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Abstract: This paper presents a data-driven methodology to infer a macroscopic reaction scheme with
stoichiometric parameters from a bioprocess database. The data sets consist of measurements of a few
extracellular species, i.e., biomass, substrates, and products of interest. The proposed original procedure
is based on implicit sparse identification. The methodology is illustrated with two case studies: (i) data
generated by a two-step anaerobic digestion model and (ii) an experimental data set from the production
of therapeutic proteins using mammalian cell cultures. Finally, the results of the latter application
are compared with a standard data-driven algorithm, e.g., maximum-likelihood principal component
analysis.
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1. INTRODUCTION

In the last decades, access to a large amount of data in different
fields has guided the development of new approaches to infer
dynamical models directly from measurement data. Several
data-driven tools such as dynamic mode decomposition (DMD)
and the Koopman operator (Schmid, 2022; Garcia-Tenorio
et al., 2021), multilinear Gaussian processes (Wang et al.,
2020), and nonnegative matrix decomposition (Pimentel et al.,
2022) have been used to obtain models without predefined
structures. Currently, attention has been drawn to parsimonious
models that consider the lowest complexity required to describe
the observed data, benefitting from being interpretable and
preventing overfitting. Based on sparsity-promoting optimiza-
tion, the sparse identification of nonlinear dynamics (SINDy)
algorithm discovers dynamical models using a few structures
from a predefined library of candidate functions (Brunton et al.,
2016). This framework has been applied in many different re-
search fields (see, for instance, Sorokina et al. (2016); Hoff-
mann et al. (2018); Loiseau et al. (2018)). Also, it has been ex-
tended to rational and implicit dynamics (Kaheman et al., 2020;
Mangan et al., 2016), partial differential equations (Messenger
and Bortz, 2021), and stochastic dynamics (Boninsegna et al.,
2018), among many others.

In bioprocess modeling, Hoffmann et al. (2018) proposed a
sparse identification tool combined with predefined reaction
scheme libraries to numerically test all hypotheses and infer
a consistent reaction scheme describing the process. Inferring
bioreaction schemes from bioprocess data is also the goal of
principal component analysis (PCA), considering a minimum
of a priori knowledge of the process and providing the cor-
responding stoichiometry (Bernard and Bastin, 2005). An ex-
tension of this method, called maximum likelihood principal
component analysis (MLPCA), has been exploited in Mailier
et al. (2012) to account for higher levels of measurement noise.

In this study, we propose a new data-driven method to infer
macroscopic reaction schemes, i.e., the number of macroscopic
reactions and a relevant stoichiometric parameter basis, con-
sidering noisy measurements using the robust algorithm for
parallel implicit sparse identification of nonlinear dynamics
(SINDy-PI) proposed by Kaheman et al. (2020). In contrast
with Hoffmann et al. (2018), the proposed methodology does
not require a a priori library with the predefined reaction rate
structures, nor any knowledge about the number of reactions.
The procedure only requires basic knowledge of the process
species interactions, as in most bioprocess modeling procedures
(Hoffmann et al., 2018; Dewasme et al., 2017).

This paper is organized as follows. Section 2 details the macro-
scopic modeling approach and presents the data-driven tech-
niques involved in the proposed method. Section 3 shows the
results and analysis of two case studies - one based on sim-
ulation and one using an experimental dataset. The latter is
compared with the application of MLPCA. The conclusion and
future works are presented in Section 4.

2. MACROSCOPIC MODEL INFERENCE

2.1 Bioprocess Macroscopic Modeling

A macroscopic reaction scheme is a set of M reactions involv-
ing N key species, which are typically biomass, substrates, and
products (Bastin and Dochain, 1990):

∑
i∈R j

(−ki j)ξi

ϕ j(ξ,ϑ j)
−−−−−→ ∑

i∈P j

(ki j)ξ j (1)

where R j and P j denote the sets of reactants and products, re-

spectively, in the jth reaction. ki j are pseudo-stoichiometric co-
efficients while ϕ j(ξ,ϑ j) are the corresponding reaction rates,
functions of ξ (reactant/product quantities or concentrations)
and ϑ j, the parameters of the rate kinetic structure.
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Applying mass balance to (1), the following ordinary differen-
tial equation system is obtained:

dξ(t)

dt
= Kϕ(ξ(t),ϑ)+ v(ξ(t), t), (2)

where K is the pseudo-stoichiometric matrix, and v(ξ(t), t)
represents the transport term, including dilution effects, input
feeds, and gaseous outflows. In most cases, the number of
components N is larger than the number of reactions M so that
the rank of the stoichiometric matrix K is assumed to be M.
Since we have access to the process measurements ξ(t) and
inputs v(ξ(t),ϑ(t)), we can implicitly identify the matrix K,
which has linear relations with the state variable derivatives
when the vector ϕ(ξ(t),ϑ) has an assumed unknown structure.
To this end, we express (2) as

dξ⋆(t)

dt
= Kϕ(ξ(t),ϑ), (3)

where ξ̇⋆(t) = ξ̇(t)−v(ξ(t), t), and ξ̇(t) denotes the time deriva-
tive of ξ(t).

2.2 Parallel and Implicit Sparse Identification

Consider the following general dynamical nonlinear system

dξ(t)

dt
= f (ξ(t)), (4)

where ξ(t) is the state vector ξ(t) = [ξ1(t) · · · ξN(t)]
T
∈ R

N ,

and the system dynamics ξ̇(t) is function f (ξ(t)). We assume
that the system dynamics can have a sparse representation if the
candidate library is

Θ(ξ) = [θ1(ξ) θ2(ξ) · · · θw(ξ)] , (5)

where w is the library number of elements. Thus, each row
equation may be written as

dξk(t)

dt
= fk(ξ(t))≈ Θ(ξ)Ωk, (6)

where Ωk is a sparse vector, indicating which terms are active
in the dynamics (Brunton et al., 2016).

To determine the nonzero entries of Ωk through sparse regres-
sion based on trajectory data, the time-series data is arranged

into a matrix Ξ = [ξ(t1),ξ(t2) · · · ξ(tns)]
T

, and the associated

derivative matrix Ξ̇ =
[

ξ̇(t1), ξ̇(t2) · · · ξ̇(tns)
]T

is computed us-
ing appropriate numerical differentiation scheme.

It is now possible to describe the dynamical system using a
model which is linear in the parameters and evaluated with the
measured state trajectories:

Ξ̇ = Θ(Ξ)Ω. (7)

Equation (7) might also involve derivatives of the state vari-
ables on the right-hand side, i.e., include a factor Θ(Ξ, Ξ̇). This
situation will appear later on in this study (Section 2.3). To
solve implicit model structures, Kaheman et al. (2020) pro-
posed SINDy-PI, a constrained optimization formulation where
each candidate function is tested individually in an implicit
and parallel optimization. However, each of these individual
equations may be combined into a single constrained system
of equations

Θ(Ξ, Ξ̇) = Θ(Ξ, Ξ̇)Ω such that Ωyy = 0, (8)

where y is the number of columns. The constraint Ωyy = 0
forces the solution not to be the trivial one (Ω = Iw×w) and the
optimization problem can be written as

min
Ω

�Θ(Ξ, Ξ̇)−Θ(Ξ, Ξ̇)Ω�2, (9)

s.t. diag(Ω) = 0,and |Ω{i,y}|< λ then |Ω{i,y}|= 0,

where λ is a sparsity-promoting parameter. In this work,
the sparsity is obtained using sequentially thresholded least
squares, which iteratively computes a least-squares solution to
minimize (9). Any element of Ω smaller than a threshold λ is
set to zero and then (9) is solved again with these fixed zero
elements. The sparsity parameter λ is a hyper-parameter, and
each column equation may require a different parameter λy

(Kaheman et al., 2020). To solve problem (9), we use CVX,
a package for specifying and solving convex programs (Grant
and Boyd, 2008, 2014).

Figure 1 presents the steps to obtain the model basis. First,
the derivatives of the measurements are organized in the vector
Θ(Ξ, Ξ̇), and a large value is given to λ. Then, the value of this
parameter is decreased, and the fitting error

error =
||Ξ̇− ˆ̇Ξ||2

||Ξ̇||2
, (10)

is analysed for each of the state derivatives, where ˆ̇Ξ is the
identified state derivative. A model candidate is obtained when
the error is small, and the vector Ω is sparse. This procedure is
repeated for each state variable.
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Fig. 1. Applied methodology flowchart.

2.3 Minimum Number of Reactions and Stoichiometry

The sparsity of Ω reveals the minimum number of macroscopic
reactions represented by the maximum number of state variable
derivatives required to reconstruct each trajectory. In addition,
using the values identified in the columns of Ω, we implicitly
extract the stoichiometric parameters of each macroscopic re-
action.

To exemplify this procedure, a simple biomass growth on a
glucose medium in fed-batch mode is considered (Bastin and
Dochain, 1990). The modeling of this process is elementary,
expressed by a single reaction that implies the consumption of
glucose (G), the production of biomass (X), and lactate (L) as a
byproduct.

G
ϕ1
−→ k11X + k31L (11)

Based on the reaction scheme, the corresponding mass balance
equations can be written as follows:
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dX

dt
= k11ϕ1 −DX , (12a)

dG

dt
=−ϕ1 −D(G−Gin), (12b)

dL

dt
= k31ϕ1 −DL, (12c)

where the dilution rate is expressed by D = Fin/V (Fin is the
inlet flow rate and V the volume of the broth in the bioreactor)
and the glucose concentration in the inflow by Gin. Biomass
growth could be modeled by any suitable law, or combination
of laws to represent, for instance, activation by glucose and
inhibition by lactate, but the knowledge of this kinetic model
is not required.

Applying (3), Ẋ⋆ = (Ẋ +DX), Ġ⋆ = (Ġ+D(G−Gin)), L̇⋆ =
(L̇+DL) and equation (12) can be rewritten as

dX⋆

dt
= k11ϕ1, (13a)

dG⋆

dt
=−ϕ1, (13b)

dL⋆

dt
= k31ϕ1. (13c)

Equation (13) can be rewritten in function of its derivatives. For
example, using ϕ1 =−Ġ⋆,

dX⋆

dt
=−k11

dG⋆

dt
, (14)

dL⋆

dt
=−k31

dG⋆

dt
, (15)

or, using ϕ1 = L̇⋆/k31,

dX⋆

dt
=

k11

k31

dL⋆

dt
, (16)

dG⋆

dt
=−

1

k31

dL⋆

dt
. (17)

Other relations can be obtained from (13a) with ϕ1 = Ẋ⋆/k11.
All the linear relations in this example are functions of only
one derivative, revealing that the measurement data can be ex-
pressed by only one reaction. The library matrix can be defined
as Θ(Ξ, Ξ̇) = [Ẋ⋆ Ġ⋆ L̇⋆] and the optimization problem (9)
can be solved, resulting in the matrix Ω that is used to implicitly
identify K using the measurement derivatives.

3. APPLICATIONS

This section presents two realistic applications to show the
potential of the procedure to infer the number of macroscopic
reactions and their stoichiometric parameters from numerical
data. The first application considers simulated data, while the
second is based on experimental data.

3.1 Case Study 1: Anaerobic Digestion (two reactions)

In this process, a microorganism consortium degrades the or-
ganic matter in the liquid phase to produce biogas, a mixture
of methane and carbon dioxide. A two-step model (Antonelli
et al., 2003), i.e., acidogenesis and methanogenesis, is consid-
ered in the following:

(a) Chemical oxygen demand (COD) consumption

k31S1
ϕ1
−→ X1 + k41S2 (18)

(b) Volatile fatty acid (VFA) consumption

k42S2
ϕ2
−→ X2. (19)

From the reaction scheme, the corresponding mass balance
equations can be written as follows:

dX1

dt
= ϕ1, (20a)

dX2

dt
= ϕ2, (20b)

dS1

dt
=−k31ϕ1 (20c)

dS2

dt
= k41ϕ1 − k42ϕ2 (20d)

where X1, X2, S1, and S2 are the concentrations of acido-
genic bacteria, methanogenic bacteria, chemical oxygen de-
mand (COD) and volatile fatty acids (VFA), respectively. In
addition, k31, k41, and k42 are the yield coefficients for COD
degradation, VFA production, and consumption, respectively.
Kinetics are modeled with two microbial growth rates

ϕ1 = µmax,1
S1

KS1
+S1

X1, ϕ2 = µmax,2
S2

KS2
+S2

X2. (21)

where µmax,i are the maximum growth rates, and KSi
are the

half-saturation parameters, with i = 1,2.

Using model (20) with parameter values presented in Table
1, a numerical dataset is generated and the measurements
derivatives are gathered in the library vector as Θ(Ξ, Ξ̇) =
[Ẋ1 Ẋ2 Ṡ1 Ṡ2].

Table 1. Anaerobic digestion parameter values:
nominal model and estimated values.

Parameter Simulation Identification Parameter Simulation

k31 0.31204 0.3120 µmax,1 0.42912

k41 0.06277 0.0628 KS1 2.6493

k42 3.1473 3.1473

Starting with a large value of λ, the procedure consists in
decreasing this parameter until the error of one of the esti-
mates is minimized. With λ = 3, errorẊ1

= 1.0978×10−16,

errorẊ2
= 1, errorṠ1

= 1 and errorṠ2
= 1 are obtained. Figure

2a shows the error evolution of the estimates. From the dataset,
the parsimonious implicit representation of Ẋ1 reads

ˆ̇Ξ = [Ẋ1 Ẋ2 Ṡ1 Ṡ2]
� �� �

Θ(Ξ,Ξ̇)






0 0 0 0
0 0 0 0

−3.2047 0 0 0
0 0 0 0






� �� �

Ω

(22)

resulting in
ˆ̇X1 =−3.2047 Ṡ1. (23)

The next step consists in reducing λ to 0.3 and errorẊ1
=

1.0978×10−16, errorẊ2
= 0.37159, errorṠ1

= 9.1111×10−17

and errorṠ2
= 0.11887 are obtained (see Figure 2b). From the

sparse matrix Ω, Ṡ1 is obtained as

ˆ̇Ξ = [Ẋ1 Ẋ2 Ṡ1 Ṡ2]
� �� �

Θ(Ξ,Ξ̇)






0 0 −0.31204 0
0 0 0 −3.0301

−3.2047 0 0 0
0 −0.20484 0 0






� �� �

Ω

,(24)
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resulting in
ˆ̇S1 =−0.3120 Ẋ1. (25)

Anew, λ is reduced to 0.055, delivering errorẊ1
= 9.0576 ×

10−11, errorẊ2
= 0.11645, errorṠ1

= 9.1111 × 10−17 and

errorṠ2
= 2.923×10−9 (see Figure 2c), and Ṡ2 reads

ˆ̇Ξ = [Ẋ1 Ẋ2 Ṡ1 Ṡ2]






0 0 −0.3120 0.0628
0.4349 0 0 −3.1473
−3.1769 0 0 0
0.1382 −0.3177 0 0




(26)

resulting in
ˆ̇S2 = 0.0628 Ẋ1 −3.1473Ẋ2. (27)

To find the missing state variable, λ is set to 0.018, providing
errorẊ1

= 1.0878×10−16, errorẊ2
= 9.553×10−17, errorṠ1

=

9.1111×10−17 and errorṠ2
= 1.3139×10−16 (see Figure 2d).

The last sparse relation is

ˆ̇Ξ = [Ẋ1 Ẋ2 Ṡ1 Ṡ2]






0 0.0199 −0.3120 0.0628
0.4669 0 0 −3.1473
−3.1749 0 0 0
0.1483 −0.3177 0 0




(28)

resulting in
ˆ̇X2 = 0.0199 Ẋ1 −0.3177 Ṡ2. (29)

and the system is summed up as

ˆ̇X1 =−3.2047 Ṡ1, λ = 3, (30a)

ˆ̇S1 =−0.3120 Ẋ1, λ = 0.15, (30b)

ˆ̇X2 = 0.0199 Ẋ1 −0.3177Ṡ2, λ = 0.018, (30c)

ˆ̇S2 = 0.0628 Ẋ1 −3.1473Ẋ2, λ = 0.055. (30d)

The minimal number of macroscopic reactions required to
parsimoniously express the measurements data is two, as the
maximum number of species concentration derivatives required

to express each of the equations in (30) is two, i.e., ˆ̇X2(Ẋ1, Ṡ2)

and ˆ̇S2(Ẋ1, Ẋ2), constituting ϕ j with j = 1,2.

Combining the values of Ω with the process a priori knowledge,
the values of the stoichiometric parameters of the macroscopic
reactions can be inferred. In this example, we consider that
reaction rate 1, ϕ1, is responsible for the production of acido-
genic bacteria X1 and reaction rate 2, ϕ2, is responsible for the
production of methanogenic bacteria X2, which is one plausible
assumption. Then, considering only the signal in (30), we can
deduce which metabolite is consumed or produced. Further-
more, from ϕ1 = Ẋ1 and ϕ2 = Ẋ2, and (30a) 1/k31 is found,
as well as k31 from (30b) (see (20c)). Moreover, considering
the aforementioned definition of ϕ1 and ϕ2, (30c) is rewritten

as ˆ̇S2 = 0.0628ϕ1 −3.1473ϕ2 that is (20d). Finally, combining

(30d) with ϕ1 = Ẋ1 and ˆ̇S2 results in ˆ̇X2 = 0.9999ϕ2, which is
analogous to (20b).

3.2 Case Study 2: Hybridoma Cell Culture

The second application considers a batch culture experiment of
a hybridoma strain performed in 200 mL T-flasks. The substrate
concentrations (glucose and glutamine) are set to prescribed
values respectively, ranging between 6 and 7 g/L and 0.3 and
0.4 g/L. The culture time is approximately nine days. The mea-
surements of viable biomass Xv, dead biomass Xd , glucose G,
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Fig. 2. Plots of the fitting errors for different values of λ.
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glutamine Gn, lactate L, and monoclonal antibodies MAb are
taken once every day. These data are first preprocessed using
a smoothing spline (spaps from Matlab), and the correspond-
ing derivatives are calculated to build the library Θ(Ξ, Ξ̇) =
[Ẋv Ẋd Ġ Ġn L̇ ˙MAb].

Remark 1. The level of noise on the measurements and, in turn,
the level of noise on their derivatives might, of course, sig-
nificantly influence the results. Several numerical tools can be
used to alleviate this potential issue, such as smoothing splines
(Reinsch, 1967) or algorithms for computing derivatives with a
total variation regularization approach (Chartrand, 2011).

The reduction procedure of λ until minimizing the errors of
each of the estimates is carried out, and the following relations
are obtained:

ˆ̇MAb = 38.444Ẋv +42.4723Ẋd λ = 20 (31a)

ˆ̇G = 8.8332L̇ λ = 3 (31b)

ˆ̇L =−9.0099Ġn λ = 2 (31c)

ˆ̇Xd =−0.8721Ẋv −1.2954Ġn λ = 0.3 (31d)

ˆ̇Xv =−1.0611Ẋd −1.4102Ġn λ = 0.15 (31e)

ˆ̇Gn = 0.2589Ẋd −0.1282L̇ λ = 0.06 (31f)

The inferred number of reactions is two, as the maximum
number of species concentration derivatives involved in equa-

tions (31) is two, i.e., ˆ̇Gn(Ẋd , L̇). The following assumption is
formulated to obtain the parameter values: Xv, MAb, and L are
produced by the consumption of glucose and glutamine with a
reaction rate ϕ1. The second reaction involves biomass decay,
degrading Xv into dead biomass Xd and releasing MAbs with
a reaction rate ϕ2. Thus, the reaction scheme is expressed as
follows:

(a) Substrate oxidation:

k31G+ k41Gn
ϕ1
−→ Xv + k51L+ k61MAb, (32)

(b) Biomass death

Xv
ϕ2
−→ Xd + k62MAb. (33)

From the reaction scheme, the corresponding mass balance
equations can be written as follows:

dXv

dt
= ϕ1 −ϕ2, (34a)

dXd

dt
= ϕ2, (34b)

dG

dt
=−k31ϕ1, (34c)

dGn

dt
=−k41ϕ1, (34d)

dL

dt
= k51ϕ1, (34e)

dMAb

dt
= k61ϕ1 + k62ϕ2. (34f)

The stoichiometric parameters can be estimated using the
values of Ω included in (31). We obtain k61 and k62, see (34f),
using relation (31a) with Ẋv = ϕ1 − ϕ2 and Ẋd = ϕ2. The
parameter k41, see (34d), is obtained using (31e) with the same
assumption for Ẋv and Ẋd . The parameter k51, see (34e), uses
the relation (31c) with Ġn = −k41ϕ1. The last parameter k31,
see (34c), uses (31b) with L̇ = k51ϕ1, as k51 has already been
identified. Table 2 reports all the parameter estimates.

Comparison with MLPCA: Maximum-likelihood principal
component analysis (MLPCA) allows determining reaction
schemes of increasing dimension p, explaining a noisy data set,
minimizing a log-likelihood cost of the form:

Jp =
ns

∑
i=1

(ξmi
−ξθ,p,i)

T Q−1
i (ξmi

−ξθ,p,i), (35)

where ns is the number of measured observations, ξmi
is the

experimental measurement vector, with an error covariance ma-
trix Qi and ξθ,p,i is its maximum-likelihood (ML) estimate by
the reduced p-dimensional linear model (Mailier et al., 2012).
Note that Jp decreases as p increases and should be smaller or
equal to the log-likelihood cost J∗ of the true nonlinear model,
assumed to follow a chi-square distribution with nS ×N degrees
of freedom (Mahalanobis, 1936). The number of reactions is
selected as the smallest p such that the log-likelihood cost Jp

is smaller or equal to the range of a χ2
ns×N-distributed random

variable. Once the number of reactions is determined, the re-
sulting N by p affine subspace basis ρ̂ can be used to estimate
a stoichiometric matrix K̂, which is a linear combination of the
basis vectors, i.e.,

K̂ = ρ̂G, (36)

with G as p× p regular matrix. For a complete estimation of
the stoichiometry, p biological constraints have to be imposed
in each column of K̂.

Considering the experimental data, Figure 3 presents the log-
likelihood of the cost function Jp for each p dimension. The

two dashed gray lines represent the χ2
ns×N quantiles at 99.9%

and 0.1%. From the bar graphs in Figure 3, the minimum
number of macroscopic reactions to explain the experimental
data should be chosen as two since the cost function value
for p = 2 is just below the 0.1% quantile (meaning that at
least 99.9% of the information content of the data can be
represented). Interestingly, the implicit sparse identification
approach achieves the same minimal number of reactions.

1 2 3 4
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250

Fig. 3. MLPCA cost function experimental dataset.

Considering the subspace basis of dimension two (p = 2), (36)
and assuming that biomass is generated by ϕ1 and degraded by
ϕ2, the following stoichiometric matrix is obtained:

K̂ =











1 −1

0 1

−5.1342 −1.1856

−0.70865 −0.02952

5.1759 2.7638

38.087 4.2769











(37)

where the rows represent the stoichiometric values for Xv, Xd ,
G, Gn, L, and MAb, respectively, and the column index indi-
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cates the corresponding reaction. Table 2 presents the results
of both approaches. Even if the deviation is 18% for k31, the
results are comparable. Moreover, the matrix K̂ computation
considers only two constraints per column, limiting the number
of possible zero terms. Further constraints/assumptions could
be applied to the MLPCA results to deepen the analysis. For
instance, the values in bold font in (37) could be set to zero
as they are smaller than the ones in the first column and do
not make part of the predefined reaction scheme (33). This
additional assumption is not required in the proposed approach
as the sparsity of the results is the core of the method, improving
their interpretation.

Table 2. Stoichiometric parameter from the exper-
imental dataset.

Parameter Implicit Sparse Ident MLPCA

k31 −6.26 −5.13

k41 −0.729 −0.708

k51 6.28 5.17

k61 38.4 38.0
k62 4.02 4.27

4. CONCLUSION

This paper presents an approach based on sparse identification
to infer macroscopic reaction schemes and the corresponding
stoichiometry from a process database. Two case studies are
used to describe and validate the proposed method. An exper-
imental data set compares the approach with the well-known
maximum-likelihood principal component analysis, showing
coherent results. Future work points toward selecting libraries
to simplify the indirect identification of parameters for pro-
cesses with larger chains of macroscopic reactions.
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