) ;
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Définition

Une suite (xn)n⩾1 dans X est appelée suite basique si c’est une base pour
span{xn ; n ⩾ 1}.

On a en fait : (xn)n⩾1 est une suite basique ⇒ span{x2n ; n ⩾ 1} est un
demi-espace

Fougnies Noémie UMONS Autour du problème du sous-espace invariant 23 novembre 2023 16 / 17
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cas où ∃µ ∈ ∂σ(T ∗)\σp(T ∗) ;

Pour les 2 cas : spdg on suppose µ = 0
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Remarque : Ici : on s’intéresse aux 2 premiers cas.
Un outil important pour la construction de DE : les suites basiques
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Preuve du théorème

Idée de la preuve (cas 1) :

(λn) ⊆ ρ(T ) tel que λn −→ 0 ⇒ ∥(λn Id−T )−1∥ −→ +∞
par Banach-Steinhaus ∃e ∈ X tel que ∥(λn Id−T )−1e∥ −→ +∞
on note hn = (λn Id−T )−1e et on montre que (hn)n∈N possède une
suite basique

−→ Y = span{h2n ; n ⩾ 0} est un demi-espace tel que
TY ⊆ Y + span{e}
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suite basique

−→ Y = span{h2n ; n ⩾ 0} est un demi-espace tel que
TY ⊆ Y + span{e}

Fougnies Noémie UMONS Autour du problème du sous-espace invariant 23 novembre 2023 17 / 17
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