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Abstract

Some results concerning the existence of almost surely frequently hypercyclic random
vectors have been proved in the literature for certain chaotic weighted shifts. This is
of interest for at least two reasons. It is usually difficult to find explicit (frequently)
hypercyclic vectors, and random vectors have a probability distribution whose ergodic
properties can be studied. The first objective of the thesis is to extend the previously
known results. In particular, we prove that every chaotic weighted shift on very
general sequence spaces and every operator satisfying the Frequent Hypercyclicity
Criterion admits an almost surely frequently hypercyclic random vector.

We also investigate the case of semigroups. The desired random vector is con-
structed using a stochastic integral. Although our general result requires that this
integral is well-defined, we can apply it to the translation semigroups on the space of
entire functions.

The second part of the thesis deals with the rate of growth of frequently hypercyclic
functions. We present two methods. Recently, a probabilistic approach provided a
quasi-optimal rate of growth for the differentiation operator and the Taylor shift.
Based on these results and the first part of the thesis, we obtain a general criterion
for chaotic weighted shifts. The rate of growth is expressed as a function depending
only on the weights, multiplied by some logarithmic factor. We give several examples
of shifts defined on the space of entire functions or the space of holomorphic functions
on the unit disk, recovering previous results and finding new ones. We also consider
the differentiation operators on the space of harmonic functions on the plane and
weighted shifts on Kéthe sequence spaces. The possible optimality of the growth is
also discussed.

On spaces of holomorphic functions, we can also ask whether the growth holds
outside some small, but possibly unbounded, set. We give results in this direction,
which are stated for general random complex series. This second approach seems to
be new in linear dynamics. In particular, we prove that for any chaotic weighted shift,
the growth sought by the previous method does hold outside such a set.
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Introduction

The theory of dynamical systems studies the long-term behaviour of systems that
evolves through time. A dynamical system consists of a set, called the space of states,
and a map on this set that describes the evolution of the system. One may think of
the motion of objects subjected to forces, or the evolution of the number of people in
a given population.

Linear dynamics studies a particular case of dynamical systems, where the space
of states is a vector space and the evolution map is linear. Hypercyclicity, that is, the
existence of a dense orbit, is the main concept of linear dynamics. This term seems to
have been introduced by Beauzamy in [13] around 1986 while working on the invariant
subspace problem. The first operators known to be hypercyclic were the translation
operators by Birkhoff [16] in 1929, the differentiation operator by MacLane [68] in
1952 and the multiples of the backward shift by Rolewicz [84] in 1969.

The foundations of linear dynamics were made in the unpublished thesis of Kitai
[58] in 1982 and by Godefroy and Shapiro [42] in 1991. Since then, many other
variants of hypercyclicity have been introduced and studied.

In linear dynamics, we thus consider continuous and linear maps 1" from a vector
space E to itself, called operators. The vector space F is usually a Fréchet space or
an F-space; these are particular cases of metric spaces generalizing Banach spaces.
We are interested in dense orbits i.e., in finding a vector x € E such that the set of
all T"(x), n € N, called the orbit of z, is dense in E. Such a vector is said to be
hypercyclic for T, and T is hypercyclic. Although it has been proved that once an
operator admits a hypercyclic vector, it admits a large supply of such vectors in a
topological sense, it is usually not so easy to construct just one hypercyclic vector.

In their work, Bayart and Grivaux [7] introduced the notion of frequent hyper-
cyclicity, that is, the existence of a hypercyclic vector visiting any non-empty open
set of the space many times in a precise sense. This was the beginning of the connec-
tions between linear dynamics and ergodic theory, which studies dynamical systems
from a measure-theoretic point of view. This notion is strictly stronger than hy-
percyclicity. Moothathu [73] proved that the set of frequently hypercyclic vectors is
always negligible, in contrast to hypercyclicity.

A second well-studied variant of hypercyclicity is chaos: an operator T is chaotic
if it is hypercyclic and has a dense set of periodic points. It turns out that the
hypercyclic operators mentioned above are also frequently hypercyclic and chaotic.
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Random vectors. Bayart and Matheron [10] used ergodic theory to obtain results
on the existence of frequently hypercyclic vectors via the existence of an ergodic or
strongly mizing measure for T, two notions from ergodic theory. They obtain the
following result as a by-product of their methods.

As usual, (e, )nen stands for the canonical sequence of ¢?, the space of p-summable
sequences, 1 < p < oo, where N ={0,1,2,...}. The notation Ny will denote the set
of all strictly positive integers.

Theorem 0.0.1 (|10, Remark at p. 121]). Let T : » — (P be a weighted shift with
weight sequence (Wy)nen, i-€., T(eg) =0 and T(e,) = wpen—1 for any n € No. If T
is chaotic, then the random vector

oo X,
> ——t e, (0.0.1)
ne0 w1 ...Wn

is almost surely frequently hypercyclic for T, where (X,,)nen is a sequence of indepen-
dent standard Gaussian random variables. Furthermore, its distribution is strongly
mizing for T.

Here, a standard Gaussian random variable means that the random variable fol-
lows the normal distribution with mean 0 and variance 1. Note that here and in the
sequel, the random variables are real if the vector space is real, and complex if it is
complex.

Another well-known and historical example of a frequently hypercyclic operator
is the differentiation operator D defined on the space of entire functions H(C), given
by D(f) = f', f € H(C). Nikula |80|] proved that the random series

i Xn (0.0.2)

is almost surely frequently hypercyclic for D by directly showing that this random vec-
tor has a full probability of being frequently hypercyclic. The sequence of independent
random variables (X,,)nen must satisfy some decay condition on their distributions,
which is satisfied by Gaussian variables. Mouze and Munnier [74] gave a simpler proof
of Nikula’s result by using the so-called Birkhoff ergodic theorem under a weaker as-
sumption on the probability distribution. Bayart and Matheron [11] also showed the
almost sure frequent hypercyclicity of the random vector and proved that its
distribution is strongly mixing for the operator D as well.

Remark that the operator D is a weighted shift by identifying an entire function
with its sequence of Taylor coefficients and noticing that D(z") = nz"~! for all
integers n € Ny. Here again, the random vector is constructed as follows:
from the fixed point ) ., 2"/n! of D, where n! corresponds to the product of the
first n weights of the operator D, each term of the series is multiplied by a random
coefficient.

Mouze and Munnier [75] obtained the same result for the Taylor shift: it is the
operator T' on H (D) such that T'(f) = 3", < ant12", f =D ,50 an2" € H(D). Here,
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H(D) denotes the space of holomorphic functions on the unit disk D. They proved
that the random vector -

> X

n=0

is almost surely frequently hypercyclic for T, where (X, ),en is a sequence of inde-
pendent standard Gaussian random variables. Note that the sequence of weights of
T is the constant sequence with constant 1. They also constructed in [74] an almost
surely frequently hypercyclic random vector for some polynomials of chaotic weighted
shifts on /P, 1 < p < oo.

These results were, to our knowledge, the only ones about frequently hypercyclic
random vectors. Given these similarities, the following question may be asked.

Question 0.0.2. Let T be a weighted shift on a vector space E. Under which condi-
tions is the random vector

0o Xn

Y e, (0.0.3)
W1 ...Wp

n=0

almost surely convergent in E and frequently hypercyclic for T ?

Rate of growth. Let us now discuss another problem in linear dynamics. On
spaces of functions, the growth of frequently hypercyclic functions of a given operator
can be studied. Let us consider the space H(C) of entire functions, and let T be
a frequently hypercyclic operator on the space H(C). An admissible rate of growth
for the frequently hypercyclic functions of T is a real-valued map g defined on the
set, of positive numbers such that there is some frequently hypercyclic function for T'
with the property that sup,—, [f(2)| < g(r) for all positive real numbers r > 0 large
enough. A classical method to show the existence of frequently hypercyclic vectors
with a given growth is as follows: the operator T is restricted to a Banach space
F' consisting of entire functions satisfying the growth condition and such that it is
continuously embedded in H(C). Then one proves that the sequence of maps (7}, )nen
is frequently universal, where T,, is the restriction of the operator T to the space F'.
Frequent universality for a sequence of maps is defined as frequent hypercyclicity.

As we have seen above, the differentiation operator D on H(C) has an almost
surely frequently hypercyclic random vector (0.0.2). Using its structure, Nikula [0
bounded the sup-norm of the series and thus obtained an admissible rate of
growth for D.

Theorem 0.0.3 ([80, Proposition 2]). Let (X,)nen be a sequence of independent
standard Gaussian random variables. Then there exists a constant C > 0 such that

almost surely,
oo
X
sup E n—?z"

|zl=r | 525

e’
< C\/ IOg(T’)W (004)

for all v > 0 large enough.

Blasco, Bonilla and Grosse-Erdmann [17] showed that for any function ¢ with
lim, o t(r) = 0, there is no frequently hypercyclic entire function f for D that
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satisfies .
e
sup |£(2)] < w(r)-or;
|z|=r r
for every sufficiently large real number r > 0. Drasin and Saksman [34] proved that
the map r — er/rl/4 is in fact optimal.

Theorem 0.0.4 ([34, Theorem 1.1]). For any C > 0, there exists a frequently hyper-
cyclic entire function f for D such that sup,, ., |f(2)] < Ce" /r'/* for all v > 0.

Mouze and Munnier [75] also used a probabilistic approach to get an admissible
rate of growth for the frequently hypercyclic functions of the Taylor shift and obtained
the following result.

Theorem 0.0.5 ([75, Proposition 3.5 and p. 627]). Let (X, )nen be a sequence of
independent standard Gaussian random variables. Then there exists a constant C > 0
such that almost surely,

anz”

n=0

sup
|z|=r

< Cv/|log(1 —r)|\/% (0.0.5)

for all 0 < r <1 close enough to 1.

They even proved that the map r — 1/4/1 — r is the optimal rate of growth for
the frequently hypercyclic functions of the Taylor shift.

In the proofs of Theorems and the idea was to bound the first terms
of the random series, which already give the desired growth, and to show that the
remaining terms are small. As far as we know, these were the only results about
admissible rates of growth with a probabilistic approach.

Let us mention one more fact: the upper bounds in Theorems and [0.0.5] have
the same form. Indeed, one can prove the following inequalities:

valid for r > 0 large, and

valid for 0 < r < 1 close enough to 1, where a < b means a < b and a > b up to
some constants independent of . In both cases, the upper bound is the ¢2-norm of
the sequence (r™/(wy ... wy))nen, where (wy, )nen, is the weight sequence of the shift.
The logarithmic factor that appears in and comes from the probabilistic
tools used in the proofs.

Let T be a chaotic weighted shift on H(C) with weight sequence (wy,)nen,. We will
see in this work that defines an almost surely frequently hypercyclic random
vector for T', where the sequence (X, ),en of independent random variables is standard
Gaussian. Therefore, in order to get an admissible rate of growth, we can try to
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bound the sup-norm of the random series (0.0.3). It turns out that the formal series
f =3 ,50%"/(wi...wy,) determines chaos: T is chaotic if and only if the series
converges. Therefore, given a chaotic weighted shift on H(C), there is an associated
entire function given by f. From this function, we construct a random vector by
multiplying each Taylor coefficient of f by a Gaussian random variable. This leads
us to the following more general problem.

Question 0.0.6. Let f = ) _ya,2" be an entire function. Under which assump-
tions do we have a constant C > 0 such that almost surely,

sup Z aanz"‘ < Cy/log(A(r)) Z |y, 212 (0.0.6)
lzl=r ", 20 n=0

for all v > 0 large enough, where A is some real-valued function on [0, 00[?

In this approach, the inequality should be valid for any r > 0 large. We can
also ask whether, under less restrictive assumptions, this inequality could hold outside
some small, but possibly unbounded, set. A set E C [1,00[ is of finite logarithmic
measure if the integral [ 5 x~'dz is finite. Such a set may be unbounded but has to
be not very large since floo x~'dz diverges. It seems that this definition is common
in the literature regarding complex analysis.

All we have said also applies to chaotic shifts on H(D), and to holomorphic func-
tions f € H(D).

Outline. In order to make the text as self-contained and understandable as possible,
a preliminary chapter contains the background of this thesis. The first section is
intended as a brief introduction to linear dynamics. The second section recalls some
definitions and results from probability and measure theory. The last sections are
devoted to the Pettis integral, the so-called It6 integral and Gaussian measures.
Chapter [I] contains the results concerning the existence of an almost surely fre-
quently hypercyclic vector. In particular, we prove that every chaotic weighted shift
on very general sequence spaces has such a random vector of the form (0.0.3)). In-
cidentally, it has an ergodic probability distribution. The question of whether this
distribution was also strongly mixing led us to extend our theorem to more operators,
including bilateral weighted shifts, and to prove the strong mixing property. The
first main theorem of the chapter states that under some deterministic assumptions
on the operator and a decay condition on the distribution of the random variables,
there is an almost surely frequently hypercyclic random vector. The second main
general result, which will be a consequence of the first one, says that such a sequence
of random variables can always be constructed under the deterministic assumptions.
The so-called Frequent Hypercyclicity Criterion is often useful to show the frequent
hypercyclicity of a given operator. Bayart and Matheron [11] proved that an operator
satisfying the criterion admits a strongly mixing Gaussian measure. Murillo-Arcila
and Peris |77] also proved that such an operator has a strongly mixing measure by
using a constructive method. Our approach will provide another proof of this fact.
The continuous counterpart of a single operator are the Cy-semigroups. Frequent
hypercyclicity can also be defined in this framework. Therefore, we can ask whether,
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for a given semigroup, a random vector that is almost surely frequently hypercyclic
can be found. This is investigated in Chapter Unfortunately, we did not man-
age to find any fully satisfactory result: the random vector is constructed using a
stochastic integral, and our main theorem requires that this integral is well-defined.
Nevertheless, it can be applied to the translation semigroups on the space of entire
functions.

Chapter [3] is devoted to the problem of the rate of growth for general random
complex series. The two approaches mentioned above are presented. First, we will
answer Question and prove that for any entire function, the inequality
holds for every positive real number outside a set of finite logarithmic measure. An
analogous result is also proved for holomorphic functions on the unit disk. Next, we
give general conditions under which an entire function, or a function in the space
H (D), satisfies the inequality for every large enough real number. With an ad
hoc assumption, this result is applied to entire functions of finite order.

We will return to linear dynamics and chaotic weighted shifts in Chapter [l The
results regarding the growth valid outside a set of finite logarithmic measure imme-
diately yield an admissible rate of growth for the frequently hypercyclic functions.
As far as we know, this approach is new in linear dynamics. The main work then
consists of applying the general results from Chapter [3]to get the rate of growth valid
everywhere. We did not manage to do this for any chaotic weighted shifts, but we
give several examples. In particular, we will recover the results of Nikula [80] and
Mouze and Munnier [75]. On the space of entire functions, we find an admissible rate
of growth for the frequently hypercyclic functions of the so-called Dunkl and Aron-
Markose operators. Weighted shifts on H (D) studied by Mouze and Munnier in 76|
are considered next. Differential operators on the space of harmonic functions of the
plane and weighted shifts on the Kothe sequence spaces are also studied. The possible
optimality of the rate of growth is discussed in the last section of the chapter.

Finally, an appendix contains some results and proofs about Bochner spaces, -
radonifying operators and stochastic calculus in Fréchet spaces that are used in Chap-
ter 2l They are not included in the main text because the Banach case is already
known in the literature, and these results are simply a generalization to the Fréchet
case. There is also a list of notations used throughout the thesis after the appendix.
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In this preliminary chapter, we mainly explain the framework of this thesis, the theory
of linear dynamical systems. This is the content of the first section. The second section
recalls some definitions and tools from probability theory. The last three sections are
devoted to the background material needed for Chapter [2l We will review the Pettis
integral, the It6 calculus and the Gaussian measures.

Throughout the thesis, let K be the field R or C. The notation N denotes the set
of non-negative integers, and Ny denotes the set of strictly positive integers.

0.1 Linear Dynamics

The theory of dynamical systems studies the long-term behaviour of systems that
evolves through time. More precisely, a dynamical system is a pair (E,T) where E
isaset and T': F — FE is a map on F that describes the evolution of the system.
Starting from a point xzy € F say, the system will reach the state T(xg) at the next
time. Then the next state will be 72(x), and so on.

In the specific setting of linear dynamical systems, the set of states E is a vector
space endowed with some topology and the evolution map 7' is a continuous and linear
map. We give in this section a brief introduction to the field and state the concepts
and results that will be used throughout this work. For the proofs and further reading,
see the books [10] and [47].

In general, results in linear dynamics are stated in the Fréchet space framework.
They are a generalization of the Banach spaces where the norm is replaced by a
sequence of seminorms.

Definition 0.1.1. Let E be a K-vector space. A seminorm p : E — [0,00[ is a
function satisfying the following two properties: for every z,y € F and A € K,

(i) plx+y) < plx)+p(y),
(ii) p(Az) = |Alp(=)-

All that remains for a seminorm to be a norm is the separation condition. The
analogous notion is a separating sequence of seminorms.

Definition 0.1.2. A sequence of seminorms (p,)n>1 is separating if for every x € E,
pn(x) =0 for all n > 1 implies z = 0.
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Definition 0.1.3. A Fréchet space E is a vector space endowed with a separating
sequence of seminorms (py,)n>1, which is complete in the metric d: E x E — [0, 00]
defined by

d(z,y) =Y 2% min(1, pn(z — y))

for every z,y € E.

By considering (maxi<g<n Pk)n>1, We can always assume that the sequence of
seminorms is non-decreasing.

Example 0.1.4. Here are some examples of Fréchet spaces.
(1) Of course, every Banach space is a Fréchet space.

(2) The space of entire functions, denoted by H(C), is a Fréchet space with the
sequence of seminorms p,(f) = sup, -, |f(z)|, f € H(C), n > 1. This cor-
responds to the topology of local uniform convergence, that is, uniform con-
vergence on all compact sets. Similarly, the space of holomorphic functions on
the unit disk D, denoted by H (D), is also a Fréchet space. In both spaces, the
subspace of polynomials with rational coefficients is dense.

(3) The vector space KN of all sequences endowed with the seminorms p,(z) :=
maxo<i<n |Tk|, T = (zx)ren € K, n > 1, is a Fréchet space.

A slight generalization of a Fréchet space is the concept of F-space.

Definition 0.1.5. An F-norm on a K-vector space E is a function ||| : E — [0, 00[
satisfying for all z,y € E and A € K,

@) flz +yll < ll=ll + llyll,
(i) [JAz]| < fl=f if [A] <1,
(iif) limy—o [|Az]| =0,
(iv) if ||z|| = 0 then 2 = 0.
An F-norm thus looks like a norm, but there is not, in general, the homogeneity
property. It is replaced by the following weaker property: for all A € K and = € F,
Aall < (I + D]l (0.1.1)

Definition 0.1.6. An F-space F is a vector space endowed with an F-norm such that
FE is complete under the induced metric.

A Fréchet space E is an F-space with the F-norm ||z|| := d(z,0), z € E, where
d is the metric defined in Definition see [47, Proposition 2.8]. It is easy to see
that this F-norm is bounded, which is not the case of a norm.

Fréchet spaces are the locally convex F-spaces, see [88, Theorem 1.24 and Remarks
1.38(b)].

The following two lemmas characterize the convergence of sequences, the Cauchy
condition, and the continuity of linear maps in terms of seminorms, see [47, Lemma
2.6 and Proposition 2.11].
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Lemma 0.1.7. Let E be a Fréchet space, and let (pn)n>1 be a sequence of seminorms
generating its topology. Let (zn)nen C E be a sequence of vectors in E and x € E.

(i) The sequence (z,)nen converges to x in E if and only if for all k > 1, one has
limy, s 00 i (2, — ) = 0.

(ii) The sequence (xn)nen s Cauchy in E if and only if for all k > 1, the sequence
(xn)neN is Oauc}ly in (Evpk)'

Lemma 0.1.8. Let E, F be two Fréchet spaces, and let (pn)n>1 and (gn)n>1 be se-
quences of seminorms defining the topology of E and F', respectively. LetT : E — F
be a linear map. Then T is continuous if and only if for all n € Ny, there are m € Ny
and C > 0 such that for every x € E, one has

Qn(T(x)) < Cpm(m)'

We will say that a map 7" : £ — FE on an F-space F is an operator if it is
continuous and linear.

We are interested in studying the properties of the orbit of a vector zg, that is,
the different states the system will take, starting from the state x¢ and following the
evolution map.

Definition 0.1.9. Let E be an F-space and T' : E — E be an operator. For all
x € F, the orbit of x under T is the set

Orb(z,T) = {T"(z) | n € N}.
The main notion of linear dynamics is the concept of hypercyclicity.

Definition 0.1.10. Let E be an F-space. An operator T : E — FE is hypercyclic
if there exists z € E whose orbit is dense in E. Such a vector is called a hypercyclic
vector for T.

Note that if a space admits a hypercyclic operator, it is necessarily separable
since every orbit is at most countable. The first question to ask is whether such an
operator exists. Let us first point out that hypercyclicity is an infinite-dimensional
phenomenon.

Theorem 0.1.11 ([47, Corollary 2.59]). Let E be a Banach space of finite dimension.
If E is not the zero vector space then there are no hypercyclic operators on E.

Obviously, the identity map is not hypercyclic unless the space is trivial. On a
Banach space, any operator with an operator norm less than 1 is not hypercyclic,
since then every orbit is bounded.

One way to prove that an operator is hypercyclic is to explicitly construct a
hypercyclic vector, see for example [47, Example 2.18]. Another method is to use the
Birkhoff Transitivity Theorem below.

Recall that a Gs-set G is a subset of an F-space E of the form G = (1, .y On,
where (Op,)nen is a family of open sets of E.
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Theorem 0.1.12 (Birkhoff Transitivity Theorem). Let E be a separable F-space and
T : E — E be an operator. Then T is hypercyclic if and only if for any non-empty
open sets U,V C E, there exists n € N such that T"(U) NV # (. In that case, the
set of hypercyclic vectors of T is a dense Gs-set.

Proof. Let x be a hypercyclic vector for T. Let U,V C E be non-empty open sets.
There exists m € N such that 7™ (z) € U. Since an F-space has no isolated points, the
vector T (z) is hypercyclic for T', and there exists some n € N such that 7" (T(z)) €
V. Therefore T™(U) NV # 0.

For the converse, let (Ug)ren be a countable base of open subsets of E, which
exists since E is separable. Notice that the set of hypercyclic vectors of T is exactly
the Gs-set (N~ U,>0 7" (Uk). By assumption, each open set {J,,~, 7" (Ux), k > 0,
is dense in E. Therefore, the Baire Category Theorem, see |88 Theorem 2.2], yields
that the set of hypercyclic vectors of T is dense, and T is hypercyclic. O

An operator satisfying the necessary and sufficient condition of the theorem is said
to be topologically transitive.

Ezample 0.1.13. Let us prove that the differentiation operator
D:H(C)— H(C),f+—f

is hypercyclic. Let U,V C E be non-empty open sets. There exist some polynomials
p=SN  apz® and ¢ = S biz¥ such that pe U and g€ V. Let n > N 4+ 1 be a
positive integer and define

h:=p+ i\f: L Zktn
= (k+n)!

Then D™(h) = q and for any R > 0, one has

AN N .
sup [p(z) — h(z)| < Y R RE

|z|<R —o (k+n)'

Therefore, for n large enough, we get h € U and D"(h) € V. Since this holds for any
non-empty open sets U,V C FE, we have shown that D is hypercyclic by Theorem

More generally, it has been proved by Bonet and Peris |21, Theorem 1] that
every infinite-dimensional separable Fréchet space supports a hypercyclic operator. In
contrast, there are infinite-dimensional separable F-spaces whose continuous operators
are exactly the multiples of the identity, see |56} Section 7.6], and which therefore do
not admit any hypercyclic operator.

A first stronger notion than hypercyclicity is the concept of chaos. There are
different versions of chaos, but the one most commonly accepted in linear dynamics is
chaos in the sense of Devaney. Recall that a vector x € E of an operator T : £ — E
is periodic if there exists some integer n > 1 such that 7" (z) = z.

Definition 0.1.14. Let E be an F-space. An operator T': E — E is chaotic if it is
hypercyclic and has a dense set of periodic points.
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A chaotic operator then means that in any non-empty open set of the space,
however small, one can find a periodic vector, which has a very regular obit, and also
a hypercyclic vector, which has a very irregular orbit. This is related to the so-called
butterfly effect, saying that small changes in the initial conditions may lead to very
different effects.

We will see below some examples of chaotic operators. In contrast to hyper-
cyclicity, there exists an infinite-dimensional separable Banach space that supports
no chaotic operator, as observed by Bonet, Martinez-Giménez and Peris in [20].

An important class of operators is the class of weighted shifts. They are fairly
simple operators, and new notions and results of linear dynamics are usually first
tested on weighted shifts.

The space KN (resp. K”) of all sequences is endowed with the topology of coordi-
natewise convergence.

Definition 0.1.15. A sequence space over N (resp. over 7)) E is a subspace of KN
(resp. KZ) such that convergence in E implies convergence in K~ (resp. KZ). A Banach
(Fréchet, F-) space of this kind is called a Banach (Fréchet, F-) sequence space. The
vectors e, = (...,0,1,0,...) where 1 lies at the n-th coordinate, n € N (resp. n € Z),
are called the canonical unit sequences.

Let E be a sequence space over N (resp. over Z) such that the canonical unit
sequences span a dense subspace. A wunilateral (resp. bilateral) weighted shift T :
E — FE is an operator such that T'(ep) = 0 and T'(e,,) = wpe,—1 for all n € Ny (resp.
T(en) = wpe,—1 for all n € Z), where (wy,), is a sequence of non-zero scalars called
the weight sequence.

We will often simply say weighted shift for a unilateral weighted shift.

It is pointless to consider a weight sequence with some zero elements since such
a shift cannot be hypercyclic. Indeed, suppose for example that T : E — FE is a
weighted shift with w; = 0. Then |ef(T™(x) — eo)| = 1 for all n € Ny, where ef is
the linear map giving the first coordinate, and x is not hypercyclic for T, for every
zeE.

Proposition 0.1.16. Let T : E — E be a unilateral or bilateral weighted shift on
an F-sequence space E. Then T is continuous.

Proof. By the Closed Graph Theorem, see |88, Theorem 2.15], it suffices to prove
that 7" has a closed graph. Let (z,),>0 € E be such that lim, ,. 2z, = 2 and
lim,, oo T'(x,) = y, where z,y € E. Since convergence in FE implies coordinatewise
convergence, we get that T'(x) =y, and T has a closed graph. O

The previous proposition means that a weighted shift on F is continuous if and
only if it is a linear map on E.

Ezample 0.1.17. Obvious examples of Banach sequence spaces are the spaces /P, 1 <
p < oo, and ¢g. Note that it is pointless for our purposes to consider £°° since this
space is not separable. The space of entire functions H(C) can be viewed as a Fréchet
sequence space. Indeed, every entire function is identified with its sequence of Taylor
coefficients at 0. This also holds true for the space H(D).
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There is a criterion to test the hypercyclicity or chaoticity of a weighted shift that
is only a condition on the weights.
First recall the definition of unconditional convergence.

Definition 0.1.18. Let (x,),en be a sequence of vectors in an F-space E. The series
> nen Tn converges unconditionally if for any permutation o : N — N the series

0o
Z Zo(n)
n=0

converges.

A basis (ep)nen of an F-space E is unconditional if for every x € F, the series
T = Zn>0 Tne, converges unconditionally.

Theorem 0.1.19 ([45, Theorems 7 and 8]). Let E be an F-sequence space over N
in which (ep)nen @5 a basis. Let T be a weighted shift on E with weight sequence

(wn)nGNo .

(i) T is hypercyclic if and only if there exists an increasing sequence (ng)reny € N
such that
Nk -1
fim (I[ws) en =0
j=1
(i) If (en)nen is unconditional, then T is chaotic if and only if the series

> ”le)*en

n=0 =
converges in E.

Example 0.1.20. On the Banach spaces ' = /P, 1 < p < oo, or E = ¢y, a weighted
shift T : E — F is continuous (and well-defined) if and only if its sequence of
weights (wp)n>1 is bounded. By Theorem T is hypercyclic if and only if
SUp;,>1 H?:l lw;| = oc.

The backward shift B on F, that is, the weighted shift with constant weights equal
to 1, is not hypercyclic. This fact was already known since the operator norm of B is
equal to 1.

FEzample 0.1.21. On H(C), the space of all entire functions, a weighted shift T :
H(C) — H(C) with respect to the basis of monomials is an operator on H(C) if
and only if sup,, >, |w, |/ < co. By Theorem [0.1.19] T is hypercyclic if and only if

SUpP;,>1 (H;—;l |u1j|)1/" = 00, and chaotic if and only if lim,, (H?:1 |wj|)1/n .

The differentiation operator D from Example [0.1.13] is a weighted shift since
D>, s0an2™) = > ,s0(n 4+ 1)apg12™. Since lim, o n!/" = oo, we recover the
fact that D is hypercyclic. It is even chaotic since the series ) ., 2"/n! = e* con-
verges in H(C). -
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Ezample 0.1.22. Similarly, a weighted shift T : H(D) — H(D) is an operator on
H(D) if and only if limsup,,4 |w,|'/™ < 1. By Theorem [0.1.19] T is hypercyclic or
chaotic if and only if, respectively,

ki 1/n ki 1/n
lim sup (H |w]|) >1, liminf ( H \wj|) > 1.
n—oo
Jj=1 j=1

n—oo

For bilateral weighted shifts, we have the following characterization. Unconditional
bases and convergence are defined in the same way as for the sequence spaces over N.

Theorem 0.1.23 ([45, Theorems 6 and 9]). Let E be an F-sequence space over Z in
which (en)nez is a basis. Let T be a bilateral weighted shift on E with weight sequence

(wn)REZ'

(i) T is hypercyclic if and only if there exists an increasing sequence (ng)gen C N
such that, for any j € Z, one has

j Jt+nk _1

klingo( H wm)ej_nk =0 and kli_}n;()( H wm) €j+n;, = 0.

m=j—ng+1 m=j+1

(ii) If (en)nez is unconditional, then T is chaotic if and only if the series

> (I1 w5 (M) o

n=-—oo j=n-+1
converges in E.

Many notions of linear dynamics are variants of hypercyclicity. We have already
encountered the concept of chaos. A hypercyclic vector x for an operator 7" means
that x visits every non-empty open set via T at least once. In fact, it is easy to see
that the orbit of x meets every non-empty open set infinitely often. How often such
a vector visits a set can be quantified.

Definition 0.1.24. The lower density of a set A C N denoted by dens(A) is the
quantity
oo [AN{0, L N
dens(A) =1 f—
() = B N 1
This leads to the definition of frequent hypercyclicity introduced by Bayart and
Grivaux in [7].

Definition 0.1.25. Let E be an F-space. An operator T' : E — FE is frequently
hypercyclic if there exists € E such that, for every non-empty open set U of F,
the set {n € N | T"(x) € U} has positive lower density. Such a vector is called a
frequently hypercyclic vector for T.

Of course, frequent hypercyclicity implies hypercyclicity.

As with hypercyclicity, one can try to explicitly construct a frequently hypercyclic
vector to prove that a given operator is frequently hypercyclic, see for example [47,
Example 9.6]. But for weighted shifts, there is a sufficient condition relating only to
the weights, which is much simpler.
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Proposition 0.1.26. Let E be an F-sequence space over N in which span{e,, | n € N}
is dense. Let T : E — FE be a weighted shift. If the series

S (1Lw) e

n=0 j=1
converges unconditionally then T is frequently hypercyclic.

Proposition 0.1.27. Let E be an F-sequence space over Z in which span{e,, | n € Z}
is dense. Let T : E — FE be a bilateral weighted shift. If the series

S (11 w)et 3 (ITw) en

n=-—oo j=n-+1 n=1 j=1
converges unconditionally then T is frequently hypercyclic.

The previous two results can be proved with the Frequent Hypercyclicity Criterion
below, see |22, Theorem 4.3].

Ezample 0.1.28. The differentiation operator D is frequently hypercyclic on H(C).
Indeed, recall from Example[0.1.21|that D is a weighted shift with sequence of weights
(n)n>1. Since >, ., 2"/n! = e* converges unconditionally in H(C), we deduce by
Proposition [0.1.26] that D is frequently hypercyclic.

Proposition [0.1.26] combined with Theorem [0.1.19] and Proposition com-
bined with Theorem [0.1.23] yield the following result.

Corollary 0.1.29 (|22, Corollary 4.4]). Let E be an F-sequence space in which the
canonical unit sequences form an unconditional basis. Then every chaotic shift on E
is frequently hypercyclic.

For weighted shifts on /7, 1 < p < oo, the converse holds.

Theorem 0.1.30 (|12, Theorem 4]). Let T : P — (P be a weighted shift with
sequence of weights (wy,)nen,, where 1 < p < co. Then T is frequently hypercyclic if
and only if the series 3 ) [15_, [w;| 77 converges.

That is to say, by Theorem [0.1.19] a weighted shift on 7, 1 < p < o0, is frequently
hypercyclic if and only if it is chaotic.

On the space ¢g, there exists a frequently hypercyclic weighted shift that is not
chaotic as showed by Bayart and Grivaux [9, Corollary 5.2]. On ¢y or on each space
2,1 < p < oo, Menet |72, Theorem 1.2] proved that there exists a chaotic operator
that is not frequently hypercyclic.

As for chaos, there exists an infinite-dimensional separable Banach space over K
that supports no frequently hypercyclic operators. This was proved by Shkarin in
[90, Corollaries 1.4 and 1.5].

A useful tool for proving the frequent hypercyclicity of a given operator is the
so-called Frequent Hypercyclicity Criterion.

Theorem 0.1.31 (Frequent Hypercyclicity Criterion). Let T be an operator on a
separable F'-space E. Assume that there exist a dense subset Ey of E and a map
S : Eg — Ey such that for any x € Ey, the following conditions hold:
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(i) Y02y T™(x) is unconditionally convergent,
(ii) Y02, S™(z) is unconditionally convergent,
(iii) TS(x) = x.

Then T is frequently hypercyclic.

This version of the criterion for operators defined on an F-space has been proved by
Bonilla and Grosse-Erdmann |22, Theorem 2.1]. An operator satisfying the conditions
of Theorem is also chaotic, see [22, Remark 2.2(b)]. Consequently, the example
of Bayart and Grivaux |9, Corollary 5.2] of a frequently hypercyclic but not chaotic
weighted shift on ¢y shows that not every frequently hypercyclic operator satisfies the
criterion.

As we will see in Chapter [T} frequent hypercyclicity is related to ergodic theory.

Definition 0.1.32. Let (M, B, ) be a probability space. A measurable map T :
M — M is measure-preserving, or p is T-invariant, if u(T~1(A)) = u(A) for every
AeB.

If T is measure-preserving then it is, or pu is,

(i) ergodic if for every A € B such that A = T~1(A), we have u(A) € {0,1},
(ii) strongly mizing if lim, . p(T~"(A) N B) = u(A)u(B) for every A, B € B,
(iii) ezact if every A € B belonging to (1,5, 1" (B) satisfies p(A) € {0,1}.

We remark that exactness implies strong mixing, and strong mixing implies er-
godicity, see [32, pp. 50, 87].

The link between frequent hypercyclicity and ergodic theory will be made via the
so-called Birkhoff Ergodic Theorem. For a proof of this result, see e.g. [98, Theorem
1.14].

Theorem 0.1.33 (Birkhoff Ergodic Theorem). Let (M, B, u) be a probability space
and T : M — M be a measure-preserving and ergodic map. Let f € L'(M,u). Then

N
. 1 n
A}gnoo Vil Z foTm = /M fdp p-a.s.

n=0

With a single operator as the evolution map, we follow the evolution of a system
on discrete times; the concept of Cy-semigroup is the continuous counterpart.

Definition 0.1.34. Let (7});>¢ be a family of operators on a Fréchet space E. It is
called a Cy-semigroup if

(i) Tpo =1,
(il) Ty4s = TiTs for all s,t > 0,

(iil) limsy; Ts(z) = Ty(x) for all x € E and ¢t > 0.
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Definition 0.1.35. Let (7});>0 be a Cp-semigroup. The map A : Dom(4) — FE
defined by

A(z) := lim L(m) —7

t—0

is called the generator of (T});>0, where Dom(A) is the set of vectors where the above
limit exists.

The generator is clearly a linear map. A Cy-semigroup is fully determined by its
generator, see [60, Theorem 3], and the domain of the generator is a dense subspace
of the space, see [60, Proposition 1.3]. Here are some useful properties.

Proposition 0.1.36. Let (T});>0 be a Cy-semigroup on a Fréchet space E, and let A
be its generator.

(i) For every x € Dom(A) and t > 0, we have Ty(z) € Dom(A) and AT (z) =

(ii) Let A € K and x € E. Then x € Dom(A) and A(x) = Az if and only if
Ty(x) = eMa for all t > 0.

Proof. The first assertion is proved in [60, Proposition 1.2(1)].
For the second one, assume that T;(z) = ex for any ¢ > 0. We then have

Ty(z)—ax eMz—a M- 13:
t ottt
for any ¢ > 0. We conclude that € Dom(A) and A(z) = A\x.
Assume now that A(z) = Az. It is readily check that (e=*7T});>0 is a Cp-semigroup
with generator A — Al defined on Dom(A). By applying [60, Proposition 1.2(2)] to

this semigroup, we get that

¢
e MTy(x) —x = / e T (A(x) — Az)ds = 0
0

for any ¢t > 0. This concludes the proof. O

Ezample 0.1.37. Let I € {[0,00[,R}. An admissible weight function p is a measurable
function p : I — ]0, 00[ such that there exist M > 1 and w € R such that p(s) <
Mevtp(t + s) for every s € I and t > 0.

For an admissible weight function p and a real 1 < p < oo, we define the Banach
space

(1) = {f T K| /I\f(x)|”p(a:)dsc < oo},
endowed with the norm || f| .z == ([; |f(2)|Pp(x)da)/P, f € LE(I). The translation
semigroup on LP(I) is defined by
Ti(f)(x) == flw+1), xe€l,t >0,

for every f € LP(I). Its generator is the differentiation operator defined on the space of
absolutely continuous functions in L5(I) with derivative in LF(I), see [36, Proposition
I1.1].
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With a given operator on a Banach space, one can construct a semigroup by taking
the exponential of that operator.

Definition 0.1.38. Let A : £ — E be an operator on a Banach space E. We define
the ezponential of A by
oo A"
A — -
=30

The series Y > % converges since it is absolutely convergent.

Proposition 0.1.39 ([36, Proposition 1.2.11]). Let A: E — E be an operator on a
Banach space E. Then (e'?);>¢ is a Co-semigroup.

For further reading on semigroups on Banach spaces, see for example the book
by Engel and Nagel [36]. For the case of Fréchet spaces, see the book by Yosida
[99, Chapter IX] and the papers by Komura [60] and Ouchi [83].

The notions of hypercyclicity and chaos are easily adapted to the continuous case.
Here, a vector x € E is periodic for a Cy-semigroup (T})¢>o if there exists ¢t > 0 such
that T;(z) = «.

Definition 0.1.40. Let (T});>0 be a Cyp-semigroup on a Fréchet space E.

(i) For all z € E, the orbit of x under (T});>¢ is the set

Orb(z, (Ty)e0) = {T;(z) | t > 0}.

(ii) (T¥)e>o0 is hypercyclic if there exists & € E whose orbit is dense in E. Such a
vector is called a hypercyclic vector for (T})i>o-

(iii) (T})¢>o is chaotic if it is hypercyclic and has a dense set of periodic points.

In [28, Theorem 2.5], Conejero proved that every separable infinite-dimensional
Fréchet space which is not KN admits a hypercyclic Cy-semigroup, while KN has no
hypercyclic Cp-semigroup by a result of Shkarin [91, Corollary 1.7].

As for chaos, Bermudez, Bonilla and Martinén [14, Theorem 3.3] proved that
there exists a separable infinite-dimensional Banach space that supports no chaotic
Cp-semigroup.

Conejero, Miiller and Peris |29, Theorem 2.3| proved that a Cy-semigroup (73)¢>0
is hypercyclic if and only if each T3, t > 0, is hypercyclic.

For frequent hypercyclicity, we must first redefine the lower density.

Definition 0.1.41. The lower density of a measurable set A C [0, 00| denoted by
dens(A) is the quantity

dens(A) = lim inf W,

N—o00

where X is the Lebesgue measure on [0, co].
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Definition 0.1.42. Let E be a Fréchet space. A Cyp-semigroup (T3)i>0 on E is
frequently hypercyclic if there exists x € F such that, for every non-empty open set
U of E, the set {t > 0| T;(z) € U} has positive lower density. Such a vector is called
a frequently hypercyclic vector for (T});>o.

Note that for any open set U C E, the set {t > 0 | T;(x) € U} is indeed measurable
since the map ¢t — T3(x) is continuous by of Definition

This notion was extended from a single operator to semigroups by Badea and
Grivaux [6].
Ezample 0.1.43. The translation semigroup of Example [0.1.37] is chaotic if and only
if it is frequently hypercyclic if and only if fI p(x)dz < oo, see |69, Theorems 3.9 and
3.10], where the proof is given for real spaces but is also valid for complex spaces.

Remark 0.1.44. Mangino and Peris |70, Proposition 2.1] proved that a Cy-semigroup
(T})>0 is frequently hypercyclic if and only if each Ty, t > 0, is frequently hypercyclic.
Moreover, a careful reading of their proof and the result of Conejero, Miiller and Peris
[29, Theorem 3.2] show that a vector x € E is frequently hypercyclic for (7});>¢ if
and only if it is frequently hypercyclic for each T;,¢ > 0.

There are also continuous versions of the concepts of ergodic theory.

Definition 0.1.45. Let (E, B, 1) be a probability space, where E is a Fréchet space.
A Cy-semigroup (T3)i>0 on E is measure-preserving, or p is (1})i>o-invariant, if
w(T7 1 (A)) = u(A) for every t > 0 and A € B.

If (T}):>0 is measure-preserving then it is, or p is,

(i) ergodic if for every A € B such that A = T, '(A) for all ¢ > 0, we have
n(A) € {0,1},

(ii) strongly mizing if lim;_, o p(T7H(A) N B) = pu(A)u(B) for every A, B € B.

Again, remark that strong mixing implies ergodicity, see [30, p. 25].
There is a version of the Birkhoff Ergodic Theorem for semigroups, see |30, Chapter
1, Theorem 1].

Theorem 0.1.46 (Birkhoff Ergodic Theorem). Let (E, B, u) be a probability space,
where E is a Fréchet space. Let (Ti);>0 be a measure-preserving and ergodic Cy-
semigroup, and let f € L*(E, ). Then

N
lim %/0 f(Tt(x))dt:/Efdu -a.S.

N —oc0

0.2 Probability theory

Some definitions and elementary results from probability theory are recalled in this
section. For much more information on random vectors taking values in a metric
space, see [95, Chapter II] or [51, Appendix E]. See also |50, Chapter 1] for a general
theory of measurable functions and integration theory in Banach spaces.

In this section, let (€2, .A,P) be a probability space. The o-algebra of Borel sets of
a topological space F is denoted by Z(F).
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Definition 0.2.1. Let F be a metric space and (.9, B) be a measurable space. A map
f: S — E is measurable if f~1(A) € B for every A € B(E).

Definition 0.2.2. Let E be an F-space. A random vector X : QQ — F is a measur-
able map v : (Q, A) — (E, #A(E)).

The distribution of a random vector X : Q — F is defined exactly as in the scalar
case: it is the probability measure

Px : B(E) — [0,1],A — P(X € A).

Two random vectors X and Y and identically distributed if their distributions are
equal.
An important notion in probability theory is the concept of independence.

Definition 0.2.3. Let J be a set and (X;);ecs be a family of random vectors taking
values in an F-space E. The random vectors X;,j € J, are independent if for all
n>1, Ay,..., A, € B(E) and j1,...,jn € J, we have

P(le € Ay, .. 7Xjn € An) = H ]P)(Xjk S Ak)
k=1

A family (X;) ey of independent and identically distributed random vectors, ab-
breviated i.i.d., is a family of independent random vectors such that Px, = Py, for
all k,j € J.

Definition 0.2.4. Let E be an F-space. The support of a probability measure pu :
PB(E) — [0,1] is the set

supp(p) = [ ] F,
F

where the intersection is taken over the closed sets F' C E of full measure.
By [18l Proposition 7.2.9], the set supp(p) has full measure.

Definition 0.2.5. A probability measure p : #(E) — [0,1] on an F-space E has
full support if 4(O) > 0 for any non-empty open set O C E.

Notice that g has full support if and only if supp(u) = E. Indeed, suppose that
w(0) = 0 for some non-empty open set O C E. Then F := CO is closed and has full
measure, and supp(p) € F € E. For the converse, assume that supp(p) # E. Then,
because supp(y) is closed, there exists an open set O C E such that O C Csupp(p).
Since supp(u) has full measure, we deduce that u(O) = 0.

We recall two elementary and well-known results that will be used in several places
in this work, namely the Markov inequality and the Borel-Cantelli lemma.

The expectation of a non-negative or integrable random variable X : Q — K is
denoted by E(X).

Proposition 0.2.6 (Markov inequality). Let X be a non-negative random variable.
For every t > 0, we have
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Lemma 0.2.7 (Borel-Cantelli lemma). Let (A,,)nen € A be a sequence of measurable
events. If 33, o P(A,) < oo then

P(( U 4)=0.

noeENn>ng

There is also a kind of converse of the lemma but we will not use it in this work.
Let us recall some modes of convergences of measures and random vectors.

Definition 0.2.8. Let E be a metric space. A sequence (v, )nen of positive measures
on (E,%(FE)) converges weakly to a measure v if

lim Ef(ac)dl/n:/Ef(x)du

n—oo
for every bounded continuous function f : E — R.

Definition 0.2.9. Let (S, B, 1) be a measure space, and let (f,)nen be a sequence
of measurable maps taking values in a metric space (E,d) and f : S — FE be a
measurable map.

(i) The sequence (f,)nen converges in measure to f if lim,, oo p(d(fn, f) =€) =0
for every € > 0.

(ii) The sequence (fy)nen converges almost everywhere to f if there exists a set
A € B such that p(A) =0 and lim,_, fn(x) = f(z) for every x ¢ A.

Of course, there is also the notion of convergence in the spaces LP, 1 < p < oo.
See Section for the definition of the spaces LP for functions taking values in a
Fréchet space.

The proof of the next result can be found in |51, Proposition E.1.5] for a probability
space, but it is the same for any measure space.

Lemma 0.2.10. Let (S, B, u) be a measure space, and let (f,)nen be a sequence of
measurable maps on (S, B, 1) taking values in a metric space (E,d) and f: S — E
be a measurable map. If (fn)nen converges in measure to f then there is a subsequence
(fni)ken converging almost everywhere to f.

Proof. By assumption, construct by induction an increasing sequence (ng)ren of pos-
itive integers such that pu(d(f,,, f) > 27%) <27F for all k € N. Then we have

s(N) U (=8 difu ). f@) > 27) =0

ko>0k>ko

Therefore, almost everywhere, there exists ko > 0 such that d(f,,, f) < 27 for every
k > ko, and thus (fy, )ken converges almost everywhere to f. O

For random vectors, we usually say almost sure convergence for almost everywhere
convergence, and convergence in probability for convergence in measure.
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Definition 0.2.11. A sequence of random vectors (X, ),cn converges in distribution
if (Px, )nen converges weakly.

It is not difficult to show that almost sure convergence implies convergence in
probability, and that convergence in probability implies convergence in distribution,
see [51, Proposition E.1.5].

0.3 Pettis integral

We will use the Pettis integral in Chapter [2] We recall here the definition. For more
on this topic, see [50, Subsection 1.2.c] in the case of Banach space-valued functions,
or [93].

Definition 0.3.1. Let (S, B, i) be a measure space and F be a Fréchet space.

(i) A function f : S — FE is weakly measurable if z* f is measurable for every
r* e B*.

(ii) Let 1 < p < oo. A weakly measurable function f : S — FE is LP-weakly
integrable, or weakly LP, if x* f € LP(S;K) for all z* € E*.

Definition 0.3.2. Let (S, B, 1) be a measure space, E be a Fréchet space and f :
S — FE be a LP-weakly integrable function, where 1 < p < oo. Then f is Pettis
integrable if for every A € B, there exists x4 € F such that for all * € E*, we have

z*(xa) = [, 2 fdp.

0.4 Stochastic calculus

We recall in this section the It6 integral. It will be used in Chapter There are
many references on this topic, see for example [59] or [81] for more information.

Let (2, A, P) be a probability space. First of all, let us recall the definition of the
Brownian motion.

Definition 0.4.1. A real-valued stochastic process (B;);>0 is a Brownian motion if
(i) Bo = 0 almost surely,

(ii) (Bi)i>0 has independent increments i.e., for any n € Ny and 0 < tp < --- < tp,
the random variables By, — By, ..., B, — B, _, are independent,

(i) (Bi)i>o has stationary increments i.e., for any 0 < s < t, the random variables
B; — Bs and B;_; have the same distribution,

(iv) for every t > 0, B; is a centred Gaussian random variable with variance ¢,

(v) almost surely, the paths ¢t — By are continuous.
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There are several proofs of the existence of the Brownian motion, and they can
be found in many books. See for example [59, Theorem 21.9].

For the remainder of the section, let (B;);>o be a Brownian motion.

The It6 integral is defined in the same way as the Riemann integral, by approaching
functions to integrate by ‘simple’ functions. First, recall the definition of a step
function, that is, piecewise constant functions.

Definition 0.4.2. A step function ¢ : [0,00[ — R is a function of the form ¢ =
> aily, 4, where n € No, a; e Rforall 1 <i<nand 0 <ty <---<t,.

Any square-integrable function ¢ : [0,00[ — R can be approximated by step
functions, see [50, Remark 1.2.20]. If ¢ = 37" | a;1), , ¢,[ is a step function, define
IS o(t)dBy == """ ai(By, — By,_,). It is easy to check that

| [ etas,

Therefore, by denoting £ as the space of step functions, we obtain a linear isometry

Logam) 1l 22(j0,00])-

T:&— L*(Q,P),¢— /oo o(t)dB;.
0

Since € is dense in L?(]0, 0o[), we can extend Z to the whole space L?([0, col).

Definition 0.4.3. Let ¢ : [0,00] — R be a square-integrable function. Let (¢y,)n>0
be a sequence of step functions converging to ¢ in L?([0, cc[). The Ité integral of ¢ is
the Gaussian random variable

/ T o0dBs = tim [ en(t)dB,

where the limit is taken in L?({;R).

The It6 integral of a square-integrable function is indeed a Gaussian random vari-
able since a converging sequence of centred Gaussian random variables necessarily
converges to a Gaussian random variable, see [86, Lemma 2.1]. It is also centred since
the Brownian motion is centred.

We get the celebrated It6 isometry.

Theorem 0.4.4 (It6 isometry). Let ¢ : [0,00] — R be a square-integrable function.

Then we have -
| [ swas
0

To consider complex spaces as well, we define a stochastic integral with respect to
a complex Brownian motion.

. [l 22(0,00])-

Definition 0.4.5. Let (B});>o and (B?);>0 be two independent Brownian motions.
The stochastic process (B;)i>o := (B} +iB?);>0 is called a complex Brownian motion.
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Definition 0.4.6. Let (Bt)tZO = (Btl —‘r’iBtQ)tZ(), where (Btl)tzo and (B?)tzo are two
independent real Brownian motions. Let ¢ € L?([0,00[;C). The Ité integral of ¢ is
the complex random variable

| ewas = [ owast - [ owast i [T oast+ [T owas),

where ¢ and ¢o are respectively the real and imaginary parts of ¢.
There is also a version of the It6 isometry for the complex case.

Lemma 0.4.7. Let ¢ € L*([0,00[;C) and (B:)i>0 := (B} + iB?)i>0, where (B})i>0
and (B2)t>o are two independent real Brownian motions. Then we have

HAW¢@MB4

Proof. Let ¢1 and ¢o be respectively the real and imaginary parts of ¢. The definition
of the Ito6 integral with respect to a complex Brownian motion yields

[ otwas
:(/0 dn(t)dBtl) +(/0 ¢2(t)dBf) 72/0 ¢1(t)ng/0 ¢2(t)d B}
S 2 0 2 o 1 o0 9

+(/O 6a(1)dB} ) +(/O 61(t)aB}) +2/0 ¢2(t)dBt/O ¢1(t)dB;.

By taking the expectations on both sides, by Theorem and since (B}):>o and
(B?)t>0 are independent and centred, we get the desired equality. O

=2 .C)-
L2@,0) V216l 2(0,001:0)

2

The Brownian motion is often indexed by the interval [0, oo[. We may also define it
on R by taking two independent Brownian motions (B}):>0 and (B?):>0, and setting
By =B} ift >0and B, :== B2, if t < 0.

0.5 Gaussian measures

In Chapter |2, we will need the notion of covariance operators for Gaussian measures.
This concept is the generalization of the covariance matrix for a finite-dimensional
Gaussian distribution. Our main references are [10, Chapter 5], [19] and [95].
Throughout this section, let F be a separable real or complex Fréchet space and
(©2, A,P) be a probability space.
We first recall the definition of a complex Gaussian random variable.

Definition 0.5.1. Let X : Q — K be a random variable.

(i) f K= C then X : Q@ — C is a (complex) Gaussian random variable, or has
Gaussian distribution, if its real and imaginary parts are independent and have
Gaussian distribution with the same mean and variance.
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(i) If K = R and X is a Gaussian random variable then it is standard if has mean
0 and variance 1.

(iii) If K = C and X is a Gaussian random variable then it is standard if its real
and imaginary parts have mean 0 and variance equal to v/2/2.

(iv) A sequence (X, )nen of independent Gaussian random variables is a standard
Gaussian sequence if each X, n € N, is standard.

Note that we consider the constant variable 0 to be Gaussian, that may be thought
as a degenerate Gaussian.

If the space F is real (resp. complex), then the random variables are assumed to
be real (resp. complex).

Definition 0.5.2. A probability measure p on E is a Gaussian measure on E if for
every z* € E*, the random variable z* defined on the probability space (E, Z(FE), )
has a centred Gaussian distribution.

A Gaussian random vector is a random vector whose distribution is a Gaussian
measure.

A well-known result, the so-called Fernique integrability theorem, says that a
Gaussian measure has moments of any order. For a proof of this result, see |19}
Corollary 2.8.6].

Theorem 0.5.3 (Fernique integrability theorem). Let p be a Gaussian measure on
E. For every 1 < p < co and every continuous seminorm || - || on E, the integral

/ P d(z)
E

is finite.

The next result says that the almost sure convergence of a Gaussian series is
equivalent to the convergence in LP(2; F) for any 1 < p < co. See Section of the
appendix for a definition of the spaces LP(; E), 1 < p < oo, and a proof of their
completeness.

Theorem 0.5.4. For any sequence of vectors (x,)nen C E and any sequence (g, )nen
of i.i.d. centred Gaussian random variables, the following assertions are equivalent:

(i) for all 1 <p < oo, the series Y ., gnTy converges in LP(Q; E),

)
(ii) there exists 1 < p < co such that Y .- gnxy, converges in LP(%; E),
) the series Y.~ gna, converges in probability,

)

(ii
(iv
Proof. The implication [(i)] = [(ii)|is clear and = follows from Markov’s
inequality. The equivalence = is proved in [25, Theorem 1.3.2].

Let us prove [(iv)] = |(i)l Let 1 < p < oo. Let | - | be a continuous semi-
norm on E. Since the random vector ) ., gn®, converges almost surely, it has a

the series ZZOZO GnTy, converges almost surely.
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Gaussian distribution by [10, Example 5.8]. Note that the proof given there for Ba-
nach spaces carries over verbatim to Fréchet spaces. By Theorem [0.5.3] we thus have
E([| X250 9n@n||?) < co. Therefore, by |25, Corollaries 1.7.2 and 1.7.3], we get that

i (1 ml) =0
and the result follows. O

An important tool for studying a Gaussian measure is the covariance operator. A
proof of the next theorem is given in [19, Theorem 3.2.3 and Corollary 3.2.5]. The
Mackey topology 7(E*, E) is defined in Definition

Theorem 0.5.5. Let p be a Gaussian measure on E. There exists a continuous
conjugate-linear map Q : (E*,7(E*,E)) — E such that for any z*,y* € E*, we
have

vQe = [y ETEE) = 0 e,

Definition 0.5.6. Let p be a Gaussian measure. The operator @ : E* — FE of
Theorem [0.5.9]is called the covariance operator of p.

A conjugate-linear map @ : E* — FE is a Gaussian covariance operator if it is
the covariance operator of some Gaussian measure on F.

Recall that the characteristic functional of a Borel measure p on F, denoted by
11, is defined by

fi(z*) = / (Rl (#) ()
E

for every x* € E*. The covariance operator fully determines the characteristic func-
tional of a Gaussian measure, as the next result says.

Theorem 0.5.7. Let p be a Gaussian measure with covariance operator Q). For all
z* € E*, one has

Aat) = e @,
where ¢ =1/2 if E is real and ¢ = 1/4 if E is complex.

A proof for the real case can be found in [19, Theorem 2.2.4 and p. 45]. The proof
given there also holds for the complex case, or see [10, Theorem 5.9(b)] for measures
on complex Banach spaces. Again, the proof holds for Fréchet spaces.

This result in turn implies that two Gaussian measures with the same covariance
operator are equal, see |18, Lemma 7.13.5].

There exists a characterization for a conjugate-linear map to be a Gaussian co-
variance operator. We will need the notion of v-radonifying operators.

Definition 0.5.8. Let H be a separable Hilbert space. A continuous and linear
map T : H — FE is y-radonifying if for some orthonormal basis (e, )nen of H, the
series Y. <, 9nT(e,) converges almost surely, where (g,)nen is a standard Gaussian
sequence.
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If T: H— E is vy-radonifying then )" -, ¢,T(e,) converges almost surely for
any orthonormal basis (e, ),en of H, see [10, Remark 5.12]. The proof in the reference
still holds for Fréchet spaces; use [25, Theorem 1.3.2] for the equivalence between the
almost sure convergence and the convergence of the characteristic functionals used in
the proof of [10, Remark 5.12].

Again, a proof of Theorem [0.5.9 is given in the cited reference in the case of a
Banach space, but the proof remains the same in the case of a Fréchet space.

If H is a separable Hilbert space, the term canonical conjugate-linear identification
operator stands for the bijective conjugate-linear map I : H* — H given by the Riesz
theorem, which identifies H with its dual.

Theorem 0.5.9 (|10, Theorem 5.13]). Let Q : E* — E be a conjugate-linear map.
The following assertions are equivalent:

(i) @ is a Gaussian covariance operator,

(il) @ has a ~v-radonifying square root i.e., there exist a separable Hilbert space
E and a v-radonifying operator K : H — FE such that Q = KIK™*, where
I: H* — H is the canonical conjugate-linear identification operator.

More precisely, we can take H* = E* where the closure is taken in L?*(u) and
K*: E* — H* 2" — x*.

The following lemma says that every square root of a Gaussian covariance operator
is necessarily 7-radonifying.

Lemma 0.5.10. If Q : E* — FE is a Gaussian covariance operator, and if Q =
KIK*, where K : H — E is continuous, H is a separable Hilbert space and I :
H* — H is the canonical conjugate-linear operator, then K is vy-radonifying.

Proof. Let x* € E*. Then

" Qu* = 2 (KIK*(z*)) = (¢ o K)(IK*(z*))
= (IK* ("), IK*(2")) i = | K* (2")[|%-

By |10, Remark 5.12] and Theorem [0.5.7] we deduce that K is y-radonifying. O

Definition 0.5.11. A family R of Borel probability measures on E is uniformly tight
if for every € > 0, there exists a compact set K C E such that v(K) > 1 — ¢ for every
veR.

Recall that a map R : E* — E is positive if z*Rz* > 0 for all z* € E*, and is
symmetric if * Ry* = y* Rx* for all x*, y* € E*. It is easy to see that any Gaussian
covariance operator is positive symmetric. In addition, note that a symmetric map is
necessarily conjugate-linear.

Theorem 0.5.12 (|97, Theorem 8.8]). Let Q) : E* — E be the covariance operator
of a Gaussian measure g on E. Let R be the family of positive symmetric operators
R : E* — FE such that for every z* € E*, one has z*Rx* < x*Qx*. Then each
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R € R is the covariance operator of a Gaussian measure ur on E, and the family
{r | R € R} is uniformly tight. Moreover, for all R € R, we have

/E P dpu(z) < /E lelPdpug (x)

for all 1 <p < oo and all continuous seminorms || - | on E.

The cited reference gives the proof for Banach spaces, and it carries over verbatim
to Fréchet spaces.

The interest in the covariance operator is that properties involving a Gaussian
measure can usually be formulated in terms of its covariance operator. Here are three
examples that we will need in Chapter 2] The reference given for the last result is
stated for a single operator on a Banach space, but the proof for semigroups on a
Fréchet space is the same.

If M C E*, we define the orthogonal complement of M by

M* = {xEE|x*(m):Oforallx*eM}.

Proposition 0.5.13 (10, Proposition 5.18]). Let p be a Gaussian measure with
covariance operator ) : E* — E. Then supp(u) = Ker(Q)t. In particular, pu has
full support if and only if Q is one-to-one.

Theorem 0.5.14 (|10, Proposition 5.22 and Theorem 5.24]). Let (T})i>0 be a Co-
semigroup on E. Let i be a Gaussian measure with covariance operator Q : E* — E.

(i) The measure p is (Tt)>o-invariant if and only if T,QT; = Q for all t > 0.

(ii) If p is (Ti)e>o-invariant, then (T})i>o s strongly mizing with respect to p if and
only if for any =*,y* € E*, one has lim;_, y*QT; (z*) = 0.
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Chapter 1

Random vectors for frequently
hypercyclic operators

Let B, : ¢ — P be a weighted shift on /7, 1 < p < oo, where w = (wy)p>1 is
the sequence of weights. It is known that if B,, is chaotic then the random vector
ano ﬁen is almost surely frequently hypercyclic for B,,, where (X,,),>0 is a
sequence of independent and identically distributed non-constant Gaussian random
variables, see |10}, Section 5.5.2] or [11, Section 7.1]. Furthermore, this random vector
also induces a strongly mixing Gaussian measure for B,,.

In [80], Nikula proved that >, ., %en is almost surely frequently hypercyclic
for the differentiation operator D on the space H(C) of entire functions, where the
distribution of the i.i.d. variables (X, )n>0 satisfies some conditions and (e,)n>0 is
the sequence of monomials. In [74], Mouze and Munnier relaxed the condition on the
distribution. The result was also proved by Bayart and Matheron in [11, Remark 2
after Proposition 8.1] in the Gaussian case, and the random vector Y, ., 3re, also
induces a strongly mixing Gaussian measure for D. As a last example, Mouze and
Munnier proved in |75, Theorem 1.3] that » ., X,e, is almost surely frequently
hypercyclic for the so-called Taylor shift.

The aim of this chapter is to generalize these results to very general chaotic
weighted shifts and even to a larger class of operators. However, the sequence (X, ),>0
might not be Gaussian.

Given an operator T : E — E on a locally bounded or locally convex separable
F-space E, we will find conditions on 7" and on the distribution of a random variable
X such that X will allow us to define a frequently hypercyclic random vector for 7.
This is the content of Theorem[1.1.8] Section[I.1]is devoted to its proof. In the second
section, we deduce three important special cases of the theorem: we obtain conditions
under which the desired random variable X exists (Theorem [1.2.3)), or can be chosen
to be subgaussian (Theorem or Gaussian (Theorem

In Section these results will be applied to chaotic weighted shifts on very
general sequence spaces. We will also give a new proof of a result of Murillo-Arcila
and Peris [77] by showing that every operator satisfying the Frequent Hypercyclicity
Criterion admits a strongly mixing invariant measure with full support, where we

29
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obtain a rather explicit construction of such a measure. However, our result will
hold for operators defined on a locally bounded or locally convex separable F-space
whereas Murillo-Arcila and Peris proved the result for operators defined on a separable
F-space.

In the last section, other ways to quantify the number of visits of a vector in
open sets will be considered, giving variants of frequent hypercyclicity. We will prove
that the random vector constructed in Theorem [1.1.8] also exhibits those dynamical
properties.

Throughout this chapter, if nothing else is said, let E be a locally bounded or
locally convex separable F-space over K = R or C. If the space E is complex (resp.
real), a random variable X is assumed to take complex (resp. real) values. Every
random variable considered will be defined on a probability space (2,4, P).

1.1 Frequent hypercyclicity
The aim of this section is to prove Theorem [1.1.8] We begin with three lemmas.

Lemma 1.1.1 ([40, Lemma 6.6]). Let (F,.A) and (G, B(Q)) be two measurable spaces
with G a metric space and ZB(G) the o-algebra of Borel sets of G. Let (f,)n>0 be a
sequence of measurable maps f, : F — G, n > 0. Assume that (f,)n>0 converges
pointwise to a function f: F — G. Then f is measurable.

Proof. Since (@) is the o-algebra generated by the open subsets of G, it suffices to
show that f~1(C) € A for every closed subset C' of G. So let C C G be a closed
subset of G. It is easily verified that

Fro=N U N ' {zeX|dist(z,C) < 1/k}).

k>1noENn>ng

Since f~1(C) can be written as countable unions and intersections of sets of A, we
have f~1(C) € A. O

The proof of Lemma [1.1.2] should already be known. A proof in the case of a
Banach space can be given by using [51}, Corollary E.1.17].

Lemma 1.1.2. Let F be a metric space. Let (X, )nen and (Yy)nen be two sequences
of random variables with values in F' such that for every n € N, X,, and Y,, have the
same distribution. If (X,)nen (resp. (Yn)nen) converges almost surely to X (resp.
Y ) then the random wvariables X and Y have the same distribution.

Proof. By assumption, for every bounded continuous function h : FF — R and every
n € N, we have E(h(X,,)) = E(h(Y,)). By taking the limit when n goes to oo, we get
E(h(X)) = E(h(Y)). (At this point, one can use |51, Corollary E.1.17] to conclude
the proof.)

Now, let A € B(F) and € > 0. There exists an open set U C F containing A
such that P(X € U\ A) < e and P(Y € U\ A) < ¢ by [31, Proposition 18.3]. For
all k& > 0, define the bounded and continuous function f : F' — R by fi(x) :=



1.1 — Frequent hypercyclicity 31

min(1, kdist(z, F\U)), « € F. By the Dominated Convergence Theorem, there exists
k > 0 large enough such that

| [ o) = fuap| < e and | [ (10() = fuv)ap| <=

Therefore, |P(X € A) —P(Y € A)| < 4e. Since € > 0 was arbitrary, we conclude
that P(X € A) = P(Y € A) for every A € #B(F), and X and Y have the same
distribution. O

The proof of Lemma comes from [51, Proposition E.1.12].

Lemma 1.1.3. Let (X,)nen and (Yy)nen be two sequences of real random variables
such that for every n € N, X,, and Y, are independent. If (X,)nen (resp. (Yn)nen)
converges almost surely to X (resp. Y ) then the random variables X and Y are inde-
pendent.

Proof. By almost sure convergence, for every bounded and continuous functions f
and g : R — R, we have

E(f(X)g(Y)) = lim E(f(X,)g(¥,) = lim E(f(X,))E(g(Y,))
=E(f(X))E(g(Y)).
This shows that X and Y are independent by [51}, Proposition E.1.10]. O

The next result gives conditions under which the random vector >°°° X, u,, is
almost surely frequently hypercyclic.

Proposition 1.1.4. Let T : E — E be an operator and let (up)ncz be a sequence
in E such that T(u,) = up—1 for every n € Z. Let (X,)nez be a sequence of i.i.d.
random variables defined on a probability space (2, A, P). Assume that the random

vector
oo
V= E Xty

n=—oo

is almost surely well-defined and P(v € O) > 0 for every non-empty open subset O of
E. Then v is almost surely frequently hypercyclic for the operator T and induces a
strongly mizing measure with full support for T.

Proof. We can assume that the series defining v is convergent everywhere. Indeed,
restrict the random variables X,,, n € Z, to a subset of Q of full measure on which
the series defining v converges. Hence, we assume that the convergence is everywhere,
and v is measurable by Lemma|1.1.1

Define the probability measure

w:ABE)—[0,1],A— P(v e A).

In fact, the measure p is the probability distribution of the random vector v.
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First, we show that p is T-invariant. Let A € %(FE). By the definitions of x and
v and continuity of T' we have

wW(T7HA) =P(T(v) € A) =P ( i Xpty_1 € A) =P ( i X1ty € A) .

n=—oo n=—oo

Since (X, )nez is a sequence of i.i.d. random variables, we have

IP’( i Xn+1un€A>]P’< i Xnun€A>

n=—oo n=—oo

by Lemma We conclude by definition of u that u(T-1(A)) =P(v € A) = u(A).
The measure p is thus T-invariant.

Now we claim that p is T-strongly mixing. Let f and g be two bounded and
continuous real-valued functions defined on E. We aim to show that lim,, f E( fo
T")gdu = [ fdp [ gdp. Since the set of bounded continuous functions on E is
dense in L?(E, i) by [31, Theorem 18.1], this will imply the claim by [31, Criterion
at p. 26]. First, by definition of u, this is equivalent to showing that

lim [ f(T"(v))g(v)dP = f(v)dP/ g(v)dP.
Q Q

Let € > 0. By the Dominated Convergence Theorem and since f and g are continuous
and bounded, there exists N > 1 such that

N
Hg< 3 Xkuk> fg(v)’ - (1.1.1)
k=—o00 ’
and
Hf< Z Xkuk) _f(U)’ L1(Q,P) (1.1.2)
k=—N ’
Let n > 2N. We have
N
f(T™(v)g(v) = f(T™(v))g(v) — fF(T"(v))g < > Xk“k)
k=—oc0
N 00 N
+f(Tn(U))g< > Xk“k) —f< > Xk+nuk> 9( > XkUk)
k=—o0 =—N k=—oc0
00 N
+f< Z Xk-+nuk> g( Z Xkuk> . (1.1.3)
k=—N k=—o00

For the first two terms, using the assumption that f is bounded and the inequality
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(1.1.1) yield

‘/Qf(T"(v))g(v)dIF’—/Qf(T”(v))g< XN: Xkuk> dP‘

N k=—o00
< ||f||ong< > Xkuk> ~9(v)|
k=—o00

Now, for the third and fourth terms, using the linearity and continuity of T',

L (o £ )1 35 oniof 35 00) e

< [ flloce-

L1(Q,P)

k=—o00
<l (2 Feewn) = (2 Hrvwn
k=—00 k=—N L(Q,P)
(oo} oo
= ”9”0on< > Xkuk) —f< > Xk“k)
k=—o0 k=—N L1 (Q,P)
S ||g||0063

where we have used Lemma for the equality and (1.1.2)) for the last inequality.
For the last term of (1.1.3)), since the random variables X,,, n € Z, are i.i.d.
and n > 2N, we have, by Lemma applied to (f(zjkvifN Xkynuk))m>1 and

(g(ZQLiM Xkuk:))M21 and then Lemma applied to (f(z;y:,]\[ Xk_t,_nuk))le
M
and (f(> o, _ N Xruk))m>1,

o] N
/f< Z Xk+nuk)g< Z Xkuk>d]P>
Q2 \p=_n k=—oo

:/Qf<k:f:NXk+nuk>dP/g<k§: Xk“k)

:Lf(kiNXkuk>dP/ﬂg< > Xkuk>d]P’.

k=—o0

Therefore, using again (1.1.1)) and (1.1.2)) gives

’Af(kiv)(mnuk) (Z Xkuk> dp — /f d]P’/ )d]p‘

k=—o0
< ||f||ong< 5 Xkuk) —g<v>\L1(QP)+|g|oon< > Xkuk> )
k=—o00 ’ k=—N

<[ flloog + [lgl -

L1(,P)
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We can finally conclude that

n v)d )d d o 00
[ s engwae - [ e [ o >P]<2||f| e 1 2gle.

and since € > 0 was arbitrary, we eventually get that lim, o [, f(T™(v))g(v)dP =
Jo f()dP [, g(v)dP. The measure y is thus T-strongly mixing.

Let O be a non-empty open subset of F. The Birkhoff Ergodic Theorem can be
applied to T and p and gives

N_>OO N1 Z Ip oT" = u(0O) p-a.s.

Let A be a Borel subset of E such that u(A) = 1 and the previous equality holds
everywhere on A. Then, if B :=v71(4) C Q, we have P(B) = P(v=}(A)) = u(4) =1
and

lim 72}1007’” =PveO)>0

N—oco N

on B. Since F is a separable F-space, we can take a countable base of open subsets
of E and get that almost surely, {n > 0 | T"(v) € O} has positive lower density for
every non-empty open subset O of E. The random vector v is therefore almost surely
frequently hypercyclic for the operator T O

Remark 1.1.5. If T admits an invariant and ergodic probability measure p of full
support then T is frequently hypercyclic on E. This result is well-known, see e.g.
|8l Proposition 3.12] for complex Hilbert spaces; the proof given there also holds for
F-spaces without any modification.

If u,, = 0 for every n < —1 in Proposition [I.1.4] Kolmogorov’s zero-one law can
be used to prove that p is ergodic, as it is done in [74]. In fact, the same argument
even shows that the measure induced by v is exact for T

Proposition 1.1.6. Let T : E — E be an operator and let (u,)nen be a sequence

in E such that T(up) = un—1 for every n > 1 and T(up) = 0. Let (Xp)nen be a
sequence of i.i.d. random variables. Assume that the random vector

o0
vi= g X, up
n=0

is almost surely well-defined and P(v € O) > 0 for every non-empty open subset O of
E. Then v is almost surely frequently hypercyclic for the operator T and induces an
ezact measure with full support for T.

Proof. Let A € ,50T " (#(E)). We claim that P(v € A) € {0,1}.
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Let n > 0, there exists B € B(F) such that A = T~"(B). We then have, using
Lemma [1.1.1}

{ve A} = {T"(v) € B} = {T"(iXkuk) € B}

k=0
= { ZXkukfn S B} = {ZXn+kuk S B} S O-(Xn’Xn+17...>.
k=n k=0

We conclude by Kolmogorov’s zero-one law, see [66, Chapitre 0, Proposition I1.2]. O

By Propositions and [1.1.6], in order to prove Theorem [T.1.§ it remains to
show that the series v = ) _, X, u,, converges almost surely and the probability on
E induced by v has full support. We first need a lemma.

Lemma 1.1.7 ([87], Theorem 15.5). Let (x,)n>1 be a sequence of positive numbers
such that 3_ -, x, converges and x, <1 for alln > 1. Then [],5,(1 —x,) > 0.

Proof. Let ng > 1 be large enough such that =, < 1/2 for every n > ng and let
N > ng. Then

N N N
“tog( [T (=20)) = 3 toul1/(1 =) = 3 Tox(1 +,/(1 - 2,)
n=ng n=ngo n=no
N N
< Z Tn/(1—2,) < Z 21,,.
n=ngo n=ngo
The result follows since the series Zn21 Ty, converges. O

The proof of Theorem [1.1.8|uses some ideas from the proof of Mouze and Munnier
[74) Theorem 2.3]. In particular, the idea of the condition on the distribution of the
random variable X comes from that theorem.

Theorem 1.1.8. Let T : E — E be an operator and let (u,)ncz be a sequence in
E such that T (up) = un—1 for every n € Z and span{u,, | n € Z} is dense in E. Let
X be a random variable of full support and let (X,,)necz be a sequence of i.i.d. copies
of X. Assume that there exists a sequence of positive numbers (0, )nez such that

> P(IX]|>6,) < o0
nez

and the series ), ., OnUy, is unconditionally convergent in E. Then the random vector

V= i X,

n=—oo

is almost surely well-defined and frequently hypercyclic for the operator T, and it
induces a strongly mizing measure with full support for T. If u, =0 for alln < —1
then the measure is even exact for T.
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Proof. Let (8,)n>1 be given by the assumption. Because ) ., P(|X]|>d,) con-
verges, it follows from the Borel-Cantelli lemma that

IE”( U N {|Xn|<5n}):1

no>1|n|>ng

and hence, almost surely, | X, | < 6, for every |n| large enough. Therefore, by the
unconditional convergence of ZnGZ OnUn, the random vector v is almost surely well-
defined, see [57, Theorems 3.3.8 and 3.3.9].

By Propositions and it remains to show that P(v € O) > 0 for every
non-empty open subset O of E. It is enough to show this on a base of open subsets
of E.

Let ||-|| be an F-norm defining the topology of E. Let n > 0 and y = ZZ:% Ynllp €
E. We will prove that P(v € By (y,n)) > 0, where B (y,n) is the open ball for
| - || centred at y and of radius n. Let (J,)nez be the sequence given by assumption.
Since ZnEZ dnpuy, converges unconditionally, there exists an integer N > d such that
12 0> N1 Qntiall < /2 whenever |a,| < 6, for all n € Z. Define

N
p={] 32 - <2} e
n=—N

and
A=Bn {|Xn| <8, for all [n| > N + 1},

where y,, = 0if d+ 1 < |n| < N. By the triangle inequality we get on A

[n|>N+1

This shows that A C {v € By (y,n)}. Thus it suffices to prove that P(A) > 0. Since
(X )nez is i.i.d., we have

P(A)=PB) [[ @-P(X]=6.).

[n|>N+1

n o
<-+2=n
5 Ty ="

N
o=l <[ 32 (- pun
n=—N

Since X has full support and (X, )nez is i.i.d., we get P(B) > 0. By Lemma
the product is positive since the series ) _, P(|X| > 6,) converges and X has full
support. O

1.2 Existence of a distribution

There still remains a question in Theorem does there exist a random variable
X satisfying the condition on the distribution? We begin with a simple proposition.

Proposition 1.2.1. Let (§,,)n>0 be a sequence of positive numbers. Then there exist
a probability space (1, A, P) and a random variable X : Q — K with full support and
> >0 PIX]| > d,) < 00 if and only if lim,, 0 6, = oo.
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Proof. Tt is easy to prove that if such a variable X exists then (d,,),cn must converge
to oo. Indeed, assume that (0, )r>1 is bounded by some M > 0 where (ny)k>0 is
increasing. Then ), o P(|X| > 0p,) > D> 15 P(|X] > M) = oo since X has full
support.

Now suppose that lim, . 0, = oco. By considering infy>, dg, n > 0, we can
assume without loss of generality that (0,),>0 is non-decreasing. By replacing 6,
with §,, — 1/n and dropping some d,,, if necessary, we may also assume that (J,)n>0
is a (strictly) increasing sequence of positive numbers. Define Uy = B(0, o) and for
each k > 1, U, := B(0,6) \ B(0,d5—1) and set my := A\(Uy), k > 0, where B(0,r)
is the open ball in K of center 0 and radius r and A is the Lebesgue measure on K.
Note that (Ug)ren is a partition of K. Define

P_2 IZQk

k>0

Since

/pd)\—Q_lek: ,

k>0

p is a density on K and we consider the probability space (K, #B(K), pd\) and the
random variable X = Idg. It is then enough to show that fo pdX > 0 for every
non-empty open set O of K and }°, -, fK\B(O,&n) pdA < oo.

By using the definition of p, we get

Y[ ey ¥ / pr=2"3 Y

n>0 \B(06 n>0j5>n+1 n>0]>n+1

:2*1227:

n>0

This shows that > . P(|X]| > d,) converges.
Let O be a non-empty open subset of K. Let u € K and ¢ > 0 be such that
B(u,e) C O. There is some k € N such that u € U,. Then we have

271
pd)\z/ pd\ = A(B(u,e) NUg).
»/;(u,s) B(u,e)NUy 2kmk ( ( ) )

Since A(B(u,e) N Ux) > 0, we can conclude that [;, , pdA > 0 and hence [, pdA >
0. O

Lemma 1.2.2. Let (e,)n>0 be a sequence in E. For every sequence of scalars (€, )n>0
such that the series Zn>0 enen 15 unconditionally convergent, there exists a sequence
of positive numbers (8, )n>0 such that Zn>0 Onen 18 unconditionally convergent and

len| = 0(d,).

Proof. Let || - || be an F-norm defining the topology of E. Since ) ., ene, is uncon-
ditionally convergent and by using [57, Theorems 3.3.8 and 3.3.9], we can construct
inductively an increasing sequence of positive integers (Ng)g>1 such that for every
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k > 1, every sequence (a)n>o0 of scalars with sup,,sq|an| < 1 and every finite set
F C N with min F > Ny, one has || 3, . anéenen|| < 1/k%. For each n > Ny, there
exists a unique k > 1 such that N, < n < Ny, and we set 6,, = k'/?|e,,|. We then
have for any 1 < k < k" and every finite set F* C N with Ny < min F < max F < N/,
—1 K —1
k

DT EF SIS ST S ST
nel P

s=k n=Ns+1, nc s=k
where we have used the property (0.1.1) of an F-norm. Since > o (1 + s'/2)s72 is
convergent, we conclude that the series ) -, d,e, is unconditionally convergent too.
In addition, we have that |e,| = 0(d,) as n goes to co. O

We immediately deduce the main result of this section, which gives conditions for
an operator to have a frequently hypercyclic random vector.

Theorem 1.2.3. Let T be an operator on E and let (u,)nez be a sequence in E.
Assume that T'(up) = up_1 for every n € Z, the series ), u, is unconditionally
convergent and span{u,, | n € Z} is dense in E. Then there ezists a random variable
X with full support such that the random vector

Z Xpup

n—=—oo

is almost surely well-defined and frequently hypercyclic for the operator T, and it
induces a strongly mizing measure with full support for T, where (X, )nez is a sequence
of i.i.d. copies of X. If u, =0 for all n < —1 then the measure is even exact for T.

Proof. Let (0, )nez be the sequence of positive numbers obtained by applying Lemma
to Y, ~oUn and > - u,. Then lim,_, 6, = oo and lim,_, _ 6, = co. The
result follows by applying Proposition to (min(éy,, 6—y))n>0 in order to obtain
the existence of a random variable X of full support such that ", P(|X| > 6,) < oo,
and then by using Theorem [1.1.§ O

Remark 1.2.4. The random variable X in Theorem [I.2.3]can be assumed to be centred.
Indeed, the random vector > .02 (X, — E(X))u, is still frequently hypercyclic for

n=—oo
the operator 7' since Y 7w, is a fixed point of 7.

Remark 1.2.5. In this chapter, we are mostly only interested in the existence of a
random variable X as given in Theorem [1.2.3] For a more precise information on
which random variable can be employed, one has to go back to Theorem [1.1.§

In view of later applications in Chapters[3]and [d] we would like the random variable
X to be subgaussian. We present two ways to achieve this.

Definition 1.2.6. A real random variable X is subgaussian if there exist some o > 0
and M > 0 such that E(e*¥) < Me*o” for every A € R. A complex random variable
X is subgaussian if its real and imaginary parts are subgaussian.

A sequence of random variables (X,),>0 is subgaussian if each X,,, n > 0, is
subgaussian with the same constants ¢ and M.
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One could call (X,,)n>0 & uniformly subgaussian sequence to stress the fact that
the constant o is the same for each random variable of the sequence. A Gaussian
variable is of course subgaussian, see [66, Chapitre 8, Proposition I.1].

Being a subgaussian random variable X means that the expectation of e*X is no
greater, up to a factor, than the one if X was Gaussian. Another way to define a
subgaussian variable is by bounding the tail of the probability distribution.

Lemma 1.2.7. Let X be a random variable. Then X is subgausswn if and only if
there exists K > 0 and 7 > 0 such that P(|X| > t) < Ke /™ for every t > 0.

A sequence of random variables (X,)n>0 is subgaussian if and only if each X,
n > 0, satisfies this property with the same constants 7 and K.

Proof. Without loss of generality, we can assume that X is a real variable. First,
assume that X is subgaussian. Let ¢ > 0 and A > 0. Markov’s inequality yields

P(X|>t) =P(X >tor X < —t) <P > M) 4 IP’(e”\X > M) < 2N

where M > 0 and o > 0 are the constants in Definition Take \ := t/(202) to
conclude the first part of the proof.
Now, assume that for every t > 0, we have P(|X| > t) < Ke */7" and let
)\ 6 R Without loss of generality, we can assume that A > 0. Use the formula
=[S P(Y > t)dt (see |66, Chapitre 0, Proposition IV.2]) for a positive random
varlable Y to get

00 1 0o
E(eM) :/O P(er™ >t)dt:/ P(er > )dt+/1 P(X > log(t)/A\)dt
<1+K/ —loa(t)*/(T*A%) gy

By the change of variables u = log(t), we have

/°° o= 108 (H?/(272) 4y _ /°° o=/ (2A%) 4y,
1 0
> U A\? 272
:/0 exp<(7)\2> + 1 >du
2.2 [ U A\ 2
= [Cow(-(5-7) Ju

A last change of variables y = u/(7A) — (7)) /2 finally yields

oo

2.2
E(eM) <1+ Kre' 7 / e dy,
A
£l

hence, since the last integral is bounded above by ffooo e*yzdy, one can find some
positive constants M and o such that E(e*¥) < Me*o” for all A € R. O

The definition of a subgaussian variable and a version of Lemma can be found
in [54, pp. 4-5]. In [54], a subgaussian variable is in fact subgaussian with constant
M =1 in our setting. We will need this restriction in Chapter [3 but that definition
from [54] is in fact equivalent to be centred and subgaussian.



40 Chapter 1 — Random vectors for frequently hypercyclic operators

Lemma 1.2.8. A real random variable X is subgaussian with constant M = 1 if and
only if X is subgaussian and centred.

Proof. Suppose that X is s;lk;gaussian with constants M = 1 and ¢ > 0. For all
A € R, we have E(e*¥) < ¢, By using the Dominated Convergence Theorem, this

is equivalent to

> nRE(X" 0 2n ~2n

S Ay

n=0 ’ n=0 :
hence 1 + AE(X) + o(A) < 1+ o(A). Now, if A > 0, then E(X) < o(A)/A, implying
that E(X) < 0 by letting A converge to 0. The same argument with A < 0 shows that
E(X) >0, and E(X) = 0.

Agsume now that X is centred and subgaussian with some positive constants o

and M given by Definition [1.2.6] Pick 7 > o and define K := [—/ 71;)551‘52), 71°g(M)].

2_g2

For every A ¢ K, we have
E(eM) < Mo < X7

Now let v 22 A that will be taken large. Let A € K, A # 0. We aim to show that
E(e?) < e*" | which by the Dominated Convergence Theorem is equivalent to

e )\nE(Xn) e )\QnVQn
D

n=0 n=0

or
> )\nE(Xn+2) > /\Q(n—l)VQn e /\2nl/2(n+1)

D T D D D CE S 1

n=0 n=1 n=0

Thus we want to prove that E(X?)/2 + f(A) < v? + g()\) for any A € K, where
f,g : K — R are some continuous functions. This is equivalent to show that
supye i (F(A)—g(N)) < v?—E(X?)/2. Since f and g are continuous and K is compact,

this supremum is finite, and such a v exists. O

The first approach to allow X to be subgaussian is by assuming the unconditional
convergence of the series ) _,. \/log(|n|)uy,, where Z* = Z\ {0}. This assumption
guarantees the almost sure convergence of the random series > >~ X,u,, where

(un)nez s a sequence in E. This fact will be used in Chapter (3] so we highlight it in
the following lemma.

Lemma 1.2.9. Let (up)nez be a sequence of vectors of E. Assume that the se-
ries Y .z \/10g(|n|)uy is unconditionally convergent. Then, for every subgaussian
sequence (X )nez, the random vector

i Xpup

n—=—oo

is almost surely well-defined. In particular, the result holds for every mon-constant
Gaussian variable.
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Proof. Let ¢ > 0. Let K > 0 and 7 > 0 be the constants associated with (X, )nez in
Lemma We then have

Z P(‘Xﬂ >c /log(|n|)> <K Z e—c2log(|n\)/7—2 _ Z nff/‘rz

nez* nez* nez*

If ¢ > 72 then the last series converges and Y, _,. P(|X| > ¢y/log(|n|)) converges.
It follows from the Borel-Cantelli lemma that

(U N {ix < evioatan})

nOZI |n\2n0

|
—

and hence, almost surely, | X,,| < c¢y/log(|n|) for every |n| large enough. Therefore,

by the unconditional convergence of ) .. +/log(|n|)u,, the series > _, X,u, is
almost surely convergent. Furthermore, it is also measurable by Lemma [1.1.1 O

Theorem 1.2.10. Let T be an operator on E and let (un)nez be a sequence in E.
Assume that T(up) = up—1 for every n € Z, spanf{u,, | n € Z} is dense in E and
assume that the series ) . \/log(|n|)u, is unconditionally convergent. Then for
every subgaussian random variable X with full support, the random vector

oo
Z Xpup

n=—oo

is almost surely well-defined and frequently hypercyclic for the operator T, and it
induces a strongly mizing measure with full support for T, where (X,,)nez is a sequence
of i.i.d. copies of X. If up, =0 for all n < —1, then the measure is even exact for T.
In particular, the result holds for every non-constant Gaussian variable.

Proof. As in the proof of Lemma [1.2.9] we have that there is some ¢ > 0 such that

S <|X\ > ¢ 1og(\n|)) < .

nez*

The result then follows by Theorem [1.1.8 O

The next result uses a different assumption on (uy),ecz than Theorem [1.2.10} in
the case where F is a Banach space. Recall the definition of type.

Definition 1.2.11. Let E be a Banach space and 1 < p < 2. Then F has type p if
there exists C > 0 such that for every x1,...,2, € E, n > 1,

n n 1/p
3 g <o(Xlarr)
k=1 k=1

where (gi)7_; is a sequence of independent standard Gaussian variables.

LY(Q,P;E)

The definition is usually expressed with a Rademacher sequence and sometimes
in terms of the L?(£2,P; E)-norm. But by |51, Proposition 7.1.18] and the Kahane-
Khintchine inequalities |51, Theorem 6.2.6], this leads to the same definition.
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Theorem 1.2.12. Assume that FE is a Banach space of type 1 < p < 2. Let T be
an operator on E and let (uy)ncz be a sequence in E. Assume that T(u,) = tp—1
for every n € Z and span{u,, | n € Z} is dense in E. Assume that the series
Sov o Nlunll? converges. Let X be a standard Gaussian random variable of full

support and let (X,,)nez be a sequence of i.i.d. copies of X. Then the random vector

V= i Xpun

n=—oo

is almost surely well-defined and frequently hypercyclic for the operator T, and it
induces a strongly mizing measure with full support for T. If u, =0 for alln < —1,
then the measure is even exact for T'.

Proof. Since E has type p, we have for every M > N that

E(Hgfgxgun )igc;(g?;nuﬂw>lm, (1.2.1)

where C, > 0 is some constant depending only on p. Therefore, the random series
S o Xnuy, converges in L'(€; E), and since (X, )nez is a standard Gaussian se-

quence of independent random variables, v is almost surely well-defined by Theorem
054

By Proposition it remains to show that P(v € O) > 0 for every non-empty
open subset O of E. It is enough to show this on a base of open subsets of E.

Solet n >0 and y = Zzzfd Yntn € E. We will prove that P(v € By (y,n)) >0
where Bj.(y,n) is the open ball centred at y and of radius 7. Let N > d be an

integer. Define
n n
-, C:= =
< 2 } ’ { < 2 } ,

oo

where y,, :=0if d < |n|] < N, and let A := BN C. By the triangle inequality we get
on A

N

Z (Xn - yn)un

n=—N

Z Xy,

In|>N+1

N

Z (Xn - yn)un

n=—N

This shows that A C {v € By (y,n)}. Thus it suffices to prove that P(A) > 0. Since
(Xn)nez is i.i.d., we have by Lemma that

P(A) = P(B)P(C).

o —yll <

Since X has full support and (X, )nez is i.i.d., we get P(B) > 0. The last step is to
show that P(C) > 0. The Markov inequality yields

Z X, Uy
[n|>N+1
It follows from (1.2.1) that if we take N > d large enough then 1 —P(C) < 1, i.e.
P(C) > 0. O

Z X, Up,

[n|>N+1

1P@»P<

> 77/2> < (77/2)1E<
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Remark 1.2.13. We end this section by noticing that all of our results can be extended,
with the same proofs, to an operator 7' such that there exist finitely many sequences
of vectors (u%k))nez, 1 < k < N, such that span{uglk) | n€Z,1 <k < N} is dense
in E and T'(u (k)) 531)1 foralln € Z and 1 < k < N. In that case, the sequence of
random variables is replaced by a family of i.i.d. random variables (X, k)nez,1<k<n-

1.3 Applications

1.3.1 Weighted shifts

We list the applications of Theorem [1.2.3] and Theorem [I.2.10] to unilateral and bi-
lateral weighted shifts.

If T is a (unilateral) weighted shift with sequence of weights (wy,)n>1, define
Bni=wy...wyif n>1,and fy := 1. If T is a bilateral weighted shift with sequence
of weights (wy, )nez, define 3, :=wy ... w, ifn > 1, 3, = (Hg:fn+1 wg) Lifn < 1,
and ﬂo = 1.

In the first result, let E be a locally bounded or locally convex F-sequence space
over N in which span{e,, | n € N} is dense. We then apply the results of Section
toun:%fornz()andun:()forngfl.

Theorem 1.3.1. Let T : E — FE be a weighted shift with sequence of weights

(wn)nZI-
(i) Assume that the series ) .y 5 is unconditionally convergent. Then there
exists a random variable X wzth full support such that the random vector

00

X,
E —e
n=0 ﬁn "

is almost surely well-defined and frequently hypercyclic for the operator T', and it
induces an exact measure with full support for T', where (X,)n>0 s a sequence
of i.i.d. copies of X.

(ii) If the series ), < ~ IZ%W en s unconditionally convergent then X can be any
subgaussian random variable with full support. In particular, the result holds for
every non-constant Gaussian variable.

This generalizes the qualitative parts of [74, Theorem 2.3] and [80, Theorem 1J;
their quantitative parts are contained in Theorem [1.1.8

We next consider a locally bounded or locally convex F-sequence space E over
Z in which span{e, | n € Z} is dense. We then apply the results of Section to
U, ﬂn n € Z.

Theorem 1.3.2. Let T : E — FE be a bilateral weighted shift with sequence of
weights (wp)nez-
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(i) Assume that the series ), ., 5= is unconditionally convergent. Then there ex-

ists a random variable X with f;}ll support such that the random vector

> 3

Snen

= B

is almost surely well-defined and frequently hypercyclic for the operator T, and

it induces a strongly mizing measure with full support for T, where (X,)nez is
a sequence of i.i.d. copies of X.

(ii) If the series ), ;. Men is unconditionally convergent then X can be any
subgaussian random variable with full support. In particular, the result holds for

every non-constant Gaussian variable.

Theorems[1.3.1]and [I:3.2] apply, in particular, to any chaotic unilateral or bilateral
weighted shift on a F-sequence space in which (e,,), is an unconditional basis, see
Theorems [0.1.19] and [0.1.23] The existence of an exact or strongly mixing measure
with full support has already been proved in Corollary 2 and Remark 3]. A
different approach has also led to the existence of a strongly mixing measure in [67),
Theorem 1] for a class of weighted shifts on ¢o(N) or P(N), 1 < p < 0.

It was already known that, in this setting, the unconditional convergence of ) ;—:
implies the frequent hypercyclicity of the weighted shift, see Propositions [0.1.26] and
By modifying the coefficients of this series, one can construct periodic points
for the shift. This was used to prove that the convergence of ) g—z implies that the
shift is chaotic in Theorems|0.1.19|and |0.1.23] see Theorem 8]. By multiplying the
coefficients of this series with random variables, we now get an almost surely frequently
hypercyclic random vector that induces an exact or strongly mixing measure. This
phenomenon was already known for chaotic weighted shifts on /7, 1 < p < oo, see
Section 7.1], for the so-called Taylor shift, see Theorem 1.3], or for the
differentiation operator on H(C), see Theorem 1|. This now holds for very general
chaotic weighted shifts.

Remark 1.3.3. The bilateral weighted shift on ¢2(Z) with weights w, = 2, n > 1,
and w, = 1/2, n < 0, is invertible and satisfies the assumptions of Theorem m
On the other hand, no invertible measure preserving transformation can be exact, see

p. 86]. Thus the measure induced by the vector v in Theorem cannot be
exact for all operators T'.

It might be an interesting fact that on the space H(C) of entire functions or the
space H(D(0, R)) of holomorphic functions on D(0,R) := {z € C | |z] < R}, every
chaotic weighted shift satisfies the assumption of the second assertion of Theorem

31

Theorem 1.3.4. On the space E = H(C) or H(D(0,R)) with R >0, let T : E —
E be a chaotic weighted shift with sequence of weights (wy)n>1. Then for every
subgaussian random variable X with full support the random series

[e%e} Xn .
25
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is almost surely holomorphic and frequently hypercyclic for the operator T, and it
induces an exact measure with full support for T, where (X, )nez s a sequence of
i-i.d. copies of X. In particular, the result holds for every non-constant Gaussian
variable.

Proof. By Theorem [1.3.1] it suffices to show that if T" is chaotic on E then the series

Zn21 \/lzg(n) en is unconditionally convergent in E.

On H(C), T is chaotic if and only if lim,, o |B.|"/™ = oo, see Example
Therefore, for any 7 > 1 and 0 < p < 1, there exists ng > 1 such that for every
n > ng, we have ry/log(n)/|B.| < p™.

On H(D(0,R)), T is chaotic if and only if limsup,, . |8.|~"/™ < 1/R, see Ex-
ample Let 0 < 7 < Rand 0 < p < 1 be such that 7 < pR, there exists
no > 1 such that for every n > ng, we have log(n)'/(™)|3,|=%/" < p/r and hence

ry/1og(n)/[Bn] < pm. 0

For the differentiation operator on H(C), this result was proved in the Gaus-
sian case in [11, Remark 2 after Proposition 8.1]. For the Taylor shift on H(D) =
H(D(0,1)), which is given by the weights w,, = 1, n > 1, the frequent hypercyclicity
of the random function was proved in the Gaussian case in [75, Theorem 1.3].

One can ask the same question about the spaces ¢, 1 < p < oco. In fact, it is al-
ready known that Z;’LO:O )‘fn en is almost surely well-defined and frequently hypercyclic
on those spaces if the random variables X,, n > 0, are Gaussian and the weighted
shift is chaotic, see |10, Section 5.5.2] or |11, Section 7.1]. However, the second asser-
tion of Theorem [1.3.1| cannot be applied to every chaotic weighted shift defined on ¢P,
1 < p < oc. Indeed, consider the sequence (8,)n>1 = (log(n)'/2¥1/Pn!/P), ;. Then
Y >0 V1og(n)/Brey is not in ¢ but the weighted shift associated with (8,)n>1 is
chaotic. Note that Theorem can be applied to any chaotic weighted shift on ¢7,
for every 1 < p < 2, since ¢P has type min(p, 2) by |51, Proposition 7.1.4], 1 < p < oc.

However, on the space of all sequences w := KV, every shift T is chaotic since
Y n>0 €n/Pn converges, where (8,)n>0 is the sequence associated with 7. If X is a
random variable then lim;_, . P(]X| > ¢) = 0, and there exists a sequence (d,,),>0 of
positive numbers such that >~ -, P(|X| > 0,) is finite. Furthermore, " -, dnen/Bn
is unconditionally convergent; recall that w is endowed with the coordinatewise con-
vergence, see Example [0.1.4] Therefore, Theorem [I.1.§ implies the next result.

Theorem 1.3.5. Let T : w — w be a weighted shift with sequence of weights
(wp)n>1- Let X be a random wvariable with full support. Then the random vector
S %en is almost surely well-defined and frequently hypercyclic for the operator
T, and it induces an exact measure with full support for T, where (X,)n>0 s a se-
quence of i.i.d. copies of X.

In their article [74], Mouze and Munnier have also studied some polynomials of a
frequently hypercyclic weighted shift on /7, 1 < p < co. But their Lemma 4.1 says
that certain polynomials of a weighted shift can be seen as a shift with respect to
another basis. The proof of this lemma shows the following.

Lemma 1.3.6 (|74, Lemma 4.1]). Let T : KN — K" be a weighted shift. Let P(z) =
ZZ:1 arz® be a polynomial with a; # 0. Then there exist vectors u, = Z?:o Bjne;j,
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n >0, such that (u,)n>o is an algebraic basis of KN and P(T)(uyn) = un_1 for every
n>1.

In fact, this result implies that span{e,, | n € N} = span{u,, | n € N}. Note also
that P(T)(ug) = 0. Therefore, together with Theorem [1.2.3] we deduce the following
result.

Theorem 1.3.7. Let E be a locally bounded or locally convexr F-sequence space in
which span{e, | n € N} is dense. Let T : E — FE be a weighted shift and
P(z) = Zzzl arz® be a polynomial with a1 # 0. Assume that the series >, . w, is
unconditionally convergent in E, where (un)n>0 15 given by Lemma . Then there
ezists a random variable X with full support such that the random vector

oo
vi= E Xnty,
n=0

is almost surely well-defined and frequently hypercyclic for the operator P(T), and it
induces an exact measure with full support for P(T), where (X,,)n>0 is a sequence of
i.i.d. copies of X.

This result improves and generalizes the qualitative part of [74, Theorem 4.3]; its
quantitative part is contained in Theorem [T.1.8]

1.3.2 Operators satisfying the Frequent Hypercyclicity Crite-
rion

In |77, Theorem 1], Murillo-Arcila and Peris proved that every operator satisfying
the Frequent Hypercyclicity Criterion, see Theorem [0.1.31] has a strongly mixing
invariant measure with full support. They used the Bernoulli shift on a subset of
NZ to construct such a measure. In [11, Proposition 8.1], it is even shown that
such operators admit a strongly mixing Gaussian measure. We will show here the
existence of a strongly mixing measure of full support as the distribution of some
random vector ZnEZ X, uy,. We will need Lemma Its proof is contained in the
proof of [44) Lemma 3.2]. In this subsection, F will be again a locally bounded or
locally convex separable F-space.
For this subsection, we need a weaker notion than hypercyclicity.

Definition 1.3.8. Let T be an operator on E. A vector x € F is called supercyclic
for T if the set
{A\T"(z) |[n e N\ € K}

is dense in FE.

Lemma 1.3.9. Let T be an operator on E satisfying the Frequent Hypercyclicity
Criterion, and let S and Ey be respectively the map and dense set given by that
criterion. Let (ax)r>1 be a sequence of non-zero scalars. If (xx)r>1 is a dense sequence
in Eq then there exists an increasing sequence (ny)r>1 of positive integers such that
the vector x ==, -, apS™ (x1) is well-defined and supercyclic for T.
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Proof. By conditions [(1)] and of the Frequent Hypercyclicity Criterion, we know
that (T™(x))n>0 and (S™(x))n>0 converge to 0 for every x € Ey. Therefore, together
with one can construct by induction an increasing sequence of positive integers
(nk) k=1 such that [Ja,S™ (2x)|| < 5% for every k > 1, and

k

ailT”l (ZajS"j (m])) —

Jj=1

1
<?f0revery1§l§k7

where | - || is an F-norm defining the topology of E. The first condition tells us that
(>p—q axS™ (x1))s>1 is Cauchy in E, hence converges. The second condition tells us
that the vector x :=3_, -, apS™* () is supercyclic for T'. O

Theorem 1.3.10. Let T be an operator on E satisfying the Frequent Hypercyclicity
Criterion. Then there ezists a supercyclic vector x for T, a sequence (un)p>o in E
with ugp = © and T'(uy,) = unp—1 for every n > 1, and a random variable X with full
support such that the random vector

vi= i X, T"(x) + iX_nun
n=0 n=1

is almost surely well-defined and frequently hypercyclic for the operator T, and it
induces a strongly mizing measure with full support for T, where (X,,)nez is a sequence
of i.i.d. copies of X.

Proof. Let S be the map and Ejy be the dense set given by the Frequent Hypercyclicity
Criterion and let || - || be an F-norm defining the topology of E. Let (xj)k>1 be a
dense sequence in Ej.

For each k > 1, choose a real number 0 < a; < 1 such that

1
sup apS" (vr)|| < o (1.3.1)

FCN, F finite || *=5 2

and )
sup arT ()| < 55 (1.3.2)

FCN, F finite || “=7 2

This is possible by and of the Frequent Hypercyclicity Criterion. Indeed, by
unconditional convergence and [57, Theorems 3.3.8 and 3.3.9], there exists N > 1
such that || 3, cparS™(zx)| < 27~ whenever min F > N and |ai| < 1, and by
continuity one can choose a; > 0 small enough to get || 3, cparS™(zx)]| < 27771
whenever max F' < N. The same arguments hold for the second inequality.

Now let (ng)r>1 be the sequence given by Lemma and define the vector
= oy apS"™(x). If n > 0, by the triangle inequality and , we have for
every M > N > 1 that

M M Mo
ne+n nE+n

D apS™ (@) || < ) lanS™ M @) < Y o"

k=N k=N k=N
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and hence
n «— E akS””"xk

k>1

n > 0, is well-defined, where ug = . We also set u,, = T~"(z), n < —1. It is then
easy to check that T'(u,) = u,_1 for every n € Z. We will apply Theorem to
(un)nez. For the statement of the theorem, we then replace (X, )necz by (X_pn)nez.
Note that span{u, | n € Z} is dense in E since z is supercyclic for T

Thus it remains to show that ) _, u, is unconditionally convergent. Let ¢ > 0
and let ko > 1 be such that >-, -, ;2% <e. For each k > 1, by |(i) .and )| of the
Frequent Hypercyclicity Criterion, there exists Ny > 1 such that

E akT Tk E akS l‘k
ner nekF

for every finite set F' C N with min ' > Nj. Let FF C N be a finite subset with
min F' > maxi <<k, (Nr + nx). We have

Z U_y = Z ZakT"Snk Tg) Z Z apT"S™ (xx)

<7

’< and

ner neF k>1 k>1ner
ko
= Z Z apT"S™ (.%k) + Z Z apT"S™ (Cﬂk)
k=1neF k>ko+1neF
The first term is smaller than € with respect to || - || since min F' > Ny + ny, for each

1 < k < ko. The triangle inequality, condition of the Frequent Hypercyclicity
Criterion and inequalities (1.3.1) and (1.3.2) yield

Z ZakT”S""’(xk) < Z ZaanSnk(Ik)

k>ko+1neF k>ko+1'" neF
< > ( S @S )|+ > aan_nk(xk)>
k>ko+1 neFn<nyg neFn>nyg
2
<D o
k>ko+1

By definition of ko, we finally get || > . pu_pn| < 2e. This shows the unconditional
convergence of > o Un.
Again by the triangle inequality and -, we also have

Z U, Z ZakS"k+"(xk)

neF neF k>1
ko
< Z Z aksnk—i-n(xk) + Z Z akSnk-‘rn(xk)
k=1""neFr k>ko+1" neF
ko
< Z Z apS™ ™ (x| + Z
k=1 ner E>ko+1
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As before, the first term is smaller than ¢ since min F' > Ny, for each 1 < k < kg, and
the second term is smaller than e by definition of ky. This shows the unconditional
convergence of > - up. a

Ezample 1.3.11. Bonilla and Grosse-Erdmann [22, Theorem 4.2] used the Frequent
Hypercyclicity Criterion to prove the frequent hypercyclicity of the translation oper-
ators T, : H(C) — H(C), f — f(-+a), a € C\ {0}. Therefore, Theorem
says that each operator Ty, a € C\ {0}, has an almost surely frequently hypercyclic
random vector.

1.4 A-frequent hypercyclicity

A frequently hypercyclic vector for a given operator 7' means that this vector visits
via T each non-empty open set of the space plenty of times. The number of visits
is quantified by the lower density. Quite recently in the literature, other ways of
quantifying how often the orbit of a vector visits every region of the space have been
studied, see [38] and [39].

The notions of regular and strongly regular matrices can be found in [23].

Definition 1.4.1. Let A = (a; ;)i j>1 be an infinite matrix of complex numbers.
Then A is

(i) regular if sup,>q > ;5 lan;| < oo, limy oo ay; = 0 for every j > 1, and
lim,, 0 ijl Ap,j = 1,

(ii) strongly regular if A is regular and lim,,_ o, 221 lan,; — an,j+1] =0,
(iii) stochastic if for all n,j > 1, one has a, ; > 0 and Zj21 an,j = 1.

Definition 1.4.2. Let A be a regular matrix with non-negative real entries. The
lower A-density of a set F' C N is the quantity

da(F) = 1inrgi£f2an,j1F(j)-

j=1

Definition 1.4.3. Let A be a regular matrix with non-negative real entries. Let E
be an F-space. An operator T : E — FE is A-frequently hypercyclic if there exists
2 € E such that, for every non-empty open set U of F, the set {n € N| T"(z) € U}
has positive lower A-density. Such a vector is called a A-frequently hypercyclic vector
for T

Ezample 1.4.4. When the matrix A is given by a,; = 1/n for 1 < j < n and
an,j = 0 for j > n, A-frequent hypercyclicity is the classic frequent hypercyclicity.
When a,; = 1/(jlog(n + 1)) for 1 < j < n and a,; = 0 for j > n, A-frequent
hypercyclicity is the so-called log-frequent hypercyclicity.

The random vector constructed in Theorem [[.1.8] is frequently hypercyclic. In

order to prove that this vector is also A-frequently hypercyclic for certain regular
matrices A, the following generalized Birkhoff ergodic theorem will be needed.
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Theorem 1.4.5 (|53, Theorem 8|). Let (M, B, un) be a probability space and A =
(@i j)i,j>1 be a stochastic strongly reqular matriz. Let T : M — M be a measure-
preserving and ergodic map, and let f € L*(M, ). Then

lim Y an(foT™h) = /M fdp p-a.s.
j=1

Theorem 1.4.6. Let E be a locally bounded or locally convex F-space. LetT : E —»
E be an operator and let (un)nez be a sequence in E such that T(u,) = up—1 for
every n € Z and span{u, | n € Z} is dense in E. Let X be a random variable of full
support and let (X,,)nez be a sequence of i.i.d. copies of X. Assume that there exists
a sequence of positive numbers (O, )nez such that

> P(IX]>6,) < o0

ne”Z

and the series ) ., 6nuy, is unconditionally convergent in E. Then the random vector

oo
V= E Xty

n=—oo

is almost surely well-defined. Furthermore, let A be a stochastic strongly reqular ma-
triz. Then v is almost surely A-frequently hypercyclic for T.

Proof. The proof is exactly the same as the proof of Theorem by using Theorem
instead of the Birkhoff Ergodic Theorem. O

Theorem allows us to recover the result of Ernst and Mouze [39, Theorem
3.9] in the case of iterates of a single operator. They considered the matrix D, =
(@n,j)n,j>1 given by an j == o/ ZZ:ko oy for 1 < j <nanda,; =0for j > n, where
ay = k18 (F) if | > kg and oy, = 0 otherwise. Here, s > 1 is a positive integer, log,
denotes the logarithm iterates s times and k¢ is a sufficiently large positive integer
such that the sequence (k/log,(k))k>k, is increasing. Let us show that the matrix
D, is strongly regular and stochastic.

Lemma 1.4.7. The matriz f)s defined above is strongly reqular and stochastic.

Proof. 1t is trivially checked that D, is stochastic and regular. Let us show that D,
is strongly regular. _
Let n > 1 be large. Define S,, := Zzzko ag. By definition of D, we have

e’} n—1
lim a a = Qpt1 — n an 20, Qg
E g = On jt1| = E — t+t 5 =5 - .
n—0o0 < " It Sn Sn Sn Sn
j=1 k=ko

We will show that S, =< e"/1°8:(") log (n), where a =< b means ¢ < b and b < a
up to some constants independent of n € N or > 0, and this will imply that
limy, 00 @, /Sy, = 0, thus will conclude the proof.
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Define the function
f: [ko,00] — R,z — €%/ 198:(@) Jog ().

For every x > kg, the derivative of f is given by

1 z/log, ()
0, f(x) = %/ 15 log, () . )+—=

— +
log,(r) log(x)? z [[7_}log;(x)/  « [} log;(x)

_ ea:/logs(w) (1 4 % (l _ 1)> . (141)
[ log;(z) ‘@ log,(z)

From this, it follows that
D f () =< @/ 18 (@), (1.4.2)

x

The map z — + — log% is increasing for > 0 large. Then the second factor in the
right-hand term of is positive and increasing, and since the first factor is also
positive and increasing for x large, we deduce that the derivative of f is increasing
for = large. Therefore, for all n > 1 large enough, we have

n—1 n—1 k+1
f) = S ()= f0) = Y [ o fans
k=ko k=ko ¥
< S ok =Y aufh) (1.43)
k=ko k=ko
and similarly
fm) 2 > 0uf(k) = 0uf(n). (1.4.4)

By using (1.4.3) and (1.4.2)), we get

Ouf(n) — _ 9uf(n) _ o/ 1og, (n)
D ey O f(K) ™ f(n) T en/los.(M log (n)’

which converges to 0 when n goes to co. Then, by (1.4.3), (1.4.4) and (1.4.2)), we
finally get that f(n) < S,. O

Corollary 1.4.8. Let E be a locally bounded or locally conver F-space. Let T :
E — E be an operator satisfying the Frequent Hypercyclicity Criterion. Then T has
a random vector that is almost surely Dg-frequently hypercyclic for T for any s > 1.

Remark 1.4.9. It was already pointed out in Remark 3.10(2)] that Theo-
rem 3.9] can also be proved thanks to ergodic theory arguments via Theorem m
Theorem [T.4.6] originates from that remark.
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Chapter 2

Random vectors and
Ch-semigroups

We investigate in this chapter the case of Cy-semigroups. Two approaches to finding
a frequently hypercyclic vector are presented.

The idea of the first approach is to try to mimic what has been done in Section 1.1
However, only a result analogous to Proposition for semigroups will be proved,
namely Proposition The sequence of random variables (X,,),cz in Proposition
[[-1.4] is replaced by the Brownian motion. This means that for semigroups, we are
a priori quite restrictive since only the normal distribution is considered. For a Cy-
semigroup (7})¢>0 on a separable Fréchet space E, we will assume that there exists
a family (u¢)er of vectors of E such that Ts(u:) = us—s for every s > 0 and t € R.
Instead of a series as in Proposition we will integrate this family of vectors with
respect to the Brownian motion. It is thus a stochastic integral for functions with
values in a Fréchet space. It should be noted that we have not been able to find any
examples of this method.

The second approach is inspired by the results of Chakir and El Mourchid [26].
Again, we will construct a frequently hypercyclic random vector via a stochastic inte-
gral, see Theorem The family (u;); will consist of eigenvectors of the generator
of the semigroup with respect to purely imaginary eigenvalues, hence only complex
Fréchet spaces will be considered. This time, we will have three examples of this
approach.

The stochastic integral for scalar-valued functions is the well-known It6 integral,
see Section The case of Fréchet space-valued integrands is more delicate and
seems to be quite recent in the literature. We will use the definition of van Neerven
and Weis [96]. Their stochastic integral is defined in a Pettis manner for Banach space-
valued functions defined on a bounded interval. Nevertheless, it can be extended for
Fréchet space-valued functions defined on an arbitrary interval, and their results still
hold with the same proofs.

Recall that by Remark a Cy-semigroup (T}):>0 has the same set of fre-
quently hypercyclic vectors as each Ty, t > 0. Therefore, we could apply Theorem
[1.2.3]to T3, but this would not guarantee that the resulting measure is strongly mixing

33
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for the semigroup.

This chapter is divided into three parts. Section defines and states some
properties of the stochastic integral for Fréchet space-valued functions. Some proofs
that differ from [96] are postponed to Section of the appendix. Sections and
2.3| present the first and second approaches, respectively.

For the remainder of the chapter, let E be a separable Fréchet space over K = R
or C, and let (Bi):er be a Brownian motion over a probability space (€2,.A,P). This
stochastic process is real (resp. complex) if E is real (resp. complex).

2.1 Stochastic integral in Fréchet spaces

This section is devoted to the definition and some properties of the stochastic integral
in vector spaces developed by van Neerven and Weis [96]. They defined the integral for
functions on a bounded interval and with values in a real Banach space. Nevertheless,
it can be defined for functions on an arbitrary interval and with values in a real or
complex Fréchet space, and the relevant properties still hold with essentially the
same proofs. For measurable functions taking values in a separable Banach space,
the definition of the stochastic integral from [96] coincides with that of Rosiriski and
Suchanecki [86], see Theorem [2.1.6]

Proofs of the results for which modifications in the Fréchet case might not be
obvious are given in Section In the sequel, we will only prove some results that
are not in [96].

For the remainder of this section, let I C R be an interval, which can be un-
bounded. See Section [0.4]for a reminder of the It6 integral.

Definition 2.1.1. Let ¢ : I — E be a weakly L? function. Then ¢ is called
stochastically integrable if for all measurable sets A € Z(I), there exists a random
vector Y, : © — FE such that for all * € E*, one has

¥ (Ya) = / 14(t)a" (6(1))dB,

almost surely. In that case, we write Y4 = [, ¢(t)dB;.

The random vectors Y, are Gaussian since 2*(Yy4) is a Gaussian random variable
for any x* € E*. Furthermore, they are uniquely determined almost surely. Indeed,
assume that Y is a random vector such that z*(Y) = 0 almost surely, for any a* €
E*. Since F is separable, the topological space (E*,o(E*, E)) is also separable by
[89, Subsection IV.1.7]. Let (z})nen € E* be a dense sequence in (E*, o(E*, E)),
which thus separates points of E. Then almost surely, 7 (Y) = 0 for all n € N, which
is equivalent to Y = 0 almost surely.

By the Fernique theorem, see Theorem we have Yy € LP(; E) for every
1 < p < oo. See Section for the definition of the spaces LP(); E), 1 < p < oo.

Here are two easy consequences of Definition [2.1.1

Lemma 2.1.2 (|96, pp. 138 and 139]). Let ¢,v» : I — E be two stochastically
integrable functions, let a,b € K and T : E — F be a continuous linear map,
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where F is another separable Fréchet space. Then the functions a¢ + by and T¢ are
stochastically integrable, and we have

/I(aqb(t) + by (t))dB, = a/f¢(t)dBt + b/jw(t)dBt

/ (t)dB; = / 6(t)dB,.

In the case of scalar-valued functions, any square-integrable function is stochasti-
cally integrable. In a Fréchet space, this is no longer true: for every 1 < p < 2, there
exists a bounded measurable function defined on [0, 1] with values in ¢7 that is not
stochastically integrable, see |86, Example 3.1].

and

Definition 2.1.3. Let ¢ : I — E be a weakly L? function. We define the conjugate-
linear map I, : L*(I) — (E*) by

Iy(f): B* — K, z* /Ix*(gs(t))mdt

for every f € L*(I).

Here, (E*)" denotes the algebraic dual of E*.

We will say that I, is y-radonifying if I, takes values in E and the linear map /4S5
is v-radonifying, where S : L?(I)* — L?(I) is the canonical isometry. This is equiv-
alent to saying that )" -, gnlg(fn) converges almost surely in E, where (g, )nen is a
sequence of i.i.d. standard Gaussian random variables and (f,,)nen is an orthonormal
basis of L?(I). Note that L?(I) is separable by [50, Proposition 1.2.29].

The map associated with a weakly L? function characterizes its stochastic inte-
grability, as the next result says. Its proof is postponed to Section

Theorem 2.1.4 (|96, Theorem 2.3|). Let ¢ : I — E be a weakly L? function. The
following assertions are equivalent, where c=1 if K=R and c =2 if K=C:

(i) ¢ is stochastically integrable,

(i) there exists a random vector Y : Q@ — E such that for every z* € E*, we have

w'(V) = [ @ (o)an,
almost surely,

(iil) there exists a Gaussian measure p on E with covariance operator Q : E* — E
such that for every z* € E*,

/\a: t)[2dt = 2*Qux*,
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(iv) there exist a separable Hilbert space H and a y-radonifying operator T : H — E
such that for every z* € E*,

c/j|x*(¢(t))|2dt < T ()17,

(v) the map I, takes values in E, and is continuous and y-radonifying.

If one of these assertions holds, then ¢ is Pettis integrable on every bounded interval
included in I, and p is the distribution of the random vector f[ o(t)dBy.

This theorem also shows that if a function is stochastically integrable with respect
to some Brownian motion, then it is stochastically integrable with respect to any
Brownian motion.

Although the stochastic integral is defined in a Pettis manner, any stochastically
integrable function can be approximated by step functions.

Definition 2.1.5. A step function ¢ : I — FE is a function of the form ¢ =
S qaily, |4, where a; € Eforall 1 <i<n,neNgandty<---<t,el

Remark that every step function is stochastically integrable.

Theorem 2.1.6 (|96, Theorem 2.5]). Let ¢ : I — E be a weakly L? function. Then
¢ is stochastically integrable if and only if there exists a sequence (¢p)nen of step
functions such that

(i) for all x* € E*, lim, 00 ¢, = *¢ in measure,
(ii) there exists a random vectorY : Q — E such that Y = lim,_, fI On(t)dBy in
probability.
In that case, we have Y = [, ¢(t)dBy, the convergence in |(i)| is in L*(I), and the
convergence in|(ii)] is in LP(%; E) for every 1 < p < .

See Section for the proof of Theorem [2.1.6f This characterization of the
stochastic integral has been taken as its definition in [86] for Banach space-valued
measurable functions.

The proof of the next result follows the same lines as [96, Corollary 2.8].

Proposition 2.1.7. Let ¢ : [0,00] — E be stochastically integrable. Then

lim /0 ()8, = /O " b(s)dB,

t—o0
in LP(Q; E), for every 1 < p < oo.

Proof. Let || - || be a continuous seminorm, and let 1 < p < co. Let (t,)n>0 be
a sequence of positive numbers converging to oo. Let n > 0. Denote by R, the
covariance operator of the distribution v,, of ftoo @(s)dBs, and let Q be the covariance

operator of the distribution p of fooo ¢(s)dBs. By Theorem , we get

oo (oo}
' Ryx* = c/ lz*¢|2ds < c/ lz*¢|2ds = 2*Qux*,
t 0

n
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where ¢ = 1if K = Rand ¢ = 2 if K = C. By Theorem this implies
that the sequence (v,,)n>o0 is uniformly tight. On the other hand, we also have
lim,, o0 *Ryz* = 0. By Theorem we deduce that lim,_,o yn( *) =1 for all
x* € E*. Therefore, by [95] Theorems I.3.6 and IV.3.1], we get that lim,,_,o, v, = do
weakly, where &y is the Dirac measure at 0 (that is, dg(A) = 1if 0 € A and 69(A) =0
if0¢ A, forall A e B(E)).

We conclude the proof by using [19, Corollary 3.8.8]. We just need to check that

lim sup/ lz]|Pdyy, (x) = 0.
R=00neNJ{zeE,||z|P>R}

Let € > 0. Since (v,)n>0 is uniformly tight, there exists a compact set K C FE, thus
bounded, such that v, (K) > 1—e. Let R > 0 be so large that K C {z € E, ||z||” < R}.
For all n > 0, by the Cauchy-Schwarz inequality and Theorem [0.5.12] we get that

/2 ) 1/2
/{er lz|l?>R} Il dom / I dm (2 (/E 1{m€E’”m”p>R}an(x)>

/2
([ talran(o) e
E

We conclude that sup,>o [r,c 1 rs gy 1217 dVa (@) < Me'/? for some constant M >
0. Since € was arbitrary, we are done. O

Lemma 2.1.8. Let ¢ : I — FE be stochastically integrable. Then for any s € R,
(- — s) is stochastically integrable on I + s and the random vectors fI+s o(t — s)dBy

and fI (t)dB; are identically distributed.
Proof. For all z* € E*, we have by a change of variables and Theorem [2.1.4] that

c/+s|x((t—s |dt—c/|x t)[2dt = 2*Quz*,

where ¢ = 1 if K = R and ¢ = 2 if K = C, and @ is the covariance operator
of the dlstrlbutlon pof [, ¢(t)dB;. By Theorem [2.1.4) we deduce that ¢(- — s) is
stochastically integrable and p is the distribution of [, o(t — s)dB;. O

Lemma 2.1.9. Let A,B € #(I) and ¢, : I — E be two stochastically integmble
functions. If A and B are disjoint then the random vectors fA (t)dB; and fB p(t)dB;
are independent.

Proof. The random vectors X := [, ¢ 4 ¢(t)dBy and Y 1= f J <p (t)dB; are independent if
and only if z*(X) and y*(Y) are 1ndependent for all «*,y* € E*, see [25, p. 23]. By
Lemma and Ito6 isometry, we have

(#*(X), 4" (V) 2y = </Ax*w(t))dBt,/By*(ga(t))dBt>L2(Q)

= C<I*¢a y*¢>L2(1) =0,

where c=1if K=R and ¢ = 2 if K = C. Since (z*(X), y*(Y)) is a Gaussian random
vector by linearity of the stochastic integral, this implies that z*(X) and y*(Y) are
independent by [51, Proposition E.2.12]. O
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We end this section with a result characterizing the stochastically integrable func-
tions with values in a space of functions. This will be useful for concrete examples.
Recall the definition of cotype.

Definition 2.1.10. Let F be a Banach space and 2 < ¢ < oco. Then E has cotype ¢
if there exists C' > 0 such that for all n € Ny and every z1,...,x, € E, we have

n
ngffk

k=1

I(zn)kzilly < C

)

LY(Q,PE)

where (gi)}'_, is a sequence of independent standard Gaussian variables.

Every Banach space has cotype oo. The space ¢y has no finite cotype, see [51]
Corollary 7.1.10].

Theorem 2.1.11. Let (S, B, 1) be a o-finite measure space, let 1 < p < oo, and set
E :=L?(S,B,u). Then a measurable function ¢ : I — E is stochastically integrable

if and only if
([ e ™, <o

Theorem [2.1.11] is a direct consequence of |96, Corollary 2.10] by noticing that
LP(S, B, i) has finite cotype for any 1 < p < oo, see [51, Proposition 7.1.4].

2.2 Random vector: First method

The idea of the first method to get a random vector for semigroups is to reuse the
arguments of Section for a single operator by replacing series with stochastic
integrals. However, we have not been able to prove results analogous to Theorems
1.8 or [.2.3] for Cp-semigroups. Furthermore, we did not find any example of Co-
semigroups that satisfies the assumptions of the only result we obtained, Proposition
Nevertheless, this part was left as it might still be interesting.

The final parts of the proofs of the main results of Sections [2.2] and [2.3] are the
same, so we put it in a lemma.

Lemma 2.2.1. Let (T});>0 be a Co-semigroup on E. Let v : Q — E be a random
vector such that its probability distribution is ergodic for (T})i>0 and P(v € O) > 0 for
every non-empty open subset O of E. Then v is almost surely frequently hypercyclic
for (Ti)i>o0-

Proof. Let u be the probability distribution of v. Let O be a non-empty open subset
of E. The Birkhoff Ergodic Theorem for semigroups, Theorem [0.1.46] can be applied
to T and p and gives

N
lim %/0 (1o o Ty)(x)dt = u(O) p-a.s.

N —oc0
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Let A be a Borel subset of E such that u(A) = 1 and the previous equality holds
everywhere on A. Then, if we set B := v~ 1(A) C Q, we have P(B) = P(v"1(4)) =
u(A) =1 and

N
lim %/ (1ooTy)(v)dt =Pv € O) >0
0

on B. Since E is separable, we can take a countable base of open subsets of E and
get that almost surely, the set {¢ > 0 | T;(v) € O} has positive lower density for
every non-empty open subset O of E. The random vector v is therefore almost surely
frequently hypercyclic for (T3)¢>0- O

The next proposition is the analogous result to Proposition [I.1.4l Their proofs are
the same, but we need to use the Birkhoff Ergodic Theorem for semigroups through
Lemma [2.2.1] and replace all series with stochastic integrals.

Proposition 2.2.2. Let (T});>0 be a Co-semigroup on E, and let (ui)ier be a family
of vectors in E such that Ts(u;) = us—s for every s > 0 and t € R. Let (By)icr be a
Brownian motion. Assume that t — u; is stochastically integrable, and set

v::/utdBt.
R

If P(v € O) > 0 for every non-empty open subset O of E, then v is almost surely
frequently hypercyclic for the Cy-semigroup (T;)i>0, and it induces a strongly mizing
measure with full support for (T});>o-

Proof. Define the probability measure
w:ABE)—[0,1],A— Pv e A).

Let s > 0, we first show that p is T,-invariant. Let A € (E). By the definitions
of u and v and by Lemmas and we have

P(Ts(v) € A)=P (/R up_sdBy € A> =P </R udBy € A> .

We conclude by definitions of v and p that u(7,1(A)) = P(v € A) = u(A). The
measure p is thus Tg-invariant.

Now we claim that p is (T};);>o-strongly mixing. Let f and g be two bounded and
continuous real-valued functions defined on E. We aim to show that

=

3

&
I

lim (foTt)gdu=/ fdu/ gdp.
t—oo Jp E E

Since the set of bounded continuous functions on E is dense in L?(E,u) by |31,
Theorem 18.1], this will imply the claim by [31}, p. 26]. First, by definition of yu, this
is equivalent to showing that

tim [ FT0)a0)aP = [ )P [ g)ap.

t—o0
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Let € > 0. Since f and g are continuous and bounded, by Proposition Lemma
and the Dominated Convergence Theorem, there exists N > 0 such that

Hg(/i “tdBt> I PP (2.2.1)
and Hf(/(); utdBt> — () pan <° (2.2.2)
Let s > 2N, write
f(Ts(v)g(v) = f(Ts(v))g(v) — ﬂTS(ng(/_]:o utdBt)

st [ wam) o[, oo [ wen)
([ wan)of [ wan). 029

For the first two terms, using the assumption that f is bounded and the inequality

(2.2.1) yield

‘ [ st~ [ s [ i utdBt>dP‘

< ||f|ong< / l wdBc) = g(0)

Now, for the third and fourth terms, define the random vectors

—N+s ) —-N )
X ::/ up_sd By, Y ::/ up_d By, U ::/ ud By, V ::/ uyd By.
—00 —N-+s —N

— 00

< I flloce-
L1(Q,P)

Then Lemma [2.1.8]implies that X and U are identically distributed, and so are Y and
V. By Lemma[2.1.9] X and Y are independent, and so are U and V. Therefore, the
random variables f(X +Y) — f(Y) and f(U + V) — f(V) are identically distributed.
Now, by using Lemma [2.1.2] we get that

/Q (f(Ts(v))g(/i UtdBt> - f(/zs ut—sdBt>g(/1:o utdBt>>d]P’
<ol o ([ weam ) =g ([7 wiean)
= |9||oon</_o; UtdBt> - f(/_o; utdBt)

< llglloce

L1(Q,P)

L1($,P)



2.2 — Random vector: First method 61

where we have used (2.2.2) for the last inequality. For the last term of (2.2.3)), since
s > 2N and by using Lemma, and then Lemma [2.1.8] one has

AL ([ )
:/Qf</_o;+s utsdBt)dP/Qg</_]:outdBt)dIP’
:/Qf(/_o;utdBt)dIP’/Qg(/_iutdBt)dIE”.

Therefore, using again (2.2.1)) and (2.2.2)) gives

‘/Qf (/O;Jrs ut_sdBt> g (/: utdBt> dP /Qf(v)dIP’/Qg(v)dP‘
< IfllJg < /- utdBt> =) gy ol ([ ) = 10

< £ lloog + llglloce-

L1(Q,P)

We can finally conclude that

[ syt~ [ seae [ g(v)dp\ < 2 oot + 2lglos,

and since € > 0 was arbitrary, we eventually get that lim;_, [, f(Ti(v))g(v)dP =
Jo f(0)dP [, g(v)dP. The measure p is thus (T} );>o-strongly mixing.
The result now follows by Lemma [2:2.T] O

In the same spirit as Theorem [1.2.12] we have the following result.

Theorem 2.2.3. Let (T})i>0 be a Cy-semigroup on a separable Banach space E of
type 2. Let (ut)ier be a family of vectors in E such that Ts(ui) = ui—s for every s > 0
andt € R, and spanf{u; | t ¢ A} is dense in E for every A € B(R) with zero Lebesgue
measure. Let (By)ier be a Brownian motion. Assume thatt — u; € L*(R; E). Then

the random vector
V= / UtdBt.
R

is almost surely well-defined and frequently hypercyclic for (T});>0, and it induces a
strongly mizing measure with full support for (T;)i>o.

Proof. We first prove that v is almost surely well-defined. Define the linear map J :
¢ — [ &(t)dB; defined on the space of E-valued step functions. Let ¢ = >°"" | a;14,
be a step function. Since E has type 2 and by using properties to of Definition
0.4.1, we have

1T (DN F2m) < C D MADaillE = CllélZ2zim),

=1
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where C' > 0 is some constant depending only on E and A is the Lebesgue measure
on R. Therefore, J is a continuous embedding, and the density of the space of step
functions in L?(R; E), see |50, Remark 1.2.20], allows us to extend J on L?*(R;E).
Theorem then implies that J(¢) = [, ¢dB; for every ¢ € L*(R; E). This shows
that v is almost surely well-defined since the map t — u; belongs to L?(R; E).

Let @ be the covariance operator of the probability distribution P, of v. By
Proposition [0.5.13] it suffices to show that () is one-to-one to prove that P, has full
support. Let z* € Ker(Q). By definition of @, we have

0=w*(Q(x*))=[EI$*I2de=LIx*(v)I2dP,

implying that 2*(v) = 0 almost surely. By definition of v and Lemma [2.1.2] we get
that

0=2a"(v) = /Rm*(ut)dBt

almost surely. Therefore, 1t0’s isometry yields that x*(u;) = 0 for every ¢ € R outside
some set of zero Lebesgue measure. By assumption, we get z* = 0.
The result now follows by Proposition 2.2.2] O

Remark 2.2.4. In the proof of Theorem [2:2.3] in order to show that v is almost surely
well-defined, we actually proved that L?(R; E) is continuously embedded in the space
of stochastically integrable functions. This was already known in [86, Proposition
5.2].

As mentioned above, we have not been able to prove analogous results to Theorems
1.8 or [1.2.3) for Cy-semigroups. In the proof of Proposition [2.:2.2] the independent
and stationary increments of the Brownian motion play a crucial role. The idea
was then to prove the existence of a Lévy process with respect to which ¢ — u; is
stochastically integrable, under some deterministic conditions on (ut):cg. A sought
condition was the Pettis integrability of ¢ — w;. If this plan could work, one would
then hope to find another proof of the frequent hypercyclicity criterion for semigroups
|78, Theorem 3], as we did for operators.

2.3 Random vector: Second method

In our second approach, we will make assumptions close to those of the main result
of Chakir and El Mourchid [26, Theorem 3.2]. The semigroup will be defined on
a complex Fréchet space since we will consider purely imaginary eigenvalues of the
generator.

Theorem 2.3.1. Let (T})¢>0 be a Co-semigroup on a separable complex Fréchet space
E. Let A be the generator of (T;)i>0, and let (ut)ier be a family of vectors in Dom(A)
such that A(u:) = itus for every t € I, where I is a non-empty interval of R, and
span{u; | t ¢ B} is dense in E for every B € B(I) with zero Lebesque measure.
Let (By)ier be a complex Brownian motion. Assume that t — u, is stochastically

integrable, and set
V= /utdBt.
I
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Then v is almost surely frequently hypercyclic for the Cy-semigroup (T3)i>0, and it
induces a strongly mizing measure with full support for (T,)i>0.

Proof. Let @ be the covariance operator of the probability distribution P, of v.
Let z*,y* € E*. By using the definition of @ and Lemmas [2.1.2] and [0.4.7 we

have
Y Qr* = /E y* (2)z* (2)dP, (z) = /Q y*( /I utdBt>x*( /I utdBt)dIP’
_ E(/Iy*(ut)dBt/Ix*(ut)dBt> _ 2/Iy*(ut)Mdt; (2.3.1)

note that we have used the linearisation of the It6 isometry.
We first prove that P, is (T});>o-invariant. Let z*,y* € E* and ¢t > 0. By using

(2.3.1) twice, of Proposition [0.1.36{ and the assumption on (us)ser, we have
Yy LQT 2" =Ty QT 2" = Q/Tt*y*(us)ﬂ*:c*(us)ds
I

—2 [y T T Tt =2 [ ey (w)e T uds
I I
=y Q"

By @ of Theorem [0.5.14] this shows that P, is (7}):>o-invariant.
Now, let us show that P, is strongly mixing for (T3);>0. Let *,y* € E* and t > 0.

By using (2.3.1)), of Proposition [0.1.36] and the assumption on ()7, we have

YTy (x*) = 2/y*(us)Tt*x*(us)ds = 2/y*(us)m*(e”sus)ds

I I

= 2/6_”5y*(u5)x*(us)ds.
I

Since s — y*(us)z*(us) is integrable, by the Riemann-Lebesgue lemma, see |50,
Lemma 2.4.3], we get that lim;_, . y*QTy (z*) = 0. We conclude that P, is strongly

mixing for (T});>0 by of Theorem [0.5.14
Finally, we show that P, has full support. It suffices to show that @ is one-to-one

by Proposition [0.5.13] Let 2* € Ker(Q). Again by (2.3.1), we have
0=2"Qz"* = 2/ |z* (us)|*ds,
I

hence z*(us) = 0 almost everywhere on I. Therefore, 2* = 0 by hypothesis and
linearity and continuity of z*.
We conclude the proof by using Lemma [2.2.1 O

As a first application, let us apply Theorem to the chaotic translation semi-
groups. See Example for the definition. It is shown in Example 4.1]
that these semigroups admit a strongly mixing Gaussian measure, by constructing a
stochastic process. We reuse their arguments to apply Theorem [2.3.1
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Theorem 2.3.2. Let 1 < p < oo, I € {[0,00[,R} and an admissible weight p: I —
10, 00[. If the integral [, p(x)dx is finite, then the random vector

€t
4B,
/Rx/1+t2 !

where e;(z) = e®, x € I,t € R, is almost surely frequently hypercyclic for the
translation semigroup (Ti)i>0 on LY (I), and it induces a strongly mizing measure
with full support for (T})i>o.

Proof. For every s € R, define the function us : I — C by

15T

e

V14 s2

for all € I. Since [; p(x)dz < oo, we get that u, € LE(I) for all s € R.

It is clear that T}(us) = e*'u, for every s € R and t > 0. By of Proposition
this implies that us, € Dom(A) and A(us) = isus for every s € R, where A is
the generator of the semigroup.

Now, let ¢ € (Lb(I))* = Lz_q/p(I), where 1/p+ 1/q = 1, be such that ¢(us) =0
for all s ¢ B, where B € #(R) has zero Lebesgue measure. Then

ug(x) ==

18T
e

I \/1+52¢

hence [; e"*"¢(x)dx = 0 for all s ¢ B. Since ¢ € L*(I) by the fact that [, p(z)dz < oo
and Holder’s inequality, we get that ¢ = 0 almost everywhere by [87, Theorem 9.11],
and thus ¢ = 0. This shows that span{us | s ¢ B} is dense in L5([) for any B € #(R)
with zero Lebesgue measure.

We now prove that
1/2
(e ], <
R LE(I)

1
5 *d :/ ds,
[ t@las = [ s
1/2yp 1 p/2
. 2 — -
H(/R|Us()| dS) ‘Lﬁ(]) /I</1Rl+52ds) p(z)dz,

which is finite since [, p(z)dz < oco.
By Theorem [2.1.11] the map s — uy is stochastically integrable. We conclude
the proof by applying Theorem [2.3.1 O

0= ¢(us) = (x)dz,

For any x € I, we have

and thus

Remark 2.3.3. By Example0.1.43] the translation semigroup on Lg([) is chaotic if and
only if [, p(z)dzx is finite. Therefore, by Theorem [2.3.2] we have found a frequently
hypercyclic random vector for any chaotic translation semigroup.
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The second example was studied by El Mourchid and Latrach in |35 Proposition
3.4], who proved the existence of a strongly mixing Gaussian measure for the semi-
group under consideration. It turns out that their arguments are the same to check
the assumptions of Theorem [2.3.1]

Theorem 2.3.4. Let 1 < p < oo and A be the weighted shift on (P with sequence

of weights (wy)n>1. Set B = w1 ... wy for alln > 1, and By := 1. If the quantity
limsup,, o (1/|Ba|)Y/™ is finite, then there exists n > 0 such that the random vector

/: (l;i” >nzodBt

is almost surely frequently hypercyclic for the Cy-semigroup (T})>0 := (€!4)i>0, and
it induces a strongly mizing measure with full support for (T})i>o.

Proof. For all A € C, define the sequence vy := (A"/B,)n>0. Then vy € ¢ if and
only if 3, <o |A|"P/|Bn|P < oo, and in that case we have A(vy) = (A"T1/B,)n>0 =
Avy. The power series Y., -, A"/, has a radius of convergence R := 1/p, where
p = limsup,, . (1/8,)"" < oc.

Let n € ]0,R[, and define us := v;s for every —n < s < 1. By our previous
calculations, we have u, € P and A(us) = isus for all —n < s <.

Let ¢ = (¢n)n>0 € (P)* = 09, where 1/p + 1/q = 1, be such that ¢(us) = 0 for
almost all —n < s < 7. Define the analytic function F': D(0, R) — C by

for all A € D(0,R). Since F' = 0 almost everywhere on i]—n,n[, we conclude that
F =0on D(0,R), and ¢ = 0. This means that span{u, | t ¢ B} is dense in ¢? for
any B € #(]—n,n|) with zero Lebesgue measure.

For all n > 0, we have

! T lisPr o 2
lug(n)|*ds = / ds < )
/n ’ —n ‘ﬂ’ﬂ|2 |ﬁn|2

1/2)p >0 9p/2pp/2mp
() matoras) ™, = 3 2,
e n=0 |Bn|
which is finite since n < R. Therefore, by Theorem [2.1.11] the map s —— wuy is
stochastically integrable.

We conclude the proof by applying Theorem [2.3.1 O

implying that

We now study the translation semigroups on H(C). We will need the notion of
Hilbert seminorm: it is a seminorm p : H(C) — [0, 00[ for which there exists a
semi-scalar product (-,-) on H(C) such that p(z) = (z,z) for all z € H(C).
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Theorem 2.3.5. For each t > 0, define the translation operator
T, : H(C) — H(C), f— f(-+1).

Then the random wvector fo% e*dB, is almost surely frequently hypercyclic for the
Co-semigroup (T})i>0, and it induces a strongly mizing measure with full support for

(TY)e>0-

Proof. 1t is easy to check that (7});>0 is indeed a Cp-semigroup. Furthermore, its
generator is the differentiation operator D : H(C) — H(C).

For every s € [0,27], set us(z) := €%, z € C. Clearly, D(us) = isus for any
s € [0,27]. The space span{us | s ¢ B} is dense in H(C) by [47, Lemma 2.34], for
any B € %([0,2n]) with zero Lebesgue measure. Furthermore, the map s — uy is
weakly L? since {u; | s € [0,27]} is bounded in H(C). We now show that the map
I, of Definition takes values in H(C) and is y-radonifying, where ¢(s) := us,
s € [0,27].

Let f € L?([0,27]). Define the function F : C — C by

F(z) ::/0 7rus(z)mds

for every z € C. It is well-defined since the maps s — u () and f are in L2([0, 27]),
for any z € C. Let z,h € C, we have

f(s)ds.

F(z+h)—F(z) /27r gis(z+h) _ gisz
I =/, I

An application of the Dominated Convergence Theorem then shows that

2m
lim w :/o ise* f(s)ds,

h—0

and F' is holomorphic on C.
Let z* € H(C)*. We show that z*(F) = 027r z*(us) f(s)ds = Iy(f)(«*). Let
N > 1. Then by linearity of * and the integral, one has

ik Lk

x*(é?/j”skmds) :éxC;) /:”Skf(s)ds
2 N 7
:/0 kz:;)l‘ (T)S f(s)ds

_/j”x*< Jj ikizk>md5. (2.3.2)

k=0

The right-hand side converges to fo% x*(us) f(s)ds by the Dominated Convergence
Theorem. As for the left-hand side, let us prove that it converges to z*(F') as N goes
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to 0o. Let » > 0 be fixed. Then
N -k k p2r 27 OO k ok ok
HZ—Z i / s¥f(s)ds — F = H/ Loz ——[f(s)ds
k' Jo
k=0
X Lk

27 o0
<[ Y Sl 2 k,nsknL (02 1|22 27,

k=N+1 k=N+1

r

where we have used the Cauchy-Schwarz for the last inequality. The right-hand side
converges to 0 when IV goes to co. By continuity of z*, we conclude that the left-hand
side of converges to z*(F). Therefore, x*(F) = Is(f)(z*), so that I4(f) = F,
and hence I, takes values in H(C). The map I, is also continuous: for every r > 0,
we have || Iy()llr < V27e*™ | fll 1 f0.20)

By Theorem [2.1.4] in order to prove that ¢ — wu; is stochastically integrable,
it remains to show that I is y-radonifying. Let (fn)nez = (e°/v/27)nez be the
canonical orthonormal basis of L?([0,27]). By |71, Examples 28.9(4)] and |71, Lemma
28.1], the space H(C) has a system of Hilbert seminorms generating its topology. Let
|| - || be such a seminorm. Since it is continuous, there exist some r > 0 and C' > 0
such that || - || < C|| - || Let (gn)nez be an i.i.d. Gaussian sequence. Let 0 < N < M
be two positive integers; we have, by using the facts that || - || is a Hilbert seminorm
for the first equality and g,, n > 0, are independent for the second one,

M
n=N

2) Z E g"gm><‘[¢(fn) I¢(fm)>

nm—

= Z o (fu)l
n=N

M
<O (7

n=N

_CZH/ =T (5) ’

where (-,-) is the semi-scalar product associated to || - ||. For each n € N such that
n > r and all z € C such that \z| = r, we have

)

27 27 1 6i27r(z7n) -1
/ ’LSan( dS _ / PP LN P : ,
0 vV 2w Vv 2m 7’(2 - n)

and then

E(Hﬁvgn&s(m 2) <o Z |

provided that N > r. We can conclude that the series

Z gnch(fn)
n=0

z27r(z n) M

—192 C
<

(627{'7‘ + 1)2
r T 2w (n—r)?

Z—TL
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converges in L?(; E). The same arguments show that >, - gnls(fn) also converges
in L*(Q; E), hence I, is y-radonifying by Theorem m By Theorem the map
s — ug is thus stochastically integrable.

The result now follows by Theorem 23] O

Remark 2.3.6. By Remark [0.1.44] any frequently hypercyclic vector for the semigroup
(T})1>0 is also a frequently hypercyclic for each T3, t > 0. Therefore, the random
vector fOZTr e*#d B, is almost surely frequently hypercyclic for the translation operator
T, : H(C) — H(C), f —> f(- +1); see also Example [1.3.11}

We repeat our remark made at the end of Section in Theorem [2.3.1] we still
assume that the map ¢ — wu; is stochastically integrable. Then one may ask if we
could find a deterministic assumption to get the stochastic integrability of ¢ — wuy,
possibly replacing the Brownian motion with another stochastic process.



Chapter 3

Rate of growth of random
power series

For a given frequently hypercyclic weighted shift defined on the space of entire func-
tions H(C), the rate of growth of the frequently hypercyclic vectors of this shift can
be studied. More precisely, an admissible rate of growth for the frequently hypercyclic
functions of an operator 7' on H(C) is a map g : [0,00[ — [0, 00[ for which there
exists a frequently hypercyclic function f for 7" such that

sup [f(z)] < g(r)

|z|=r

for all » > 0 large enough.
Recall from Chapter [T] that for a given chaotic weighted shift 7" on the space H(C)
with weights (w,,),>1, we have proved in Theorem that the random vector

>
ne0 w1 ...WxH
is almost surely an entire function and frequently hypercyclic for T', where the complex
random variables X,,, n > 0, are i.i.d. and subgaussian with full support.

In the present chapter, we are interested in the rate of growth of general random
series ) <o anXne, where (e,)nen is a sequence of polynomials and f = 3" - anen
is entire. We will prove that almost surely, the inequality

< cy/log(A(r)) Z |an|? max len(2)|? (3.0.1)

|z
n>0

Z anXnen(z)

n>0

max
=r

|2l

holds for a large amount of r’s, where A is some function and ¢ > 0 is some constant.
Two approaches to the problem are presented. In both approaches, random series on
the unit disk D will also be considered.

The first approach leads to a general result without restrictions on f. The rate
of growth will be valid for any r outside some set of finite logarithmic measure. This

69



70 Chapter 3 — Rate of growth of random power series

extends results of Erdds and Rényi [37] and Kuryliak, Skaskiv and Skaskiv [63], and
improves a result of Kuryliak [62, Theorem 3]; see Theorems [3.1.17] and [3.2.10}

The second approach provides an inequality valid for any r large enough, but
only for some functions f. However, unlike the first method, there will be a single
general result, namely Theorem for functions defined on C or ID. We obtain, in
particular, a generalization of a result of Nikula [80, Proposition 2].

Throughout this chapter, we will use the following notations. Every random vari-
able considered will be defined on the probability space (Q2,.A,P). If a and b are two
positive real numbers, the notation a < b means that there exists some C' > 0 such
that a < Cb and C' does not depend on any current variable such as n € N, r > 0 or
w € Q. For example, 72 — 2r + 1 < 72 for r > 0 large enough means that there exist
C > 0 and ¢ > 0 such that for every r > rg, one has 2 —2r+1 < Cr2. The notation
a =< bmeans a < b and b < a. To make the reading easier, log,,, means the logarithm
iterated m times, and log, is the identity map. Lastly, if a complex-valued function
f is defined on a closed disk centred at the origin and of radius > 0 then we define

[fllr == sup [£(2)]-

|z|=r

3.1 On C with an exceptional set

We first study the rate of growth for random power series on C with subgaussian
coefficients, where we accept a certain exceptional set of radii r. This is the situation
typically encoutered in the Wiman-Valiron theory, see [48| and [49]. The main ideas
in this section come from Erdés and Reényi [37], Kuryliak [62] and Steele [92].

In this section, (ey),>o will always denote the sequence of monomials i.e., e,(2) =
z" for every z € C and n > 0.

First of all, we must make sure that the random vector > ., a,X,e, is almost
surely convergent in H(C). This is a corollary of Lemma m -

Lemma 3.1.1. Let f = ) _ane, be an entire function and (X,)n>0 be a sub-
gaussian sequence. Then the random vector ), -, anXpe, is almost surely an entire
function.

Proof. Since f is entire, we have lim,_, |a,|"/™ = 0. Therefore, for every r > 0,
there exist 0 < p < 1 and ng > 1 such that for every n > ng, r"v/log(n)]a,| < p™.
This implies that ) ., \/log(n)ane, converges unconditionally in H(C). Lemma
then assures us that ano anXnpey, is almost surely an entire function. O

Definition 3.1.2. Let f = )" . ane, be an entire function. We define the functions
ps, S¢and Gy : 0,00 — R for any r > 0 by

g (r) = sup |ay|r",
n>0
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o0

Gy(r) = Z lan|r™.

n=0

The function py is called the mazimum term of f.

The function py is standard in the theory of entire functions. The function Sy
is less common, but appears in Erdés and Reényi [37] and Steele [92]. Note that

Sy(r) = 1/ >0 |an|? max|;|—, [27]2, so that it coincides with the term on the right-
hand side of (3.0.1)).

Since f is an entire function, the maps u¢, Sy and Gy are well-defined. If f is not
a constant then ¢ converges to co as the next result implies.

Lemma 3.1.3. For every entire function f, the mazimum term iy is continuous. If
f is not constant then lim,_, o ps(r) = co.

Proof. For the continuity of uy, see [52, Satz 4.2]. If f is not constant then there
exists n > 1 such that a, # 0, and since p¢(r) > |a,|r"™ for every r > 0, the result
follows. =

Ezample 3.14. Let f(z) == ¢e* = > .,r"/n!, z € C. By noticing that r"/n! =
r...r/(1...n), it is clear that (7" /n),>0 reaches its maximum at |7 |. Then Stirling’s
formula yields

plrlolr

)X ————
pug(r) Vo]
which implies that pg(r) < e"/\/r.

Let (X,)n>0 be a subgaussian sequence of centred independent random variables
and f =), ., ane, be an entire function. The aim of this section is to prove that
there exists a measurable set E of finite logarithmic measure and some constant ¢ > 0

such that, almost surely, the inequality

o0

Zaanen < eq/logy (s (r)Sy(r) (3.1.1)
n=0 r

holds for all » ¢ E large enough.

Definition 3.1.5. A measurable set F C [0,00[ is of finite logarithmic measure if
fEﬁ[l OO[15’1dt is finite.

Example 3.1.6. If E = J,,~[an, bs] € [0, 00] with a,, < b, < an41 for all n > 1, then
FE is of finite logarithmic measure if and only if >, - ,(b, — a,)/a, < co. Thus, the
sets |, >, [n”,n® +1/n%], a, 8 > 0 with a + 8 > 1, and Un>1[n°‘,n°‘el/”ﬁ], a >0,
B > 1, are of finite logarithmic measure. -

Remark 3.1.7. In order to show that some property holds outside a set of finite

logarithmic measure, it suffices to prove that there exists a set of finite logarithmic
measure such that the property holds outside this set and for r sufficiently large.
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The next two lemmas are inspired by [63, Lemma 3.2 and p. 143].
The first lemma is an application of [49, Lemma 6.15]. For the sake of complete-
ness, we provide the proof.

Lemma 3.1.8. Let f = ) . ane, be a non-constant entire function. Then for
every & > 0 there exists an open set E C [0,00[ of finite logarithmic measure such
that for every r ¢ E, one has

0,108 (G4 (r)) < + 1og" (G4 (r).

Proof. Let rg > 0 be such that G¢(r) > 1 for all > rq, which is possible since f is
non-constant. Let E C ]rg, oo be the set where the inequality of the lemma is false.
Since both sides of the inequality are continuous, the set E is open. Using the change
of variables = log(G(r)) yields

1 Oy log(G >~ 1
/ 7dr§/ Si(if(r))drg/ —5dz < oo,
En[L,00[ T EN[1,00[ log (G (1)) 1z

so that E' is of finite logarithmic measure. O

Lemma 3.1.9. Let f = ) _,ane, be a non-constant entire function. Then, for
every & > 0, there exists an open set E of finite logarithmic measure such that for any
r ¢ E, one has

o0

> nlan|r™ < Gp(r)log'** (G (r))

n=0

Proof. First notice that for every r > 0, one has 9,G¢(r) = r=*3, o nla,|r™ and
thus -

o0

Z nlap|r" =ro.Gy(r) = rGs(r)0y log(G¢(r)).

n=0
Let E be the open set given by Lemma Then we get for every r ¢ E

o0

S nlanlr™ < rGy(r) - Tog™ (G (1))
n=0

O

Lemma|3.1.13|is proved in Kahane |55, Chapter 6, Theorem 2] and will be crucial
for our purposes. It will also be used in the next section. For the sake of completeness,
we provide its proof. We will need the next three results.

Lemma 3.1.10 (|55, Chapter 6, Theorem 1]). Let (T, 1) be a measurable space, where
T is a separable topological space and p is a finite Borel measure on T, and let B be
a complex vector space of bounded continuous complex-valued functions defined on T
and closed under complex conjugation. Let (X,)5 | be a finite subgaussian sequence
of centred independent real random variables with constant o > 0, and ()5, be a
finite sequence of elements of B. Assume that there exists some p > 0 such that, for
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every real function f € B, there exists a measurable set I C T such that u(I) > pu(T)/p
and |f(t)] > || flloo/2 for every t € I. Then for every s > 1/(2p), the random vector

pP= Zi{:l X, fn satisfies

K

2

P(IIPIIOC > 80+/log(2ps) | Y ||fnio> <%
n=1

where || flloo := sup,er | f(t)| for each f € B.

Proof. First assume that for every 1 < n < K, the function f,, is real and set r :=
ijﬂ | fall% and C := ||P|x. Assume that f, # 0 for some 1 < n < K. By
assumptions on the measurable space (T, ), C is measurable. Indeed, since T is
separable, there exists a dense countable subset D C T, hence C' = sup,cp |P(t)| by
continuity of P. Since each P(t), t € D, is measurable, the random variable C' is also
measurable.

Let A > 0. Since the random variables X,,, 1 <n < K, are independent, centred
and subgaussian, by Lemma [I.2.8 we have for every ¢t € T,

K K K
E(M®) =K <H 6)‘X"f"(t)> - H E(Mnfn(0)) < H N0 < Noro®
n=1 n=1 n=1

(3.1.2)
where o > 0 is the constant associated with (X,,)X_; in Definition Without loss
of generality, we can assume that p(7") = 1. By assumption, for every w € Q, there
exists a measurable set I C T depending on w such that u(I) > 1/p and |P(t)| > C/2
for every ¢ € I, hence C/2 < P(t) or C/2 < —P(t). This implies that

oAC/2 Sp/e’\c/QdMSp/ (e,\P(t) +€—AP(t)) du
I T

and therefore

E(e*C/2) < pE (/ (eAP(t) _|_€—AP(t)) dM) .
T

By the Fubini theorem and (3.1.2)), we deduce that E(e*®/?) < 2pe*’7” | Therefore,
Markov’s inequality yields

log(2 A 1
P <§ > \ro? + og()\ps)) <E <exp <20 —log(2ps) — )\27'02)) < =,
By taking A\ = 0~1y/log(2ps)//7 and recalling that C = || P, we get

1
P (”P”oo > 4\/ro 10g(2ps)) < 5

Now, if P is complex, then by taking the real and imaginary parts of P and applying
to them the previous inequality, we get that

P (1Pl > 8v7oy/log(2ps) ) < P (IIRe(P)]loc > 4v/70/log(2ps) )
+ P (IIn(P) e > 4y /108 9)) < 2.

Note that Re(P) and Im(P) are in B since B is closed under complex conjugation. [

V2]
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For the proof of Bernstein’s inequality, see |66, Chapitre 5, Lemme IV.12]. A map
t —> Zg:—N ane’™ where a, € C for all —N < n < N, and N > 1, is called a
complez trigonometric polynomial of degree less than or equal to N.

Lemma 3.1.11 (Bernstein inequality). For every complex trigonometric polynomial
p: [0,27] — C of degree less than or equal to N > 1, one has ||p']|co < N||plco-

Lemma 3.1.12 ([55, Chapter 5, Proposition 5|). For every complex trigonometric
polynomial p : [0,27] — C of degree less than or equal to N > 1, there exists a closed
set I C [0,2n] of Lebesgue measure 1/N such that |p(t)| > ||pllec/2 for every t € I.

Proof. Since p is continuous, there exists some ¢y € [0, 27] such that |p(to)| = ||p||co-
Extend p periodically to R, and let ¢ € R. By the Mean Value Theorem, |p(t)—p(to)| <
SUPsefo,2q] [P'(8)[[t — to[. Then, by Bernstein’s inequality, we get |p(t) — p(to)| <
N|Iplloo|t — to|, hence

[p(t)] = [p(to)| = |p(t) — p(to)| = (1 = Nt = to])[[plloc-

Ift € I:={s mod 27 | s € [to — 1/(2N),to + 1/(2N)]} then |p(t)| > ||plloc/2- This
concludes the proof since I has indeed Lebesgue measure 1/N. O

Combining the two previous results yields Lemma[3.1.13] with T' = [0, 27] endowed
with the Lebesgue measure, B the space of complex trigonometric polynomials, p =
27N and s = 2NP.

In the following results, the random variables X,, may be complex: one needs to

apply Lemma [3.1.10[ to Re(X,,) and Im(X,,).

Lemma 3.1.13 (|55, Chapter 6, Theorem 2|). Let (X,,)E_, be a subgaussian sequence
of centred independent random variables. Let (a,)E_, be a finite sequence of complex
numbers, (¢,)5_, be a finite sequence of complez trigonometric polynomials of degree
less than or equal to N > 1 and p > 0 a real number. Then there exists a constant
¢ > 0 that depends only on the distribution of (X,)5_, and p such that

n=1

K C
2 2
3 oo |qw> <

Lemmasays that the first terms of the random series Zn>0 anXnpe, already
give the kind of rate of growth we are seeking. One may then hope that the
rest of the terms are small in some sense.

To get a rate of growth for a random entire function, we will use a deterministic
result which gives a link between the maximum modulus of an entire function f i.e.,
|| fll7, 7 > 0, and its maximum term g y. This theorem can be proved with the Wiman-
Valiron theory, see Hayman [48, Theorem 6] and also [37, p. 48] and [92, p. 550]. This
result is due to Rosenbloom [85].

K

Pl sup
( 0€[0,27] Z

n=1

anannw)\ > o/log (V)

Theorem 3.1.14. Let f be a non-constant entire function. For every § > 0, there
exists a set E C [0,00] of finite logarithmic measure such that for every r ¢ E, one
has

146
11 < 15 () 1o () (Togaps ()
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Both sides of the inequality given by Theorem are continuous where they
are defined, see Lemma and Satz 1.1]. Consequently, the set E can be
chosen to be open.

Lemma 3.1.15. Let f = > . ane, be a non-constant entire function and let
(Xn)n>0 be a subgaussian sequence of centred independent random variables. Let
0 < a<1andd > 0. Then the random vector Zn>0 anXnpeyn 18 almost surely
an entire function, and there exist a constant ¢ > 0 and a set E C [0,00[ of finite
logarithmic measure such that for any r ¢ E,

]P’( i anXnen
n=0

3
for every N > (log(,uf(r))) 2+6, and E can be chosen to be open.

1
7« > cM&(T)) S N

Proof. The series Y . anXne, is almost surely an entire function by Lemma
Take the open set E C [0, 00[ as the finite union of the open sets of finite logarithmic
measure given by Lemma and Theorem applied to z — Y, - |an|z"
and /2 > 0, and set 3 := — ).

Define B, := {|X,,| > n®} C Q for each n > 1. We get that, since (X,),>0 is a
subgaussian sequence,

_p20 2 1
P(B,) Se "/ S3

for every n > 1 and some 7 > 0 given by Lemma [1.2.7]

Let r ¢ E be large enough and N > (log(uf(r)))%H. Define B(r) := U,,~ ys Bn-

Then
P(B(r) < Y P(B.)S Y, % S ﬁ (3.1.3)

n>N#~ n>N#

for r > 0 large enough. On the complement of B(r), we get that

Z anXnenll < Z | X l|lan|r™ < Z n®|an|r"

n>N# r n>N#B n>N#B

<N! Z nlay|r".
n>N#

The last inequality holds because if n > N then n® < n/N. By Lemma and
Theorem [3.1.14] we finally get that

§ anXnén

n>N#B

[
2

< NG (r)log't 2 (G4 (7))

r
3
2

< N g () /log (g (r)) logy ™2 (s (1) log™™ 2 (g (r)
SN g (r)log® (g (r) < pp(r) < Sp(r). (3.1.4)
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Therefore, there is a constant ¢ > 0 such that if r ¢ F is large enough then

P ( Z anXnén

n>N#

where the first inequality holds by (3.1.4), and the second one holds by (3.1.3)).
By Lemma |3.1.13| applied to g, = e, n > 0, p =2 and K = |N?], we have
on the other hand

d

for some constant ¢ > ¢, and hence

) > ESf(r)> <P(B(r)) < ﬁ»

Z anXnen

0<n<NB

T > c\/@&(”) < ﬁ

oo
1 1
P( z_%aanen i > 2¢ log(N)Sf(r)> < N7 + ~iF
for r large enough, r ¢ E. O

The next lemma is the last result we will need. Versions of it can be found in
[37, p. 49], [62, Lemma 8] or [92] p. 555].

Lemma 3.1.16. Let h : [ro,00] — [0,00[ be a continuous non-decreasing function
such that lim, . h(r) = oo and h(rg) > 1, where ro > 0. Let E C [ro,o0[ be an
open set of finite logarithmic measure. Then there exists a non-decreasing sequence
(rg)kes, where J C No, such that for every k € J,

(1) Tk ¢ E,
(i) h(rg) >k,
(iii) for any r ¢ E, there exists k € J such that r < ry and h(ry) < h(r) + 1.

Proof. Define for each k£ > 1 the closed, possibly empty, set
Uy = {r2r0|k§h(r)§k+l}.

These sets are indeed closed since h is continuous. They are also bounded since
lim,_, o h(r) = oo, and thus they are compact. Define J := {k € Ny | U \ E #
0}. For each k € J, there exists r, € Uy \ E such that r, = sup(Uy \ E). Since
lim, _, o h(r) = co and E is of finite logarithmic measure, the set J is infinite.

Let r > rg. Since h(rg) > 1, there exists k € Ny such that k < h(r) < k+ 1. If
r ¢ E then k € J, and r < ri by definition of r,. By definition of Uy, we also have
h(rg) < h(r)+1. O

Theorem is the main result of this section. First, thanks to the Borel-
Cantelli lemma, we will prove the desired inequality for a suitable sequence (ry,),>1
chosen with Lemma [3.1.16] The properties of this sequence and the Maximum Prin-
ciple will conclude the proof of Theorem [3.1.17
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Theorem 3.1.17. Let f =3 . ane, be a non-constant entire function and (X, )n>o0
be a subgaussian sequence of centred independent random variables. Then the random
vector Y, <o anXnen is almost surely an entire function, and there exist a constant
¢ > 0 and an open set E C [0,00[ of finite logarithmic measure such that almost
surely, there exists rog > 0 such that

o0
E anXnenll <e
n=0 r

logs (s (7)) S (r)

for everyr >rg, r ¢ E.

Proof. Take the open set F C [0, o[ of finite logarithmic measure as the finite union
of the sets given by Lemma [3.1.15| applied to f, « € ]0,1[ and a fixed 6 > 0, and

Theorem |3.1.14] applied to z — an|z" and 6 > 0. By Lemma [3.1.16| applied
n>0

to h = log(Sy) and ro > 0 so large that log(Sf(ro)) > 1, we get a non-decreasing
sequence (r;)re converging to oo, where J C Ny, and satisfying assertions [(i)]
and of the lemma.

Set 8:=1/(1 — «). Define for each k € J the real number

= log ™+ (s (ry,))

and the measurable set

o

where ¢ > 0 is the constant of Lemma [3.1.15] We can assume that Ny > 1 for all
k € J. Then |(i)| of Lemma [3.1.16] Lemma[3.1.15| and the definition of Ny imply that

1
ZP (Ar) S Z Nzﬁ Z B3+26)(

keJ keJ oy log

Xnen

> c\/log(Nk)Sf(rk)} cQ

pr(re))
By Theorem for every r ¢ E, we have
146
ur(r) < S5(r) < 3 lanlr™ < s () 1og(s () (logalar (1)) -
n>0
This implies that log(Sy(r)) < log(ps(r)) for r ¢ E. Therefore
> P(A) S
keJ ke log

by and of Lemma [3.1.16] This in turn implies by the Borel-Cantelli lemma
that for almost surely every w € €2, there exists ko(w) € J such that for every k € J
with k > ko(w),

[o ]
B(3+26) Z k5(3+25)
k=1

Xnen

< cy/10g(Ni)Ss(rr). (3.1.5)
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Let 7 ¢ E be large, and let k > ko(w) be such that k € J given by of Lemma
3.1.16 The Maximum Principle and inequality (3.1.5)) yield

Z anXnen Z anXnén < c/1og(Ng)S¢(rk)
n=0 n=0

Tk

S/ 1oga (s (1)) S5 (7).

Since iy < Sy and S¢(ri) < eS¢(r) by [(iii)] of Lemma [3.1.16] we get that

Y anXnen| S \/1oga(Sy(ri))Ss(re) S \/loga (S5 (r)) Sy (r).
n=0

We conclude the proof by using the fact that log(Sy(r)) < log(us(r)) for r ¢ E.
Note that the constant ¢ in (3.1.5) is possibly replaced by a larger constant ¢, but
independently of w € Q. O

<

r

In Kuryliak , the sequence (ry)x>1 was constructed from the maximum term
f5- The idea of constructing this sequence from Sy instead comes from [37] and [92].

The previous theorem includes the result of Erdés and Rényi Theorem 2]
who used Rademacher random variables. Indeed, every bounded random variable is
subgaussian. Recall that a Rademacher variable is a random variable X :  — R
such that P(X = 1) = 1/2 = P(X = —1). In their main result, Theorem 1],
Erdés and Rényi obtained a rate of growth written in terms of the maximum term.
The following theorem extends this result to arbitrary centred subgaussian sequences.

Theorem 3.1.18. Let f =) . ane, be a non-constant entire function and (X,)n>0
be a subgaussian sequence of centred independent random variables. Then the random
vector Y o anXnen is almost surely an entire function and for every 6 > 0, there
exist a constant ¢ > 0 and an open set E C [0, 00] of finite logarithmic measure such
that almost surely, there exists ro > 0 such that

oo
E anXpen
n=0

for every r > rg, r ¢ E.

Proof. This result is a direct consequence of Theorem [3.1.17] Let 6 > 0. Define
the open set F as the finite union of the sets given by Theorem applied to

Z > > _,>0lan|2" and Theorem [3.1.17) applied to f. Let r ¢ E, Theorem [3.1.14

yields

146

< ey (r) (log(1as () " (Lo (114(r)))

S30) < 1) Y falr™ < g (1) ()Mo () (1083 s (1))

It remains to apply Theorem [3.1.17] to conclude the proof. O

This corollary also improves the special case of p = 1 in the result of Kuryliak
Theorem 3] since in the article, the exponent of the iterated logarithm is 3/2 4 6.
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3.2 On the disk with an exceptional set

We now study the rate of growth for random power series on D with subgaussian
coefficients, where we accept a certain exceptional set of radii . Kuryliak, Skaskiv
and Skaskiv [63] obtained a result on DD and more generally on a polydisk for uni-
formly bounded random variables. Theorem generalizes |63, Theorem 2.3] to
subgaussian random variables, in the case of holomorphic functions on . The main
ideas in this section come from [63], combined with ideas of the previous section.

Again in this section, (ey),>o will always denote the sequence of monomials i.e.,
en(z) = 2™ for every z € D and n > 0.

First of all, we must make sure that the random vector Zn>0 anXnen 18 almost
surely convergent in H (D). Like Lemma this is a corollary of Lemmam

Lemma 3.2.1. Let f = > . ane, € H(D) and let (X,),>0 be a subgaussian se-
quence. Then the random vector Zn>0 anXnen is almost surely a holomorphic func-
tion on D. B

Proof. Since f is holomorphic on D, we have limsup,, . |a,|/" < 1. Therefore,
for every 0 < r < 1, there exist 0 < p < 1 and ng > 1 such that for every n > ny,
r™y/log(n)|a,| < p™. This implies that > -, v/log(n)ane, converges unconditionally
in H(D). Lemmathen ensures that Z;ZO anXpen, is almost surely a holomorphic
function on D. O

The aim of this section is to bound the sup-norm of the random power series
Y >0 @nXnen outside some subset of finite logarithmic measure of [0, 1].

Definition 3.2.2. A measurable set E C [0,1] is of finite logarithmic measure if
[ T dt is finite.

Example 3.2.3. If E = J,,~1[an, bn] € [0,00] with 0 < a,, < b,, < @py1 < 1foralln >
1, then E is of finite logarithmic measure if and only if Y (b, —ay)/(1 —by,) < .
Thus, the sets J, >o[1 — 1/n%,1 —1/n* +1/0%], o, 8 > 0, 8 > 1 + a, are of finite
logarithmic measure.

Remark 3.2.4. In order to show that some property holds outside a set of finite
logarithmic measure, it suffices to prove that there exists a set of finite logarithmic
measure such that the property holds outside this set and for r close enough to 1.

The proof of the main theorem of this section, Theorem [3:2.10] is similar to the
the proof of Theorem [3.1.17} The first term of the series will give the growth we are
seeking, and the remaining terms will be smaller than the first ones. Lemma [3.2.§
will be the probabilistic tool needed, and it is again a corollary of Lemma 3.1.13

The maximum term p; of a function f € H(D) and the functions Sy and G are
defined exactly in the same way as for entire functions, see Definition [3.1.2]

For the sake of completeness, we provide the proof of the next lemma.

Lemma 3.2.5 ([61, Lemma 1]|). Let f = > .,ane, € H(D) be non-constant with
> nsolan| > 1. Then for every 6 > 0 there exists an open set E C [0,1] of finite
logarithmic measure such that for every r ¢ E, one has

0, 1o (G5 (r)) < ——— log" (G ().



80 Chapter 3 — Rate of growth of random power series

Proof. Let 0 < 19 < 1 and € > 0 be such that log(G¢(r)) > ¢ for all ro < r < 1. Let
E C]rg, 1] be the set where the inequality is false. It is an open set since both sides
of the inequality are continuous. Using the change of variables x = log(G(r)) yields

1
/ ! drﬁ/wdrg/%dx<oo.
pl—r B log' ™ (Gy(r)) e T

Theorem [3.2.6] will be the analogous deterministic theorem to Theorem [3.1.14] we
will need.

O

Theorem 3.2.6 (|61, Theorem 2|). Let f = " - ane, € H(D) be non-constant.
Then for every § > 0 there exists an open set E C [0,1] of finite logarithmic measure
such that

£(r)

11l < Wlog# (%@)
for every r ¢ E.

Lemma 3.2.7. Let f =3 . ane, € H(D) be non-constant, and let 6 > 0. There
exists an open set E of finite logarithmic measure such that for any r ¢ E, one has

mew< A

3(1+9)/2 py(r)
SEE log (7 .
n=0

1—1r

Proof. By multiplying f with a constant we can assume that p¢(r) > 1 if r is suffi-
ciently big, and then also }° - |an| > 1.

First notice that >, ., nla,|r™ < 0.Gf(r) = G¢(r)0,1og(Gf(r)). Take the open
set £ C [0, 1] as the finite union of the open sets of finite logarithmic measure given

by Lemma and Theorem applied to z — >_, - |an|z" and 6 > 0. Then
g

we get for every r ¢ E close enough to 1,

Zn\a < Mffj“) log ' (1) ir log(14(r)

)it+o 1-r/1

7N

146
+(1—|—5)(log (%_r)—i-%logz (/Iffrg)>> :

Thus we get that

> nlanlr® G 0g S (FL) 401 (Sog (1))
n=0

- () o (),

The next lemma is analogous to Lemma [3.1.15
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Lemma 3.2.8. Let f =3 ., ane, € H(D) be non-constant, and let (X,)n>0 be a
subgaussian sequence of centred independent random variables. Let 0 < a < 1 and
d > 0. Then the random vector ) -, anXney, is almost surely a holomorphic function
on D, and there exist a constant ¢ > 0 and an open set E C [0, 1] of finite logarithmic
measure such that for any r ¢ E,

> pug(r) (ray/a (1) 1
> R AP <
P( ot = log(N)u—r)if log (1—r) ~ N2/(-9)

E anXnén
= s

pg(r) ))3(1""5)/2'

for every N > W(log (

Proof. The series Y, -, anXye, is almost surely holomorphic on D by Lemma
Take the open set E C [0, 1] as the finite union of the open sets of finite logarit
measure given by Theorem and Lemma applied to § > 0, and set B :=
1/(1 — ).

Define B,, := {|X,,| > n®} C Q for each n > 1. We get that, since (X,),>0 is a
subgaussian sequence,
n2® /12 < i
for every n > 1 and some 7 > 0 given by Lemma [1.2.7]

Let r ¢ E be close enough to 1 and N > (1—7r)~(2+9) (log (pp(r)/(1=r))
Define now B(r) := U,,» ys Bn- Then

P(B,) Se”

>3(1+5)/2

1 1
P(B(r)) < Z P(B,) Z e S B (3.2.1)
n>N#8 n>N#

On the complement of B(r), we get that

Z anXpen| < Z | Xn|lan|r™ < Z n®|ay|r"

n>N# T  n>NB n>NB

1
< N nlan|r".
n>N#

The last inequality holds because if n > N? then n® < n/N. By Lemma [3.2.7, we
finally get that

Z anXnén

n>NB

<iw7(rg

SN log®(1+9)/2 (L(’")) < py(r) (3.2.2)

1—r/ —

for r ¢ E. Therefore, there is a constant ¢ > 0 such that if r ¢ E is close enough to
1 then

d

Z anXn€n

n>N#

N (r) 1 4 (1yp(r)
> ¢y/log(N T)ITJ lo g( +9)/ (1f—r)> < P(B(r))

< L
NNz/B’



82 Chapter 3 — Rate of growth of random power series

where the first inequality holds by (3.2.2), and the second one holds by (3-2.1).
By Lemma [3.1.13| applied to ¢, = r"emt, n>0,p=2and K = |[N?|, we have
on the other hand

d

for some constant ¢ > ¢. Furthermore, we get by Theorem

Z anXnen

~ NQB
0<n<N#

>c\/10g )S#(r > L

pr(r
) < s Z anlr < LT togtieove (A1),
and hence
py(r) g(1+0)/4 £(1) 1 1
( Xnen >2(:\/10g r)lTSI (1_T) 5N2ﬁ+N25
for r close enough to 1, r ¢ E. O

Lemma 3.2.9. Let h,g : [ro, 1] — [0, 00| be two continuous non-decreasing functions
such that lim, o h(r) = oo, h(rg) > 1 and g(ro) > 1, where 0 < ro < 1. Let
E C [ro, 1] be an open set of finite logarithmic measure. Then there exists a family
(r1k)@,kyes € [ro, 1], where J C N2, such that for every (I,k) € J,

(i) rmx ¢ E,
(ii) h(rig) >k and g(rik) > 1,

(iil) for any r ¢ E, there exists (I,k) € J such that v < ryj, h(r k) < h(r)+1 and
g(rik) < g(r)+1.

Proof. Define for each k,l > 1 the closed, possibly empty, set
Upi={ro<r<1|k<h(r)<k+landl<g(r) <l+1}.

These sets are indeed closed since i and g are continuous. They are also bounded since
lim,_,1 h(r) = oo, and thus they are compact. Define J := {(I,k) € N2 | U, ;.\ E # 0}.
For each (I, k) € J, there exists r;;, € Uy \ E such that 7, = sup(Upx \ E).

Let ro < r < 1. Since h(rg) > 1 and g(rg) > 1, there exists (I,k) € N2 such
that k < h(r) <k+1land ! <g(r) <l+1. Ifr ¢ E then (I,k) € J, and r < r,
by definition of r; ;. By definition of U;y, we also have h(r;x) < h(r) + 1 and
9(rie) < g(r) + 1. O

Theorem [3.2.101 is the main result of this section.

Theorem 3.2.10. Let f =) . ane, € H(D) be non-constant, and let (X,,)n>0 be
a subgaussian sequence of centred independent random variables. Then the random
vector Y <o anXnen is almost surely a holomorphic function on I, and for every



3.2 — On the disk with an exceptional set 83

d > 0, there exist a constant ¢ > 0 and an open set E C [0,1[ of finite logarithmic
measure such that almost surely, there exists ro > 0 such that

o
E anXnen
n=0

py(r s (g (r)
<ot
Ao nyE R (=7)

for everyrg <r <1,r ¢ E.

Proof. Without loss of generality, we can assume that ps(r) > e for every 0 < r <1
close enough to 1 since f is not a constant. Pick 0 < o < 1 and set 8 := 1/(1 — «).
Take the open set E C [0, 1] of finite logarithmic measure given by Lemma
applied to o and 6 > 0.

Let (ri )i kes, where J C NZ, be the family given by Lemma applied to
h(r) = log(1/(1 — 7)), g = log(ps) and 0 < 19 < 1 so large that h(rg) > 1 and
g(ro) > 1. Define for each (I, k) € J the real number

1 pg(re)
Nig = s log 1 H9/2 (L) >
Lk (1 — Tl,k)2+5 o8 1-— Tk

and the measurable set

Al,k = { i aanen

n=0
where ¢ > 0 is the constant of Lemma We can assume that N;, > 1 for all

(I,k) € J. Then Lemma [3.2.8] the definition of N;j and [(i)] and [(ii)] of Lemma

imply that

>c log(NLk)% log% (M) ’
(1 = 1—rpg

Tk - Tl,k)

1 (1 - k)2ﬂ(2+5)
S raE Y am- 3
e B 38(14+8 r
(Lk)eJ (Lk)eJ Ny (Lk)eJ log o )(Mf—(iriji))

1
< Z eF2B(2H0) (] 1 k)3F(1+3) "
(Lk)eJ

Therefore 3, ), P(Aix) < oo and by the Borel-Cantelli lemma, we have that for

almost surely every w € Q, there exist lo(w), ko(w) > 1 such that for every I > ly(w)
and k > ko(w) such that (I, k) € J, one has

Mf(Tl,k) 1+s /J’f(rl,k)>
< cy/log(Npp)———1log & [—=). 3.2.3
>c Og( l7k) (1 E og ( 1—rip ( )

— k)

o0
E anXnén
n=0

Tk

Let r ¢ E be such that 7 > 7y () kw). By of Lemma [3.2.9) there exist
I >lp(w) and k > ko(w) such that (I,k) € J and r < 7. Let € > 0. The Maximum
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Principle and inequality (3.2.3) yield

o0 o0

> anXnen > anXnen
n=0 n=0 Tlk

! f(rl7k) 14 ([Lf('f‘ng))
< log( IV, — " __Jog 4 _
> Gy g( l,k) (1 )1455 g 1 —7p

— Tk
o H(re) s (,uf(n,k))’

~ (177’[7](,)%5"_8 1_rl7k

<

T

the last inequality holds if r is close enough to 1, and then also ry ;. By [(iii)] of Lemma
B:2.9] we finally get that

SJL

o (),
r —r) 2z

1—r

Note that the constant ¢ in (3.2.3) is possibly replaced by a larger constant ¢, but
independently of w € Q. O

3.3 Without an exceptional set

We now present the second approach. This method yields a rate of growth valid
without an exceptional set of finite logarithmic measure. In addition, it can be applied
to random entire functions or to random functions defined on the unit disk D.

For the rest of this section, let E be the space H(C) or H(D) and let w = oo if
E =H(C),or w=1if E = H(D). Assume that the random vector Y >~ ja,Xe,
is almost surely well-defined on the Fréchet space E, where (X,,),>0 is a subgaussian
sequence of centred independent random variables and f = > . ane, € E. We

want to prove that
S VIog(A(r) [ lan|?llenl|?
T n>0

holds for r > 0 large enough almost surely, under some conditions on the function A.
Note that here, (e,)n>0 is no longer necessarily the sequence of monomials.

oo
E anXnen
n=0

Definition 3.3.1. Let (e,)n,>0 be a sequence in F and f = > . ane, € E. We
define the function Sy : [0, 00[ — [0, 00| for any r > 0 by -

> lanfllenll2. (3.3.1)
n=0

Proposition 3.3.2. Let f = > . ane, € E where (e,)n>0 is a sequence of poly-
nomials in E such that for every n > 0, the degree of e,, is at most n. Let (X,)n>0
be a subgaussian sequence of centred independent random variables and (r)r>1 be a
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sequence of positive numbers converging to w. Assume that there exists a sequence of
positive integers (A(rg))k>1 such that (A(ry)~')k>1 is p-summable for some p > 0.
Then there exists ¢ > 0 such that almost surely, there exists ko > 1 such that for every
k > k07

A(’r‘k)
D anXnen| < ey/log(A(ry)) S (re).
n=0 Tk

Proof. Lemma [3.1.13] gives, for every k > 1,

A(re)
c
P( ; anXnen . > c\/log(A(rk))Sf(rk)> < YTCATS
for some constant ¢ > 0. The result follows by the Borel-Cantelli lemma. O

To show that /log(A)S; bounds the sup-norm of v := ano an Xne, along the

sequence (ry)g>1, that is, ||v]|,, < /1og(A(rg))Sf(rk) holds for every k > 1 large
enough almost surely, it remains to estimate || 3, 4 ;)41 @nXnénllr, for each k > 1.

Note that liminfy_,. S¢(7%) > 0 as soon as there exists n > 0 such that a,e, # 0.

Proposition 3.3.3. Let f =) . ane, € E where (e,)n>0 is a sequence of polyno-
mials such that for every n > 0, the degree of ey, is at most n. Let (X,)n>0 be a sub-
gaussian sequence of centred independent random variables such that Zzozo anXnen 18
almost surely convergent and let (ry)r>1 be a sequence of positive numbers converging
to w. Assume that there exists a sequence (A(ry))r>1 of positive integers such that
(A(ri) Yk>1 is p-summable for some p > 0 and that, almost surely, the sequence
(12205 Ay +1 anXnenllr k=1 is bounded. Then there exists ¢ > 0 such that almost
surely, there exists ko > 1 such that for every k > ko,

Y anXnen| < elog(A(ri)) Sy (re).
n=0 Tk

Proof. By Proposition [3.3.2] there is some ¢ > 0 such that, almost surely, there exist
M > 0 and k; > 1 such that for every k > kq,

00 A(ry)
E anXpen|| < E anXnenl|| + E anXnen
n=0 Tk n=0 Tk n>A(rg)+1 Tk

< c/log(A(ry)) Sy (rx) + M,

where M > 0 is some constant that depends on w € Q. If f = 0 there is nothing to
prove. Assume that f # 0. Since liminfy_,o Sy(rg) > 0 and limy_ oo A(rg) = 00, we
deduce that there exists kg > k1 such that for every k > ko,

> anXpen| < 2¢y/log(A(r))Ss(rk).
n=0 Tk
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Now we give conditions when the function /log(A)S} is actually a rate of growth
for v. This is the main result of this section. The proof uses ideas of the work of
Nikula [80, Proposition 2].

Theorem 3.3.4. Let f =) - ane, € E where (e,),>0 is a sequence of polynomials
such that for everyn > 0, the degree of ey, is at most n. Let (X,,)n>0 be a subgaussian
sequence of centred independent random variables such that Z:io:O anXnpen 15 almost
surely convergent, and let (A;);>1 be a non-decreasing sequence of positive functions
defined on |0, w[ such that A; is non-decreasing. Assume that the following conditions
hold:

(i) the series

Z log(Aj+1(7’)) Z lan|?|len|?

7>1 n>A;(r)+1
s bounded in § < r < w for some 0 < § < w,

(ii) there exists an increasing sequence of positive numbers (ry)i>1 converging to w
such that the family (A;(rg)™1)jx>1 is well-defined and p-summable for some
p>0.

Then there exists ¢ > 0 such that almost surely, there exists kg > 1 such that for every

k > kO:
oo
> anXnen
n=0

Furthermore, if the condition

(iii) the sequences (log(A1(ri41))/log(As (rk)))k>1 and (Sf(Tk+1)/Sf(7‘k))k>1 are
bounded - B

< ey/log(A1(rx)) Sy ().

holds then there exists ¢ > 0 such that almost surely, there exists ro > 0 such that

> anXoea| < ev/Ioa(A()S; ()
n=0

T

for every ro <r < w.

Proof. We can assume that the functions A;, j > 1, take integer values greater than or
equal to 2. Indeed, the assumptions (i) to[(iiD)]still hold for the sequence ([A;]+2);>1.
Lemma [3.1.13| gives, for every k,j > 1,

Aj+1(re)
C
P an n \/T n 2 n 2 S—
( Z anXnen| > cy/log(A;11(rr)) Z [an?le ||Tk>_A'+1(Tk)p
n:Aj(rk)+1 Tk nZAj(Tk)+1 J

for some constant ¢ > 0, and hence almost surely for every £k > 1 and j > 1 with &
large enough, we get that

Aj1(ri)

Z anXntn <
Tk

n=A;(rr)+1

log(A;+1(rx)) S lanl?lenll?,
n>A;(ri)+1
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by the Borel-Cantelli lemma since the family (A4;(rg)"');x>1 is p-summable by [(ii)
Then the sequence (|| Don> Ay ()41 aanenHTk > 18 almost surely bounded by ,
hence Proposition [3.3.3 gives almost surely the inequality

LS
E anXpen
n=0

for every k > 1 large enough, where ¢ > 0 is a constant. This proves the first part of
the theorem.

Assume that holds. Let k£ > 1 and let ry < r < 7ry1. By assumption
and the Maximum Principle, we get for almost surely every w € Q and if k is large
enough that

log(A1(rk)) Sy (rk)

Tk

Z aanen < Z aanen log(Al (’I“k+1))Sf (IrkJrl)
n=0 T n=0 Th+1
log(A1(ri+1)) Sy(re+1)
=C 10 A T S r
a1 () Sy(ry) Y BN
< C\/log(A;(r1))Ss(rk) < C/log(A1(r))Sy(r),
where C' > 0 is a constant. This concludes the proof. O

We point out the following fact.

Lemma 3.3.5. Let f = Y~ anen, and g = > ~,bne, be elements of E where
(en)n>0 s a sequence of polynomials such that for every n > 0, the degree of e, is
at most n. Suppose that there exist some C1,Cy > 0 such that Cia, < b, < Csa,
for all n > 0. If f satisfies the assumptions of Theorem for some sequences
(Aj)j>1 and (ri)k>1 then g satisfies the assumptions of Theorem with the same
sequences (A;)j>1 and (1%)g>1.

Proof. If the series in |(i)| of Theorem is bounded for f, it also bounded for g by
assumption. Condition depends only on the sequences (A4;);>1 and (r)x>1, and
condition is again satisfied by assumption on the coefficients of the series defining
f and g. O

Without the assumptions and of Theorem we can prove that the
function /log(A1)Sy bounds the expectation of the sup-norm of the random series
ano an Xpen. The main argument comes from Section 5.5.4].

We first prove two lemmas, the second one being a consequence of the Orlicz-
Jensen inequality.

Lemma 3.3.6. Let Xq,..., XN be independent real subgaussian random variables
with constants M = 1 and o > 0 in Definition [I.2.6, and let aq,...,a, be real

numbers. Then 25:1 an Xy, 1s subgaussian with constants M =1 and o4/ ZnN:1 lan)?.
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Proof. Let A\ € R. By independence, we have

N N
E(e* Xn=10nXn) = [TEE) <] NoPlanl* — NP D)L lan
n=1 n=1

hence 25:1 a, X, is subgaussian with constants M =1 and o EnN:1 lan|? O

Remark 3.3.7. Let Xy,..., Xy be complex subgaussian random variables such that
the real variables Re(X1),...,Re(Xy),Im(X7),...,Im(Xy) are independent. Then
Lemma still holds with the same proof and a little more calculations, with
Xi,..., XN and complex numbers ay, .. .,ay. This means that the real and imaginary

parts of Y~ a, X,, are subgaussian with constants M = 1 and o1/>>"_ [a,[2.

Lemma 3.3.8. Let X1,..., Xy be real subgaussian random variables with constants
K >0 and 7T >0 as in Lemma[I.271 Then

E(max(| X1, ..., |Xn|) < Vog(N + 1)VK + 17.
Proof. Define the function s : [0, 00 — [0, co[, 2 —> e’ — 1, and

1X ||y, = inf{a >0 E(wg(%)) < 1} € [0, 00]
for any random variable X. For any subgaussian random variable X with constants
K > 0 and 7 > 0 in Lemma we have that for any a > /K + 17, using the
formula E(f(Y)) = f(0) + [~ f/(t)P(Y > t)dt for any positive random variable Y
and any continuously differentiable function f : [0, co[ — [0, oo], see [66], Chapitre 0,
Proposition IV.2],

‘X| > 2t 2,2 K [ 2702 _42/.2
E(¢2(7))= 0 e 1P(X] > )t < 0 2pet’/0 o=t 17 g

00 2
_ KT ey - e T
G2 0 a? _ 7—2

<1

bl

thus || X |4, < VK + 17. Therefore, the Orlicz-Jensen inequality (see |66, Chapitre
0, Proposition IV.3]) yields

E(max(|X1],...,|Xn|)) < log(N +1) (max [ Xy, < Viog(N + )VEK + 1.

O

Theorem 3.3.9. If the hypotheses and the assumption of Theorem hold and
if liminf, ., A1(r) > 1, then there exists ¢ > 0 such that

IE( > anXnen ) < cy/log(Aq(r))Ss(r)
n=0 T

for every § < r < w, where § > 0 is given by assumption of Theorem m
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Proof. By the triangle inequality, we can assume that the random variables X,,, n > 0,
are real and a,, n > 0, are real numbers.

We may assume again that the functions A;, j > 1, take integer values greater
than or equal to 2.

Let § <r <w. Let M > N > 0. For a fixed w € Q, let P, be the polynomial
P,(t) := ny:N anXn(w)ey(ret), 0 < t < 27, By the Mean Value Theorem and then
by Bernstein’s inequality, see Lemma we have

|P(t) = Pu(s)| < 1P, lloclt — 8] < M| Pyloc]t — 5|

for every 0 < t,s < 2m. Let ¢ > 1, define € := (¢ — 1)/(c¢M) and let T' be a finite
e-net of the compact interval [0,27] whose size is of order M. This implies that
[Pulloc < esupger [Pu(s)]. ‘

Now, Lemma ensures that for any s € T, er\f:N anXnen(re’) is subgaussian

with constants M =1 and 0\/224:]\, |an|?|len||2. Notice that in the proof of Lemma

1.2.7, one can easily see that K = 2 and 7 = 20\/27]\;[:]\, lan|?|len]?. Therefore,
Lemma yields that

> < cE(sup )

r sel

M
E( Z anXnén
n=N
< Vlog(M)

Applying the previous inequality gives

M
Z anXpen(re)

n=N
M
> lanlllenl?.
n=N

00 Aq(r) Ajt1(r)
E( Zaanen ) < ]E< Z anXneén > +ZE< Z anXnén )
n=0 r n=0 r ji>1 n=A;(r)+1 T

S V1og(Ar(r)Sy(r) + ) \log(Aa(r)) | > lanlllenll?,

Jj=21 n>A;(r)+1

and this yields the result since, by assumption [(i)| of Theorem [3.3.4] the second term
is bounded. O

The proofs of Theorem [3.1.17] and [3.3.4] share the same ideas. The first terms of
the random series are more relevant than the tail, and the desired rate of growth is
proved to hold along some sequence (r),>1. Then, by using the Maximum Principle,
the inequality still holds for large r > 0.

Functions of finite order. As an application of Theorem [3:3.4]to end this section,
let f =", -, anen be an entire function, where (e, ),>0 is the sequence of monomials.
If f is of finite order and satisfies the Assumption below then we can obtain
an admissible rate of growth for the random entire function ), ., a,X,e, valid for
any large r > 0. Note that here, this random series is almost surely convergent by

Lemma B.1.11
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Definition 3.3.10. Let f be a non-constant entire function. The order of f, written
pf, is the quantity
logs (Il f1I-)

= limsup ——+——+.
P T—>oop log(r)

In other words, py is the least constant such that, for every € > 0, there is some

¢ > 0 such that, for all » > 0, one has | f]» < ce” .
The maximum term can also be used to compute the order as the next result says.

Theorem 3.3.11 ([52, Satz 4.5]). Let f be a non-constant entire function. Then we
have the equality
, logy (e (r))
= limsup ———————.
pr=TRY log(r)
Note that lim, .. ptf(r) = oo by Lemma [3.1.3] and the limit in the theorem is
well-defined.
When the order of an entire function is finite, its growth is related to its maximum
term. For a proof of the next theorem, see [52, Satz 4.6].

Theorem 3.3.12. Let f be a non-constant entire function of finite order. Then
log([| f[lr) = log(ps(r))-

Definition 3.3.13. Let f = ) . ane, be a non-constant entire function. Define
the function Ny : [0,00] — R by

Ny(r) :==inf {ng > 1|Vn > ng, |a,|r" <1}
for all » > 0.
We will assume the following on the function Ny.

Assumption 3.3.14. There exist ¢ > 0, an integer m € {0,1} and a real number
b > 0 such that for every r > 0 large enough,

Ny (re) 5 (log,, (S5(r))"

The function Ny will be needed to check assumption |(i)| of Theorem Then,
Assumption [3.3.14) will serve to get the growth written only with Sy, and to ensure

that of Theorem is satisfied.

The next result is an application of Theorem [3.3.4

Theorem 3.3.15. Let f = > . ane, be a non-constant entire function satisfying
Assumption where (6n)n2_0 is the sequence of monomials, and let (X,,)n>0 be
a sequence of independent centred subgaussian random variables. Then the random
vector Y <, anXney is almost surely an entire function, and there exists a constant
¢ > 0 such that almost surely, there exists 7o > 0 such that

Z aanen S c\/ logm+1(5f(r))sf(r)
n=0

T

for every r > rq.
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Proof. Let ¢ > 0 and m € {0,1} be given by Assumption | and define the
function M; :]0,00[ — R by

M (r) = max (Ny(re), log,,,(S4(r)))

for every r > 0. Since the function Sy is continuous and lim,_,, Sy(r) = oo, there
exists an increasing sequence (ry)i>1 of positive real numbers converging to oo such
that log,,, (Sf(rk+1)) = log,,,(S¢(rx))+1 and log,, (Sf(rg)) > k for each k > 1. Take a
real number p > 1. We prove that f satisfies the assumptions of Theorem with
Aj ZZjMf, j > 1.

Let us check condition Let 5 > 1 and 7 > 0 be large enough. By definitions of
My and Ny, we have |a,|r™ < e™" for every n > A;(r), and thus

oo

Z \an|2r2” < Z e~ 2en S/ e~ 2Ty — 9 1o—1p—2e4;(r)

>A;(r)+1 n>A;(r)+1 A;(r)

In order to verify (i), we will show that

> Vlog(Aja(m)e =40 =3 " /log((j + DAL (r))e = (3.3.2)

Jjz1 Jj=1

converges to 0 when r goes to co; note that the series converges for all r sufficiently
large. The idea is to use the Dominated Convergence Theorem. It is enough to show
that for every j7 > 1, the function

fi 11,00 — R,z — log((j + 1)x)e_25j”

is non-increasing for = sufficiently large, uniformly in j, and that it converges to 0
when = goes to co. Indeed, denoting by u the counting measure on Ny, we have

S Viog(( + DAL (r)e =10 = / N

i>1

Since lim,_,o A1(r) = oo and A; is increasing, let ro > 1 be such that f; o Ay is
non-increasing on [rg, 00| for all j > 1. Then (f; o A1)(r) < (fj o A1)(ro) for every
j > 1 and r > rg, and the series converges to 0 when x goes to co by the
Dominated Convergence Theorem.

First, it is clear that lim,_, f;(x) = 0. For every x > 1, the derivative of f; is

given by
e—28jac

Oufy(@) = =225 log((j + D)w)e " + ——,

which is negative if and only if 1 < 2¢jx1log((j + 1)z). But this holds for every = > 0

large enough, uniformly in j, since the right-hand side of the inequality converges to

oo when x goes to co. Thus f; is decreasing for  large enough, uniformly in j > 1.
By definition of M and construction of the sequence (r)x>1, we have

oo

(o) oo 1
ZMf (ri)P Zlogm z::ki
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Therefore, assumption [(ii)| of Theorem is satisfied.
By construction of (ry)k>1, the sequence (Sy(ri+1)/Sr(rk))k>1 is bounded. This
implies in turn that the sequence

(10g(Mf(7’k+1)))
log(My(ry)) /k>1

is bounded. Indeed, by Assumption [3.3.14] and definition of My, we have

log(M ¢ (ri+1)) < 10gm+1(5f(7”k+1))
log(My(r)) ™ logy,1(Sy(rk))

if k is sufficiently large. Therefore, assumption of Theorem is satisfied, and
we get that there exists ¢ > 0 such that, almost surely, there exists 7o > 0 such that

for every r > rg,
Z anXnen|| < cy/log(Mg(r))Ss(r).
n=0

Using again Assumption concludes the proof. O

Remark 3.3.16. Let f = > .,ane, be a non-constant entire function satisfying
Assumption [3.3.14] where (€n)n>0 is the sequence of monomials. Let g =Y, < bne,
be another entire function and assume that there are some C7,C > 0 such that
Cia, < b, < Csa, for all n > 0. Then the conclusion of Theorem [3.3.15] also applies
to g by Lemma (3.3.5

We now apply Theorem [3.3.15| to functions of finite order.

Theorem 3.3.17. Let f = ) .,ane, be a non-constant entire function of finite
order satisfying Assumption where (en)n>0 is the sequence of monomials, and
let (Xyn)n>0 be a sequence of independent centred subgaussian random variables. Then
the random vector ), - anXyey is almost surely an entire function, and there exists
a constant ¢ > 0 such that almost surely, there exists ro > 0 such that

Z anXnen| <c 10gm+1(lu‘f(r))‘sf(r)
n=0

T
for every r > rg.

Proof. Since f is of finite order, the entire function z — 3" . [a,|2" is also of finite

order by Theorem [3.3.11] By Theorem [3.3.12applied to z — >_ - |an|2", we have
g (57(r) < 1og (3 laalr™ ) < toe(us 1)
n=0

Since pf(r) < Sy¢(r) for all » > 0, this also implies that log(Sy(r)) =< log(us(r)), and
in turn log,, 1 (Sf(r)) < log,,,1(ps(r)). The result follows from Theorem (3.3.15 [

Remark 3.3.18. Remark [3.3.16] still holds for a function f of finite order satisfying
Assumption [3.3.14]
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Theorems and give a rate of growth valid without an exceptional set
of finite logarithmic measure, in contrast to Theorems [3.1.17] and [3.2.10, but only for
some functions. Nevertheless, these results will be sufficient to obtain a generalization
of the works of Nikula and Mouze and Munnier in ChapterEl and to consider
some other operators.

Ezample 3.3.19. If f(z) = e* = 3 5,2"/nl, then it is not difficult to show that

Sp(r) < e /ri/* log(us(r)) < r, and Ny(r) < r, see Example and Lemmas
and [{.1.8] Thus Theorem [3.3.17] gives the upper bound

X e’
Z%n—?zn T < (;\/log(r)—rl/47

which confirms the result obtained by Nikula Proposition 2].
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Chapter 4

Rate of growth for operators

Theorem [I.3:4] from Chapter [I] says that the random series
o)
>
"e0 W1 ...Wn

is almost surely holomorphic and frequently hypercyclic for a given chaotic weighted
shift 7" on H(C) (resp. H (D)) with sequence of weights (w,)nen,, and the complex
random variables X,,, n € N, are i.i.d. and subgaussian with full support. As discussed
in the introduction of Chapter |3 the present chapter aims to find an upper bound for
the maximum modulus of this random vector, which then gives an admissible rate of
growth for the frequently hypercyclic functions of T'.

When applied to chaotic weighted shifts on H(C) or H(D), Theorems |3.1.17 and
will extend the works of Nikula [80], Bernal-Gonzalez and Bonilla [15] and Mouze
and Munnier |75], see Theorems [4.1.9} 4.1.14] and 4.2.7} respectively.

We will also consider the differential operators on the space of harmonic functions
on the plane and chaotic weighted shifts on Kothe sequence spaces in Sections .3 and
M4 respectively.

In Section we will discuss the possible optimality of the rate of growth found
in the previous sections.

Throughout this chapter, we will use the same notations as in Chapter [3| that we
recall here. Every random variable considered will be defined on the probability space
(2, A,P). If a and b are two positive real numbers, the notation a < b means that
there exists some C' > 0 such that a < Cb and C does not depend on any current
variable such as n € N, r > 0 or w € §). The notation a < b means a < b and b < a.
To make the reading easier, log,, means the logarithm iterated m times. Lastly, if
a complex-valued function f is defined on a disk centred at the origin and of radius
r > 0, then we define

£l == sup |f(2)].

|z|=r

95
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4.1 Entire functions

In this section, we consider weighted shifts defined on the Fréchet space H(C). Theo-

rem 0.1.19 combined with Theorem [3.1.17|applied to f(z) = >_, -, 2"/ B, immediately
yields an admissible rate of growth for each chaotic weighted shift, where the sequence

(Bn)n>o is defined in Subsection However, it is only valid outside a set of finite
logarithmic measure.

Theorem 4.1.1. Let T be a chaotic weighted shift on H(C) with respect to the basis of
monomials (e,)n>0 and with sequence of weights (wy,)n>1. Let (X,,)n>0 be a sequence
of i.i.d. centred subgaussian random wvariables with full support. Then the random
vector ZZOZO %en is almost surely an entire function, is frequently hypercyclic for
T and there exist a constant ¢ > 0 and an open set E C [0,00] of finite logarithmic
measure such that almost surely, there exists ro > 0 such that

IS Xn oo 2n
Z ﬂ—en < cy/logy(ps(r)) Z \;’7|2
n=0 """ r n=0 !

for every r > ro, r ¢ E, where f:=3" _,en/Bn.

The frequent hypercyclicity of the random vector is obtained by Theorem

In Section [3:3] another approach for finding a rate of growth for random sums
valid for any r large enough was presented. We will see that the first assumptions
and of Theorem are satisfied for every chaotic weighted with respect to the
basis of monomials. Unfortunately, we are in general not able to construct a suitable
sequence (r)r>1 in order to obtain the rate of growth valid for any r large enough.

Proposition 4.1.2. Let T' be a chaotic weighted shift on H(C) with respect to the
basis of monomials (ey)n>0 and with sequence of weights (wy)n>1. Let (Xp)n>0 be
a sequence of i.i.d. centred subgaussian random variables with full support. Then the
random vector ZZOZO %en is almost surely an entire function, is frequently hyper-

cyclic for T and satisfies, for every o > 3/2, the assumption of Theorem m
with Aj(r) := max {n >0]|8n < r”no‘}.j, j>1,r>0.

Proof. By Theorem the random vector Y >° %en is almost surely entire and
frequently hypercyclic for T'.

First, since T is chaotic on H(C), which is equivalent to lim, . |8.|"/" = oo,
see Example the function A; is well-defined. Furthermore, we have that
lim, o A1 () = oco. Indeed, let n > 1 be an integer and r > |B,|"/"/n®/™. Then
A1(r) > n and since n was arbitrary, lim, . A;(x) = co.

Let us check assumption |(i)| of Theorem Let 7 > 1 and r > 0. By definition
of A;, we have r"/|53,| < 1/n® for every n > A;(r) 4+ 1 and thus

r 1
2 EES X nﬁg/

Aj(r)

oo

1 - —2a
ﬁdx = (2&— 1) lAj(T)l 2 .
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In order to verify assertion [(i)| of Theorem [3.3.4] we will show that

S oAy 1 (M)A, ()27 = 37\ log (A1 (1) + D) (A (r)) /> (4.L1)

Jj=1 Jj=1

converges to 0 when r goes to oco. The idea is to use the Dominated Convergence
Theorem, as in the proof of Theorem [3.3.15] It is enough to show for every j > 1
that the function

fi 110,00 — R,z +— log(zj)(zj) 2

is non-increasing and converges to 0 when z goes to oco. First, it is clear that
lim,_, fj(x) = 0. For every x > 0, the derivative of f; is given by
J J

(wg)?> — (zj)*

which is negative if and only if 1 < (2ac — 1) log(zj). But this holds for every x > 0
large enough, uniformly in j > 1, since the right-hand side of the inequality converges
to oo when x goes to co. Thus f; is decreasing away from 0, uniformly in j > 1. Note
that j — +/f;(r) is integrable on N with respect to the counting measure for every

r > 0 since a > 3/2, which allows us to use the Dominated Convergence Theorem and
conclude that (4.1.1) converges to 0 when r goes to co. This concludes the proof. O

O f(x) = log(zj)(1 — 20)

Observe that, once it is proved that a weighted shift satisfies the first two assump-
tions of Theorem [3.3.4] then other weighted shifts still satisfy those assumptions.

Lemma 4.1.3. Let (w,)n>1 be a weight sequence such that the assumptions of The-
orem are satisfied for a, = wi'...w;t, n > 0, with some sequence (A;);>1-
Let (wy,)n>1 be a weight sequence such that there exists ¢ > 0 such that |Wy ... W,| >

clwy ... w,| for every n > 1. Then the assumptions|(i)] and [(ii)] of Theorem still

hold for a, = w; ... w,; ', n >0, with the same sequence (A;);>1.

Condition of Theorem can always be satisfied with the functions A, in
Proposition since lim,_,o, A1 (r) = 00, such a sequence (7)r>1 must exist. This
allows us to get the first two assumptions of the theorem.

To fully apply Theorem ‘3.3.4|, we have to choose a sequence (ry)r>o satisfying
both assumptions and |(iii)| of the theorem. We do not know whether it is possible
to achieve this for any weighted shift on H(C) with the choice of the functions A;,
j > 1, of Proposition [£.1.2] However, by choosing a slightly different function A,
and for some weighted shifts, we can fully apply Theorem through Theorem
This will be the content of the next subsections. It turns out that for those
examples, one can apply Proposition We will only compute the function A; of
Proposition[d.1.2]for the differentiation operator below. Since we still need to estimate
the associated series in (3.3.1) in order to check assumption of Theorem |3.3.4}
we will instead apply Theorem [3.3.17] to the examples in the following subsections.
The advantage of this method is that we do not need to estimate the series ,
although we will be able to do so for some of our examples.

Lemma 4.1.4. Let T be the differentiation operator on H(C). Then Ai(r) S r and
log(r) < log(Ai(r)) where Ay is defined in Proposition [{.1.2,
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Proof. Let o > 3/2. Let r > 0 be large and set n := A;(r). Then n! < r"n®, which
implies

nlog(n) — (n—1) = /1" log(z)dx < Zlog(k) = log(n!) < nlog(r) + alog(n).

k=1
Thus ) )
log(n) <log(r) + aL(n) + n;,
n n
which yields A;(r) < r. The other inequality is similarly proved. O

The following result will be used to estimate the series in the formula for the rate
of growth of frequently hypercyclic functions.

Theorem 4.1.5 (|33, Theorem IV.2.5]). Let —co < a <b< o0 and g,h :|a,b] — R
be two twice continuously differentiable functions. Assume that

(i) the integral f lg(t)|e")dt is finite,

(i) there exists a unique a < ¢ < b such that 8?h(c) <0, b/ changes sign only at c,
h reaches a mazimum at c and g(c) # 0.

Then for every x > 0 large enough, one has

b zh(c)
e
gty Dde =
/ Ve

X

4.1.1 Operators with weights n®

We consider on the space H(C) the weighted shift with respect to the basis of mono-
mials (ep)n>0 of H(C) and with weights w,, = n®, n > 1, where a > 0 is a parameter.
We have 3,, = n!® for all n > 1. It is easy to check that lim,, . wy 1n _ =1, hence this
operator is well-defined on H(C), and lim,,_, 51/ " = 00, hence it is also chaotic on

H(C); see Example [0.1.21
We will apply Theorem [3.3.17] to the entire function f := ano en/n!*.  To

check that f satisfies Assumption[3.3.14] we will estimate its maximum term and the

function Ny in Definition [3.3.13

Lemma 4.1.6. For any r > 0 large enough, we have
log(r)a™" <log(Nys(r)) and Ny(r) < P/

Proof. By definition of Ny, if n = Ny(r) — 1 then r”/n!® > 1. This implies

/ log(z)dz = Z/ log(z)dz < Zlog =log(n!) < a " 'nlog(r)
1

and then | .
og(r) LR

< log(rt/®) + 1.
a n

log(n) <
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We conclude that Ny(r) < r/e.
If n = N¢(r) then 7 < n!®, and

n+1 n k+1 n
/ log(z)dz = Z/ log(z)dz > Zlog(k) > a 'nlog(r),
1 k=1"F k=1

which implies

nlog(r)
<l 1
(n+a n+1— og(n +1),
hence log(r)a™" < log(Ny(r)). O
Lemma 4.1.7. For any r > 0, we have
1/

pp(r) = NG

Proof. By noticing that

n

o r
ST R
we easily get by using Stirling’s formula
T\_Tl/aj TLTI/aJeLT,l/aJa

Mf(?’) = Lrl/aJ!a - Lrl/aJa[rl/aJ L,r.l/onoz/2'
Thanks to the estimates

[ | /o (/]
ey, B e T
eg rl/a Lrl/aJal_rl/“J

X

1
er ’

we get the estimate of the lemma. O

Before concluding, we will use Theorem to estimate the series S7 of Theorem
in the following lemma, whose proof i1s somewhat technical.

Lemma 4.1.8. Let § > 0 be a positive real number. Then for every r > 0 large
enough, one has

> n
r 11 1/8
E — =<2 zefm
n!b
n=0

Proof. The proof is divided into two steps. First, we use a comparison series-integral,
and then apply Theorem to conclude.
Let » > 0 be large. By Stirling’s formula, we have

Define the function

G, : [1,00[ — R, t — tlog(re®) — B(t+ =) log(t).
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Its derivative is given by

1

9,Gr(t) =log(re”) — B(1 + o

+ log(t))

for every ¢ > 1. Then 0;G,(t) > 0 if and only if % > & +log(t). The function
t —> 1/(2t) + log(t) has a unique minimum at 1/2 and converges to oo when ¢ goes
to 0o. We deduce that for r large enough, there exists a unique x = () > 1/2 that
maximises G, and

log(r) 1
T + log(x). (4.1.2)

Notice that lim,_,o z(r) = co. We can now write

n+1

" BNt Gr(t)
IFTED DI AL Sl B

n>z| "

700 lz|+1
:/ eGT(t)dtf/ eCr®qt
1 |z]

T—ﬁ/ eCr®dt 4 ¢Cr(@), (4.1.3)

We begin by estimating the integral in (4.1.3). For all y > 1/, one has

Gr(vy) _ 1 1
5= zy(1+ . +log(z)) — (zy + 5) log(zy)
=y + % + aylog(z) — xylog(xy) — 10g(2:vy)
I I
— aly — ylog(y)) + ¥ — 28 18D

The change of variables t = xy then yields

e oo LBz(y—ylog(y)) oBy/2
/ (el gy :/ S dy.
1 1/ € Y

Pick 0 < § < 8. Let 0 < € < 1 be such that Sy(1 —log(y)) < d forall 0 <y < e. We
can now apply Theorem to h:y— By(l —log(y)) and g : y — e¥/2/yP/?
with ¢ = 1, and we get

[Niie)

oo
/ asexh(y)g(y)dyxx%_ e’

S
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By (-1.2), we have
1
P1/8 :el/(Qw)x:x(1+7+0(—)>7 (4.1.4)
x x
and we get
/ Iezh(y)g(y)dy = r-3e0”

Recalling the definition of ¢, we also have

1> g
/ 2eCr@dy < 6ﬁ€/2$/ " dy < eeP*/2ge™®
1/z 1/x

which is negligible compared to z'/2=8/2¢f* gince § < 4. In conclusion, the integral

in (4.1.3) is estimated by

oo
11 1/8
/ eCrWdt < pas—2ef"7
1

We now show that the second term of the right-hand side of (4.1.3) is bounded
by eﬁrl/ﬁ/\/?, which will finish the proof. By (4.1.4)), we can write

r'/% = 2(1+ g(z) + G(z)), (4.1.5)
where g : ]0,00[ — R and G : ]0, 00[ — R are such that
. 1 . Gy)
yl;rgo yg(y) = 3 and ylin;o o) 0. (4.1.6)

(a) Let us show that lim, o, 7*/2%% = e~1/2, By passing to the logarithm and using

([@1.5), we have
xlog(r) — xBlog(x) = log(r) (rl/ﬁ —xg(z) — xG(x))
B( /6 _ :vg(x) —zG(z )) log (rl/ﬁ —zg(x) — xG(x))
= log(r)r'/? —log(r)(zg(z) + 2G(x))
- B(rl/ﬁ —xzg(x) — :rG(z)) (log(rl/ﬂ) + log (1 — W))
— log(r)r'/# — log(r)(ag(x) + 2G(x)) — Br'/? log(r"/?)
g9(z) + JUG(ZU))

+ Blag(w) + 2G(@)) log(r!/?) + Blag(w) + 2G(w)) log (1 - LD

1 zg(x) + zG(x
- pr /ﬁlog(l—%)
= B(zg(z) + zG(z)) log (1 — W) — Br'/Plog (1 _ W)

The first term of the right-hand side converges to 0 when r goes to co by (4.1.6). As
for the second term, we have

/8 log (1 B xg(z) +xG(x)> _ 7"1/6< 3 zg(x) + 2G(x) . O(xg(:c) + ZEG(I)))’

178 178 178
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which converges to —1/2 when r goes to co. We conclude that lim,_, (2 log(r) —
xzfBlog(x)) = —1/2.

(b) By ({.1.5), we get

exﬁ _ eﬁrl/ﬁefﬁmg(x)efﬁzG(z) - eﬁrl/ﬁ

and
aP? = (rV/P — zg(x) — 2G(x))P/? < /2,

These three assertions imply that the second term in (4.1.3)) is bounded by the quantity
efB’“l/B/\/F, concluding the proof. O

Theorem then yields the following result.

Theorem 4.1.9. Let (X,,),>0 be a sequence of i.i.d. centred subgaussian random

variables with full support, « > 0 and let (en)n>0 be the sequence of monomials.
Then the random vector ZZOZO fffgen is almost surely an entire function, is frequently

hypercyclic for the weighted shift associated with the sequence of weights (n®),>1 and
there exists ¢ > 0 such that almost surely, there exists ro > 0 such that

oo
X, 11 1/a
- a2 ar
E e tn < cy/log(r)r e
n=0 r

for every r > rq.

Proof. First, the random vector ) ., X, /n!®e, is almost surely entire and frequently
hypercyclic for the weighted shift by Theorem [[.3:4] By using Lemma [£.1.7) and

Theorem [3.3.11) we get that f = > . e,/n!® is of finite order. Noticing that
0g

log(py) < +), by Lemmas and we see that Assumption [3.3.14] is
satisfied with b =1, m = 1 and any € > 0. We conclude by applying Theorem

The series S? is estimated by Lemma applied to 8 = 2a. O

The case o = 1 corresponds to the differentiation operator.

Theorem 4.1.10. Let (X,,)n>0 be a sequence of i.i.d. centred subgaussian random
variables and let (e,)n>0 be the sequence of monomials. Then the random vector
S %en is almost surely an entire function, is frequently hypercyclic for the dif-
ferentiation operator and there exists ¢ > 0 such that almost surely, there exists ro > 0

such that
o0 Xn
D i
n=0 '

e’r‘
< ¢y/log(r) Y

for every r > rg.

This result have already been obtained by Nikula Proposition 2]. By Drasin
and Saksman Theorem 1.1], it is already known that r — e”/rl/4 is the optimal
growth for the differentiation operator.
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4.1.2 Dunkl operator

Another example of a weighted shift on H(C) is the Dunkl operator. The product of
its first n weights is given by

5n:2"<£JOF<{n;1J+a+1)ma+1r2

n > 1, where & > —1/2 and T is the gamma function, see |33 Exemple II1.9.9].
We have the estimate

ﬁn = (TL +a+ 1)n+a+le—(n+a+1)

by [15, Lemma 1]. Therefore, we have lim, ﬂ}/n = oo, and the operator is

chaotic, see Example We will apply Theorem to the entire function
f=13,506en/an where a, := (n + a + 1)"FoFle= (et 'y > 1. Since ay, < By,
f satisfies the assumptions of Theorem if and only if " ., en/B, does so by
Remark Therefore, we just need to show that Theorem can be applied
to f.

As in the previous section, we must check that Assumption is satisfied for
f. We begin by estimating the function Ny.

Lemma 4.1.11. For every 0 < e < 1, there exists 7o > 0 such that for every r > rg,
we have

(1 —¢)log(r) <log(Ny(r)) < (1 +¢)log(r).

Proof. If n = N¢(r) — 1 then

nlog(r)
1 1)< —=+1
og(nta+l)< ===+

which proves the second inequality.

If n = Ny (r) then log(r) ;g +1 <log(n+a+1). Let § > 0, there exists ro > 0

such that for every r > rq,

(1 —9)log(r) <log(r) +1<log(n+a+1) < (1+9)log(n).

n
n+a+1

Now choose § > 0 such that (1 —6)(1 +8)~t =1 — ¢, we then have (1 — ¢)log(r) <
log(Ny(r))- O

Lemma 4.1.12. For any r > 0 large enough, we have
log(1(r)) < 1
Proof. By definition of sy,

Tnen+o¢+1

re n+a+1
_ — _re —(at1)
i (T = e e Tyt %@%(HQH) r
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Define the function g : ]0,00] — R by g(z) = (z + a + 1)(log(re) — log(z + o + 1))
for every x > 0. Its derivative is given by

09(x) = log(re) —log(x +a+ 1)+ (z+a+1)(—(zr +a+1)"71h)

and is positive if and only if # < r — o — 1. Therefore, pus(r) is attained at either
vi(r)y=Ir—a—1]orv(r)=|r—a—1].
We then have

log(us(r) _ vp(r) +a+1,

T r o8 <ﬁ> —(a+ l)logr(r)

which converges to 1 when r goes to infinity since lim, o (vf(r) + a+1)/r =1. O

Before making the conclusion, we will use Theorem to estimate the series
S¢? of Theorem [3.3.17|in the following lemma, whose proof is a little bit technical.

Lemma 4.1.13. Let o > —1/2 be a real number. Then for every r > 0 large enough,
one has

S ,r.2n62(n+04+1) e27"
Z (TL + o+ 1)2(n+a+1) T p2(at3/4)
n=0

Proof. The result is equivalent to

= re
;(nJraqu

Let r > 0 be large, and define the function

= \/re?".

)2("+a+1)

fr:]O,oo[—>R,m»—>2(m+a+1)<log(re)—log(x—l—a—i—l)).

For each x > 0, we have 0, f(z) > 0 if and only if log(re) —log(x+a+1)—1 > 0if and
only if r —a — 1 > x. Therefore, the derivative of f,. only vanishes at « :=r —a — 1.
We can then write

o0

Z(#)Q(n+a+l) > (arj 1)2(a+1)

n=0
n re 2(t+a+1) n+l re 2(t+a+1)
ey, (7 )y
+ Z / <t+a+1) + Z/ t+a+1

1<n<|z] n—l n>|z| 7"
> [ () T e,
0o \Mta+l
Similarly, we have
= re 2(n+a+1) i re 2(t+a+1)
D LA P () (LI )
n+a+1l 0 t+a+1

n=0
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Recalling that x = r — a — 1, the second term of the right-hand side of (4.1.7) is

(@) ( re >2(z+a+1) _
r+a+1

We now estimate the integral of the right-hand side of (4.1.7). First, we have for
r large such that re/(a+1) > 1,

/1 ( re )2(t+a+1)dt < (re)2(2+a) < JF o
S —_— re- .
o \t+a+l T (a4 1)22te)

Therefore, we just need to estimate the integral on [1, oo instead on [0, c0[. By the
change of variables t = s + o + 1 and setting a := 2 + «, we get that

/OO (L)Q(SJFQJFl)dS _ /OO (Te)zt dt = /OO 6225 log(re)72tlog(t)dt.
1 \sta+l P “

Define the function

G, 110,00 — R, t — 2tlog(re) — 2tlog(t).
Its derivative is given by
OG- (t) = 2log(r) — 21og(t)

for every t > 0. The derivative of G, only vanishes at r. Now, we make the change
of variables t = ry to get that

/oo (L>2(s+a+l)ds _ /00 27 log(re)—2ry log(ry)dy
1 s+a+1 a/r

= /C>o Te2ry(1—10g(y))dy.
a/r

Pick 0 < § < 1. Let 0 < e < 1 be such that y(1 —log(y)) < d forall 0 <y <e. We
can now apply Theorem toh:y+— 2y(l —log(y)) and g : y —> 1 with ¢ =1
to get

/ Tley(l—log(y))dy = \/77,621"-
€
By definition of £ > 0, we also have
/ T627‘y(1710g(y)) S €T62T6,
a/r

the right-hand term being negligible compared to /re?” since § < 1. In conclusion,
the integral of the right-hand side of (4.1.7) is estimated by /7e?", concluding the
proof. O

Theorem [3.3.17] then yields the following result.
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Theorem 4.1.14. Let (5,,)n>0 be the product of the weights associated with the Dunkl
operator. Let (X,)n>0 be a sequence of i.i.d. centred subgaussian random variables
and let (en)n>0 be the sequence of monomials. Then the random vector > - %en
is almost surely an entire function, is frequently hypercyclic for the Dunkl operator

and there exists ¢ > 0 such that almost surely, there exists ro > 0 such that

n=0

67”
S Cy/ log(r)m (418)

T

for every r > rg.

Proof. First, the random vector ), -, Xy /Bnen is almost surely entire and frequently
hypercyclic for the Dunkl operator by Theorem By Lemmas [{.1.11] and {-1.12]
if § > 0 is fixed and for every r > 0 large enough and 0 < € < 1, we have

log(Ny(re®)) < (1+¢)log(re’) < (1+¢)logy(py(r)),

hence Ny(re?) < log(us(r)) for some C' > 0. Furthermore, Lemma |4.1.12 and
Theorem (3.3.11] tell us that > - en/ay is of finite order, hence Assumption (3.3.14
is satisfied with b = C' and m = 1; notice that log(py) < log(Sy). We conclude that

Theorem (3.3.17| can be applied to f, and hence to ano €n/Bn by Remark [3.3.18
Finally, the series SJ% is estimated by Lemma [4.1.13 O

Therefore, gives a better rate of growth than the one found by Bernal-
Gonzélez and Bonilla |15, Theorem 5|. By their Theorem 6, this could even be the
optimal growth. However, their bound works for any function ¢ tending to infinity
instead of 1/log(+), but see the discussion in Section

4.1.3 Aron-Markose operators

As a last example, we consider the operators T} ; introduced by Aron and Markose
[4]. They are defined by Th ,(f) = f'(Az+b), f € H(C), where the parameters )\ and
b are complex. If A € C\ {0,1}, we know that these operators are weighted shifts
with respect to the basis ((z — a)™)n>0.

Lemma 4.1.15 ([65, Proposition 2.1]). Let A € C\ {0,1} and b € C. Then the
operator Tx p(f) is a weighted shift with respect to the basis ((z — a)™)p>0 with a :=
b/(1—\), and its weight sequence is (wy)p>1 = (RA"1),>1.

Proof. Define for each n € N the map e, (z) = (z — a)", z € C. Then for every n > 1

and z € C, we have

b—a
A

n—1
Taplen)(z) =n(Az+b—a)" ' =n\"t (z + ) =n\""te, 1(2),

and T)\’b(eo) =0. O
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It is easy to see that T) ; is chaotic on H(C) if and only if |A\| > 1. Indeed, we
only need to show that lim, . |8,]|"/™ = oo, where £, := nIA\**=D/2 5 > 1, see
Theorem [0.1.19| and Example [0.1.21] A comparison series-integral allows us to write

log(|Ba|"") = n~" /j log(z)dz + (n — 1)%
= log(n) — anl +(n— 1)%_

The right-hand side converges to oo if |A| > 1 and to —oo otherwise, hence the claim.

We will show that the entire function f(z) := Y. -, 2"/Bn, z € C, is of finite
order and satisfies Assumption We can assume without loss of generality that
A > 1. Indeed, only the modulus of A matters and if |A\| = 1, then Ny and py are the
same as for the differentiation operator, see Lemmas {.1.6] and [£.1.7] .

Lemma 4.1.16. For every 0 < € < 1, there exists ro > 0 such that for every r > rq,

we have
log(})

(1—¢)log(r) = =5

Ny(r) < (1+¢)log(r).

Proof. If n = Ny(r) — 1 then

N

nook
log(r)n > log(n!) 4+ n(n — 1)10g2()\) > Z/k log(z)dz + n(n — 1)10g2(/\
k=2Yk—1

=nlog(n) — (n—1)+n(n — 1)@.

Therefore

log(r) + nT—l > (n+ 1)10g(/\) (( 2log(n) - 1) |

2 n+1)log(A\) n—+1

Let 0 < § < 1, if r is large enough then we have

(14 6)log(r) > logQ(A)

Ny (r)(1 = 9).

Now choose § > 0 such that (14 8)(1 — )"t =1 + ¢, we then have

(1 +2)log(r) > BV Ny ).

A similar argument shows the other inequality of the lemma. O
Lemma 4.1.17. For any r > 0 large enough, we have

log(py(r)) < log(r)?.

Proof. By definition of ;1 and Stirling’s formula,

1/2 re n+1/2 1
py(r) = (re)™"" max <n+1/2) 172 )
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Let 7 > 0. Define the function g, : ]0,00[ — R by

-1
0 (2) = ( +1/2) log(re) — log(z+1/2)) — X0 D1og(y)
for every x > 0. Its derivative is given by
20 —1
D gr () = log(re) — log(x +1/2) — 1 =~ log())

and is positive if and only if

i <1+ log(x+1/2)> _log(r) 1

xlog(\) log(\) Ty

Let max(r) be the value of x where g, reaches its maximum. Therefore, ps(r) is
attained at either v;(r) = [Zmax(r)] or V(1) = [Tmax(r)]. Furthermore, zyax(r) is
such that, for every 0 < & < 1, there exists ro > 1 such that for every r > r(, one has

(-0 (120 1 1) < ) < 250+

If vf(r) = [Tmax(r)], then
log(re)  log(A) [log(r) 1 log(r) 1
oty 2 ~27% - R (P854 3 +1) (e + 2711
)

+ ((ES((:; + ;) (1—e)+ ;) <10g(re) ~log ng((;) + % +1+ ;))
(

The terms in the largest brackets of the right-hand side of the equality converge to
—27og(A\) ! + log(A) "1 (1 —¢)

when 7 goes to oo, which is positive if € is small enough. Therefore, log(pf(r))
log(r)?. Similarly, one can prove that log(us(r)) < log(r)?, and that log(uys(r))

log(r)? if v (r) = [Tmax(r)].

DIrav;

Theorem 4.1.18. Let (X,,),>0 be a sequence of i.i.d. centred subgaussian random
variables with full support, (en)n>0 = ((# — @)™ )n>0, and let b € C and A € C\ {1}
such that |\| > 1. Then the random vector Y Wen 15 almost surely an
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entire function, is frequently hypercyclic for Ty, and there exists ¢ > 0 such that
almost surely, there exists ro > 0 such that

o] Xn
Z ni\n(n—1)/2 €n
n=0

for every r > 1o, where a :=b/(1 — \) and for each r > 1, p(r) := log(r) if [N\ > 1
and p(r) :=r otherwise.

< oVToalu), | 3 L

r n=0

Proof. The random vector Y, 5o X,/ (nIA""=D/2)e,, is almost surely an entire func-
tion and frequently hypercyclic for the weighted shift by Theorem [1.3.4} note that
its proof carries over verbatim to weighted shifts on H(C) with respect to the basis
(en)nZO-

Assume that |A] > 1. Let ¢ > 0 and § > 0. By Lemmas |4.1.16| and [4.1.17] for
every r > 0 large enough, we have

27 og (A Ny (re®) < (1 +¢)log(re®) < (1 + €)y/log s (r)),

hence Ny(re®) < log(us(r))'/? for r > 0 large enough. Furthermore, Lemma
and Theorem [3.3.11]tell us that f is of finite order, hence Assumption [3.3.14]is satisfied
with b = 1/2 and m = 1; notice that log(us) < log(Sy). If |[A| = 1 then Lemmas [£.1.6]
and [£.1.7] yield the same conclusion with b = 1. By applying Theorem [3.3.17] we can
conclude that almost surely, for r large enough,

r2n
< L —
n>0
where v(2) := >, 50 Xn/Bnz", 2 € C. Noticing that

ull = sup [v(z —a)| < sup  |v(z)| = ||v]l;1al;
z|=r |z|<r+|a

where v := ) - X, /Bnen, we get almost surely the inequality

(r + laf)>"
< ~ 7
Jul % \/1og (s (r+ lab), | 3 - s
n>0
for any r > 0 large enough. This concludes the proof. O

Note that the series in the rate of growth obtained in Theorem is the series
>0 llenll?/]8n|? associated with the fixed point Y, <, €,/Bn of Ty, that appears in
Theorem Indeed, we have ||e, ||, = (r + |a])™ for every r > 0 and integer n > 0.
It is enough to show this for n = 1. Let r > 0. By definition of || - ||, and assuming
a = pe'¥ £ 0, we get

T
€l9*—1‘.

sup |e¥r —a|= sup p Rl 1‘ =p sup
P p

0<o<2r 0<o<2r 0<9<2r
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Define the function f : [0,27] — [0, 00[ by f(8) := |ei9% — 1%, 6 € [0,27]. A simple
study of function shows that f reaches its maximum at 6 = w and f(7) = (r/p+1)2.
Therefore, |e1|, = (r + |a|) for every r > 0.

Remark 4.1.19. Recall that by Theorem the probability distribution of the
frequently hypercyclic random vector in Theorem is strongly mixing. It was
already known that the Aron-Markose operators are strongly mixing with respect to
some Gaussian measure of full support, see [79, Proposition 2.3] and its proof.

We point out that more generally, one can consider the weights w, = n®A"~!,
n > 1, where A € C is such that |A| > 1, and « > 0. The computations for these
weights are similar. In the same vein, Theorem [3.3.17] can be applied to the weights
defined by B, = (n + a + 1)Fotle=(nrat) \n(n=1/2"n > 1 where a > —1/2 and
A € Cis such that |A| > 1.

4.2 Functions on an open disk

In this section, we consider weighted shifts defined on the Fréchet space H (D). Theo-

rem|(0.1.19|combined with Theorem [3.2.10/applied to f(z) = ", ~, 2"/B, immediately
yields an admissible rate of growth for each chaotic weighted shift, where the sequence

(Bn)n>0 is defined in Subsection However, it is only valid outside a set of finite
logarithmic measure.

Theorem 4.2.1. Let T be a chaotic weighted shift on H (D) with respect to the basis of
monomials (e,)n>0 and with sequence of weights (wy,)n>1. Let (X,,)n>0 be a sequence
of i.i.d. centred subgaussian random wvariables with full support. Then the random
vector ZEO:O %en is almost surely holomorphic on D, is frequently hypercyclic for
T and there exist a constant ¢ > 0 and an open set E C [0,00] of finite logarithmic
measure such that almost surely, there exists 0 < ro < 1 such that

oo

> e

n=0

pp(r) 1 (g (1)
< 1
T*C(lﬂn)T‘s 08" <1—r>

for everyrg <r<1,r¢E.

The frequent hypercyclicity of the random vector is obtained by Theorem [1.3.4]

As in the previous section, we will show that Theorem can always be partially
applied to chaotic weighted shifts on H (D). Unlike the corresponding result for the
space H(C), we distinguish two cases. The only difference lies in the choice of the
function A; in order to ensure that lim,_,; A;(r) = oo, but the proof is actually the
same as that of Proposition [4.1.2

Proposition 4.2.2. Let T be a chaotic weighted shift on H(D) with respect to the
basis of monomials (en)n>0 and with sequence of weights (wy)n>1. Let (Xp)n>0 be
a sequence of i.i.d. centred subgaussian random variables with full support. Assume
that there exists o > 3/2 such that for every ng > 1, inf,>p, |Bn|/n® < 1. Then the

random vector Zzozo %en is almost surely holomorphic on'D, is frequently hypercyclic
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for T and satisfies the assumption[(i)] of Theorem with
Aj(r) := max {n >0]|8n < r"na}.j,

forall0<r<1landj>1.

Proof. The proof is exactly the same as that of Proposition £.1.2] First note that A,
is well-defined since T is chaotic, which is equivalent to liminf, . |8,|'/" > 1 by
We just need to show that lim, ,; A;(r) = co. Let ng > 1; by assumption,
there exists n > ng such that |8,| < n®. This is equivalent to |3,|"/"/n®/™ < 1, thus
for every |Bn\1/"/n°‘/" < r < 1, we have A;(r) > n > ng. Since ny was arbitrary,
lim, 1 A1 (r) = oc. O

The proof of the next result is also exactly the same as that of Proposition

Proposition 4.2.3. Let T' be a chaotic weighted shift on H(D) with respect to the
basis of monomials (ey)n>0 and with sequence of weights (wy)n>1. Let (Xp)n>0 be
a sequence of i.i.d. centred subgaussian random variables with full support. Assume
that there exist a« > 3/2 and an integer ng > 1 such that for every n > ng, |Bn| > n®.
Then the random vector Zf;o gﬂ en s almost surely holomorphic on D, is frequently
hypercyclic for T and satisfies the assumption of Theorem with A; = A.j,

j>1, where A:[0,1] — [0, 00] is any function such that lim,_,; A(r) = cc.
Remark 4.2.4. Notice that Lemma still holds for operators on H (D).

Condition |(ii)| of Theorem can always be satisfied with the function A4; in
Propositions or since lim,_,o, A;1(r) = 00, such a sequence (ry);>1 must
exist. This allows us to get assumptions [(i)| and [(ii)] of the theorem.

As in the previous section, in order to fully apply Theorem [3.3.4] we have to choose
a sequence (7x)g>o satisfying both assumptions and of the theorem. Again,
we do not know if it is possible to achieve this for any weighted shift on H (D) with
the choice of the function A; in Propositions or However, by choosing
a slightly different function A;, and for some weighted shifts, we can fully apply
Theorem This will be the content of the next subsections. In Subsection
we will first prove an analogous result to Theorem 1].

Let us compute the function A; of Proposition [£.2.2] only for the so-called Taylor
shift.

Lemma 4.2.5. Let T : H(D) — H(D) be the Taylor shift, that is, T(z") = 2"~ 1
for anyn > 1, and T(1) = 0. Then log(A1(r)) < —log(1 — r) where Ay is defined in
Proposition [{.2.2,

Proof. Let @ > 3/2. Let 0 < r < 1 be close enough to 1 and set n := A;(r). Then
1 < r™n®, which is equivalent to

0 < nlog(r) + alog(n).

Thus
n o

<
log(n) = —log(r)’
which yields log(A;(r)) < —log(—log(r)). A Taylor development at 1 of the logarithm
yields the inequality A;(r) < —log(1—r). The other inequality is similarly proved. O
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4.2.1 Rate of growth of hypercyclic functions

We begin by proving in this short subsection an analogous result of [46, Theorem 1]
on the growth of hypercyclic functions for chaotic weighted shifts on H (D). Its proof
is the same as the one of [46, Theorem 1]|. As usual, the quantity §,, n > 0, stands
for the product of the first n weights of the shift, see Subsection [1.3.1

Theorem 4.2.6. Let T : H(D) — H(D) be a chaotic weighted shift. Let ¢ : [0, 1] —
[0,00] be such that lim,_,; ¢(r) = co. Then there exists a hypercyclic function f €
H(D) for T such that ||f|l, < é(r)u(r) for all 0 < r < 1 close enough to 1, where

p(r) == max, >0 " /|Bnl-

Proof. Without loss of generality, we can assume that info<,<1 ¢(r) > 0. For f =
> o anz™ € H(D) and all n > 0, define

_IZRal
Pl = 2, o)

Define the space

X = {f = ngoanzn € H(D) | :lelgpn(f) < OO/\nh_)H;Opn(f) = 0}

and [|f]|x := sup,>opPn(f), f € X. The space X endowed with the norm | - ||x
is a Banach space and the set of polynomials is dense in X. Furthermore, X is
continuously embedded in H (D).

We will check that the sequence of operators T;, : X — H(D), f —— T"(f)
satisfies the hypotheses of the Universality Criterion, see [47, Theorem 3.24]. As in
the proof of [46 Theorem 1], all we need is to prove that lim, . |len/Bnllx = 0,
where (ey,),>0 is the sequence of monomials.

Let ¢ > 0. There exists 0 < rg < 1 such that for every ro < r < 1, one has
é(r) > e~ Then for all n > 0, we have

TTL
sup ————~—— < ¢

ro<r<l1 ‘6”L|¢(r):u“(r) N

and
S N T S T S
o<r<ry [Bul@(r)u(r) = [Bnl o<r<r, ¢(r)u(r) = |Bn] infocr<a (1)
The last right-hand term converges to 0 when n goes to infinity since 7T is chaotic;
recall that 7" is chaotic if and only if Y 7 2"/B, € H(D), see Theorem [0.1.19
We conclude that lim,_, ||en/Bnllx = 0, as desired. This implies the claim of the
theorem like in the proof of [46, Theorem 1]. O

4.2.2 Weighted Taylor shifts

We consider the weighted shift 7, : H(D) — H(D) with respect to the basis of
monomials of H (D), with weights w, = n%/(n — 1)*, n > 2, and w; = 1, where
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a € R. This operator is well-defined on H (D). We have §,, = n® for all n > 1. Since
lim,, 00 |Bn]'/™ = 1, the operator T, is also chaotic on H (D), see Example
These operators have been studied in [76]. The case o = 0 corresponds to the
so-called Taylor shift.
In order to avoid a too long proof, we will distinguish two cases depending on
whether a« < 0 or o > 0. We begin with the case a < 0.

Theorem 4.2.7. Let (X,,)n>0 be a sequence of i.i.d. centred subgaussian random
variables with full support, let (e,)n>0 be the sequence of monomials and let o < 0.
Then the random vector Xgeq —i—zzozl X, /n%e, is almost surely holomorphic on D, is
frequently hypercyclic for the weighted shift T,, and there exists ¢ > 0 such that almost
surely, there exists 0 < rg < 1 such that

X
n
HX060+ E niaen <
n=1 T

for every ro < r < 1.

[log(T = l(1 =)/

Proof. The random vector Xpeg + Zn>1 Xn/ no‘en is almost surely holomorphic on I

and frequently hypercyclic for T, by Theorem Set A;(r) = d’|log(1—7)|/(1—7)
with d > 1 to be determined later.
Set 8 := —2« and let 0 < r < 1. Define the function

gr = [0, 00 — [0, 00[, & — 2% 2P, (4.2.1)

It is elementary to show that g, has a single maximum at z,.x(r) := —3/(21og(r)).
We have |log(1 — 7)|/(1 — 1) > Zmax(r) for r close to 1 and hence, for every j > 1,
one has A;(r) > Tmax(r) and thus

> g > /n1 da:—/oo gr(2)dz.

n>A;(r)+1 n>A;(r)+1 Aj(r)

Let j > 1, two consecutive changes of variables y = 2|log(r)|z and then u = y —
2| log(r)| A, (r) yield

/oo (z)d /Oo yer
gr(w)da = B A et £
A;(r) 2 log(r)| A, (r) 20T log(r)[FF1

1 = B —(u (0] T T
= 25+1|10g(r)|5+1/0 <u+2|log(r)|Aj(r)> e~ (ut2]log(r)[A4;(r)) 4y,
Aj(r)Pe21os(r)|4;(r) /oo LNE
= u(2|log(r)|A;(r +1) e “du.
2[Tog(r)| ; ( (2[log(r)| 4 (r)) )

Since |log(r)|A;(r) > |log(1 —r)| for 0 < r < 1, the last integral is bounded in
d<r<lforevery 0<d<1.
In order to apply Theorem [B.3.4/to f:= ", -, en/n®, we will show that

\/T ﬁe—2|10g(r)|f4 (r)
Z Og( J+1(r |10g ‘

Jj=1
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converges to 0 when r goes to 1. The idea is to use the Dominated Convergence
Theorem. First note that the series converges for any 0 < r < 1 since d > 1. Let
j > 1land 0 <7 < 1. We make the change of variables r = 1 — e™®, where z > 0,
hence A;(r) = d’ze® for every j > 1. A simple calculation gives

A; (r)Be=2Ilog(r)4;(r)

log(AjJrl(T)) | 10g(7“)|

(djxea:)ﬁeQlog(lfe_’”)dja:ez
—log(1 —e—?)

= ((7 + 1) log(d) + log(x) + x)

Therefore it is enough to show for every j > 1 that the function

(me:p),@e2 log(l—e™")Mxe”

fj +]0,00[ — 10, 00[,x —> x o p——

is non-increasing and converges to 0 when z goes to oo, where M := d’.
By taking the logarithm of f;, we get for every « > 0 that

log(f;(x)) = log(x) + Blog(ze”) + 2log(1 — e~ *)Mwe™ —log (— log(1 — ™))
= log(x) + Blog(we®) + 2Mz(—1 + o(e”*)e”) —log (e~ + o(e™™))

_ x<1°gx(x) + g4 Ploe@ 105(33) +OM(—1 + ofe—*)er) — 08LE Z(efm)ex) v 1) .

Thus lim,_,o log(f;(z)) = —oc0 if B+ 1 < 2M, and lim,_,+ f;(z) = 0.
Now we prove that f; is non-increasing. The derivative of the function log(f;) is
given by

Iy log(f;)(z) = % +p (; + 1) +2M <

—x

e +log(l —e™)e (x+1)>

"~ log(1—e=®)(1 —e®)

:;+B<i+1>+2M(1 i +em(w+1)<—e_z_6_21+0(e_2z)>>

—eZ 2

e—:C

(e o(em))(T o)

where in the second equality we have used the Taylor expansions of order 1 and 2 of
the logarithm at 1. We conclude that lim,_,o 05 log(f;)(z) = 8 —2M + 1 for every
x > 0, hence 9, log(f;)(z) < 0, provided 2M > f+1. Thus f; is non-increasing away
from 0, uniformly in 5 > 1,if 2d > 8+ 1.

This shows that assumption [(i)] of Theorem is satisfied. By taking rp =
1—e ", it is clear that assumptio is also satisfied, for any 1 < p < co. It remains
to check assumption It is also clear that (log(Ai(rk+1))/log(A1(rk)))k>1 is
bounded. Let 0 < r < 1. Set I(r) := >, -, n’r?", thus S%(r) =1+ I(r). It suffices
to show that (I(rg+1)/I(r%))k>1 is bounded. By comparing again series and integrals,
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where we set N := |Zmax(r) ]|, we have

> gr(n)

Z

—1 n+1
/ gr(@)dz + gr(N) + 9o (N + 1

]

Z/nlgr

= — n>N+2
< /1<><> gr(2)dz + 29, (Tmax (7))
< /Ooo gr(2)dz + 2¢7 (Tmax (1))
and
nzz:lgr Z/, gr( div+n>ZN:+1/
- /ooo gr(2)dz — /NNJF1 gr(x)dz > /OOO 9r(2)dz — gr (Tmax(r)).

The change of variables y = 2|log(r)|x and the Taylor expansion of order 1 at 1 of
the logarithm yield that, for every 0 < r < 1 close enough to 1,

(z)dx = 2log(M)z 1.8 4y — “YoBdy = )
[ ton= [ eate = i [ =

Recalling the definition ([#.2.1)) of g, above, notice that g, (Tmax(r)) < 1/(1 —17)?. We
can conclude that

1 1 1 1
A=~ a=np SIS g5y T am

(4.2.2)

for every 0 < r < 1 close enough to 1. Then, applying this inequality for r = r; and
r = riy1 finally gives

I(rps1) 1 1 1 1 -1
I(re) ™ ((1 L Tk+1)"> ((1 —rg)? T (11— Tk)ﬁ>

for every k > 1 large enough, and the right-hand side is bounded. This shows that also

of Theorem holds. Thus we can apply Theorem Since log(A1(r)) <
Tog(1 — r)| and, by (223,

Sp(r)=V1+1I(r)=<1—r)*""2,
the result follows. O
Now we deal with the case o« > 0.

Theorem 4.2.8. Let (X,),>0 be a sequence of i.i.d. centred subgaussian random
variables with full support, let (e,)n>0 be the sequence of monomials and let o > 0.
Then the random vector Xgeq +ZZ°:1 Xn/n%ey, is almost surely holomorphic on D, is
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frequently hypercyclic for the weighted shift T,, and there exists ¢ > 0 such that almost
surely, there exists 0 < rg < 1 such that

o [Tog(1 —7)[(1—r)*~Y? ifa<1/2
HXoeo +) —ren|| <cq/log(T=7)] ifa>1/2

n=1
for every ro < r < 1.

" |log(1 — )| ifa=1/2

Proof. The random vector Xoeg + ), ~; Xn/n%e, is almost surely holomorphic on
D and frequently hypercyclic for T,, by Theorem m Since B3, = n® > n°, the
case a = 0 of the previous theorem already gives that the conditions and of
Theorem are satisfied with the same functions A4;, j > 1, thanks to Lemma
and Rern It only remains to check that the second sequence in is also
bounded with (Tk)k21 = (1 — eik)kzy

Let 0 < r < 1 and define the function

gr 10, 00] — [0, 00[, 2 — 72Tz, (4.2.3)

This function is decreasing on ]0, oo, which implies

AD! Z/ﬂ 9 dx_/loog,(x)dx

n>2 n>2
and -

> gr(n) Z/ dx—/ gr(x)dz.

n>1 n>1 1
Define I(r) := >_,~, gr(n) and J(r) := [ g;(x)dz. Assume that the sequence

(J(rk41)/J(rk))k>1 is bounded, thls would imply that

L) _ JOwen) 47— J0r1) | Ten
I(Tk) - J(Tk) J(?’k) J(Tk))
and (I(rg+1)/I(rk))k>1 would be bounded, note that J(ry) > J(r1) for all & > 1.
Therefore, let us show that (J(rg+1)/J(rk))k>1 is indeed bounded. Let 0 < r < 1.
The change of variables y = 2|log(r)|x gives

o0 1 oo
J(r) = / z2ee?loe(Mr gy — / y 2% Ydy.
1 [log(r)| 2012720 foioetm)]

We distinguish three cases. In the first one, we show directly that the sequence
(I(rk+1)/I(rx))k>1 is bounded.

Case oo > 1/2

Since a > 1/2, for every 0 < r < 1 we have

0o 0o 1

§ n—2ar2n S § < 00,
n2a

n=1 n=1

hence the function I is bounded and increasing on [0,1[, and (I(rg+1)/I(rk))k>1 is
bounded.
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Case 0 < < 1/2
Since o < 1/2, the function y — y~2%e~¥ is integrable on ]0, o[, hence

1 e — 1
0% gy f, V7=

where we have used for the last equality the Taylor expansion of order 1 at 1 of the
logarithm. Similarly, one has

1 oo 1
J > —2a 7yd D
0% T |, ¥ =

hence (J(ri+1)/J(rk))k>1 is bounded.

Case a =1/2

For this last case, we use the inequalities

2 o 1
27t " log (1 + ) < / y le ¥dy < e "log (1 + )
x - x

valid for = > 0, see [82) Inequalities 6.8.1]. We then have

J(r) = / y e Vdy < 2198 Jog <1
2| log(r)]

1
* 2|1og<r>|) '

Using a Taylor expansion of order 1 at 1 of the logarithm gives

1
log <1 + 2|1(V§(7“)|) = log (1 — 2log(r)) — log (—21log(r))

=log (1 — 2log(r)) —log (2(1 —7) + o(1 — 1))
=log (1 — 2log(r)) —log(1 —r) —log (2+ o(1 — r)(1 —r)~")
= —log(l —r),

showing that J(r) < —log(1—7). Similar calculations finally yield J(r) < —log(1—7),
and (J(rx+1)/J(1%))k>1 is bounded. Thus Theorem can again be applied. The
result then follows with similar estimates as at the end of the proof of Theorem [4.2.7
and by noting that I(r) < J(r) + 1. O

If a = 0, the operator T is the so-called Taylor shift. This is indeed the result
obtained by Mouze and Munnier in |75, Theorem 1.3 and p. 627]. They even proved
that the optimal rate of growth is r — /1/(1 — r), see |75, Theorem 1.4].

The rate of growth for the operators T, has also been studied by Mouze and
Munnier in [76] with non-probabilistic methods, see |76, Theorem 1.3 and Proposition
2.1]. When « # 1/2, they showed that the optimal growth is indeed given by (1 —
r)*~12if o < 1/2 and by 1 if a > 1/2. If @ = 1/2 then /[log(1 — r)| is a minimal
rate of growth, while |log(1l — )| is an admissible one. Therefore, our result suggests
that \/|log(1 — )| could be the optimal rate of growth for T} 5, see Section
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4.2.3 Logarithmic weights

As a last example of operators on H(D), we consider the weighted shifts T, with
respect to the basis of monomials of H (D), with weights w,, = (log(n))%*/(log(n—1))<,
n > 3, we = log(2)* and w; = 1, where a € R. These operators are well-defined on
H(D). We have 8, = (log(n))®, n > 2, and 8; = 1. Since lim,,_, |3,|"/" = 1, they
are also chaotic on H (D), see Example [0.1.22]

We first need two technical lemmas.

Lemma 4.2.9. For any 8 > 0, we have

o0 log(271u + 2 -8
limsup/ e‘“(w + 1) du < 1.
z—0 Jo —log ()

Proof. Let x > 0. By using the change of variables t = u/(2z) + 2, we get

> —u W—u+m P — > —u i -3 8
/o (oY) s /0 e (log (5, +2)) " (- log(x)) du
o] e—(t—2)23:

~ (Clogta))’2e [ a2

Let 0 < v < 1 and set A := 1/27. We divide the last integral on the intervals [2, A]
and [A, oo[. First notice that

(flog(x))ﬁzx /Oo ﬂdt < (- IOg(x))fBQix /Oo e—(t=2)22 g4
a log(t)? T log(A)? /,
2r e—A2z€4:c
< (Clos) G o

—B_—2z'7 4z
e

=7 e,

which converges to 7~ when x goes to 0.
We now show that the integral in (4.2.4) on [2, A] converges to 0 when 2 goes to

0. For each n > 1, define
4
I, ::/ dt
e log(t)"

By induction, one can prove that

n—1

A (j—1)!
(log(A)j B e) (n—1)! (425)

for every n > 1. Now, setting n := |3], we have log(t)? > log(t)" for any ¢t > e.

Therefore,
A —(t—2)2z e 1 A 1
e
__dt< ———&+/ —_dt
/2 log(t)? /Qlogos)ﬁ . log(t)"

Assume first that 5 > 1. By the formula (4.2.5), we have

L=
(n—1)! <

Jj=1

n—1 .
(—log(x))?2z1, = (—log(:b))BQx((nlll)! - Z (log?A)j - e) 9 : 3:) (4.2.6)

Jj=1
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For any 0 < j <mn —1, we have

A ot
—1 B9 - =2[1 B=iZ
(—log(x)) xlog( Ay |log ()] o

which converges to 0 as x goes to 0 since 0 < v < 1, and so does (—log(z))?2ze.
Now, we have I} = li(A) —li(e), where li is the logarithmic integral, see [82, Definition
6.2.8]. Using the fact that li(A) = O(A/log(A)), see [82, Formula 6.12.2], we get

(—log(x))P2zI, = (— log(x))’BQ:v(li(A) —li(e))
A (“log@)ai
S (Clos@) 1o = loglon

which converges to 0 when x goes to 0. All of this shows that the right-hand term in

{#.2.6) converges to 0, and in turn that (#.2.4) converges to v~ in the case 8 > 1.
If0 < 8 < 1 then

—(t—2)2z 1

A e A
x(—log(a;))ﬂ/2 Wdtgx(—log(x))ﬁ/z) wdt+m(—log(m))5/ 1dt,

e

which again converges to 0.
We conclude that

> log(2~1u + 2 - 1

limsup/ e " (og( u + 22) + 1) du < —
z—0 Jo —log(x) VP

for any 0 < v < 1. The results follows by taking the limit when v goes to 1. O

Lemma 4.2.10. For any 8 > 0, we have

lim inf
x—0 0

[e%s) 1 —1 -8
efu(w #1) Tauz 1,
— log(x)
Proof. Let p > 0 and 0 < £ < 1/2, and assume that > 0 is such that —log(z) > p

and z < e. Then log(27tu + 2x)(—log(z))™* < 0 if 27 u + 2 < 1 and log(271u +
2z)(—log(x)) ™! <log(27u + 2¢)p~! otherwise. Therefore,

> log(2~1 2 -8
lim inf/ 67“(M + 1) du
=0 Jo — log(x)

2—4e ) -1 _

log(2 2 3

> / e du 4 / e—u(wﬂ) du
0 2—4e P

An application of the Dominated Convergence Theorem yields the claim. O
We are now ready for the main result of this subsection.

Theorem 4.2.11. Let (X,,),>0 be a sequence of i.i.d. centred subgaussian random
variables with full support, let (en)n>0 be the sequence of monomials and let o €
R. Then the random wvector ZZOZO Xn/Bnen is almost surely holomorphic on D, is
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frequently hypercyclic for the weighted shift T,, and there exists ¢ > 0 such that almost
surely, there exists 0 < rg < 1 such that

X, [log(1 —r)|~®
X, X § o < en/log(1 — |28 — D1
H oto + A1e1 + log( )) € . xcC | Og( T)| \/ﬁ

for every rg <r < 1.

Proof. The random vector Xoeg+X1e1+Y o Xn/(log(n))%e, is almost surely holo-
morphic on D and frequently hypercyclic for T, by Theorem

If @ > 0, then 3, = log(n)® > n° for any n > 3, and the case a = 0 of Theorem
already yields that condition of Theorem is satisfied for the operator
T,, with the same functions A;, j > 1, thanks to Lemma [£1.3] and Remark [.2.4}
Since B, > n® for every n > 1 if a < 0, the same conclusion applies to the case o < 0.
It only remains to check conditions and |(iii)l Choosing (rx)k>1 = (1 — e F)p>1,
the proof of Theorem shows that |(ii)| and the first part of hold. As in the
proof of Theorem [4.2.7}, it remains to show that (I(rg41)/I(rk))k>1 is bounded, where
I(r) =3, 557" /(log(n))?™ for 0 < r < 1.

Case o >0
Set 8 :=2a and let 0 < r < 1. By comparing series and integrals, we get that
&0 2n

r rd © p2rdg
2 Tog@))? < T2 Z/n T = Ty +/2 (log(@))?

and

ni (log(n Z/ log x:/:o (lgzjf)ﬁ'

The changes of variables y = 2|log(r)|z and u = y — 4|log(r)| yield for r > e~!

/goo(b;(i))ﬂdx N m 4:>g<r) °’ (log (2|1°y<‘?>(r)|>>_ﬂ o
e—4llog(r u r -8
- ot |/ (o (it )

_ e tlestr 5 [, (log(2 u+2[log(n)]) , [\ ”
_2\log(7°)|( log(| log(r )|)) /0 e ( “Toa([Toe(1)) +1> du.

Lemmas and show that the last integral converges to 1 as  goes to 1, the
case 0 = 0 being trivial. Therefore, we have

! — log(—log(r))) ” r - ! — log(—log(r))) ”
Togry (~ 10B(—108D) " S 10) S oormses + gy ( ~ loB(—los(m) ™,

(4.2.7)

and supy>q I(rg41)/1(rs) is finite.
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Case o <0

Set 8 := —2a and let 0 < r < 1. Define the function
gr : ]1,00[ — [0, 00[, z — 7% (log(x))”. (4.2.8)
It is elementary to show that g, has a single maximum at @, (r), where the equality

zmax(r) IOg(zmax(T)) = _5/(2 log(r)) (429)

holds. By comparing series and integrals, where we set N := |Zpax(r)| and assume
that r is so large that N > 2, we get

> gr(n) Z/ 2)dz + g, (N) + g, (N + 1)+ > /nl

n>2 n>N+2

< / 90 (2)dz + 20, (Tamax (1))

and
N n n+1
Yo za@+Y [ a@dt 3 [ g
n>2 n=3 1 n>N+17"
oo N+1
— 02+ / gr(z)dz — /N gr(z)dz

>0+ [ " 4o (2)dz — gy (Tman(r)).

The same calculations as in the previous case give, for r > e™!,

/Oog (z)dz = L e Y <log <y>>ﬁ dy
s 2\10g(7“)| 4] log(r)| 2[log(r)|
B e—4l1og(r)] e—“ (10g (u+4log(r)|>>3du
2[log(r)| 2| log(r)|

_6—4“°g“">‘ tontlioa(myE [ o (los@tut2log(n)) |\
= Stoggey ( eelloz)” | ( “Tog([Tog(r)]) “) du

The integral converges to fooo e “du = 1 when r goes to 1. Indeed, fix 0 < e < 1/2
and p > 0; we can assume that |log(r)| < & and —log(|log(r)|) > p. Now, for any
u > (1 — 2¢)2, we have log(271u + 2¢) > 0, and

log(2~tu + 2| log(r)|) < log(271u + 2¢) < log(27 u + 2¢)
—log([log(r)|) = —log(|log(r)[) P '

Remark also that for any 0 < u < (1 — 4¢)2, we have log(2~ u + 2| log(r)|) < 0. This
allows us to use the Dominated Convergence Theorem.
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Therefore, if J(r) := m( —log(— log(r)))ﬂ then we have
J(r) + 9r(2) = gr(Tmax(r)) S 1(r) S J(r) + gr(Tmax (7)), (4.2.10)
hence

I(rpe1) o J(res1) L4 Gy (Tmax (T541)) /I (Th41)
Iry) ™ (k) 1+ 9n(2)/ (k) = gr (@max (1)) /I (r5)
for every k > 1. It is clear that supy~; J(rx41)/J (1) < o0 and lim,.; g.(2)/J (1) = 0.

We will prove that lim, 1 gr(Zmax(7))/J () = 0 and this will show that the hypotheses
of Theorem hold. For every 0 < r < 1, we have

G (T (r) 7270 (log(max(r))) (1 — 7)
O og(1 —r)[?

By (4.2.9), we can write

gr(oman(r)) _ r2eestt) 5 N,
J(r) " |log(1—r)|# <mmax(r)210g(r)) (1 =m).

Let ¢ > 0; for r close enough to 1, one has Tmax(7)10g(Tmax (7)) < (Tmax(r))Fe.
Then, again by (4.2.9) and with a Taylor expansion of order 1 of the logarithm at 1,
we get that

gr (Tmax (7)) < P2(=B/(2log(r)))"/ 1 +°) .
J(ry "~ Jlog(1—r)|f <log(r
F2(—B/(210g(r))) /42 )
(1-7)
log(1—7)[F  (1—r)P
< v
= [log(1—1)}f

B 1
)> (— log(r)?/0+9) (1 — 1)

B/(1+e) (1—7)

(1 — 7)~A+B/(+e)+L,

If e > 0 is chosen small enough such that -8+ 8/(1+¢)+1 > 0, then the right-hand
side converges to 0 when r goes to 1. We deduce that

lim Gr(Tmax(r))

Jim =S = 0. (4.2.11)

Thus we can apply Theorem [3.3.4] As in the proof of Theorem we have that
log(A1(r)) < |log(1 —r)| for 0 < r < 1 close enough to 1. For Sy, we have for oo > 0,

by (#2.7),
Se(r) = V1T 1107 = 1% + ———(— log(~ log(r)))

| log ()]
_ |log(1 —r)|=®
Vi—r
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and for a < 0, by (4.2.10) and (4.2.11)),

Se(r)=+/1+r2+1I(r) =< L( — log(—log(r)))_a

| log(r)|
_ |log(1 —r)|*
1—1r '

4.3 Harmonic functions on the plane

This section is devoted to differential operators defined on the space of harmonic
functions on R? denoted by H(R?), endowed with the topology of local uniform con-
vergence. The notation J, (resp. d,) denotes the partial derivative with respect to
the first variable (resp. the second variable).

Definition 4.3.1. Let f : R?> — R be an infinitely differentiable function. Then f
is harmonic if 02 f + 8§f =0.

Let a = (a1, as) € N? with a # 0. Then the operator D® defined on H(R?) by
De(f) =93 0,2 f, f € H(R?),

is frequently hypercyclic, see [17, Theorem 4.3].

Our aim is to find an admissible rate of growth for frequently hypercyclic functions
of each differential operator on H(R?) with a probabilistic approach. It will be in fact
the same for all of them. The optimal rate of growth for the frequently hypercyclic
functions of the operators 9, and 9, on H(RY), N > 2, has been studied in |17,
Theorem 4.2 and [41, Theorem 2.1] in terms of the L2-norm on spheres. The growth
of hypercyclic functions of differential operators defined on H(R”) has been studied
in 3] and [2].

Let us set some notations.

Definition 4.3.2. A polynomial p : R?> — R is homogeneous of degree m € N if
there is (aij)i+j=m C R such that p(z,y) = >, ;_,, a; 'yl for all z,y € R.

The space of homogeneous harmonic polynomials of degree m € N is noted H,, (R?)
and the space spanl],,~oHm(R?) is dense in #(R?) by |5, Corollary 5.34]. For
a = (ar,az) € N2 define |a| := a1 + ag, and set N3 := N2\ {(0,0)}. For any
f € H(R?) and r > 0, we define

1/2
1l = ( /S ( )|f2d0> ,

where S(r) is the circle of radius r centred at the origin of R? and o is the normalized
Lebesgue measure on S(r).
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Let p € H(R?) be a polynomial. When restricted to the circle of radius r > 0
centred at the origin, p can be viewed as a trigonometric polynomial. Indeed, let
(z,y) € S(r), then

eis + efis eis _ efis

for some s € [0, 27]. Thus, Lemma [3.1.13| holds for polynomials in #(R?). Therefore,
by carefully reading the proof of Theorem [3.3.4] one can see that this result still holds
for functions in H(R?).

Theorem 4.3.3. Let f =Y, . ane, € H(R?) where (e,)n>0 is a sequence of poly-
nomials such that for every n > 0, the degree of e, is at most Cn, where C > 0 is

some constant. Set Sy(r) := (/> <qanllenl? for any v > 0. Let (Xn)n>o be a cen-

tred subgaussian sequence of independent random variables such that ZZOZO anXnpen
is almost surely convergent and let (A;);>1 be a non-decreasing sequence of positive
functions defined on ]0, 00| such that Ay is non-decreasing.

If the conditions|()] and[(ii)| of Theorem are satisfied with w = oo, then there

exists ¢ > 0 such that almost surely, there exists ko > 1 such that for every k > ko,

oo
E anXnén
n=0

Furthermore, if the condition holds then there exists ¢ > 0 such that almost surely,
there exists ro > 0 such that

oo
E anXnen
n=0

log(A1(re))Ss(rr)-

Tk

< cy/log(A1(r))Sy(r)

T

for every r > rg.

4.3.1 A random vector for differential operators

First of all, we must find a frequently hypercyclic random vector for each operator
D*, a € N3. We will need the following lemma.

Lemma 4.3.4. [3| Lemma 4] Let m,k € N and u € H,,(R?). Then there exists
Pi.0y(w) € Honyi(R?) such that 0% Py, 0)(u) = u and

| Pk,0) (W)]l2,1 = [[wll2,1-

m)!
(m+k)!
Furthermore, the map P, o) : Hin(R?) — Honpr (R?) is linear.

Of course, this result also holds for the partial derivatives with respect to the
second variable. The proof in [3, Lemma 4] gives only one inequality, but with the help

of |3 Remark at p. 152], one can obtain the claim of Lemmam This immediately
yields the next result.
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Lemma 4.3.5 (|2, Lemma 2|). Let m € N, a = (a1,2) € N? and u € H,,,(R?).
Then the polynomial Py, o,)(u) := P,a,)(Pla,,0)(u)) € Hmﬂod(RQ) 18 such that
D*Pla, a,)(u) = u and

1Par,a0) (W) |l2,1 = ( lJull2,1-

m!
m+ [al)!
Furthermore, the map P, as) : Hom (R?) — HmHQ‘(RQ) is linear.

Proof. Define P(o, a,)(u) := P(0,a,)(P(a,,0)(u)). Then by Lemma applied twice,
we have D*P,, 4,)(u) = u and

(m+ay)! !
P, = — | P, = — .
|| (a17a2)(u)”271 (m + |a|)| ” (a1,0)(u)||2,1 (m + ‘Ck|)' H’U,H271
The linearity of P, ) is obvious by linearity of P 4,) and P, o) O

The bound given in the previous lemma is not exactly the one stated in |2, Lemma
2], but it can be deduced from its proof given there and Lemma [4.3.4

Lemma 4.3.6. The maps P, o) and P 1) commute, and for every j > 0, P 11,0) =
P(j,O)P(l,O) and P(O,j+1) = P(07j)P(071). Therefore, P(i,j)P(k,l) = P(k,l)P(l,j) fOT' every
i,J,k,1 € N. Furthermore, the maps P10y and P, 1) are injective on H,(R?), for
every n > 1.

Proof. For any n > 0, define the harmonic polynomials

n/2] (—1)J1'n72jy2'] [n/2] (71)jxn72jy2j+1

T 2 e T 2 G

By simple calculations, one can get the formulas O,un = Un—1,0xVn = Vn—1, Oyuy =
—Up—o and 9yv, = u,, for any n > 0, setting u_1 =v_g =v_; =0.

For any n > 1, the vectors u, and v,_; are linearly independent since = —
un(x,1) is a polynomial of degree n and  — v,,_1(x,1) is a polynomial of degree
n — 1, hence H,(R?) = (u,,v,_1) since dimH,,(R?) = 2 by |5, Proposition 5.8].

Let n > 1 and u € H,(R?). Let us show that P o)(u) is the unique polynomial
belonging to H,1(R?) such that 9, Py o)(u) = u. Write Py o)(u) = atn41 + bv, for
some a,b € R. Using the previous formulas, we get u = Py 0)(u) = au, +bv,_1, which
implies that Py o)(u) is the unique polynomial in H,1(R?) such that 0, Py 0)(u) = u
since u, and v,,_; are linearly independent. The same result holds for Py 1)(u). Now,
it is readily shown that Py g)Po,1)(u) = Po,1)FP1,0)(u). Indeed, 0,0, P(1 0yPo,1)(u) =
u, which implies by uniqueness that P(; o)(u) = 0yP1,0)P0,1)(u). Then again by
uniqueness, we get Py 0)Po,1)(u) = Po,1)P1,0) ().

Now, if u € Ho(R?) = (1), we can assume without loss of generality that u = 1.
In that case, one can easily see in the proof of |3, Lemma 4| that Py (1) = =
and P,1)(1) = y, or simply set P(; o)(1) = = and Py)(1) = y, and Lemma
holds for u = 1 with these definitions of P ) and Py ;). We want to prove that
P1,0yP0,1)(1) = Po1yPa,0)(1), that is Py ,0)(y) = Po,1)(x), which is equivalent to
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0z P,1)(x) = y by uniqueness proved above. But P q)(x) = zy since d,(zy) = =
and by uniqueness. Therefore, 0, Pg1)(7) = 0.(2y) = y.

Similarly, it is easy to show that P10y = P(;,0)P(1,0) and P j11) = Fo,5)P0,1)
for every j > 0. O

For the next two results, for each o = (a1, ) € NZ, define the set

_{Pza2 )|u€{1y}0<2<a1_1}
U{P(o,j) )|u€{1,x},0§]§a2_1}.

Here, we denote by x (resp. y) the function f € H(R?) defined by f(z,y) = x (resp.
fz,y) = y), for every (z,y) € R

Lemma 4.3.7. Let a = (a1,a2) € NZ. The vectors of the set M, are linearly
independent.

Proof. The claim clearly holds if |«| = 1. Assume that it also holds for any o € N2
such that |a| < m, for some m > 1. Let a = (a1, a2) € N2 with |a| = m + 1 and
assume without loss of generality that oy > 1.

Let ag,... y Aoy —1, bo,..., ba1717CO7 - >ba2717 do, ... 761042,1 € R be such that

alfl (!271
> (@iPlian (1) +biPliay (1) + Y (¢ Po)(1) + dj Pro,jy () = 0.
i=0 j=0

By taking 851_1852 on both sides of the equality, we get aq,—1 + ba,—1y = 0, hence
Ga,—1 = ba,—1 = 0. The other coefficients are then also equal to zero by the induction
hypothesis. O

Lemma 4.3.8. Let a = (a1,a9) € N3. The subspace of H(R?) generated by the
set U, >0 Pnaynas) (Ma) is equal to spanl/,, H.(R?), and is therefore dense in
H(R?).

Proof. We clearly have Ho(R?) = (1) = (P(g,0)(1)).
Let n € N and set S, := P5a, na,)- Then

(Pz o) (1)) € Hnla\+i+a2 (Rz) F0<i<a 1
>~ 6 > @1 — 1,
n(P(z ag)(y)) € Hn|a\+i+a2+1(R2
n(POJ)(l)) € Hn\oz|+j(R2) 0 < j <a 1
=~ ~ 2 — L.
Sn(Po,j)()) € Hujaj+j+1(R?)

Let m > 1. There exist n € N and 0 < r < |a| — 1 such that m = n|a| + 7. Since
dimH,,,(R?) = 2 by |5, Proposition 5.8], we then have

(Sn(P0,0)(1)), Sn=1(Play—1,02)(¥))) itr=0,n2>1,
2y _ (Sn(Po,r) (1)), Sn(Po,r—1)(x))) ifl1<r<a;-1,
HnlED =0 (80 (Procan (1), SuProsas 1y () ifr = o,
< ( (r—oaz,a2) ( ))vSn(P(rfazfl,az)(y)» ifay +1<7<|af-1.
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Indeed, the last three cases follow by using Lemmas and For the first case,
remark that Sn(P(O,O)(l)) = Sn—l(P(al,a2)(1))a and that P(al,az)(l) and P(alfl’(m)(y)
are linearly independent by arguing as in the proof of Lemma [4:3.7] O

Lemma 4.3.9. Let a = (a1,a0) € Ni, m € N and u € H,,(R?). The series
> n>1 V9108(1) Plnay nas) (1) converges unconditionally in H(R?).

Proof. Let u € H,,(R?). Remark that ||p||2, = ||p|l2.1r™ for every r > 0 and for any
homogeneous polynomial p of degree n > 0. By using Lemma 5.1] and Lemma
we get for every r > 0 that

Z V 1Og(n)HP(noq,na2) ||T S Z V log ”P(nal,naz )”2 27

n>1 n>1
< Q) Viog(n ||U||2 1,
; | + m)
and the series > -, 1/10g(n) Pna, nas) (1) is unconditionally convergent. O

These lemmas and Theorem [1.2.10| allow us to obtain a frequently hypercyclic
random vector for any differentiation operator.

Theorem 4.3.10. Let o = (a1, a3) € N(QJ and X be a subgaussian random variable
with full support. Then the random vector

az—1 oo
5SS BP0
uE{l,I} j=0 n=0
a1—1 oo

D D0 D XniwParnas) (Plias) (W) (4.3.1)

ue{l,y} =0 n=0

is almost surely well-defined and frequently hypercyclic for D, where X,, ;,, n € N,
0<i<a;—1,ue{l,y}, and X, ju, n €N, 0<j < as—1, ue€{l,z}, are i.id.
copies of X.

Proof. In order to use Theorem we must find a sequence (uy, ),z of harmonic
functions such that D*(u,,) = un—1. As we said in Remark the proof of Theo-
remstill holds if there exist some N > 1 and a family of vectors (un ;)necz,1<j<n
such that for every 1 < j < N and n € Z, one has D*(u, ;) = un—1,;. Here, we
take the family of sequences (un ju)n>0 = (Pnay,nas)F0,5)(4)n>0, 0 < j < ag — 1,
u e {1,1‘}, and (Un,i,u)nzo = (P(noq,nag)P(i,ocg)(u))n207 0 < 1 <o — 17 U< {17y}
Lemma implies that D*(upn j.u) = Un—1,ju and D¥(Vp ) = Un—1,, for
every n > 0, where u_y j, = v_1,;, = 0. By Lemma @ the span of this family of
vectors is dense in H(R?). Finally, Lemma allows us to apply Theorem
to get the result. O
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4.3.2 Rate of growth

In order to find an admissible rate of growth for the frequently hypercyclic vectors of
the differential operators, we will use Theorem

Theorem 4.3.11. Let a = (a1,a3) € N2 and X be a centred subgaussian random
variable with full support. Then there exists ¢ > 0 such that almost surely, there exists
ro > 0 such that

e’l"
ol < ev/log(r)

for every r > 1o, where v is defined in (4.3.1).

Proof. Let u € {1,2,y},0<i<a;—1and 0 < j < a3, and set m := |a|. Recall that
IIpll2,r = |Ipll2,17™ for every r > 0 and for any homogeneous polynomial p of degree
n > 0. By [2, inequality (2.4)] and Lemma [4.3.5] we have

T2(nm+i+j+deg(u))
(nm +i+ 7 + deg(u))1?
(4.3.2)
We show that the assumptions |(i)| and of Theorem with Ag(r) = d*r/m,
r >0, k> 1, where d > e, are satisfied for the series ) - Pna, nas) (Pl (w)).
Let 7 > 0. Some simple calculations yield -

1 Ptnas maz) (P gy )7 = [1Pnay nas) (P, (W)l

~
2,r —

7,.2(mn+i+j+deg(u)) r2mn
D G iTii TR )E S 2 mE
n>Ag(r)+1 n>Ag(r)+1
Z 2m(n+Ak(r))
_n>1 (m{n + Ax( ))>

%

mAkr IQZ mAk 2nm

K
T2d T

T (dRr)12”
By using Stirling’s formula, our task is now to prove that

dbr

d’“r” e
sup Z log ( ) < 00. (4.3.3)
E>1 drdtr/dbr

By using the same arguments as in the proof of Proposition [£.1.2] it is enough to show
that for every M > e, the function

e{L’

M=\/z’

is non-increasing away from 0, uniformly in M > e, and converges to 0 when z goes

far 11, 00 — 10, 00, & — +/log(z)
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to co. For any x > 1, we have

log(f(x)) = logy(x) _ xlog(M) + x — log(z)

2 2
- x< ~log(M) + 1 + 082(z) ~log(@) >
2x
If M > e then lim, o f(2) = 0. For any z > 1, we have
1 1
0z log(f)(z) —log(M)+1—- —.

2x

Then 9, log(f)(x) is negative if and only if 1 < 22 log(z)(log(M) —1+1/(2x)), which
holds if M > e and = > e. Setting now M = d*, the Dominated Convergence Theorem
allows us to conclude that holds.

It remains to estimate the series

2 log(x)x

as—1 oo a1—1 oo
> DD Pmar e Popy @+ D DY IPnarnas) (Pl.as (W)
ue{l,z} j=0 n=0 we{ly} i=0 n=0
(4.3.4)
By using (4.3.2)), we see that
az—1 oo a1—1 oo
Z Z”P(nm,naz)(P(O,j)(D)H?« + Z Z ||P(na1,na2)(P(i,az)(l))Hv%
=0 n=0 i=0 n=0
S e s
- )12 y 2
== (nm 4+ 7)! — = (nm i+ a))!

- n2
— nl
The same conclusion holds for u = z and v = y in (4.3.4). By Lemma [4.1.8, we
deduce that the series (4.3.4)) is estimated by 2" /r'/2.

It is now easy to check that assumption of Theorem is satisfied with
(r)k>1 = (k)g>1, and Theorem can be applied. O

4.4 Kothe sequence spaces

In this section, we study the growth of frequently hypercyclic functions of chaotic
weighted shifts defined on Ko6the sequence spaces, see |71, Chapter 27]. Linear dy-
namics of shifts on such spaces were studied in [27].

Definition 4.4.1. A Kdthe matriz is a matrix A = (@ n)m,n>0 of positive numbers
such that for all m,n > 0, one has am n < Gpmt1.n-

Definition 4.4.2. Let 1 < p < oo and A be a Kéthe matrix. The Kéthe sequence
space of order p is defined as

NP(A) = {(wn)nzo e KN | vm >0, i |2 [P, < oo}

n=0
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if p < 0o, and

A®(A) = {(xn)nzo e KN | ¥m >0, sup |Zn|@m,n < oo}.
neN

1/p
These spaces are endowed with the seminorms ||z||,, = (Zn>0 |xn|pam’n> ifp <
00, and [|z|, := sup,,;>q [Tn|@m n if p= oo, for all m > 0 and z € A\?(A).
We will need a probabilistic result.

Proposition 4.4.3 (|1, Proposition 1.8]). Let A = (a;;)1<ij<n be a real matriz
and let (X ;)1<i j<n be independent standard Gaussian real random variables. Define
Ga = (0 jXi j)1<ij<n. For every 1 < p < oo, we have

E|Ga:ty — Gl = Ao Ay — )2 +I(Ao A) : 3, — £ |2
Furthermore,

E[Ga:tf — ]| < [|AcA: g1/2 1/2” Y2y max V1og(j +1)b

where bj := ||(ai,j)1<i<nll2, 1 <j <n, and (b )i<j<n s the non-increasing rearrange-
ment of( i1<j<n-

Lemma 4.4.4. Let eq,...,en be the canonical basis off , where 1 < p < o0 and
N > 1. Let ay,...,an € R and let ( 1)1’:1 be independent standard Gaussian real
random variables. Then there exists a constant ¢ > 0, independent of N, such that
for every R > 1, one has

(H Z anXn€n

if 1 <p<oo, and

N
IP’(H Z aanen
n=1

Proof. Define f : RN — [0,00[,2 — || Zgﬂ anTnenlp, X = (X1,...,Xn) and
S = ||(an)1<n<n|p, and let p* be the conjugate exponent of p. We can assume that
S # 0. For every z,y € RV, one has that

> cxﬁ(Z |anp)l/p> < eiR

n=1

1
cy/1log(N + 1) \F max |an|) R

@)~ 1)l < | i@c ~ yn)en

(Z N

< max |, — ynlS < el

with the obvious modifications for p = co. By Markov’s inequality and |24, Theorem

5.5], we get for any A > 0 that
R \S?

p(f(X) >S5 +5+ ]E(f(X))> < e BE(X-EFXD) =255 < =R,
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Choosing A\ = v2R/S yields
P(£(X) > V2RS +E(f(X))) < e f

Now, notice that || ny:l anXnenllp = |Ga : L)L — £17]|, where A is the diagonal
matrix with entries (a,)i<n<ny. Using Proposition we get E(f(X)) < S if
1 <p<ooand E(f(X)) < log(N+1)S if p = oo, and this combined with the
previous inequality concludes the proof. O

The next theorem is the main result of this section.

Theorem 4.4.5. Let 1 < p < oo and A be a Kéthe matriz. Let T be a chaotic
weighted shift on X\P(A) with weight sequence (wy)n>1 such that Y - Xpe, /By is
almost surely convergent, where (X,)n>0 is a sequence of i.i.d. standard Gaussian
random variables. Let (A;)j>1 be a non-decreasing sequence of positive functions
defined on N. Assume that the following conditions hold, where a :=1/2 if 1 < p < 00
and a:=1 if p = oco:

(i) the quantity
1/p

j : Am,n
m>1?) g J+1 ﬁn n>A;(m)+1

P
is finite, with the usual modification for p = oo,
(ii) the family (A;(m)™1)j m>1 is g-summable for some g > 0.
Then there exists ¢ > 0 such that almost surely, there exists mg > 0 such that

1/p
< clog(Ay(m))* (agn)nm

for every m > myg, with the usual modification for p = oco.

Proof. For every ayp,...,ay € K and any m > 0, we have

= l(|anlas/?)o<n<nlp-

Therefore, the theorem is proved by repeating verbatim the proof of Theorem [3.3.4]
but by using Lemma [£.4.4] instead of Lemma [3.1.13] O

We now apply the previous theorem to the space of rapidly decreasing sequences
s defined as

(oo}
5= {x e KN | for all 0 < t < oo, Z |xn|e“°g("+1) < oo}.
n=0

This space is a Kothe sequence space with matrix A = (m}:g( ))k,nzo, where (mg) k>0

can be any increasing sequence of positive numbers tending to infinity and setting
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Log(O) 1 for all k& > 0. By [27, Proposition 4.1] and |27, Proposition 3.3], we have
s=AP(A) for any 1 < p < 0.
We will find an admissible rate of growth for the frequently hypercyclic sequences
of the operator
T:s5— S, T — ((n + 1)xn+1)n20~

To end this section, we will show that this operator is conjugate to a natural operator
on the space of 27-periodic infinitely differentiable functions.

First of all, let us prove that » ., X,e, /3, is almost surely frequently hypercyclic
for T', where (e,,)n>0 is the canonical basis of s, (X,,)n>0 is a sequence of 1.i.d. standard
Gaussian random variables and (3, := n! for all n > 0. Let k£ > 0, then we have

€n

[} 0 log(n)
Z v/1og(n) a0 = Z v/log(n) mkn! < 00.
n=1 n=1

By Theorem [1.3.1} the random series 3, - X,en/fy is almost surely convergent and

frequently hypercychc for T. In the sequel, we will assume that ), ., m, ? converges
for some ¢ > 0 and that, without loss of generality, my > 1 for all k > 0.
Let 1 < p < 0co. Our aim is to prove that

Log(n) 1/p
S log(
by log(Ajah < w)

j=1 n>A;(k)+1

is finite, where A;(k) := d/m,/? with d > e and all j > 1, k > 0.
Some simple calculations yield

>

TLZAJ(]C)—‘rl

log(n) n A (R)

my my k
A DR DY rrwv (3]

n>A;(k)+1
A (k) mr
k
- A |;D Z A np

o

T AR dr -1

By using Stirling’s formula, our task is now to prove that
Aj(k)
e
sup Z 1/log(A , < 00. (4.4.1)
k2057 dJAJ(k)\/Aj(k)

By using the same arguments as in the proof of Proposition [4.1.2] it is enough to show
that for every M > e, the function

eI
M=\/z’
is non-increasing away from 0, uniformly in M > e, and converges to 0 when x goes to
0o. This has already been done in the proof of Theorem 4.3.11] Setting now M = d’,

far 2], 00 — |0, 0], & — /log(z)
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the Dominated Convergence Theorem allows us to conclude that (4.4.1) holds, and
Theorem can be applied to 7'
For p = oo, similar calculations show that

log (n)

! M=) [, <
SUPZ og(Aj1(k Brn S n>a;k)+1llee 0

k>0 i>1

and we can use Theorem 4.5
We have thus obtained the following result.

Proposition 4.4.6. Let T : s — s,z — ((n + 1)@pt1)n>0. Set a == 1/2 if
1<p<ooanda:=1if p=oo. Then the random vector ) -, Xpe,/n! is almost
surely frequently hypercyclic for T, where (Xp)n>0 is a sequence of i.i.d. standard
Gaussian random variables. Furthermore, if Y, -, m;? converges for some ¢ > 0
then, for any 1 < p < oo, there exists ¢ > 0 such that almost surely, there ewxists
ko > 0 such that

o0

Xn
>

n=0

00 mlog(n) 1/p
< ctoglmi)e (3 "er—)

n=0

for every k > ko, with the usual modification for p = co.

The space s is isomorphic to many Fréchet spaces, see |71, Example 29.4(1)]. Here,
we consider the space C32(R) of 27-periodic infinitely differentiable complex-valued
functions on R, endowed with the seminorms

1Fllm := max 1F®N 22 (—rmpy» | € C52(R), m € N.
This space is isomorphic to s, see |71, Example 29.5(1)]. Every function f € CS2(R)
has a representation f = a,e™®, where (a,)nez is the sequence of Fourier
coefficients of f.
Let us define the operator B : E — E defined on the subspace F := {f =

Yonen ane™™ € C31(R)} by

nez

B(f)=e""0,f, f€ E

This operator is a weighted shift with respect to the Fourier coefficients and with
sequence of weights (in),ecn. The space E is also isomorphic to s via the isomorphism

F:E—s,f=%,cyane™ — (an)nen. For any m > 0 and f = _yane™ €
B, we have
2 _ 2 _ ‘
1713, = jmax [ |uqkmﬂ)fogg;]§jznt% .
=27 max n%a 2=9r n?"|a, 2—H n"a,e"
0<k | | Z | | Z L2([-m ﬂ,])

By using the previous proposition, we can obtain an admissible rate of growth
for the frequently hypercyclic functions of B. Notice that if (X,,),>0 is a standard
Gaussian sequence, then so is (X,,/i™)n>0.
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Proposition 4.4.7. Let B : E — E,f — e ®0,f. Then the random vector
50 Xn€/(i"nl) is almost surely frequently hypercyclic for B, where (X,,)n>0 is
a sequence of i.i.d. standard Gaussian random wvariables. Furthermore, there ewists
¢ > 0 such that almost surely, there exists ko > 0 such that

o0 i X . o 2k 1/2
no_inx

> nhme SCV%(ZW) :

n=0

n=0

L2([—,m])
for every k > k.

Proof. Tt suffices to use Proposition with the sequence (mg)r>0 = (€¥)x>0 and
p = 2 and to notice that

L1 = Xn o Xnina
P e ) =X e

n=0 n=0

is frequently hypercyclic for B whenever 3, -, X, /(i"n!)e, is so for T O

4.5 Optimality

So far we have found an admissible rate of growth for some chaotic weighted shifts
on H(C) or H(D). A natural question is to find the optimal growth. The function

ro— \/ano llenll2/18x|2, up to a logarithmic factor, has been proved to be an

admissible growth for the weighted shifts considered in the previous sections. In
[34], Drasin and Saksman proved that r —— (/> -, r?/n!? is in fact an admissible

growth for the differentiation operator and is the optimal one, by constructing a
frequently hypercyclic function with this rate of growth. In [75] and [76], Mouze and
Munnier used the same construction to get a holomorphic function whose growth is
the optimal one for some weighted shifts on H(ID). This construction relied on the
so-called Rudin-Shapiro polynomials.

In this section, we do not pretend to obtain the optimal rate of growth for every
chaotic weighted shift. Instead, we show that the above-mentioned construction can
be generalized to any chaotic weighted shift on H(C) or H(D) in order to get a
frequently hypercyclic vector. Then, it would remain to calculate the growth of this
function and prove that it is optimal.

This section is divided into four parts. First, we define some notations and explain
the construction of the frequently hypercyclic function. Then, this function is proved
to be well-defined. Finally, we prove in two parts that it is frequently hypercyclic for
the given chaotic weighted shift.

Notations. Let T': F — FE be a chaotic weighted shift on the Fréchet space
E = H(C) or E = H(D), with respect to the basis of monomials (e,),>o and with
sequence of weights (wy,),>1. As usual, we define 3, := wq ... w, for every n > 1,
and By := 1.

If ¢ = 37, bje; is a polynomial of degree n > 0, we define ||q[|;n := 327 [bs]-
Let (gx)k>1 be a dense sequence of polynomials with rational coefficients, and let
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(Ik)r>1 be a sequence of positive integers such that ||gg|/;; < I) for every k > 1 and
limy_.oo Il = oo. For each k > 1, set q, = Z?’;O b;k)
define i := 30 B¢,

For each positive 1nteger N > 1, choose a finite sequence (¢V) ' of complex
numbers of modulus equal to 1 and such that at least half of them are equal to 1;
define py = Zg 0 eNe,. In . . and [76], the Rudin-Shapiro polynomials have
in fact been taken. But the properties of those polynomials are only used to bound
the sup-norm, which we do not perform here.

Choose any monotone sequence (dx)x>1 and (rx)x>1 of positive real numbers such
that limg oo 0 = 0 and limy_,o, 7, = w, where w := oo if E = H(C), or w := 1 if
E = H(D). We partition the set of positive even integers into

ej, where dj, := deg(qx), and

pi={282j-1)ji>1}, k> 1.

Let (ak)k>1, (Jn)n>1, (a@n)n>1 and (N,),>1 be strictly increasing sequences of
positive integers satisfying the following properties: for every k > 1 and every n € Ay
with a,, > ay,

(].) o > dk,
(2) gkl < o,

(3) maxo<i<d, |Bi|lk ijjn IB | < 1/2F, where for each k > 1, ny, is the smallest
m € A such that a,, Z g,

IN

(4) maxo<i<a, Bille Xjsa, 157 < Oks

(5) Xj>com ﬁ < 8, where C' > 0 is the constant in |(9)]

(6) an < Jn.

(1)

(7) jn+1 < Cr. (1)

Jn for some ¢/’ > 1,
(8) (Nn, — Do +di; < Jng1 — Jn < c LN /2] for some c,(C) >0,
(9) Ca, < jnt2 — jns1 for some C' > 0,

(10) jn < 0(3) S ! (Jm+1 — Jm) for some c( ) >0

mEAk,am > ag

The constants c,(cl), ) and c,~C in 1nequahtles . . and can depend on k.

Since T is chaotic, such a sequence (ag)g>1 can always be chosen to satisfy proper-
ties to given (jn)n>1 and (an)n>1. Furthermore, note that the properties @
t0/(10)| can also always be satisfied, whether the shift is chaotic or not. For example,
in [34], the sequences are set to a, = n/10, j, = n? and N,, = |n/ay] for the differen-
tiation operator, while in [75] and [76], a,, = 2"}, j, = 2" and N,, = [2"~!/ay ]| for
the weighted Taylor shifts. However, that does not mean that these are good choices
for every chaotic shift. These sequences should be chosen in order to ensure the right
optimal rate of growth.
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For each n > 1, define I, :== {jp,...,jnt1 — 1} and if n € A, k > 1,

o)
QTL = Z Jﬂ?" ej_jn7
J

j€I,

where the sequence of coefficients (cﬁ’”)?ngl‘l‘jn is such that

1=

Jnt1—1=jn
PN, (2%%)qr(z) = Z cgk)zj, z€C,
§=0
and define
0 if n is odd,
P,:=<X0 if n € A and a, < oy, (4.5.1)

2nQ,(z) if n € A and a, > ay.

Observe that [(8)] ensures that the degree of py, (2*%)qx(2) is at most ju41 — jn — 1,
and @, is well-defined. For the sake of clarity, we define for each £ > 1 the set
B :={n € A; | an > ai}.

Finally, define f := )" ., P,. This function will be proved to be well-defined and
frequently hypercyclic for T

Proposition 4.5.1. The function f =5 ., P, is well-defined and frequently hyper-
cyclic for T, where the polynomials P,, n > 1, are defined in ([4.5.1)).

The function f is well-defined. Let & > 1 and n € By. We first study the blocks
of coefficients of the polynomial P,. For any z € C, we have

N,—1 dr Nn—1 dy,
) = (30 e ) (i) = 3 3 e
j=0 1=0 j=0 1=0
We have (j + 1)ay — jay, — dp, > 0 for any j > 0 since oy > di by This implies
that Cg‘];)wl = sjynﬂlbl(k) for every 0 < j < N, — 1 and 0 <[ < dj. Therefore,

N.—1 d N, 5.1,(k)
i €j 5lbl

Q=2 D,

7=0 [=0

Cjak+1
5j0£k+l+jn

and
Np—1 dy €§v”ﬁzbl(k)

P-Y Y

B opes Contitin: (45.2)
j=0 1=0 jak+l+in

To be clearer, the coefficients of P, are divided into distinct blocks as follows: the
first one starts from degree j, and ends at j, + di, then the second one starts from
degree j, + o and ends at j, + ay + di, and so on; see Figure 4.1
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Jn Jn +dg Jn + g Jn + Qi + di, Jn+1

Figure 4.1: Blocks of coefficients of P,: bold lines indicate possibly non-zero coeffi-
cients.

Let 0 < r < w and let kg > 1 be such that r < ry,. We have by using (4.5.2)), the
triangle inequality, the fact that ||qx|/;n < lg, ny = min B, and

71_1 dk k) « +l+
B e
PEATED DD DD B Al |
n>1 k>1neBy j—0 1=0 ki titin

n—1 di rokIFli+in

<D g, 18l 3 pP S

55 = = Bagitial

ko—1 J rd
< Z x Bl > o x Bl > 2
= 0<1<d, el |B]| 0<l<d 5 |51
ko—1
< 3 s il 3 o
— 0<l<d S |ﬁj =i 2

Thus the series ) ., P, converges on any disk of radius 0 < r < w and centred at
the origin, and the function f is then well-defined.

Frequent hypercyclicity I. Let £ > 1 and n € By. Define
BY = {jut+jor € I | &) =1, 0<j < Ny —1},

and let s € B,(Ik). We are going to show that
1T*(f) — axllr, < Ok (4.5.3)

Write s = j, + may with m € {0,...,N,, —1}. For any [ > 1 and n € B; such
that n < n, we have jsy1 —1 < j, since (jz)n>1 is strictly increasing, and T°(e;) =0
for any j € I. Therefore, by continuity and linearity of 7', we have

(k)

SURRSTINS S STSHESTINS SHb o 3L S

n>n k>1ne€Bg n>njely
It follows by (4.5.2)) and definition of T that

Np—1 dg Ny, (k)
* €; /Blbl

GRS IDY

j=m [=0

. Cjagtitin—s-
ﬁjak"rl"r]n_s
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For j = m and since ¢)» = 1, we have

d,

k dy
eh by N
Cmag+l+in—jn—mar = E :bl € = qk-
1=0 /Bmak"l'l"'jn_jn_mak

Observe by (4.5.2) that the coefficients of P, of degree s +dj +1 < j < j, + (m+
Dag — 1 =s— 1+ ay are equal to zero. Therefore,

]7, +1— 1 (k (k)

T5(f) —qp = Z Bﬂﬂwej 9+Z Z Zé]"
J—s J—s

Jj=s+ag k21 neB;,n>n+1jel;

Denote by S; the first sum and by S the second series. By the triangle inequality
and the fact that ||gx|;» < g, we have

Jn+1—1 | (k) | Jnt+1—1 ||q1c||ll '
||Sl||rk§ Z J Jn ]—SS Z ]—s
j=stog 18] j=stax 18- S|
ris
X |Bi|lk Z §
<ot Pl 2 B
< 0.
" 0tiza 5, 1Bl Z |ﬂj| Ok (454)
j>ag

where the last inequality holds by For S5, again by the triangle inequality we get

that
EAMES SIS Zvﬁjg b

k>1nEBy n>n+1jels

For every k >1,n € B; and j € I3, byand. one has

‘ ‘<||Qk||l1<ak<an<]n§]a
J ]n

which implies

IS0, < S ijs < ZWJ—M

k>1 nEB~ n>n+1jels J2Jn+2

Note that n + 1 is not in A, allowing us to sum from j,4+o. Since s < j,41 and
Cay < Cay < jpio — Jns1 for some C > 0 by we have

A ‘g| < &, (4.5.5)
j>Cay

where the last inequality holds by [.]
Combining the inequalities (4.5.4) and ( shows .
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Frequent hypercyclicity II. Let &k > 1, we now want to show that the set Dy :=
UneBk BS’C) has positive lower density. This will finally conclude that the function f
is frequently hypercyclic for T'.

Let N > 1 be large enough. There exists m € By, such that either j,, < N < j11
or jm+1 < N < Jmya. Assume first that j, < N < jm+1. Then we get, since for
every n > 1 at least half of the coefficients of py, are equal to 1 and by using

[(10)] and [(7)]

1 k —1 )
‘ka{077N}’ >Z?€Bk |B7(L)| >Z?€Bk|_Nn/2J > 1 Im > 1
N+1 - N+ T N+1 TP gmia T (DD

Now, assume that j,i1 < N < jmie. By and [(10)] since m + 1 does not belong
to Ay and for every n > 1 at least half of the coefficients of py, are equal to 1, we
get that

m+1 k .
|ka{0a,N}| > anBk |B§l)| > 1 Im+2 1

NtL  © Nl ~ O s

Taking the limit as N goes to co shows that the set Dy has positive lower density.

4.6 Conclusion

As discussed in Section [£.5] one natural question is to find the optimal rate of growth
for chaotic weighted shifts. Theorem says that the function Sy associated with
the entire function f is always, up to a logarithmic factor, an admissible rate of growth
that is valid outside some set of finite logarithmic measure. And by Theorem [3.3.4]
the inequality can even sometimes hold everywhere. Then one may ask whether the
rate of growth found in Theorem [£.1.1] holds everywhere for any chaotic weighted
shift.

In [80, Proposition 6], it is proved that the logarithmic factor is optimal for the
random frequently hypercyclic vector associated with the differentiation operator.
But it is known by [34, Theorem 1.1] that the optimal growth for the frequently
hypercyclic vectors is actually the function Sy, where f is the exponential function.
With a careful reading of the proofs, one can see that this logarithmic factor comes
from a probabilistic result, namely Lemma [3.1.13]

The function Sy associated with a chaotic weighted shift is also the optimal rate
of growth for almost any weighted Taylor shifts considered in Subsection except
possibly for T}/, see |76, Theorem 1.3]. And [15, Theorem 6] indicates that this
function could also be the optimal rate of growth for the Dunkl operator.

Therefore, we might think that for every chaotic weighted shift defined on H (D)
or H(C), the map Sy is actually always the optimal rate of growth. This claim is
supported by the construction of a frequently hypercyclic vector in Section since
this led to the proof of the optimality for the differentiation operator in [34] and for
some weighted Taylor shifts in [75] and [76].

Finally, we point out that even if optimality were proved, the probabilistic meth-
ods of this chapter may still be of some interest. Recall that by Theorem [0.1.19]
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the chaoticity of a weighted shift is equivalent to the unconditional convergence of
Ym0 €n/Pn- Therefore, our results say that a random perturbation of the coefficients
of this series could nearly gives the optimal rate of growth. We might expect that a
frequently hypercyclic function with the optimal growth would be more complicated
to construct. Furthermore, these results also imply that, in a measure-theoretical
sense, there are many functions with a quasi-optimal growth.

We then ask the following questions to conclude Chapter [

Question 4.6.1. Let T : H(C) — H(C) be a chaotic weighted shift with weight
sequence (Wp)nen,- Is the map

St : [0, 00[ — [0, 0],

optimal for the growth of frequently hypercyclic functions of T'? If not, for which class
of shifts T is the map St the optimal rate of growth?

Question 4.6.2. Let T : H(D) — H(D) be a chaotic weighted shift with weight
sequence (Wp)nen,- Is the map

optimal for the growth of frequently hypercyclic functions of T'? If not, for which class
of shifts T is the map St the optimal rate of growth?
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Throughout the appendix, let F be a separable Fréchet space over the field K = R or
C.

A.1 Bochner spaces

In this section, we define the Bochner spaces for Fréchet space-valued functions. These
spaces are defined in the same way as the classical Bochner spaces, see [50, Chapter
1] for the Banach case. We will prove that they are Fréchet spaces too. This result is
stated and proved in [64, Proposition 1], but it might have been proved before.

Definition A.1.1. Let (S,B, 1) be a measure space. Let 1 < p < co. We define
the space LP(S, B, u; E') as the space of all equivalence classes of measurable functions
f S — FE for which

[ s < oc
s
for all continuous seminorms || - || on E. This space is also noted L?(S; E).

For a given non-decreasing sequence (|| - ||x)x>1 of seminorms of E generating its
topology, we define for each real number 1 < p < co and integer k£ > 1 the seminorm

|- Ilp.x by
1/p
k= flindu
= ([ 111an)
for every f € LP(S; E).

We now prove that the space LP(S; E) endowed with this sequence of seminorms
is a Fréchet space. The proof is actually a straightforward modification of the scalar
case, see [87, Theorem 3.11].

I/

Theorem A.1.2. Let 1 < p < oo. The space LP(S; E) endowed with the sequence of
seminorms (|| - ||p.x)e>1 s a Fréchet space.

Proof. First we show that (|| - [|p.x)k>1 is a separating sequence. Let f € LP(S; E) be
such that ||f||, x = 0 for all k& € Ny. Then for each k € Ny, there exists a set Ay CE
of measure zero such that ||f|lz = 0 outside Aj. Set A := |J,~; Ax. This set has
measure zero, and f = 0 outside A. -

141
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We now show that every Cauchy sequence is convergent. Let (f,,),>1 be Cauchy
in LP(S; E). There exists an increasing sequence (ny),>1 of positive integers such

that for all £ > 1, one has
1
||f7lk+1 - fm”p,k‘ < 27

. k

Fix n > 1. Set grn =35 [ fn; 11 — fa;lln for each k > 1, and g5 := 355 (| fn;0 —
fn;lln- By using the Minkowski inequality in L”(S;K), we have supy>; gkl zr(s) <
0o, implying that

/Slikrrigéf G ndp < likrrigéf/sgﬁ’ndu < oo

by Fatou’s lemma, see [87, Lemma 1.28]. We deduce that g,, < co almost everywhere.
Therefore, almost everywhere, we have > .o, [ fn;,, — fa;l[n < oo for every n > 1.
Since E is complete, we deduce that -

k—1
fnk = fn1 + Z(fnj+1 - fnJ)

Jj=1

converges to some function f almost everywhere when &k goes to co. On a set, of mea-
sure zero, we can set f and each fi, k> 1, to 0, and (f,,)r>1 converges everywhere.
Thus f is measurable by Lemma We must show that f € LP(S; E) and that
(fn)n>1 converges to f in LP(S; E). Let kK > 1 and € > 0. There exists N > 1 such
that for all n,m > N, one has || f,, — fm|p.x < €. By Fatou’s lemma, we get

/ 1f = full?dps < liminf / 1, — FunllZdps < 2
S J—0 Jg

for all m > N. We deduce that f = f — f,, + fm € LP(S;E), and lim,,, o0 || f —
fmllp.x = 0 for every k > 1. O

As in the scalar case, the previous proof shows that a Cauchy sequence in L?(S; E)
has an almost everywhere convergent subsequence.

Lemma A.1.3. Let 1 < p < co. Let (fn)nen be a sequence of measurable functions
converging to f in LP(S; E). Then there exists an increasing sequence (ng)xen such
that limy_, o0 fr, = f almost everywhere.

A.2 ~-radonifying operators

We will now state the main property of y-radonifying operators used in this work,
namely the ideal property. The proof is given in [51, Theorem 9.1.10] for maps with
values in a Banach space. Since the definition given there is not Definition but
an equivalent one, we will give the relevant definitions for the Fréchet space case. All
the proofs of the stated results remain the same as in [51], see the references given in
each result.

In the remainder of this section, let (g,)nen be a standard Gaussian sequence,
that is, an i.i.d. sequence of Gaussian random variables with mean 0 and variance 1.
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Definition A.2.1. Let H be a separable Hilbert space and 1 < p < oo be a real
number. A linear map T : H — F is y-summing if

supE(H zk:ng(hj) ‘p> < 0o
=0

for all continuous seminorms || - || on F, where the supremum is taken over all finite
orthonormal systems (hj)§:0 in H. The space of all v-summing operators is denoted
by V% (H, E).

By the Kahane-Khintchine inequalities, see [51, Theorem 6.2.6], all the spaces
Y2 (H,E), 1 < p < oo, are equal. In |66, Chapitre 3, Théoréme IV.1], these inequal-
ities are stated in a Banach space framework, but the proof carries over verbatim to
the Fréchet space case.

Lemma A.2.2 ([51, p. 255]). Every vy-summing map T : H — E is continuous.

Proof. Let || - || be a continuous seminorm on E. Since T is y-summing, there exists
some M > 0 such that ||T'(h)|| < M||h||g for all h € H. This yields the continuity of
T. O

For the remainder of this section, let (]| - ||n)nen, be a sequence of seminorms of
E generating its topology.

Definition A.2.3. Let H be a separable Hilbert space and let 1 < p < co. For each
n € Ng and every T € v2_(H, E), we define

p\ /P

)

where the supremum is taken over all finite orthonormal systems (hj)?zo in H.

k
Iy = sow (| a7
=0

Endowed with the sequence of seminorms (|| - ||,z (i, )n)nen, defined above, the
space v2 (H, E) is complete, as the next result says.

Proposition A.2.4 (|51, Proposition 9.1.2]). Let H be a separable Hilbert space and
1 <p < oco. The space vE (H, E) is a Fréchet space.

The ~-radonifying operators will be defined as the limit of finite rank operators.

Definition A.2.5. Let H be a separable Hilbert space. For h* € H* and = € E,
define the linear map

W ®@x:H—s E h—> h*(h)x.

A finite rank operator T : H — E is a linear map of the form T = 25:1 hl & xp,
where hi,...,h}y € H* are orthonormal and z1,...,2y € £, N > 1.

Every finite rank operator is y-summing, see [51, Proposition 9.1.3].
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Definition A.2.6. Let H be a separable Hilbert space and 1 < p < oco. The space
~vP(H, E) is defined as the closure in 72 (H, E) of the finite rank operators. The
elements of v?(H, E) are called ~-radonifying operators.

As with the y-summing operators, all the spaces v?(H, E), 1 < p < oo, are equal.
We now state the ideal property.

Theorem A.2.7 (|51, Theorem 9.1.10]). LetT : H — E be a y-radonifying operator
on a separable Hilbert space H. Let G be another separable Hilbert space, F' be another
separable Fréchet space, and let S : G — H and U : E — F be continuous and
linear maps. Then the map UTS is v-radonifying.

The last result states that Definitions [0.5.8 and [A22.6] are equivalent.

Theorem A.2.8 ([51, Theorem 9.1.17]). Let H be a separable Hilbert space and
1 < p < oo. Let (hp)nen be an orthonormal basis of H and T : H — E be a
continuous linear map. Then T € vP(H, E) if and only if 3, <, 9nT(hy) converges
in LP(; E) and if and only if Y, <, 9nT(hy) converges almost surely.

A.3 Stochastic calculus in Fréchet spaces

We will give a proof of Theorems and in this section. We will need some
results. First, we recall some topologies on a Fréchet space FE and its dual £*. Our
main references are [|71] and [89].

Definition A.3.1. Let F be the set of all finite sets of E*. The topology generated
by the seminorm system (pr)per, where

pr: E — [0,00[,y — sup [z"(y)],
x*eF

for each F € F, is called the weak topology on E and is denoted by o(E, E*).

Definition A.3.2. Let F be the set of all finite sets of E. The topology generated
by the seminorm system (pg)pex, where

PF - E* — [0,00[,JT* — sup ‘Jf*(y”,
yel

for each F € F, is called the weak topology on E* and is denoted by o(E*, E).

Recall that a set A C F of a vector space F' is absolutely convez if it is convex
and Az € A for all scalars A € K such that [A| <1 and z € A.

Definition A.3.3. Let M be the set of all absolutely convex and o(E*, E)-compact
sets of E*. The topology generated by the seminorm system (pas)arear, where

Pm - E— [0700[7?/ —— sup |$*(y)|,
z*eM

for each M € M, is called the Mackey topology on E and is denoted by 7(FE, E*).
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Definition A.3.4. Let M be the set of all absolutely convex and o(FE, E*)-compact
sets of E. The topology generated by the seminorm system (pas)area, where

pu BT — [0, 00, 2" — sup |27 (y)],
yeM

for each M € M, is called the Mackey topology on E* and is denoted by 7(E*, E).

We will need Proposition in the proof of Theorem It is proved in the
given reference for Banach spaces, but we give the proof for the sake of completeness.
First, we need a preliminary lemma. Recall that a map R : E* — E is positive
if *Ra* > 0 for all z* € E*, and is symmetric if * Ry* = y* Rx* for all 2*,y* € E*.

Lemma A.3.5 ([94, Lemma 4 and its proof]). Let R : E* — E be a positive
symmetric map. Then there exists a Hilbert space Hr and a continuous linear map
ig: Hp — E such that R = igliy, where I : Hgp — HTF, is the canonical conjugate-
linear operator. More precisely, Hg is the completion of E*/M under the norm
induced by R, given by (x* + M,y*+ M)y, = *Ry*, z*,y* € E*, where M = {z* €
E* | z*Rx* =0}, and i}, : E* — Hp,z* — o* + M is the inclusion map.

A positive symmetric map Q : E* — (E*) is defined in the same way as a
positive symmetric map from E* to E: for all z*,y* € E*, one has (Qz*)(z*) > 0

and (Qy*)(z*) = (Qz*)(y*).

Proposition A.3.6 (|43, Proposition 2.2]). Let Q : E* — (E*) be a positive
symmetric map. Suppose that there exists a positive symmetric map R : E* — FE
such that (Qz*)(x*) < x*Ra* for every x* € E*. Then Q(E*) C E.

Proof. Let ir : Hy — E be the map given by Lemma [A:35] Fix z* € E*, and
define the linear map

P TR(ET) — K, iR(y") — (Qz7)(y").

Let y* € E*. By the Cauchy-Schwarz inequality applied to the sesquilinear form
(z*,y*) — (Qz*)(y*), the assumption and Lemma [A.3.5] we get that

62 ()] < ((Q")(@) " (Qe*) ()" < @) gl (™) 1

This shows that ¢,- is well-defined and continuous on (i%(E*),| - ||g,). Therefore,
we can continuously extend ¢, on Hp, and the extension is still noted ¢,«. Now, for
every y* € E*, we have

Yy (ir(dar)) = (Y 0ir)(dar) = da=(y” 0ir) = (Qz7)(y")
We deduce that Qz* = ig(¢p+) € E. O

1/2

The last notion we will need is the following one. Let V C E be non-empty. The
polar of V noted V°, is the subset of £* defined by

Ve .= {a:* eE"||z*(y)| < 1forallye V}.

By convention, the inner product on a vector space is linear in the first argument
and conjugate-linear in the second argument.



146 Appendix

Proof of Theorem[2.1.4} The implication |(i)] = is trivial.

Assume that holds. Then for all z* € E*, the random variable z*(Y") is
Gaussian, hence Y is Gaussian. Let ) be the covariance operator of its distribution
w. For every z* € E*, we have by the It6 isometry, see Theorem [0.4.4] for the real
case and Lemma [0.4.7 for the complex case,

mwzéyﬁw:LWW%szwwm%t

This shows

Now assume that holds. Set H := (E*)*, where the closure is taken in
the space L?(u). It is a separable space by Proposition 1.2.29]. Take the ~-
radonifying operator T := K : H — FE given by Theorem From Q@ = KJK*,
where J : H* — H is the canonical conjugate-linear identification operator, and by
hypothesis, it follows that

¢ / " (6(1))[2dt = 2% Qa* = (2" 0 K)JK*(2*)
I
= K" (")} = 17" (") %

for all * € E*, and |(iv)| holds.

We now show that |(iv)] = Define the conjugate-linear map @ : E* —
(E") by

Qz" : B — K, y* —> /y* (o(t))z* (o(t))dt
I

for all 2* € E*. It is well-defined since ¢ is weakly L2, and is clearly a positive

symmetric map. Let J : H* — H be the canonical conjugate-linear identification
operator. We finish the proof of the implication in five steps.

(a) By hypothesis, we have for all 2* € E* that

C/I 2 (o(t)) [Pt < |T* (@)} = (T* (=) (JT* (2")) = 2*(TIT* ().
Hence, setting R :=TJT* : E* — E, we have
c(Qz*)(z*) < z*Ra* (A.3.1)
for all z* € E*. By Proposition we conclude that Q(E*) C E.

(b) By hypothesis and Theorem [0.5.9) R is a Gaussian covariance operator. Then
by Theorem [0.5.12] inequality (A.3.1)) and since Q(E*) C E, @ is also a Gaussian

covariance operator.

(c) Let us prove that I, takes values in E. Define G := {z* o ¢ | 2* € E*} C L*(I).
Let f € L2(I). Then

f € Ker(ly) <= I,(f)=0
= Va* € B, I,(f)(z*) = 0

= V1*e E*,/x*(¢(t))f(t)dt )

I
— feGgt.
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Therefore, Ker(I,) = G+, and L?(I) = G @ Ker(I4). Since Im(Q) C E by|(a)| we get
that I,(G @ Ker(I,)) C E.

It remains to prove that I,(G) C E. Let g € G. There exists a sequence (g, )n>1 C
G converging to g in L?(I). Since I,(G) C E, for each n > 1, there exists x,, € E such
that I4(gn) = x,. We show that (z,)n>1 is Cauchy in E. Let || - || be a continuous
seminorm on E. For all z* € E* and every integers n,m > 1, we have

2% (20 = 2m)| = |(Is(gn) = L (gm)) (27|

= | [+ @0mma - [ = @)

<|lz"¢llL2ylgn — gmllL2(1),

where the last inequality is justified by the Cauchy-Schwarz inequality. Define the set
V:={z € E,|z|| < 1}. By |88 Theorems 3.15 and 3.16], the polar of V is o(E*, E)-
compact and metrizable in the o(E*, FE) topology, hence it is sequentially complete
and bounded for o(E*, E). On the other hand, the linear map (E*,0(E*, F)) —
L2(I),x* — x*¢ has a sequentially closed graph. By |94, Lemma 3|, we then get
SUp,«cyo |2%| 121y < 0o. Therefore,

[2n = @mll = sup |z"(zn —zm)| < sup (27|20 llgn — gmll2 (1),
z*eVo z*eVo

the equality holds by |88, Theorem 1.34] and |71, Proposition 22.14|. Since (gn)n>1
is convergent in L?(I), we conclude that (z,,),>1 is Cauchy for || - ||. Since | - || was
arbitrary, the sequence (z,,),>1 is thus Cauchy in E. By completeness, there exists
x € E such that (z,,),>1 converges to « in E. Now let 2* € E*. By continuity of z*,
we have that lim,, o0 [y(gn)(2*) = lim, 00 2*(2,) = 2*(z). On the other hand, by
the Cauchy-Schwarz inequality,

|26 (gn)(@") = Ls(g)(z")

implying that lim, o Is(92)(2*) = Lo(g)(*). We conclude that I,(g)(z") = & (z)
for all z* € E*, and I4(g9) =z € E.

< lz*éllL2yllgn — gllL2(r)s

(d) We now prove that I is continuous. Define the linear map
K:E* — L*(I),2* — 2% 0 ¢.

Let S : L?(I)* — L2(I) be the canonical conjugate-linear identification operator.
We first show that K* = I50S. Let f* € L?(I)* and 2* € E*. By definition of K*,

we have
K*(f)(@*) = f1(K(z")) = (2" 0 ¢, S(f*)) r2(r) = L6 (S(f))(z").

This implies that K*(f*) = I4(S(f*)), and in turn K* = I, 0 S. By [71, Lemma
23.28], the map K : (E*,0(E*,E)) — (L*(I),0(L*(I), L*(I)*)) is continuous if and
only if K*(L?(I)*) C E. Since K* = I, 0 S and I, takes values in E by K is
indeed continuous with respect to the weak topologies. By [71, Lemma 23.29], K* is
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continuous with respect to the Mackey topologies. Since L?(I)* and E are Mackey
spaces by [89 Subsection IV.3.4], that is, their respective original topologies are the
Mackey topology, we conclude that K* : L?(I)* — F is continuous. Finally, I is
also continuous thanks to K* = I, 0 S.

(e) For all z*,y* € E*, one has

LK) = [ o )Rt = [y (6()7 G0Nt =y Qs
I I
Therefore, (I508)0S oK = I50K = . We also have (I,05)* = K. Since Q is a
covariance operator by Lemma applied to I oS and L?(I)* then implies
that I is y-radonifying. Note that L*(I) is separable by [50, Proposition 1.2.29].

We have thus proved
It remains to show [(v)] = Let A € (1) and define ¢4 := 146 and
Ma : L*(I) — L*(I), f — 14f.

For all f € L?(I) and z* € E*, we have

Toa @) = [+ @aO)F @t = [ o @O} @dt = Lo(Ma(D)(a").
This shows that 14, = I4 o M4. Since M4 is obviously continuous, the map Iy, is
y-radonifying by the ideal property, see Theorem [A.2.7]
Let (fn)nen € L%(I) be an orthonormal basis. Denote by

T: L*(I) —>L2(Q),fn—>/f(t)dBt
I

the Ito6 isometry. Since (Z(fy))nen is a standard Gaussian sequence and Iy, is -
radonifying, the random series Y4 := 3 -, Z(fn)ls,(fn) converges almost surely.
Let z* € E*, we have a

ZIfn I¢Afn ZI( I¢Afn fn)

= ZI(@* °Pa, fn>L2(1)fn) = I(Z<$* ° ¢A7fn>L2(I)fn)
n=0

n=0

— [ oalas:
I

almost surely, where we have used the continuity of x* for the first equality, the
definition of I, for the third one, the linearity and continuity of Z in the fourth one,
and the fact that (f,,)nen is an orthonormal basis and the definition of Z for the last
one. We then deduce that =* f[ x*¢4(t)dB; almost surely, for every z* € E*.
In conclusion, ¢ is stochastlcally 1ntegrable
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As for the Pettis integrability of ¢, let A € HB(I) be a set of finite measure. Let
z* € E*. Then 14 € L*(I), I,(14) € E, and

v(Iy(14)) = Ip(1a)(z") = / 2 (9(0) La(t)dt,

I

and ¢ is Pettis integrable on A. O

We state two results from , adapted to the case of functions defined on an
arbitrary interval and taking values in a Fréchet space. They will be used in the proof

of Theorem [2.1.61

Theorem A.3.7 ( Corollary 2.7]). Let ¢, : I — E be two weakly measurable
functions on an interval I C R. Assume that ¢ is stochastically integrable and that

/|:1: |dt</|x P2t

for every x* € E*. Then 1 is stochastically integrable and for all 1 < p < oo and all
continuous seminorms || - || on E, we have

E(| /1 b(t)dB, |

Proof. By assumption and of Theorem [2.1.4] we get for all * € E* that
/|x ) dt<c/|x*q§(t)|2dt§ 1721

Again by of Theorem [2.1.4] we can conclude that 1) is stochastically integrable.
By (iii)| of Theorem [2.1.4| applied to both ¢ and v, we have x*Rz* < z*Qx* for

all x* € E*, where R and Q are the covariance operators of the distributions pr and
pq of [;(t)dB, and [, ¢(t)d By, respectively. By Theorem 0.5.12} we finally get that

/ le|Pdjin(e / 2] 9dpug (=

The next result is a dominated convergence theorem for the stochastic integral.

) gE(H/lqdet !

O

Theorem A.3.8 (|96, Theorem 6.2]). Let (¢,,)nen be a sequence of E-valued stochas-
tically integrable functions defined on an interval I C R. Assume that there exists a
weakly L? function ¢ : I — E such that for every x* € E*, one has

n—oo

lim /|x*¢n(t) —2*¢(t)|*dt = 0.
I

If there exists a stochastically integrable function ¢ : I — E such that for every
z* € E* and all n > 0, one has

/\M)n \dt</|x #)[2dt,
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then ¢ is stochastically integrable and for every 1 < p < oo, we have, in LP(Q; E),

tim [ 0u(0)d5, = /1 (1)dB,.

n— oo

Proof. By using the assumptions, we get that

.T* 2 .13* 2
/1' o(1)| dts/lw O

for all z* € E*. By Theorem ¢ is stochastically integrable.
The rest of the proof follows as in Theorem 6.2]. O

Proof of Theorem[2.1.6l Assume that such a sequence of step functions exists. Let
x* € E*. By Lem we have z*(Y) = limy, o [; #*¢n(t)dB; in probability.
The random vectors on the right-hand side are Gaussian, and thus the convergence
takes place in L?(Q) by Lemma 2.1]. By the It6 isometry, the sequence (z*¢y, )nen
is Cauchy in L?(I). Thus by we necessarily have lim,, . 2*¢, = 2*¢ in L(I).
Again by the Ito isometry, we get that *(Y) = [, 2*¢(t)d B, almost surely. Byof
Theorem we conclude that ¢ is stochastically integrable on I with integral Y.
Assume that ¢ is stochastically integrable. If I is a bounded interval, the result is
proved in Theorem 2.5] when ¢ is a Banach space-valued function, but the proof
carries over verbatim to the case of Fréchet spaces. It I is unbounded, for the sake
of simplicity, we assume that I = [0, oo[. By Theorem ¢ is Pettis integrable on
any bounded intervals. For all integers £ >0, n > 1,1 <j <2" and N > 1, define

A

ket 5
Dnk,j = 2”/ o(t)dt,
k

+57
N-1 2"
N . _ ) . .
¢ = E : E :1]k+32;n1,k+2’—n]¢n7k7]7
k=0 j=1

and oy := ¢1jo,n)- Forall n, N € Ny, define also G, x as the finite o-algebra on [0, N]
generated by the intervals of the form |k + jQ;nl, k+ Qj—n}, 0<E<SN-1,1<j<2m,

Let x* € E*. Tt is an easy task to check that E(z*pn | Gun) = 2*¢2 almost
everywhere on [0, N], for every n, N > 1, see Example 10.1.2]. Since (Gp N)n>1
is increasing and o (J,>1 Gn,n) = B([0, N]), we get that lim, . 2*¢} = z*¢x in
L?([0, N];R) by Theorem 3.3.2].

Now, define the step functions ¢y := gb%l[o, N for every integer N > 1. Let us
show that limy_,o, 7*¢n = 2*¢ in L2([0,00[). Notice that ¢3 = ¢% on [0, M] for
any N > M > 1. Let € > 0, and let Ny > 1 be such that [ [z*¢(t)|*dt < £* for
every N > Ny. Now let My > Ny be such that ||1:*¢%° — 2N, |22 (jo,ng)) < € for
every integer N > M. We then have for any N > M,

2% dn — 2Bl L2 (j0,00p < 1Z*ON — T* 0N, |l L2([0,No])
+ |z on — 29l L2 ((No,N)) + 1270l L2 ([N, 00]) -
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The first and third terms are smaller than e since N > M, > N,. For the second
term, first note that

lz*on — 20| 2 ((vo, N < 12" DN L2 ((No,N]) + 1270 L2 ((No 00]) -

The second term of the right-hand side is smaller than € by definition of Ny. For the
first term, notice that z*¢y = z*¢% = E(z*¢ | Gn) almost everywhere on [Ny, N],
where Gy is the finite o-algebra on [Ny, N| generated by the intervals of the form
Jk+ Lt k+ 5], No <k <N —1,1<j<2N; see Xample 10.1.2]. Therefore,
by a corollary of the conditional Jensen inequality, see [50, Corollary 2.6.30], we have
||x*¢NHL2([N0,N]) < ||:E*¢||L2([N0,N])- We then conclude that HJL‘*(ZSN _m*d)”L?([O,oo[) <
4e, and thus limy_,o 7* ¢y = x*¢ in L2(]0, 0o])

Again by Corollary 2.6.30], we have ||2*¢n || 2([0,00)) < |27 || £2([0,00) for every
N > 1. Since every step function is stochastically integrable, Theorem yields
with convergence in every LP(Q; E), 1 < p < c0. O
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Notations

Numbers
|z| largest n € N such that n <z <n+1
[z] smallest n € Nsuch that n —1 <z <n
|z] modulus of the complex number z
Im(z) imaginary part of z
Re(z) real part of z

Sets
|A] number of elements of the set A
CA complement of the set A
dens(A) lower density of A
14 characteristic function of the set A
C set of complex numbers
D open unit disk
K scalar field
N set of natural integers 0,1,2, ...
Ny set of positive integers 1,2, ...
R set of real numbers
Z set, of integers

Vector spaces

Co

space of null sequences

space of entire functions

space of holomorphic functions on D
space of harmonic functions on R?
Kothe sequence space of order p

RY endowed with || - ||,

space of p-summable sequences
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Functional analysis

Il 1le norm on the vector space £

I, pnom, 1<p<oo

(,m inner product on H (linear in the first argument)
E' algebraic dual of the vector space E

E* topological dual of the Fréchet space E

Ft orthogonal complement of F'

Im image of a function

Ker kernel of a linear map

o(E,E*) weak topology on E
o(E*,FE) weak topology on E*
span linear span

7(E,E*) Mackey topology on E
7(E*,E) Mackey topology on E*
Ve polar of the set V'

Measure theory and Probability

B(E) Borel sets of a topological space E
E(X) expectation of the random variable X
E(-|-) conditional expectation
Id identity map
ii.d. independent, and identically distributed
LP(S, A, u; E) equivalence classes of p-integrable functions f: S — FE
L*(S; E) the space LP(S, A, u; E)
LP(S, A, u) = LP(S) the space LP(S, A, u; E)if E=Ror E=C
LP(S, ) the space LP(S)
i characteristic functional of u
P probability measure

Miscellaneous
£l Supysj<, [ £(2)] for a function f

decreasing  strictly decreasing
increasing  strictly increasing

negative strictly negative
o(+) little o notation
o(") big o notation

positive strictly positive
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