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Abstract

Some results concerning the existence of almost surely frequently hypercyclic random
vectors have been proved in the literature for certain chaotic weighted shifts. This is
of interest for at least two reasons. It is usually di�cult to �nd explicit (frequently)
hypercyclic vectors, and random vectors have a probability distribution whose ergodic
properties can be studied. The �rst objective of the thesis is to extend the previously
known results. In particular, we prove that every chaotic weighted shift on very
general sequence spaces and every operator satisfying the Frequent Hypercyclicity
Criterion admits an almost surely frequently hypercyclic random vector.

We also investigate the case of semigroups. The desired random vector is con-
structed using a stochastic integral. Although our general result requires that this
integral is well-de�ned, we can apply it to the translation semigroups on the space of
entire functions.

The second part of the thesis deals with the rate of growth of frequently hypercyclic
functions. We present two methods. Recently, a probabilistic approach provided a
quasi-optimal rate of growth for the di�erentiation operator and the Taylor shift.
Based on these results and the �rst part of the thesis, we obtain a general criterion
for chaotic weighted shifts. The rate of growth is expressed as a function depending
only on the weights, multiplied by some logarithmic factor. We give several examples
of shifts de�ned on the space of entire functions or the space of holomorphic functions
on the unit disk, recovering previous results and �nding new ones. We also consider
the di�erentiation operators on the space of harmonic functions on the plane and
weighted shifts on Köthe sequence spaces. The possible optimality of the growth is
also discussed.

On spaces of holomorphic functions, we can also ask whether the growth holds
outside some small, but possibly unbounded, set. We give results in this direction,
which are stated for general random complex series. This second approach seems to
be new in linear dynamics. In particular, we prove that for any chaotic weighted shift,
the growth sought by the previous method does hold outside such a set.
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Introduction

The theory of dynamical systems studies the long-term behaviour of systems that
evolves through time. A dynamical system consists of a set, called the space of states,
and a map on this set that describes the evolution of the system. One may think of
the motion of objects subjected to forces, or the evolution of the number of people in
a given population.

Linear dynamics studies a particular case of dynamical systems, where the space
of states is a vector space and the evolution map is linear. Hypercyclicity, that is, the
existence of a dense orbit, is the main concept of linear dynamics. This term seems to
have been introduced by Beauzamy in [13] around 1986 while working on the invariant
subspace problem. The �rst operators known to be hypercyclic were the translation
operators by Birkho� [16] in 1929, the di�erentiation operator by MacLane [68] in
1952 and the multiples of the backward shift by Rolewicz [84] in 1969.

The foundations of linear dynamics were made in the unpublished thesis of Kitai
[58] in 1982 and by Godefroy and Shapiro [42] in 1991. Since then, many other
variants of hypercyclicity have been introduced and studied.

In linear dynamics, we thus consider continuous and linear maps T from a vector
space E to itself, called operators. The vector space E is usually a Fréchet space or
an F-space; these are particular cases of metric spaces generalizing Banach spaces.
We are interested in dense orbits i.e., in �nding a vector x ∈ E such that the set of
all Tn(x), n ∈ N, called the orbit of x, is dense in E. Such a vector is said to be
hypercyclic for T , and T is hypercyclic. Although it has been proved that once an
operator admits a hypercyclic vector, it admits a large supply of such vectors in a
topological sense, it is usually not so easy to construct just one hypercyclic vector.

In their work, Bayart and Grivaux [7] introduced the notion of frequent hyper-
cyclicity, that is, the existence of a hypercyclic vector visiting any non-empty open
set of the space many times in a precise sense. This was the beginning of the connec-
tions between linear dynamics and ergodic theory, which studies dynamical systems
from a measure-theoretic point of view. This notion is strictly stronger than hy-
percyclicity. Moothathu [73] proved that the set of frequently hypercyclic vectors is
always negligible, in contrast to hypercyclicity.

A second well-studied variant of hypercyclicity is chaos: an operator T is chaotic
if it is hypercyclic and has a dense set of periodic points. It turns out that the
hypercyclic operators mentioned above are also frequently hypercyclic and chaotic.
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2 Introduction

Random vectors. Bayart and Matheron [10] used ergodic theory to obtain results
on the existence of frequently hypercyclic vectors via the existence of an ergodic or
strongly mixing measure for T , two notions from ergodic theory. They obtain the
following result as a by-product of their methods.

As usual, (en)n∈N stands for the canonical sequence of `p, the space of p-summable
sequences, 1 ≤ p < ∞, where N = {0, 1, 2, . . . }. The notation N0 will denote the set
of all strictly positive integers.

Theorem 0.0.1 ([10, Remark at p. 121]). Let T : `p −→ `p be a weighted shift with
weight sequence (wn)n∈N0

i.e., T (e0) = 0 and T (en) = wnen−1 for any n ∈ N0. If T
is chaotic, then the random vector

∞∑
n=0

Xn

w1 . . . wn
en (0.0.1)

is almost surely frequently hypercyclic for T , where (Xn)n∈N is a sequence of indepen-
dent standard Gaussian random variables. Furthermore, its distribution is strongly
mixing for T .

Here, a standard Gaussian random variable means that the random variable fol-
lows the normal distribution with mean 0 and variance 1. Note that here and in the
sequel, the random variables are real if the vector space is real, and complex if it is
complex.

Another well-known and historical example of a frequently hypercyclic operator
is the di�erentiation operator D de�ned on the space of entire functions H(C), given
by D(f) = f ′, f ∈ H(C). Nikula [80] proved that the random series

∞∑
n=0

Xn

n!
zn (0.0.2)

is almost surely frequently hypercyclic forD by directly showing that this random vec-
tor has a full probability of being frequently hypercyclic. The sequence of independent
random variables (Xn)n∈N must satisfy some decay condition on their distributions,
which is satis�ed by Gaussian variables. Mouze and Munnier [74] gave a simpler proof
of Nikula's result by using the so-called Birkho� ergodic theorem under a weaker as-
sumption on the probability distribution. Bayart and Matheron [11] also showed the
almost sure frequent hypercyclicity of the random vector (0.0.2) and proved that its
distribution is strongly mixing for the operator D as well.

Remark that the operator D is a weighted shift by identifying an entire function
with its sequence of Taylor coe�cients and noticing that D(zn) = nzn−1 for all
integers n ∈ N0. Here again, the random vector (0.0.2) is constructed as follows:
from the �xed point

∑
n≥0 z

n/n! of D, where n! corresponds to the product of the
�rst n weights of the operator D, each term of the series is multiplied by a random
coe�cient.

Mouze and Munnier [75] obtained the same result for the Taylor shift: it is the
operator T on H(D) such that T (f) =

∑
n≥0 an+1z

n, f =
∑
n≥0 anz

n ∈ H(D). Here,
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H(D) denotes the space of holomorphic functions on the unit disk D. They proved
that the random vector

∞∑
n=0

Xnz
n

is almost surely frequently hypercyclic for T , where (Xn)n∈N is a sequence of inde-
pendent standard Gaussian random variables. Note that the sequence of weights of
T is the constant sequence with constant 1. They also constructed in [74] an almost
surely frequently hypercyclic random vector for some polynomials of chaotic weighted
shifts on `p, 1 ≤ p <∞.

These results were, to our knowledge, the only ones about frequently hypercyclic
random vectors. Given these similarities, the following question may be asked.

Question 0.0.2. Let T be a weighted shift on a vector space E. Under which condi-
tions is the random vector

∞∑
n=0

Xn

w1 . . . wn
en (0.0.3)

almost surely convergent in E and frequently hypercyclic for T?

Rate of growth. Let us now discuss another problem in linear dynamics. On
spaces of functions, the growth of frequently hypercyclic functions of a given operator
can be studied. Let us consider the space H(C) of entire functions, and let T be
a frequently hypercyclic operator on the space H(C). An admissible rate of growth
for the frequently hypercyclic functions of T is a real-valued map g de�ned on the
set of positive numbers such that there is some frequently hypercyclic function for T
with the property that sup|z|=r |f(z)| ≤ g(r) for all positive real numbers r ≥ 0 large
enough. A classical method to show the existence of frequently hypercyclic vectors
with a given growth is as follows: the operator T is restricted to a Banach space
F consisting of entire functions satisfying the growth condition and such that it is
continuously embedded in H(C). Then one proves that the sequence of maps (Tn)n∈N
is frequently universal, where Tn is the restriction of the operator Tn to the space F .
Frequent universality for a sequence of maps is de�ned as frequent hypercyclicity.

As we have seen above, the di�erentiation operator D on H(C) has an almost
surely frequently hypercyclic random vector (0.0.2). Using its structure, Nikula [80]
bounded the sup-norm of the series (0.0.2) and thus obtained an admissible rate of
growth for D.

Theorem 0.0.3 ([80, Proposition 2]). Let (Xn)n∈N be a sequence of independent
standard Gaussian random variables. Then there exists a constant C > 0 such that
almost surely,

sup
|z|=r

∣∣∣ ∞∑
n=0

Xn

n!
zn
∣∣∣ ≤ C√log(r)

er

r1/4
(0.0.4)

for all r > 0 large enough.

Blasco, Bonilla and Grosse-Erdmann [17] showed that for any function ψ with
limr→∞ ψ(r) = 0, there is no frequently hypercyclic entire function f for D that
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satis�es

sup
|z|=r

|f(z)| ≤ ψ(r)
er

r1/4

for every su�ciently large real number r > 0. Drasin and Saksman [34] proved that
the map r 7−→ er/r1/4 is in fact optimal.

Theorem 0.0.4 ([34, Theorem 1.1]). For any C > 0, there exists a frequently hyper-
cyclic entire function f for D such that sup|z|=r |f(z)| ≤ Cer/r1/4 for all r > 0.

Mouze and Munnier [75] also used a probabilistic approach to get an admissible
rate of growth for the frequently hypercyclic functions of the Taylor shift and obtained
the following result.

Theorem 0.0.5 ([75, Proposition 3.5 and p. 627]). Let (Xn)n∈N be a sequence of
independent standard Gaussian random variables. Then there exists a constant C > 0
such that almost surely,

sup
|z|=r

∣∣∣ ∞∑
n=0

Xnz
n
∣∣∣ ≤ C√| log(1− r)| 1√

1− r
(0.0.5)

for all 0 < r < 1 close enough to 1.

They even proved that the map r 7−→ 1/
√

1− r is the optimal rate of growth for
the frequently hypercyclic functions of the Taylor shift.

In the proofs of Theorems 0.0.3 and 0.0.5, the idea was to bound the �rst terms
of the random series, which already give the desired growth, and to show that the
remaining terms are small. As far as we know, these were the only results about
admissible rates of growth with a probabilistic approach.

Let us mention one more fact: the upper bounds in Theorems 0.0.3 and 0.0.5 have
the same form. Indeed, one can prove the following inequalities:

er

r1/4
�

√√√√ ∞∑
n=0

r2n

n!2

valid for r > 0 large, and

1√
1− r

�

√√√√ ∞∑
n=0

r2n

valid for 0 < r < 1 close enough to 1, where a � b means a ≤ b and a ≥ b up to
some constants independent of r. In both cases, the upper bound is the `2-norm of
the sequence (rn/(w1 . . . wn))n∈N, where (wn)n∈N0

is the weight sequence of the shift.
The logarithmic factor that appears in (0.0.4) and (0.0.5) comes from the probabilistic
tools used in the proofs.

Let T be a chaotic weighted shift onH(C) with weight sequence (wn)n∈N0 . We will
see in this work that (0.0.3) de�nes an almost surely frequently hypercyclic random
vector for T , where the sequence (Xn)n∈N of independent random variables is standard
Gaussian. Therefore, in order to get an admissible rate of growth, we can try to
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bound the sup-norm of the random series (0.0.3). It turns out that the formal series
f :=

∑
n≥0 z

n/(w1 . . . wn) determines chaos: T is chaotic if and only if the series
converges. Therefore, given a chaotic weighted shift on H(C), there is an associated
entire function given by f . From this function, we construct a random vector by
multiplying each Taylor coe�cient of f by a Gaussian random variable. This leads
us to the following more general problem.

Question 0.0.6. Let f =
∑
n∈N anz

n be an entire function. Under which assump-
tions do we have a constant C > 0 such that almost surely,

sup
|z|=r

∣∣∣ ∞∑
n=0

anXnz
n
∣∣∣ ≤ C√log(A(r))

√√√√ ∞∑
n=0

|an|2r2n (0.0.6)

for all r ≥ 0 large enough, where A is some real-valued function on [0,∞[?

In this approach, the inequality (0.0.6) should be valid for any r > 0 large. We can
also ask whether, under less restrictive assumptions, this inequality could hold outside
some small, but possibly unbounded, set. A set E ⊆ [1,∞[ is of �nite logarithmic
measure if the integral

∫
E
x−1dx is �nite. Such a set may be unbounded but has to

be not very large since
∫∞

1
x−1dx diverges. It seems that this de�nition is common

in the literature regarding complex analysis.
All we have said also applies to chaotic shifts on H(D), and to holomorphic func-

tions f ∈ H(D).

Outline. In order to make the text as self-contained and understandable as possible,
a preliminary chapter contains the background of this thesis. The �rst section is
intended as a brief introduction to linear dynamics. The second section recalls some
de�nitions and results from probability and measure theory. The last sections are
devoted to the Pettis integral, the so-called Itô integral and Gaussian measures.

Chapter 1 contains the results concerning the existence of an almost surely fre-
quently hypercyclic vector. In particular, we prove that every chaotic weighted shift
on very general sequence spaces has such a random vector of the form (0.0.3). In-
cidentally, it has an ergodic probability distribution. The question of whether this
distribution was also strongly mixing led us to extend our theorem to more operators,
including bilateral weighted shifts, and to prove the strong mixing property. The
�rst main theorem of the chapter states that under some deterministic assumptions
on the operator and a decay condition on the distribution of the random variables,
there is an almost surely frequently hypercyclic random vector. The second main
general result, which will be a consequence of the �rst one, says that such a sequence
of random variables can always be constructed under the deterministic assumptions.
The so-called Frequent Hypercyclicity Criterion is often useful to show the frequent
hypercyclicity of a given operator. Bayart and Matheron [11] proved that an operator
satisfying the criterion admits a strongly mixing Gaussian measure. Murillo-Arcila
and Peris [77] also proved that such an operator has a strongly mixing measure by
using a constructive method. Our approach will provide another proof of this fact.

The continuous counterpart of a single operator are the C0-semigroups. Frequent
hypercyclicity can also be de�ned in this framework. Therefore, we can ask whether,
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for a given semigroup, a random vector that is almost surely frequently hypercyclic
can be found. This is investigated in Chapter 2. Unfortunately, we did not man-
age to �nd any fully satisfactory result: the random vector is constructed using a
stochastic integral, and our main theorem requires that this integral is well-de�ned.
Nevertheless, it can be applied to the translation semigroups on the space of entire
functions.

Chapter 3 is devoted to the problem of the rate of growth for general random
complex series. The two approaches mentioned above are presented. First, we will
answer Question 0.0.6, and prove that for any entire function, the inequality (0.0.6)
holds for every positive real number outside a set of �nite logarithmic measure. An
analogous result is also proved for holomorphic functions on the unit disk. Next, we
give general conditions under which an entire function, or a function in the space
H(D), satis�es the inequality (0.0.6) for every large enough real number. With an ad
hoc assumption, this result is applied to entire functions of �nite order.

We will return to linear dynamics and chaotic weighted shifts in Chapter 4. The
results regarding the growth valid outside a set of �nite logarithmic measure imme-
diately yield an admissible rate of growth for the frequently hypercyclic functions.
As far as we know, this approach is new in linear dynamics. The main work then
consists of applying the general results from Chapter 3 to get the rate of growth valid
everywhere. We did not manage to do this for any chaotic weighted shifts, but we
give several examples. In particular, we will recover the results of Nikula [80] and
Mouze and Munnier [75]. On the space of entire functions, we �nd an admissible rate
of growth for the frequently hypercyclic functions of the so-called Dunkl and Aron-
Markose operators. Weighted shifts on H(D) studied by Mouze and Munnier in [76]
are considered next. Di�erential operators on the space of harmonic functions of the
plane and weighted shifts on the Köthe sequence spaces are also studied. The possible
optimality of the rate of growth is discussed in the last section of the chapter.

Finally, an appendix contains some results and proofs about Bochner spaces, γ-
radonifying operators and stochastic calculus in Fréchet spaces that are used in Chap-
ter 2. They are not included in the main text because the Banach case is already
known in the literature, and these results are simply a generalization to the Fréchet
case. There is also a list of notations used throughout the thesis after the appendix.



Prerequisites

In this preliminary chapter, we mainly explain the framework of this thesis, the theory
of linear dynamical systems. This is the content of the �rst section. The second section
recalls some de�nitions and tools from probability theory. The last three sections are
devoted to the background material needed for Chapter 2. We will review the Pettis
integral, the Itô calculus and the Gaussian measures.

Throughout the thesis, let K be the �eld R or C. The notation N denotes the set
of non-negative integers, and N0 denotes the set of strictly positive integers.

0.1 Linear Dynamics

The theory of dynamical systems studies the long-term behaviour of systems that
evolves through time. More precisely, a dynamical system is a pair (E, T ) where E
is a set and T : E −→ E is a map on E that describes the evolution of the system.
Starting from a point x0 ∈ E say, the system will reach the state T (x0) at the next
time. Then the next state will be T 2(x0), and so on.

In the speci�c setting of linear dynamical systems, the set of states E is a vector
space endowed with some topology and the evolution map T is a continuous and linear
map. We give in this section a brief introduction to the �eld and state the concepts
and results that will be used throughout this work. For the proofs and further reading,
see the books [10] and [47].

In general, results in linear dynamics are stated in the Fréchet space framework.
They are a generalization of the Banach spaces where the norm is replaced by a
sequence of seminorms.

De�nition 0.1.1. Let E be a K-vector space. A seminorm p : E −→ [0,∞[ is a
function satisfying the following two properties: for every x, y ∈ E and λ ∈ K,

(i) p(x+ y) ≤ p(x) + p(y),

(ii) p(λx) = |λ|p(x).

All that remains for a seminorm to be a norm is the separation condition. The
analogous notion is a separating sequence of seminorms.

De�nition 0.1.2. A sequence of seminorms (pn)n≥1 is separating if for every x ∈ E,
pn(x) = 0 for all n ≥ 1 implies x = 0.

7



8 Prerequisites

De�nition 0.1.3. A Fréchet space E is a vector space endowed with a separating
sequence of seminorms (pn)n≥1, which is complete in the metric d : E ×E −→ [0,∞[
de�ned by

d(x, y) =

∞∑
n=1

1

2n
min(1, pn(x− y))

for every x, y ∈ E.

By considering (max1≤k≤n pk)n≥1, we can always assume that the sequence of
seminorms is non-decreasing.

Example 0.1.4. Here are some examples of Fréchet spaces.

(1) Of course, every Banach space is a Fréchet space.

(2) The space of entire functions, denoted by H(C), is a Fréchet space with the
sequence of seminorms pn(f) := sup|z|=n |f(z)|, f ∈ H(C), n ≥ 1. This cor-
responds to the topology of local uniform convergence, that is, uniform con-
vergence on all compact sets. Similarly, the space of holomorphic functions on
the unit disk D, denoted by H(D), is also a Fréchet space. In both spaces, the
subspace of polynomials with rational coe�cients is dense.

(3) The vector space KN of all sequences endowed with the seminorms pn(x) :=
max0≤k≤n |xk|, x = (xk)k∈N ∈ KN, n ≥ 1, is a Fréchet space.

A slight generalization of a Fréchet space is the concept of F-space.

De�nition 0.1.5. An F-norm on a K-vector space E is a function ‖ ·‖ : E −→ [0,∞[
satisfying for all x, y ∈ E and λ ∈ K,

(i) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,

(ii) ‖λx‖ ≤ ‖x‖ if |λ| ≤ 1,

(iii) limλ→0 ‖λx‖ = 0,

(iv) if ‖x‖ = 0 then x = 0.

An F-norm thus looks like a norm, but there is not, in general, the homogeneity
property. It is replaced by the following weaker property: for all λ ∈ K and x ∈ E,

‖λx‖ ≤ (|λ|+ 1)‖x‖. (0.1.1)

De�nition 0.1.6. An F-space E is a vector space endowed with an F-norm such that
E is complete under the induced metric.

A Fréchet space E is an F-space with the F-norm ‖x‖ := d(x, 0), x ∈ E, where
d is the metric de�ned in De�nition 0.1.3, see [47, Proposition 2.8]. It is easy to see
that this F-norm is bounded, which is not the case of a norm.

Fréchet spaces are the locally convex F-spaces, see [88, Theorem 1.24 and Remarks
1.38(b)].

The following two lemmas characterize the convergence of sequences, the Cauchy
condition, and the continuity of linear maps in terms of seminorms, see [47, Lemma
2.6 and Proposition 2.11].
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Lemma 0.1.7. Let E be a Fréchet space, and let (pn)n≥1 be a sequence of seminorms
generating its topology. Let (xn)n∈N ⊆ E be a sequence of vectors in E and x ∈ E.

(i) The sequence (xn)n∈N converges to x in E if and only if for all k ≥ 1, one has
limn→∞ pk(xn − x) = 0.

(ii) The sequence (xn)n∈N is Cauchy in E if and only if for all k ≥ 1, the sequence
(xn)n∈N is Cauchy in (E, pk).

Lemma 0.1.8. Let E,F be two Fréchet spaces, and let (pn)n≥1 and (qn)n≥1 be se-
quences of seminorms de�ning the topology of E and F , respectively. Let T : E −→ F
be a linear map. Then T is continuous if and only if for all n ∈ N0, there are m ∈ N0

and C > 0 such that for every x ∈ E, one has

qn(T (x)) ≤ Cpm(x).

We will say that a map T : E −→ E on an F-space E is an operator if it is
continuous and linear.

We are interested in studying the properties of the orbit of a vector x0, that is,
the di�erent states the system will take, starting from the state x0 and following the
evolution map.

De�nition 0.1.9. Let E be an F-space and T : E −→ E be an operator. For all
x ∈ E, the orbit of x under T is the set

Orb(x, T ) =
{
Tn(x) | n ∈ N

}
.

The main notion of linear dynamics is the concept of hypercyclicity.

De�nition 0.1.10. Let E be an F-space. An operator T : E −→ E is hypercyclic
if there exists x ∈ E whose orbit is dense in E. Such a vector is called a hypercyclic
vector for T .

Note that if a space admits a hypercyclic operator, it is necessarily separable
since every orbit is at most countable. The �rst question to ask is whether such an
operator exists. Let us �rst point out that hypercyclicity is an in�nite-dimensional
phenomenon.

Theorem 0.1.11 ([47, Corollary 2.59]). Let E be a Banach space of �nite dimension.
If E is not the zero vector space then there are no hypercyclic operators on E.

Obviously, the identity map is not hypercyclic unless the space is trivial. On a
Banach space, any operator with an operator norm less than 1 is not hypercyclic,
since then every orbit is bounded.

One way to prove that an operator is hypercyclic is to explicitly construct a
hypercyclic vector, see for example [47, Example 2.18]. Another method is to use the
Birkho� Transitivity Theorem below.

Recall that a Gδ-set G is a subset of an F-space E of the form G =
⋂
n∈NOn,

where (On)n∈N is a family of open sets of E.
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Theorem 0.1.12 (Birkho� Transitivity Theorem). Let E be a separable F-space and
T : E −→ E be an operator. Then T is hypercyclic if and only if for any non-empty
open sets U, V ⊆ E, there exists n ∈ N such that Tn(U) ∩ V 6= ∅. In that case, the
set of hypercyclic vectors of T is a dense Gδ-set.

Proof. Let x be a hypercyclic vector for T . Let U, V ⊆ E be non-empty open sets.
There existsm ∈ N such that Tm(x) ∈ U . Since an F-space has no isolated points, the
vector Tm(x) is hypercyclic for T , and there exists some n ∈ N such that Tn(Tm(x)) ∈
V . Therefore Tn(U) ∩ V 6= ∅.

For the converse, let (Uk)k∈N be a countable base of open subsets of E, which
exists since E is separable. Notice that the set of hypercyclic vectors of T is exactly
the Gδ-set

⋂
k≥0

⋃
n≥0 T

−n(Uk). By assumption, each open set
⋃
n≥0 T

−n(Uk), k ≥ 0,
is dense in E. Therefore, the Baire Category Theorem, see [88, Theorem 2.2], yields
that the set of hypercyclic vectors of T is dense, and T is hypercyclic.

An operator satisfying the necessary and su�cient condition of the theorem is said
to be topologically transitive.

Example 0.1.13. Let us prove that the di�erentiation operator

D : H(C) −→ H(C), f 7−→ f ′

is hypercyclic. Let U, V ⊆ E be non-empty open sets. There exist some polynomials
p =

∑N
k=0 akz

k and q =
∑N
k=0 bkz

k such that p ∈ U and q ∈ V . Let n ≥ N + 1 be a
positive integer and de�ne

h := p+

N∑
k=0

k!bk
(k + n)!

zk+n.

Then Dn(h) = q and for any R > 0, one has

sup
|z|≤R

|p(z)− h(z)| ≤
N∑
k=0

k!|bk|
(k + n)!

Rk+n,

Therefore, for n large enough, we get h ∈ U and Dn(h) ∈ V . Since this holds for any
non-empty open sets U, V ⊆ E, we have shown that D is hypercyclic by Theorem
0.1.12.

More generally, it has been proved by Bonet and Peris [21, Theorem 1] that
every in�nite-dimensional separable Fréchet space supports a hypercyclic operator. In
contrast, there are in�nite-dimensional separable F-spaces whose continuous operators
are exactly the multiples of the identity, see [56, Section 7.6], and which therefore do
not admit any hypercyclic operator.

A �rst stronger notion than hypercyclicity is the concept of chaos. There are
di�erent versions of chaos, but the one most commonly accepted in linear dynamics is
chaos in the sense of Devaney. Recall that a vector x ∈ E of an operator T : E −→ E
is periodic if there exists some integer n ≥ 1 such that Tn(x) = x.

De�nition 0.1.14. Let E be an F-space. An operator T : E −→ E is chaotic if it is
hypercyclic and has a dense set of periodic points.
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A chaotic operator then means that in any non-empty open set of the space,
however small, one can �nd a periodic vector, which has a very regular obit, and also
a hypercyclic vector, which has a very irregular orbit. This is related to the so-called
butter�y e�ect, saying that small changes in the initial conditions may lead to very
di�erent e�ects.

We will see below some examples of chaotic operators. In contrast to hyper-
cyclicity, there exists an in�nite-dimensional separable Banach space that supports
no chaotic operator, as observed by Bonet, Martínez-Giménez and Peris in [20].

An important class of operators is the class of weighted shifts. They are fairly
simple operators, and new notions and results of linear dynamics are usually �rst
tested on weighted shifts.

The space KN (resp. KZ) of all sequences is endowed with the topology of coordi-
natewise convergence.

De�nition 0.1.15. A sequence space over N (resp. over Z) E is a subspace of KN

(resp. KZ) such that convergence in E implies convergence in KN (resp. KZ). A Banach
(Fréchet, F-) space of this kind is called a Banach (Fréchet, F-) sequence space. The
vectors en = (. . . , 0, 1, 0, . . . ) where 1 lies at the n-th coordinate, n ∈ N (resp. n ∈ Z),
are called the canonical unit sequences.

Let E be a sequence space over N (resp. over Z) such that the canonical unit
sequences span a dense subspace. A unilateral (resp. bilateral) weighted shift T :
E −→ E is an operator such that T (e0) = 0 and T (en) = wnen−1 for all n ∈ N0 (resp.
T (en) = wnen−1 for all n ∈ Z), where (wn)n is a sequence of non-zero scalars called
the weight sequence.

We will often simply say weighted shift for a unilateral weighted shift.
It is pointless to consider a weight sequence with some zero elements since such

a shift cannot be hypercyclic. Indeed, suppose for example that T : E −→ E is a
weighted shift with w1 = 0. Then |e∗0(Tn(x) − e0)| = 1 for all n ∈ N0, where e∗0 is
the linear map giving the �rst coordinate, and x is not hypercyclic for T , for every
x ∈ E.

Proposition 0.1.16. Let T : E −→ E be a unilateral or bilateral weighted shift on
an F-sequence space E. Then T is continuous.

Proof. By the Closed Graph Theorem, see [88, Theorem 2.15], it su�ces to prove
that T has a closed graph. Let (xn)n≥0 ⊆ E be such that limn→∞ xn = x and
limn→∞ T (xn) = y, where x, y ∈ E. Since convergence in E implies coordinatewise
convergence, we get that T (x) = y, and T has a closed graph.

The previous proposition means that a weighted shift on E is continuous if and
only if it is a linear map on E.

Example 0.1.17. Obvious examples of Banach sequence spaces are the spaces `p, 1 ≤
p < ∞, and c0. Note that it is pointless for our purposes to consider `∞ since this
space is not separable. The space of entire functions H(C) can be viewed as a Fréchet
sequence space. Indeed, every entire function is identi�ed with its sequence of Taylor
coe�cients at 0. This also holds true for the space H(D).
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There is a criterion to test the hypercyclicity or chaoticity of a weighted shift that
is only a condition on the weights.

First recall the de�nition of unconditional convergence.

De�nition 0.1.18. Let (xn)n∈N be a sequence of vectors in an F-space E. The series∑
n∈N xn converges unconditionally if for any permutation σ : N −→ N the series

∞∑
n=0

xσ(n)

converges.

A basis (en)n∈N of an F-space E is unconditional if for every x ∈ E, the series
x =

∑
n≥0 xnen converges unconditionally.

Theorem 0.1.19 ([45, Theorems 7 and 8]). Let E be an F-sequence space over N
in which (en)n∈N is a basis. Let T be a weighted shift on E with weight sequence
(wn)n∈N0 .

(i) T is hypercyclic if and only if there exists an increasing sequence (nk)k∈N ⊆ N
such that

lim
k→∞

( nk∏
j=1

wj

)−1

enk = 0.

(ii) If (en)n∈N is unconditional, then T is chaotic if and only if the series

∞∑
n=0

( n∏
j=1

wj

)−1

en

converges in E.

Example 0.1.20. On the Banach spaces E = `p, 1 ≤ p < ∞, or E = c0, a weighted
shift T : E −→ E is continuous (and well-de�ned) if and only if its sequence of
weights (wn)n≥1 is bounded. By Theorem 0.1.19, T is hypercyclic if and only if
supn≥1

∏n
j=1 |wj | =∞.

The backward shift B on E, that is, the weighted shift with constant weights equal
to 1, is not hypercyclic. This fact was already known since the operator norm of B is
equal to 1.

Example 0.1.21. On H(C), the space of all entire functions, a weighted shift T :
H(C) −→ H(C) with respect to the basis of monomials is an operator on H(C) if
and only if supn≥1 |wn|1/n < ∞. By Theorem 0.1.19, T is hypercyclic if and only if

supn≥1

(∏n
j=1 |wj |

)1/n
=∞, and chaotic if and only if limn→∞

(∏n
j=1 |wj |

)1/n
=∞.

The di�erentiation operator D from Example 0.1.13 is a weighted shift since
D(
∑
n≥0 anz

n) =
∑
n≥0(n + 1)an+1z

n. Since limn→∞ n!1/n = ∞, we recover the
fact that D is hypercyclic. It is even chaotic since the series

∑
n≥0 z

n/n! = ez con-
verges in H(C).
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Example 0.1.22. Similarly, a weighted shift T : H(D) −→ H(D) is an operator on
H(D) if and only if lim supn≥1 |wn|1/n ≤ 1. By Theorem 0.1.19, T is hypercyclic or
chaotic if and only if, respectively,

lim sup
n→∞

( n∏
j=1

|wj |
)1/n

≥ 1, lim inf
n→∞

( n∏
j=1

|wj |
)1/n

≥ 1.

For bilateral weighted shifts, we have the following characterization. Unconditional
bases and convergence are de�ned in the same way as for the sequence spaces over N.

Theorem 0.1.23 ([45, Theorems 6 and 9]). Let E be an F-sequence space over Z in
which (en)n∈Z is a basis. Let T be a bilateral weighted shift on E with weight sequence
(wn)n∈Z.

(i) T is hypercyclic if and only if there exists an increasing sequence (nk)k∈N ⊆ N
such that, for any j ∈ Z, one has

lim
k→∞

( j∏
m=j−nk+1

wm

)
ej−nk = 0 and lim

k→∞

( j+nk∏
m=j+1

wm

)−1

ej+nk = 0.

(ii) If (en)n∈Z is unconditional, then T is chaotic if and only if the series

0∑
n=−∞

( 0∏
j=n+1

wj

)
en +

∞∑
n=1

( n∏
j=1

wj

)−1

en

converges in E.

Many notions of linear dynamics are variants of hypercyclicity. We have already
encountered the concept of chaos. A hypercyclic vector x for an operator T means
that x visits every non-empty open set via T at least once. In fact, it is easy to see
that the orbit of x meets every non-empty open set in�nitely often. How often such
a vector visits a set can be quanti�ed.

De�nition 0.1.24. The lower density of a set A ⊆ N denoted by dens(A) is the
quantity

dens(A) = lim inf
N→∞

|A ∩ {0, . . . , N}|
N + 1

.

This leads to the de�nition of frequent hypercyclicity introduced by Bayart and
Grivaux in [7].

De�nition 0.1.25. Let E be an F-space. An operator T : E −→ E is frequently
hypercyclic if there exists x ∈ E such that, for every non-empty open set U of E,
the set {n ∈ N | Tn(x) ∈ U} has positive lower density. Such a vector is called a
frequently hypercyclic vector for T .

Of course, frequent hypercyclicity implies hypercyclicity.
As with hypercyclicity, one can try to explicitly construct a frequently hypercyclic

vector to prove that a given operator is frequently hypercyclic, see for example [47,
Example 9.6]. But for weighted shifts, there is a su�cient condition relating only to
the weights, which is much simpler.
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Proposition 0.1.26. Let E be an F-sequence space over N in which span{en | n ∈ N}
is dense. Let T : E −→ E be a weighted shift. If the series

∞∑
n=0

( n∏
j=1

wj

)−1

en

converges unconditionally then T is frequently hypercyclic.

Proposition 0.1.27. Let E be an F-sequence space over Z in which span{en | n ∈ Z}
is dense. Let T : E −→ E be a bilateral weighted shift. If the series

0∑
n=−∞

( 0∏
j=n+1

wj

)
en +

∞∑
n=1

( n∏
j=1

wj

)−1

en

converges unconditionally then T is frequently hypercyclic.

The previous two results can be proved with the Frequent Hypercyclicity Criterion
below, see [22, Theorem 4.3].

Example 0.1.28. The di�erentiation operator D is frequently hypercyclic on H(C).
Indeed, recall from Example 0.1.21 that D is a weighted shift with sequence of weights
(n)n≥1. Since

∑
n≥0 z

n/n! = ez converges unconditionally in H(C), we deduce by
Proposition 0.1.26 that D is frequently hypercyclic.

Proposition 0.1.26 combined with Theorem 0.1.19, and Proposition 0.1.27 com-
bined with Theorem 0.1.23, yield the following result.

Corollary 0.1.29 ([22, Corollary 4.4]). Let E be an F-sequence space in which the
canonical unit sequences form an unconditional basis. Then every chaotic shift on E
is frequently hypercyclic.

For weighted shifts on `p, 1 ≤ p <∞, the converse holds.

Theorem 0.1.30 ([12, Theorem 4]). Let T : `p −→ `p be a weighted shift with
sequence of weights (wn)n∈N0

, where 1 ≤ p < ∞. Then T is frequently hypercyclic if
and only if the series

∑∞
n=0

∏n
j=1 |wj |−p converges.

That is to say, by Theorem 0.1.19, a weighted shift on `p, 1 ≤ p <∞, is frequently
hypercyclic if and only if it is chaotic.

On the space c0, there exists a frequently hypercyclic weighted shift that is not
chaotic as showed by Bayart and Grivaux [9, Corollary 5.2]. On c0 or on each space
`p, 1 ≤ p < ∞, Menet [72, Theorem 1.2] proved that there exists a chaotic operator
that is not frequently hypercyclic.

As for chaos, there exists an in�nite-dimensional separable Banach space over K
that supports no frequently hypercyclic operators. This was proved by Shkarin in
[90, Corollaries 1.4 and 1.5].

A useful tool for proving the frequent hypercyclicity of a given operator is the
so-called Frequent Hypercyclicity Criterion.

Theorem 0.1.31 (Frequent Hypercyclicity Criterion). Let T be an operator on a
separable F -space E. Assume that there exist a dense subset E0 of E and a map
S : E0 −→ E0 such that for any x ∈ E0, the following conditions hold:
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(i)
∑∞
n=0 T

n(x) is unconditionally convergent,

(ii)
∑∞
n=0 S

n(x) is unconditionally convergent,

(iii) TS(x) = x.

Then T is frequently hypercyclic.

This version of the criterion for operators de�ned on an F-space has been proved by
Bonilla and Grosse-Erdmann [22, Theorem 2.1]. An operator satisfying the conditions
of Theorem 0.1.31 is also chaotic, see [22, Remark 2.2(b)]. Consequently, the example
of Bayart and Grivaux [9, Corollary 5.2] of a frequently hypercyclic but not chaotic
weighted shift on c0 shows that not every frequently hypercyclic operator satis�es the
criterion.

As we will see in Chapter 1, frequent hypercyclicity is related to ergodic theory.

De�nition 0.1.32. Let (M,B, µ) be a probability space. A measurable map T :
M −→ M is measure-preserving, or µ is T -invariant, if µ(T−1(A)) = µ(A) for every
A ∈ B.

If T is measure-preserving then it is, or µ is,

(i) ergodic if for every A ∈ B such that A = T−1(A), we have µ(A) ∈ {0, 1},

(ii) strongly mixing if limn→∞ µ(T−n(A) ∩B) = µ(A)µ(B) for every A,B ∈ B,

(iii) exact if every A ∈ B belonging to
⋂
n≥0 T

−n(B) satis�es µ(A) ∈ {0, 1}.

We remark that exactness implies strong mixing, and strong mixing implies er-
godicity, see [32, pp. 50, 87].

The link between frequent hypercyclicity and ergodic theory will be made via the
so-called Birkho� Ergodic Theorem. For a proof of this result, see e.g. [98, Theorem
1.14].

Theorem 0.1.33 (Birkho� Ergodic Theorem). Let (M,B, µ) be a probability space
and T : M −→M be a measure-preserving and ergodic map. Let f ∈ L1(M,µ). Then

lim
N→∞

1

N + 1

N∑
n=0

f ◦ Tn =

∫
M

fdµ µ-a.s.

With a single operator as the evolution map, we follow the evolution of a system
on discrete times; the concept of C0-semigroup is the continuous counterpart.

De�nition 0.1.34. Let (Tt)t≥0 be a family of operators on a Fréchet space E. It is
called a C0-semigroup if

(i) T0 = I,

(ii) Tt+s = TtTs for all s, t ≥ 0,

(iii) lims→t Ts(x) = Tt(x) for all x ∈ E and t ≥ 0.
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De�nition 0.1.35. Let (Tt)t≥0 be a C0-semigroup. The map A : Dom(A) −→ E
de�ned by

A(x) := lim
t→0

Tt(x)− x
t

is called the generator of (Tt)t≥0, where Dom(A) is the set of vectors where the above
limit exists.

The generator is clearly a linear map. A C0-semigroup is fully determined by its
generator, see [60, Theorem 3], and the domain of the generator is a dense subspace
of the space, see [60, Proposition 1.3]. Here are some useful properties.

Proposition 0.1.36. Let (Tt)t≥0 be a C0-semigroup on a Fréchet space E, and let A
be its generator.

(i) For every x ∈ Dom(A) and t ≥ 0, we have Tt(x) ∈ Dom(A) and ATt(x) =
TtA(x).

(ii) Let λ ∈ K and x ∈ E. Then x ∈ Dom(A) and A(x) = λx if and only if
Tt(x) = eλtx for all t ≥ 0.

Proof. The �rst assertion is proved in [60, Proposition 1.2(1)].
For the second one, assume that Tt(x) = eλtx for any t ≥ 0. We then have

Tt(x)− x
t

=
eλtx− x

t
=
eλt − 1

t
x

for any t > 0. We conclude that x ∈ Dom(A) and A(x) = λx.
Assume now that A(x) = λx. It is readily check that (e−λtTt)t≥0 is a C0-semigroup

with generator A − λI de�ned on Dom(A). By applying [60, Proposition 1.2(2)] to
this semigroup, we get that

e−λtTt(x)− x =

∫ t

0

e−λsTs(A(x)− λx)ds = 0

for any t ≥ 0. This concludes the proof.

Example 0.1.37. Let I ∈ {[0,∞[,R}. An admissible weight function ρ is a measurable
function ρ : I −→ ]0,∞[ such that there exist M ≥ 1 and w ∈ R such that ρ(s) ≤
Mewtρ(t+ s) for every s ∈ I and t ≥ 0.

For an admissible weight function ρ and a real 1 ≤ p <∞, we de�ne the Banach
space

Lpρ(I) :=

{
f : I −→ K |

∫
I

|f(x)|pρ(x)dx <∞
}
,

endowed with the norm ‖f‖Lpρ(I) := (
∫
I
|f(x)|pρ(x)dx)1/p, f ∈ Lpρ(I). The translation

semigroup on Lpρ(I) is de�ned by

Tt(f)(x) := f(x+ t), x ∈ I, t ≥ 0,

for every f ∈ Lpρ(I). Its generator is the di�erentiation operator de�ned on the space of
absolutely continuous functions in Lpρ(I) with derivative in Lpρ(I), see [36, Proposition
II.1].
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With a given operator on a Banach space, one can construct a semigroup by taking
the exponential of that operator.

De�nition 0.1.38. Let A : E −→ E be an operator on a Banach space E. We de�ne
the exponential of A by

eA =

∞∑
n=0

An

n!
.

The series
∑∞
n=0

An

n! converges since it is absolutely convergent.

Proposition 0.1.39 ([36, Proposition I.2.11]). Let A : E −→ E be an operator on a
Banach space E. Then (etA)t≥0 is a C0-semigroup.

For further reading on semigroups on Banach spaces, see for example the book
by Engel and Nagel [36]. For the case of Fréchet spaces, see the book by Yosida
[99, Chapter IX] and the papers by K	omura [60] and 	Ouchi [83].

The notions of hypercyclicity and chaos are easily adapted to the continuous case.
Here, a vector x ∈ E is periodic for a C0-semigroup (Tt)t≥0 if there exists t > 0 such
that Tt(x) = x.

De�nition 0.1.40. Let (Tt)t≥0 be a C0-semigroup on a Fréchet space E.

(i) For all x ∈ E, the orbit of x under (Tt)t≥0 is the set

Orb
(
x, (Tt)t≥0

)
=
{
Tt(x) | t ≥ 0

}
.

(ii) (Tt)t≥0 is hypercyclic if there exists x ∈ E whose orbit is dense in E. Such a
vector is called a hypercyclic vector for (Tt)t≥0.

(iii) (Tt)t≥0 is chaotic if it is hypercyclic and has a dense set of periodic points.

In [28, Theorem 2.5], Conejero proved that every separable in�nite-dimensional
Fréchet space which is not KN admits a hypercyclic C0-semigroup, while KN has no
hypercyclic C0-semigroup by a result of Shkarin [91, Corollary 1.7].

As for chaos, Bermúdez, Bonilla and Martinón [14, Theorem 3.3] proved that
there exists a separable in�nite-dimensional Banach space that supports no chaotic
C0-semigroup.

Conejero, Müller and Peris [29, Theorem 2.3] proved that a C0-semigroup (Tt)t≥0

is hypercyclic if and only if each Tt, t > 0, is hypercyclic.
For frequent hypercyclicity, we must �rst rede�ne the lower density.

De�nition 0.1.41. The lower density of a measurable set A ⊆ [0,∞[ denoted by
dens(A) is the quantity

dens(A) = lim inf
N→∞

λ(A ∩ [0, N ])

N
,

where λ is the Lebesgue measure on [0,∞[.
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De�nition 0.1.42. Let E be a Fréchet space. A C0-semigroup (Tt)t≥0 on E is
frequently hypercyclic if there exists x ∈ E such that, for every non-empty open set
U of E, the set {t ≥ 0 | Tt(x) ∈ U} has positive lower density. Such a vector is called
a frequently hypercyclic vector for (Tt)t≥0.

Note that for any open set U ⊆ E, the set {t ≥ 0 | Tt(x) ∈ U} is indeed measurable
since the map t 7−→ Tt(x) is continuous by (iii) of De�nition 0.1.34.

This notion was extended from a single operator to semigroups by Badea and
Grivaux [6].

Example 0.1.43. The translation semigroup of Example 0.1.37 is chaotic if and only
if it is frequently hypercyclic if and only if

∫
I
ρ(x)dx <∞, see [69, Theorems 3.9 and

3.10], where the proof is given for real spaces but is also valid for complex spaces.

Remark 0.1.44. Mangino and Peris [70, Proposition 2.1] proved that a C0-semigroup
(Tt)t≥0 is frequently hypercyclic if and only if each Tt, t > 0, is frequently hypercyclic.
Moreover, a careful reading of their proof and the result of Conejero, Müller and Peris
[29, Theorem 3.2] show that a vector x ∈ E is frequently hypercyclic for (Tt)t≥0 if
and only if it is frequently hypercyclic for each Tt, t > 0.

There are also continuous versions of the concepts of ergodic theory.

De�nition 0.1.45. Let (E,B, µ) be a probability space, where E is a Fréchet space.
A C0-semigroup (Tt)t≥0 on E is measure-preserving, or µ is (Tt)t≥0-invariant, if
µ(T−1

t (A)) = µ(A) for every t ≥ 0 and A ∈ B.
If (Tt)t≥0 is measure-preserving then it is, or µ is,

(i) ergodic if for every A ∈ B such that A = T−1
t (A) for all t ≥ 0, we have

µ(A) ∈ {0, 1},

(ii) strongly mixing if limt→∞ µ(T−t(A) ∩B) = µ(A)µ(B) for every A,B ∈ B.

Again, remark that strong mixing implies ergodicity, see [30, p. 25].
There is a version of the Birkho� Ergodic Theorem for semigroups, see [30, Chapter

1, Theorem 1].

Theorem 0.1.46 (Birkho� Ergodic Theorem). Let (E,B, µ) be a probability space,
where E is a Fréchet space. Let (Tt)t≥0 be a measure-preserving and ergodic C0-
semigroup, and let f ∈ L1(E,µ). Then

lim
N→∞

1

N

∫ N

0

f(Tt(x))dt =

∫
E

fdµ µ-a.s.

0.2 Probability theory

Some de�nitions and elementary results from probability theory are recalled in this
section. For much more information on random vectors taking values in a metric
space, see [95, Chapter II] or [51, Appendix E]. See also [50, Chapter 1] for a general
theory of measurable functions and integration theory in Banach spaces.

In this section, let (Ω,A,P) be a probability space. The σ-algebra of Borel sets of
a topological space E is denoted by B(E).
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De�nition 0.2.1. Let E be a metric space and (S,B) be a measurable space. A map
f : S −→ E is measurable if f−1(A) ∈ B for every A ∈ B(E).

De�nition 0.2.2. Let E be an F-space. A random vector X : Ω −→ E is a measur-
able map v : (Ω,A) −→ (E,B(E)).

The distribution of a random vector X : Ω −→ E is de�ned exactly as in the scalar
case: it is the probability measure

PX : B(E) −→ [0, 1], A −→ P(X ∈ A).

Two random vectors X and Y and identically distributed if their distributions are
equal.

An important notion in probability theory is the concept of independence.

De�nition 0.2.3. Let J be a set and (Xj)j∈J be a family of random vectors taking
values in an F-space E. The random vectors Xj , j ∈ J , are independent if for all
n ≥ 1, A1, . . . , An ∈ B(E) and j1, . . . , jn ∈ J , we have

P(Xj1 ∈ A1, . . . , Xjn ∈ An) =

n∏
k=1

P(Xjk ∈ Ak).

A family (Xj)j∈J of independent and identically distributed random vectors, ab-
breviated i.i.d., is a family of independent random vectors such that PXk = PXj for
all k, j ∈ J .

De�nition 0.2.4. Let E be an F-space. The support of a probability measure µ :
B(E) −→ [0, 1] is the set

supp(µ) =
⋂
F

F,

where the intersection is taken over the closed sets F ⊆ E of full measure.

By [18, Proposition 7.2.9], the set supp(µ) has full measure.

De�nition 0.2.5. A probability measure µ : B(E) −→ [0, 1] on an F-space E has
full support if µ(O) > 0 for any non-empty open set O ⊆ E.

Notice that µ has full support if and only if supp(µ) = E. Indeed, suppose that
µ(O) = 0 for some non-empty open set O ⊆ E. Then F := {O is closed and has full
measure, and supp(µ) ⊆ F ( E. For the converse, assume that supp(µ) 6= E. Then,
because supp(µ) is closed, there exists an open set O ⊆ E such that O ⊆ {supp(µ).
Since supp(µ) has full measure, we deduce that µ(O) = 0.

We recall two elementary and well-known results that will be used in several places
in this work, namely the Markov inequality and the Borel-Cantelli lemma.

The expectation of a non-negative or integrable random variable X : Ω −→ K is
denoted by E(X).

Proposition 0.2.6 (Markov inequality). Let X be a non-negative random variable.
For every t > 0, we have

P(X ≥ t) ≤ E(X)

t
.
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Lemma 0.2.7 (Borel-Cantelli lemma). Let (An)n∈N ⊆ A be a sequence of measurable
events. If

∑
n≥0 P(An) <∞ then

P
( ⋂
n0∈N

⋃
n≥n0

An

)
= 0.

There is also a kind of converse of the lemma but we will not use it in this work.
Let us recall some modes of convergences of measures and random vectors.

De�nition 0.2.8. Let E be a metric space. A sequence (νn)n∈N of positive measures
on (E,B(E)) converges weakly to a measure ν if

lim
n→∞

∫
E

f(x)dνn =

∫
E

f(x)dν

for every bounded continuous function f : E −→ R.

De�nition 0.2.9. Let (S,B, µ) be a measure space, and let (fn)n∈N be a sequence
of measurable maps taking values in a metric space (E, d) and f : S −→ E be a
measurable map.

(i) The sequence (fn)n∈N converges in measure to f if limn→∞ µ(d(fn, f) ≥ ε) = 0
for every ε > 0.

(ii) The sequence (fn)n∈N converges almost everywhere to f if there exists a set
A ∈ B such that µ(A) = 0 and limn→∞ fn(x) = f(x) for every x /∈ A.

Of course, there is also the notion of convergence in the spaces Lp, 1 ≤ p < ∞.
See Section A.1 for the de�nition of the spaces Lp for functions taking values in a
Fréchet space.

The proof of the next result can be found in [51, Proposition E.1.5] for a probability
space, but it is the same for any measure space.

Lemma 0.2.10. Let (S,B, µ) be a measure space, and let (fn)n∈N be a sequence of
measurable maps on (S,B, µ) taking values in a metric space (E, d) and f : S −→ E
be a measurable map. If (fn)n∈N converges in measure to f then there is a subsequence
(fnk)k∈N converging almost everywhere to f .

Proof. By assumption, construct by induction an increasing sequence (nk)k∈N of pos-
itive integers such that µ(d(fnk , f) ≥ 2−k) ≤ 2−k for all k ∈ N. Then we have

µ
( ⋂
k0≥0

⋃
k≥k0

{
x ∈ S | d(fnk(x), f(x)) ≥ 2−k

})
= 0.

Therefore, almost everywhere, there exists k0 ≥ 0 such that d(fnk , f) ≤ 2−k for every
k ≥ k0, and thus (fnk)k∈N converges almost everywhere to f .

For random vectors, we usually say almost sure convergence for almost everywhere
convergence, and convergence in probability for convergence in measure.
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De�nition 0.2.11. A sequence of random vectors (Xn)n∈N converges in distribution
if (PXn)n∈N converges weakly.

It is not di�cult to show that almost sure convergence implies convergence in
probability, and that convergence in probability implies convergence in distribution,
see [51, Proposition E.1.5].

0.3 Pettis integral

We will use the Pettis integral in Chapter 2. We recall here the de�nition. For more
on this topic, see [50, Subsection 1.2.c] in the case of Banach space-valued functions,
or [93].

De�nition 0.3.1. Let (S,B, µ) be a measure space and E be a Fréchet space.

(i) A function f : S −→ E is weakly measurable if x∗f is measurable for every
x∗ ∈ E∗.

(ii) Let 1 ≤ p < ∞. A weakly measurable function f : S −→ E is Lp-weakly
integrable, or weakly Lp, if x∗f ∈ Lp(S;K) for all x∗ ∈ E∗.

De�nition 0.3.2. Let (S,B, µ) be a measure space, E be a Fréchet space and f :
S −→ E be a Lp-weakly integrable function, where 1 ≤ p < ∞. Then f is Pettis
integrable if for every A ∈ B, there exists xA ∈ E such that for all x∗ ∈ E∗, we have
x∗(xA) =

∫
A
x∗fdµ.

0.4 Stochastic calculus

We recall in this section the Itô integral. It will be used in Chapter 2. There are
many references on this topic, see for example [59] or [81] for more information.

Let (Ω,A,P) be a probability space. First of all, let us recall the de�nition of the
Brownian motion.

De�nition 0.4.1. A real-valued stochastic process (Bt)t≥0 is a Brownian motion if

(i) B0 = 0 almost surely,

(ii) (Bt)t≥0 has independent increments i.e., for any n ∈ N0 and 0 ≤ t0 < · · · < tn,
the random variables Bt1 −Bt0 , . . . , Btn −Btn−1

are independent,

(iii) (Bt)t≥0 has stationary increments i.e., for any 0 ≤ s ≤ t, the random variables
Bt −Bs and Bt−s have the same distribution,

(iv) for every t ≥ 0, Bt is a centred Gaussian random variable with variance t,

(v) almost surely, the paths t 7−→ Bt are continuous.
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There are several proofs of the existence of the Brownian motion, and they can
be found in many books. See for example [59, Theorem 21.9].

For the remainder of the section, let (Bt)t≥0 be a Brownian motion.
The Itô integral is de�ned in the same way as the Riemann integral, by approaching

functions to integrate by `simple' functions. First, recall the de�nition of a step
function, that is, piecewise constant functions.

De�nition 0.4.2. A step function φ : [0,∞[ −→ R is a function of the form φ =∑n
i=1 ai1]ti−1,ti[, where n ∈ N0, ai ∈ R for all 1 ≤ i ≤ n and 0 ≤ t0 ≤ · · · ≤ tn.

Any square-integrable function φ : [0,∞[ −→ R can be approximated by step
functions, see [50, Remark 1.2.20]. If φ =

∑n
i=1 ai1]ti−1,ti[ is a step function, de�ne∫∞

0
φ(t)dBt :=

∑n
i=1 ai(Bti −Bti−1

). It is easy to check that∥∥∥∫ ∞
0

φ(t)dBt
∥∥∥
L2(Ω;R)

= ‖φ‖L2([0,∞[).

Therefore, by denoting E as the space of step functions, we obtain a linear isometry

I : E −→ L2(Ω,P), φ 7−→
∫ ∞

0

φ(t)dBt.

Since E is dense in L2([0,∞[), we can extend I to the whole space L2([0,∞[).

De�nition 0.4.3. Let φ : [0,∞[ −→ R be a square-integrable function. Let (φn)n≥0

be a sequence of step functions converging to φ in L2([0,∞[). The Itô integral of φ is
the Gaussian random variable∫ ∞

0

φ(t)dBt := lim
n→∞

∫ ∞
0

φn(t)dBt,

where the limit is taken in L2(Ω;R).

The Itô integral of a square-integrable function is indeed a Gaussian random vari-
able since a converging sequence of centred Gaussian random variables necessarily
converges to a Gaussian random variable, see [86, Lemma 2.1]. It is also centred since
the Brownian motion is centred.

We get the celebrated Itô isometry.

Theorem 0.4.4 (Itô isometry). Let φ : [0,∞[ −→ R be a square-integrable function.
Then we have ∥∥∥∫ ∞

0

φ(t)dBt
∥∥∥
L2(Ω;R)

= ‖φ‖L2([0,∞[).

To consider complex spaces as well, we de�ne a stochastic integral with respect to
a complex Brownian motion.

De�nition 0.4.5. Let (B1
t )t≥0 and (B2

t )t≥0 be two independent Brownian motions.
The stochastic process (Bt)t≥0 := (B1

t +iB2
t )t≥0 is called a complex Brownian motion.



0.5 � Gaussian measures 23

De�nition 0.4.6. Let (Bt)t≥0 := (B1
t + iB2

t )t≥0, where (B1
t )t≥0 and (B2

t )t≥0 are two
independent real Brownian motions. Let φ ∈ L2([0,∞[;C). The Itô integral of φ is
the complex random variable∫ ∞

0

φ(t)dBt :=

∫ ∞
0

φ1(t)dB1
t −

∫ ∞
0

φ2(t)dB2
t + i

(∫ ∞
0

φ2(t)dB1
t +

∫ ∞
0

φ1(t)dB2
t

)
,

where φ1 and φ2 are respectively the real and imaginary parts of φ.

There is also a version of the Itô isometry for the complex case.

Lemma 0.4.7. Let φ ∈ L2([0,∞[;C) and (Bt)t≥0 := (B1
t + iB2

t )t≥0, where (B1
t )t≥0

and (B2
t )t≥0 are two independent real Brownian motions. Then we have∥∥∥∫ ∞

0

φ(t)dBt
∥∥∥
L2(Ω;C)

=
√

2‖φ‖L2([0,∞[;C).

Proof. Let φ1 and φ2 be respectively the real and imaginary parts of φ. The de�nition
of the Itô integral with respect to a complex Brownian motion yields∣∣∣ ∫ ∞

0

φ(t)dBt
∣∣∣2

=
(∫ ∞

0

φ1(t)dB1
t

)2

+
(∫ ∞

0

φ2(t)dB2
t

)2

− 2

∫ ∞
0

φ1(t)dB1
t

∫ ∞
0

φ2(t)dB2
t

+
(∫ ∞

0

φ2(t)dB1
t

)2

+
(∫ ∞

0

φ1(t)dB2
t

)2

+ 2

∫ ∞
0

φ2(t)dB1
t

∫ ∞
0

φ1(t)dB2
t .

By taking the expectations on both sides, by Theorem 0.4.4 and since (B1
t )t≥0 and

(B2
t )t≥0 are independent and centred, we get the desired equality.

The Brownian motion is often indexed by the interval [0,∞[. We may also de�ne it
on R by taking two independent Brownian motions (B1

t )t≥0 and (B2
t )t≥0, and setting

Bt := B1
t if t ≥ 0 and Bt := B2

−t if t < 0.

0.5 Gaussian measures

In Chapter 2, we will need the notion of covariance operators for Gaussian measures.
This concept is the generalization of the covariance matrix for a �nite-dimensional
Gaussian distribution. Our main references are [10, Chapter 5], [19] and [95].

Throughout this section, let E be a separable real or complex Fréchet space and
(Ω,A,P) be a probability space.

We �rst recall the de�nition of a complex Gaussian random variable.

De�nition 0.5.1. Let X : Ω −→ K be a random variable.

(i) If K = C then X : Ω −→ C is a (complex) Gaussian random variable, or has
Gaussian distribution, if its real and imaginary parts are independent and have
Gaussian distribution with the same mean and variance.
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(ii) If K = R and X is a Gaussian random variable then it is standard if has mean
0 and variance 1.

(iii) If K = C and X is a Gaussian random variable then it is standard if its real
and imaginary parts have mean 0 and variance equal to

√
2/2.

(iv) A sequence (Xn)n∈N of independent Gaussian random variables is a standard
Gaussian sequence if each Xn, n ∈ N, is standard.

Note that we consider the constant variable 0 to be Gaussian, that may be thought
as a degenerate Gaussian.

If the space E is real (resp. complex), then the random variables are assumed to
be real (resp. complex).

De�nition 0.5.2. A probability measure µ on E is a Gaussian measure on E if for
every x∗ ∈ E∗, the random variable x∗ de�ned on the probability space (E,B(E), µ)
has a centred Gaussian distribution.

A Gaussian random vector is a random vector whose distribution is a Gaussian
measure.

A well-known result, the so-called Fernique integrability theorem, says that a
Gaussian measure has moments of any order. For a proof of this result, see [19,
Corollary 2.8.6].

Theorem 0.5.3 (Fernique integrability theorem). Let µ be a Gaussian measure on
E. For every 1 ≤ p <∞ and every continuous seminorm ‖ · ‖ on E, the integral∫

E

‖x‖pdµ(x)

is �nite.

The next result says that the almost sure convergence of a Gaussian series is
equivalent to the convergence in Lp(Ω;E) for any 1 ≤ p <∞. See Section A.1 of the
appendix for a de�nition of the spaces Lp(Ω;E), 1 ≤ p < ∞, and a proof of their
completeness.

Theorem 0.5.4. For any sequence of vectors (xn)n∈N ⊆ E and any sequence (gn)n∈N
of i.i.d. centred Gaussian random variables, the following assertions are equivalent:

(i) for all 1 ≤ p <∞, the series
∑∞
n=0 gnxn converges in Lp(Ω;E),

(ii) there exists 1 ≤ p <∞ such that
∑∞
n=0 gnxn converges in Lp(Ω;E),

(iii) the series
∑∞
n=0 gnxn converges in probability,

(iv) the series
∑∞
n=0 gnxn converges almost surely.

Proof. The implication (i) =⇒ (ii) is clear and (ii) =⇒ (iii) follows from Markov's
inequality. The equivalence (iii) ⇐⇒ (iv) is proved in [25, Theorem 1.3.2].

Let us prove (iv) =⇒ (i). Let 1 ≤ p < ∞. Let ‖ · ‖ be a continuous semi-
norm on E. Since the random vector

∑
n≥0 gnxn converges almost surely, it has a
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Gaussian distribution by [10, Example 5.8]. Note that the proof given there for Ba-
nach spaces carries over verbatim to Fréchet spaces. By Theorem 0.5.3, we thus have
E(‖

∑
n≥0 gnxn‖p) <∞. Therefore, by [25, Corollaries 1.7.2 and 1.7.3], we get that

lim
k→∞

E
(∥∥ ∞∑

n=k

gnxn
∥∥p) = 0,

and the result follows.

An important tool for studying a Gaussian measure is the covariance operator. A
proof of the next theorem is given in [19, Theorem 3.2.3 and Corollary 3.2.5]. The
Mackey topology τ(E∗, E) is de�ned in De�nition A.3.4.

Theorem 0.5.5. Let µ be a Gaussian measure on E. There exists a continuous
conjugate-linear map Q : (E∗, τ(E∗, E)) −→ E such that for any x∗, y∗ ∈ E∗, we
have

y∗Qx∗ =

∫
E

y∗(z)x∗(z)dµ(z) = 〈y∗, x∗〉L2(E,µ).

De�nition 0.5.6. Let µ be a Gaussian measure. The operator Q : E∗ −→ E of
Theorem 0.5.5 is called the covariance operator of µ.

A conjugate-linear map Q : E∗ −→ E is a Gaussian covariance operator if it is
the covariance operator of some Gaussian measure on E.

Recall that the characteristic functional of a Borel measure µ on E, denoted by
µ̂, is de�ned by

µ̂(x∗) :=

∫
E

eiRe(x
∗(x))dµ(x)

for every x∗ ∈ E∗. The covariance operator fully determines the characteristic func-
tional of a Gaussian measure, as the next result says.

Theorem 0.5.7. Let µ be a Gaussian measure with covariance operator Q. For all
x∗ ∈ E∗, one has

µ̂(x∗) = e−cx
∗Qx∗ ,

where c = 1/2 if E is real and c = 1/4 if E is complex.

A proof for the real case can be found in [19, Theorem 2.2.4 and p. 45]. The proof
given there also holds for the complex case, or see [10, Theorem 5.9(b)] for measures
on complex Banach spaces. Again, the proof holds for Fréchet spaces.

This result in turn implies that two Gaussian measures with the same covariance
operator are equal, see [18, Lemma 7.13.5].

There exists a characterization for a conjugate-linear map to be a Gaussian co-
variance operator. We will need the notion of γ-radonifying operators.

De�nition 0.5.8. Let H be a separable Hilbert space. A continuous and linear
map T : H −→ E is γ-radonifying if for some orthonormal basis (en)n∈N of H, the
series

∑
n≥0 gnT (en) converges almost surely, where (gn)n∈N is a standard Gaussian

sequence.
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If T : H −→ E is γ-radonifying then
∑
n≥0 gnT (en) converges almost surely for

any orthonormal basis (en)n∈N of H, see [10, Remark 5.12]. The proof in the reference
still holds for Fréchet spaces; use [25, Theorem 1.3.2] for the equivalence between the
almost sure convergence and the convergence of the characteristic functionals used in
the proof of [10, Remark 5.12].

Again, a proof of Theorem 0.5.9 is given in the cited reference in the case of a
Banach space, but the proof remains the same in the case of a Fréchet space.

If H is a separable Hilbert space, the term canonical conjugate-linear identi�cation
operator stands for the bijective conjugate-linear map I : H∗ −→ H given by the Riesz
theorem, which identi�es H with its dual.

Theorem 0.5.9 ([10, Theorem 5.13]). Let Q : E∗ −→ E be a conjugate-linear map.
The following assertions are equivalent:

(i) Q is a Gaussian covariance operator,

(ii) Q has a γ-radonifying square root i.e., there exist a separable Hilbert space
E and a γ-radonifying operator K : H −→ E such that Q = KIK∗, where
I : H∗ −→ H is the canonical conjugate-linear identi�cation operator.

More precisely, we can take H∗ = E∗ where the closure is taken in L2(µ) and
K∗ : E∗ −→ H∗, x∗ 7−→ x∗.

The following lemma says that every square root of a Gaussian covariance operator
is necessarily γ-radonifying.

Lemma 0.5.10. If Q : E∗ −→ E is a Gaussian covariance operator, and if Q =
KIK∗, where K : H −→ E is continuous, H is a separable Hilbert space and I :
H∗ −→ H is the canonical conjugate-linear operator, then K is γ-radonifying.

Proof. Let x∗ ∈ E∗. Then

x∗Qx∗ = x∗(KIK∗(x∗)) = (x∗ ◦K)(IK∗(x∗))

= 〈IK∗(x∗), IK∗(x∗)〉H = ‖K∗(x∗)‖2H .

By [10, Remark 5.12] and Theorem 0.5.7, we deduce that K is γ-radonifying.

De�nition 0.5.11. A family R of Borel probability measures on E is uniformly tight
if for every ε > 0, there exists a compact set K ⊆ E such that ν(K) > 1− ε for every
ν ∈ R.

Recall that a map R : E∗ −→ E is positive if x∗Rx∗ ≥ 0 for all x∗ ∈ E∗, and is
symmetric if x∗Ry∗ = y∗Rx∗ for all x∗, y∗ ∈ E∗. It is easy to see that any Gaussian
covariance operator is positive symmetric. In addition, note that a symmetric map is
necessarily conjugate-linear.

Theorem 0.5.12 ([97, Theorem 8.8]). Let Q : E∗ −→ E be the covariance operator
of a Gaussian measure µQ on E. Let R be the family of positive symmetric operators
R : E∗ −→ E such that for every x∗ ∈ E∗, one has x∗Rx∗ ≤ x∗Qx∗. Then each
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R ∈ R is the covariance operator of a Gaussian measure µR on E, and the family
{µR | R ∈ R} is uniformly tight. Moreover, for all R ∈ R, we have∫

E

‖x‖pdµR(x) ≤
∫
E

‖x‖pdµQ(x)

for all 1 ≤ p <∞ and all continuous seminorms ‖ · ‖ on E.

The cited reference gives the proof for Banach spaces, and it carries over verbatim
to Fréchet spaces.

The interest in the covariance operator is that properties involving a Gaussian
measure can usually be formulated in terms of its covariance operator. Here are three
examples that we will need in Chapter 2. The reference given for the last result is
stated for a single operator on a Banach space, but the proof for semigroups on a
Fréchet space is the same.

If M ⊆ E∗, we de�ne the orthogonal complement of M by

M⊥ :=
{
x ∈ E | x∗(x) = 0 for all x∗ ∈M

}
.

Proposition 0.5.13 ([10, Proposition 5.18]). Let µ be a Gaussian measure with
covariance operator Q : E∗ −→ E. Then supp(µ) = Ker(Q)⊥. In particular, µ has
full support if and only if Q is one-to-one.

Theorem 0.5.14 ([10, Proposition 5.22 and Theorem 5.24]). Let (Tt)t≥0 be a C0-
semigroup on E. Let µ be a Gaussian measure with covariance operator Q : E∗ −→ E.

(i) The measure µ is (Tt)t≥0-invariant if and only if TtQT
∗
t = Q for all t ≥ 0.

(ii) If µ is (Tt)t≥0-invariant, then (Tt)t≥0 is strongly mixing with respect to µ if and
only if for any x∗, y∗ ∈ E∗, one has limt→∞ y∗QT ∗t (x∗) = 0.
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Chapter 1

Random vectors for frequently

hypercyclic operators

Let Bw : `p −→ `p be a weighted shift on `p, 1 ≤ p < ∞, where w = (wn)n≥1 is
the sequence of weights. It is known that if Bw is chaotic then the random vector∑
n≥0

Xn
w1...wn

en is almost surely frequently hypercyclic for Bw, where (Xn)n≥0 is a
sequence of independent and identically distributed non-constant Gaussian random
variables, see [10, Section 5.5.2] or [11, Section 7.1]. Furthermore, this random vector
also induces a strongly mixing Gaussian measure for Bw.

In [80], Nikula proved that
∑
n≥0

Xn
n! en is almost surely frequently hypercyclic

for the di�erentiation operator D on the space H(C) of entire functions, where the
distribution of the i.i.d. variables (Xn)n≥0 satis�es some conditions and (en)n≥0 is
the sequence of monomials. In [74], Mouze and Munnier relaxed the condition on the
distribution. The result was also proved by Bayart and Matheron in [11, Remark 2
after Proposition 8.1] in the Gaussian case, and the random vector

∑
n≥0

Xn
n! en also

induces a strongly mixing Gaussian measure for D. As a last example, Mouze and
Munnier proved in [75, Theorem 1.3] that

∑
n≥0Xnen is almost surely frequently

hypercyclic for the so-called Taylor shift.
The aim of this chapter is to generalize these results to very general chaotic

weighted shifts and even to a larger class of operators. However, the sequence (Xn)n≥0

might not be Gaussian.
Given an operator T : E −→ E on a locally bounded or locally convex separable

F-space E, we will �nd conditions on T and on the distribution of a random variable
X such that X will allow us to de�ne a frequently hypercyclic random vector for T .
This is the content of Theorem 1.1.8. Section 1.1 is devoted to its proof. In the second
section, we deduce three important special cases of the theorem: we obtain conditions
under which the desired random variable X exists (Theorem 1.2.3), or can be chosen
to be subgaussian (Theorem 1.2.10) or Gaussian (Theorem 1.2.12).

In Section 1.3, these results will be applied to chaotic weighted shifts on very
general sequence spaces. We will also give a new proof of a result of Murillo-Arcila
and Peris [77] by showing that every operator satisfying the Frequent Hypercyclicity
Criterion admits a strongly mixing invariant measure with full support, where we

29
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obtain a rather explicit construction of such a measure. However, our result will
hold for operators de�ned on a locally bounded or locally convex separable F-space
whereas Murillo-Arcila and Peris proved the result for operators de�ned on a separable
F-space.

In the last section, other ways to quantify the number of visits of a vector in
open sets will be considered, giving variants of frequent hypercyclicity. We will prove
that the random vector constructed in Theorem 1.1.8 also exhibits those dynamical
properties.

Throughout this chapter, if nothing else is said, let E be a locally bounded or
locally convex separable F-space over K = R or C. If the space E is complex (resp.
real), a random variable X is assumed to take complex (resp. real) values. Every
random variable considered will be de�ned on a probability space (Ω,A,P).

1.1 Frequent hypercyclicity

The aim of this section is to prove Theorem 1.1.8. We begin with three lemmas.

Lemma 1.1.1 ([40, Lemma 6.6]). Let (F,A) and (G,B(G)) be two measurable spaces
with G a metric space and B(G) the σ-algebra of Borel sets of G. Let (fn)n≥0 be a
sequence of measurable maps fn : F −→ G, n ≥ 0. Assume that (fn)n≥0 converges
pointwise to a function f : F −→ G. Then f is measurable.

Proof. Since B(G) is the σ-algebra generated by the open subsets of G, it su�ces to
show that f−1(C) ∈ A for every closed subset C of G. So let C ⊆ G be a closed
subset of G. It is easily veri�ed that

f−1(C) =
⋂
k≥1

⋃
n0∈N

⋂
n≥n0

f−1
n

(
{x ∈ X | dist(x,C) < 1/k}

)
.

Since f−1(C) can be written as countable unions and intersections of sets of A, we
have f−1(C) ∈ A.

The proof of Lemma 1.1.2 should already be known. A proof in the case of a
Banach space can be given by using [51, Corollary E.1.17].

Lemma 1.1.2. Let F be a metric space. Let (Xn)n∈N and (Yn)n∈N be two sequences
of random variables with values in F such that for every n ∈ N, Xn and Yn have the
same distribution. If (Xn)n∈N (resp. (Yn)n∈N) converges almost surely to X (resp.
Y ) then the random variables X and Y have the same distribution.

Proof. By assumption, for every bounded continuous function h : F −→ R and every
n ∈ N, we have E(h(Xn)) = E(h(Yn)). By taking the limit when n goes to ∞, we get
E(h(X)) = E(h(Y )). (At this point, one can use [51, Corollary E.1.17] to conclude
the proof.)

Now, let A ∈ B(F ) and ε > 0. There exists an open set U ⊆ F containing A
such that P(X ∈ U \ A) ≤ ε and P(Y ∈ U \ A) ≤ ε by [31, Proposition 18.3]. For
all k ≥ 0, de�ne the bounded and continuous function fk : F −→ R by fk(x) :=
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min(1, kdist(x, F \U)), x ∈ F . By the Dominated Convergence Theorem, there exists
k ≥ 0 large enough such that∣∣∣ ∫

Ω

(
1U (X)− fk(X)

)
dP
∣∣∣ ≤ ε and

∣∣∣ ∫
Ω

(
1U (Y )− fk(Y )

)
dP
∣∣∣ ≤ ε.

Therefore, |P(X ∈ A) − P(Y ∈ A)| ≤ 4ε. Since ε > 0 was arbitrary, we conclude
that P(X ∈ A) = P(Y ∈ A) for every A ∈ B(F ), and X and Y have the same
distribution.

The proof of Lemma 1.1.3 comes from [51, Proposition E.1.12].

Lemma 1.1.3. Let (Xn)n∈N and (Yn)n∈N be two sequences of real random variables
such that for every n ∈ N, Xn and Yn are independent. If (Xn)n∈N (resp. (Yn)n∈N)
converges almost surely to X (resp. Y ) then the random variables X and Y are inde-
pendent.

Proof. By almost sure convergence, for every bounded and continuous functions f
and g : R −→ R, we have

E(f(X)g(Y )) = lim
n→∞

E(f(Xn)g(Yn)) = lim
n→∞

E(f(Xn))E(g(Yn))

= E(f(X))E(g(Y )).

This shows that X and Y are independent by [51, Proposition E.1.10].

The next result gives conditions under which the random vector
∑∞
n=−∞Xnun is

almost surely frequently hypercyclic.

Proposition 1.1.4. Let T : E −→ E be an operator and let (un)n∈Z be a sequence
in E such that T (un) = un−1 for every n ∈ Z. Let (Xn)n∈Z be a sequence of i.i.d.
random variables de�ned on a probability space (Ω,A,P). Assume that the random
vector

v :=

∞∑
n=−∞

Xnun

is almost surely well-de�ned and P(v ∈ O) > 0 for every non-empty open subset O of
E. Then v is almost surely frequently hypercyclic for the operator T and induces a
strongly mixing measure with full support for T .

Proof. We can assume that the series de�ning v is convergent everywhere. Indeed,
restrict the random variables Xn, n ∈ Z, to a subset of Ω of full measure on which
the series de�ning v converges. Hence, we assume that the convergence is everywhere,
and v is measurable by Lemma 1.1.1.

De�ne the probability measure

µ : B(E) −→ [0, 1], A 7−→ P(v ∈ A).

In fact, the measure µ is the probability distribution of the random vector v.
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First, we show that µ is T -invariant. Let A ∈ B(E). By the de�nitions of µ and
v and continuity of T we have

µ(T−1(A)) = P(T (v) ∈ A) = P

( ∞∑
n=−∞

Xnun−1 ∈ A

)
= P

( ∞∑
n=−∞

Xn+1un ∈ A

)
.

Since (Xn)n∈Z is a sequence of i.i.d. random variables, we have

P

( ∞∑
n=−∞

Xn+1un ∈ A

)
= P

( ∞∑
n=−∞

Xnun ∈ A

)

by Lemma 1.1.2. We conclude by de�nition of µ that µ(T−1(A)) = P(v ∈ A) = µ(A).
The measure µ is thus T -invariant.

Now we claim that µ is T -strongly mixing. Let f and g be two bounded and
continuous real-valued functions de�ned on E. We aim to show that limn→∞

∫
E

(f ◦
Tn)gdµ =

∫
E
fdµ

∫
E
gdµ. Since the set of bounded continuous functions on E is

dense in L2(E,µ) by [31, Theorem 18.1], this will imply the claim by [31, Criterion
at p. 26]. First, by de�nition of µ, this is equivalent to showing that

lim
n→∞

∫
Ω

f(Tn(v))g(v)dP =

∫
Ω

f(v)dP
∫

Ω

g(v)dP.

Let ε > 0. By the Dominated Convergence Theorem and since f and g are continuous
and bounded, there exists N ≥ 1 such that

∥∥∥g( N∑
k=−∞

Xkuk

)
− g(v)

∥∥∥
L1(Ω,P)

< ε (1.1.1)

and ∥∥∥f ( ∞∑
k=−N

Xkuk

)
− f(v)

∥∥∥
L1(Ω,P)

< ε. (1.1.2)

Let n > 2N . We have

f(Tn(v))g(v) = f(Tn(v))g(v)− f(Tn(v))g

(
N∑

k=−∞

Xkuk

)

+ f(Tn(v))g

(
N∑

k=−∞

Xkuk

)
− f

( ∞∑
k=−N

Xk+nuk

)
g

(
N∑

k=−∞

Xkuk

)

+ f

( ∞∑
k=−N

Xk+nuk

)
g

(
N∑

k=−∞

Xkuk

)
. (1.1.3)

For the �rst two terms, using the assumption that f is bounded and the inequality
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(1.1.1) yield∣∣∣∣ ∫
Ω

f(Tn(v))g(v)dP−
∫

Ω

f(Tn(v))g

(
N∑

k=−∞

Xkuk

)
dP
∣∣∣∣

≤ ‖f‖∞
∥∥∥g( N∑

k=−∞

Xkuk

)
− g(v)

∥∥∥
L1(Ω,P)

≤ ‖f‖∞ε.

Now, for the third and fourth terms, using the linearity and continuity of T ,∣∣∣∣∣
∫

Ω

(
f(Tn(v))g

( N∑
k=−∞

Xkuk

)
− f

( ∞∑
k=−N

Xk+nuk

)
g

( N∑
k=−∞

Xkuk

))
dP

∣∣∣∣∣
≤ ‖g‖∞

∥∥∥∥f( ∞∑
k=−∞

Xk+nuk

)
− f

( ∞∑
k=−N

Xk+nuk

)∥∥∥∥
L1(Ω,P)

= ‖g‖∞
∥∥∥∥f( ∞∑

k=−∞

Xkuk

)
− f

( ∞∑
k=−N

Xkuk

)∥∥∥∥
L1(Ω,P)

≤ ‖g‖∞ε,

where we have used Lemma 1.1.2 for the equality and (1.1.2) for the last inequality.
For the last term of (1.1.3), since the random variables Xn, n ∈ Z, are i.i.d.

and n > 2N , we have, by Lemma 1.1.3 applied to (f(
∑M
k=−N Xk+nuk))M≥1 and

(g(
∑N
k=−M Xkuk))M≥1 and then Lemma 1.1.2 applied to (f(

∑M
k=−N Xk+nuk))M≥1

and (f(
∑M
k=−N Xkuk))M≥1,

∫
Ω

f

( ∞∑
k=−N

Xk+nuk

)
g

( N∑
k=−∞

Xkuk

)
dP

=

∫
Ω

f

( ∞∑
k=−N

Xk+nuk

)
dP
∫

Ω

g

( N∑
k=−∞

Xkuk

)
dP

=

∫
Ω

f

( ∞∑
k=−N

Xkuk

)
dP
∫

Ω

g

( N∑
k=−∞

Xkuk

)
dP.

Therefore, using again (1.1.1) and (1.1.2) gives∣∣∣∣ ∫
Ω

f

( ∞∑
k=−N

Xk+nuk

)
g

(
N∑

k=−∞

Xkuk

)
dP−

∫
Ω

f(v)dP
∫

Ω

g(v)dP
∣∣∣∣

≤ ‖f‖∞
∥∥∥g( N∑

k=−∞

Xkuk

)
− g(v)

∥∥∥
L1(Ω,P)

+ ‖g‖∞
∥∥∥f ( ∞∑

k=−N

Xkuk

)
− f(v)

∥∥∥
L1(Ω,P)

≤ ‖f‖∞ε+ ‖g‖∞ε.
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We can �nally conclude that∣∣∣∣∫
Ω

f(Tn(v))g(v)dP−
∫

Ω

f(v)dP
∫

Ω

g(v)dP
∣∣∣∣ ≤ 2‖f‖∞ε+ 2‖g‖∞ε,

and since ε > 0 was arbitrary, we eventually get that limn→∞
∫

Ω
f(Tn(v))g(v)dP =∫

Ω
f(v)dP

∫
Ω
g(v)dP. The measure µ is thus T -strongly mixing.

Let O be a non-empty open subset of E. The Birkho� Ergodic Theorem can be
applied to T and µ and gives

lim
N→∞

1

N + 1

N∑
n=0

IO ◦ Tn = µ(O) µ-a.s.

Let A be a Borel subset of E such that µ(A) = 1 and the previous equality holds
everywhere on A. Then, if B := v−1(A) ⊆ Ω, we have P(B) = P(v−1(A)) = µ(A) = 1
and

lim
N→∞

1

N + 1

N∑
n=0

IO ◦ Tn(v) = P(v ∈ O) > 0

on B. Since E is a separable F-space, we can take a countable base of open subsets
of E and get that almost surely, {n ≥ 0 | Tn(v) ∈ O} has positive lower density for
every non-empty open subset O of E. The random vector v is therefore almost surely
frequently hypercyclic for the operator T .

Remark 1.1.5. If T admits an invariant and ergodic probability measure µ of full
support then T is frequently hypercyclic on E. This result is well-known, see e.g.
[8, Proposition 3.12] for complex Hilbert spaces; the proof given there also holds for
F-spaces without any modi�cation.

If un = 0 for every n ≤ −1 in Proposition 1.1.4, Kolmogorov's zero-one law can
be used to prove that µ is ergodic, as it is done in [74]. In fact, the same argument
even shows that the measure induced by v is exact for T .

Proposition 1.1.6. Let T : E −→ E be an operator and let (un)n∈N be a sequence
in E such that T (un) = un−1 for every n ≥ 1 and T (u0) = 0. Let (Xn)n∈N be a
sequence of i.i.d. random variables. Assume that the random vector

v :=

∞∑
n=0

Xnun

is almost surely well-de�ned and P(v ∈ O) > 0 for every non-empty open subset O of
E. Then v is almost surely frequently hypercyclic for the operator T and induces an
exact measure with full support for T .

Proof. Let A ∈
⋂
n≥0 T

−n(B(E)). We claim that P(v ∈ A) ∈ {0, 1}.
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Let n ≥ 0, there exists B ∈ B(E) such that A = T−n(B). We then have, using
Lemma 1.1.1,

{v ∈ A} = {Tn(v) ∈ B} =

{
Tn
( ∞∑
k=0

Xkuk

)
∈ B

}

=

{ ∞∑
k=n

Xkuk−n ∈ B
}

=

{ ∞∑
k=0

Xn+kuk ∈ B
}
∈ σ(Xn, Xn+1, . . . ).

We conclude by Kolmogorov's zero-one law, see [66, Chapitre 0, Proposition II.2].

By Propositions 1.1.4 and 1.1.6, in order to prove Theorem 1.1.8, it remains to
show that the series v =

∑
n∈ZXnun converges almost surely and the probability on

E induced by v has full support. We �rst need a lemma.

Lemma 1.1.7 ([87], Theorem 15.5). Let (xn)n≥1 be a sequence of positive numbers
such that

∑
n≥1 xn converges and xn < 1 for all n ≥ 1. Then

∏
n≥1(1− xn) > 0.

Proof. Let n0 ≥ 1 be large enough such that xn ≤ 1/2 for every n ≥ n0 and let
N > n0. Then

− log

( N∏
n=n0

(1− xn)

)
=

N∑
n=n0

log(1/(1− xn)) =

N∑
n=n0

log(1 + xn/(1− xn))

≤
N∑

n=n0

xn/(1− xn) ≤
N∑

n=n0

2xn.

The result follows since the series
∑
n≥1 xn converges.

The proof of Theorem 1.1.8 uses some ideas from the proof of Mouze and Munnier
[74, Theorem 2.3]. In particular, the idea of the condition on the distribution of the
random variable X comes from that theorem.

Theorem 1.1.8. Let T : E −→ E be an operator and let (un)n∈Z be a sequence in
E such that T (un) = un−1 for every n ∈ Z and span{un | n ∈ Z} is dense in E. Let
X be a random variable of full support and let (Xn)n∈Z be a sequence of i.i.d. copies
of X. Assume that there exists a sequence of positive numbers (δn)n∈Z such that∑

n∈Z
P (|X| ≥ δn) <∞

and the series
∑
n∈Z δnun is unconditionally convergent in E. Then the random vector

v :=

∞∑
n=−∞

Xnun

is almost surely well-de�ned and frequently hypercyclic for the operator T , and it
induces a strongly mixing measure with full support for T . If un = 0 for all n ≤ −1
then the measure is even exact for T .
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Proof. Let (δn)n≥1 be given by the assumption. Because
∑
n∈Z P (|X| ≥ δn) con-

verges, it follows from the Borel-Cantelli lemma that

P
( ⋃
n0≥1

⋂
|n|≥n0

{
|Xn| < δn

})
= 1

and hence, almost surely, |Xn| < δn for every |n| large enough. Therefore, by the
unconditional convergence of

∑
n∈Z δnun, the random vector v is almost surely well-

de�ned, see [57, Theorems 3.3.8 and 3.3.9].
By Propositions 1.1.4 and 1.1.6, it remains to show that P(v ∈ O) > 0 for every

non-empty open subset O of E. It is enough to show this on a base of open subsets
of E.

Let ‖·‖ be an F-norm de�ning the topology of E. Let η > 0 and y =
∑d
n=−d ynun ∈

E. We will prove that P(v ∈ B‖·‖(y, η)) > 0, where B‖·‖(y, η) is the open ball for
‖ · ‖ centred at y and of radius η. Let (δn)n∈Z be the sequence given by assumption.
Since

∑
n∈Z δnun converges unconditionally, there exists an integer N ≥ d such that

‖
∑
|n|≥N+1 αnun‖ < η/2 whenever |αn| ≤ δn for all n ∈ Z. De�ne

B :=

{∥∥∥ N∑
n=−N

(Xn − yn)un

∥∥∥ < η

2

}
⊆ Ω

and
A := B ∩

{
|Xn| < δn for all |n| ≥ N + 1

}
,

where yn = 0 if d+ 1 ≤ |n| ≤ N . By the triangle inequality we get on A

‖v − y‖ ≤
∥∥∥ N∑
n=−N

(Xn − yn)un

∥∥∥+
∥∥∥ ∑
|n|≥N+1

Xnun

∥∥∥ < η

2
+
η

2
= η.

This shows that A ⊆ {v ∈ B‖·‖(y, η)}. Thus it su�ces to prove that P(A) > 0. Since
(Xn)n∈Z is i.i.d., we have

P(A) = P(B)
∏

|n|≥N+1

(1− P (|X| ≥ δn)) .

Since X has full support and (Xn)n∈Z is i.i.d., we get P(B) > 0. By Lemma 1.1.7,
the product is positive since the series

∑
n∈Z P(|X| ≥ δn) converges and X has full

support.

1.2 Existence of a distribution

There still remains a question in Theorem 1.1.8: does there exist a random variable
X satisfying the condition on the distribution? We begin with a simple proposition.

Proposition 1.2.1. Let (δn)n≥0 be a sequence of positive numbers. Then there exist
a probability space (Ω,A,P) and a random variable X : Ω −→ K with full support and∑
n≥0 P(|X| ≥ δn) <∞ if and only if limn→∞ δn =∞.
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Proof. It is easy to prove that if such a variable X exists then (δn)n∈N must converge
to ∞. Indeed, assume that (δnk)k≥1 is bounded by some M > 0 where (nk)k≥0 is
increasing. Then

∑
k≥0 P(|X| ≥ δnk) ≥

∑
k≥0 P(|X| ≥ M) = ∞ since X has full

support.
Now suppose that limn→∞ δn = ∞. By considering infk≥n δk, n ≥ 0, we can

assume without loss of generality that (δn)n≥0 is non-decreasing. By replacing δn
with δn − 1/n and dropping some δn, if necessary, we may also assume that (δn)n≥0

is a (strictly) increasing sequence of positive numbers. De�ne U0 = B(0, δ0) and for
each k ≥ 1, Uk := B(0, δk) \ B(0, δk−1) and set mk := λ(Uk), k ≥ 0, where B(0, r)
is the open ball in K of center 0 and radius r and λ is the Lebesgue measure on K.
Note that (Uk)k∈N is a partition of K. De�ne

ρ := 2−1
∑
k≥0

1

2kmk
1Uk .

Since ∫
K
ρdλ = 2−1

∑
k≥0

1

2k
= 1,

ρ is a density on K and we consider the probability space (K,B(K), ρdλ) and the
random variable X = IdK. It is then enough to show that

∫
O
ρdλ > 0 for every

non-empty open set O of K and
∑
n≥0

∫
K\B(0,δn)

ρdλ <∞.
By using the de�nition of ρ, we get∑

n≥0

∫
K\B(0,δn)

ρdλ =
∑
n≥0

∑
j≥n+1

∫
Uj

ρdλ = 2−1
∑
n≥0

∑
j≥n+1

1

2j

= 2−1
∑
n≥0

1

2n
= 1.

This shows that
∑
n≥0 P(|X| ≥ δn) converges.

Let O be a non-empty open subset of K. Let u ∈ K and ε > 0 be such that
B(u, ε) ⊆ O. There is some k ∈ N such that u ∈ Uk. Then we have∫

B(u,ε)

ρdλ ≥
∫
B(u,ε)∩Uk

ρdλ =
2−1

2kmk
λ(B(u, ε) ∩ Uk).

Since λ(B(u, ε) ∩ Uk) > 0, we can conclude that
∫
B(u,ε)

ρdλ > 0 and hence
∫
O
ρdλ >

0.

Lemma 1.2.2. Let (en)n≥0 be a sequence in E. For every sequence of scalars (εn)n≥0

such that the series
∑
n≥0 εnen is unconditionally convergent, there exists a sequence

of positive numbers (δn)n≥0 such that
∑
n≥0 δnen is unconditionally convergent and

|εn| = o(δn).

Proof. Let ‖ · ‖ be an F-norm de�ning the topology of E. Since
∑
n≥0 εnen is uncon-

ditionally convergent and by using [57, Theorems 3.3.8 and 3.3.9], we can construct
inductively an increasing sequence of positive integers (Nk)k≥1 such that for every
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k ≥ 1, every sequence (αn)n≥0 of scalars with supn≥0 |αn| ≤ 1 and every �nite set
F ⊆ N with minF > Nk, one has ‖

∑
n∈F αnεnen‖ ≤ 1/k2. For each n > N1, there

exists a unique k ≥ 1 such that Nk < n ≤ Nk+1, and we set δn = k1/2|εn|. We then
have for any 1 ≤ k < k′ and every �nite set F ⊆ N with Nk < minF ≤ maxF ≤ Nk′ ,

∥∥∥∑
n∈F

δnen

∥∥∥ =
∥∥∥ k′−1∑
s=k

Ns+1∑
n=Ns+1, n∈F

δnen

∥∥∥ ≤ k′−1∑
s=k

(1 + s1/2)s−2,

where we have used the property (0.1.1) of an F-norm. Since
∑
s≥1(1 + s1/2)s−2 is

convergent, we conclude that the series
∑
n≥0 δnen is unconditionally convergent too.

In addition, we have that |εn| = o(δn) as n goes to ∞.

We immediately deduce the main result of this section, which gives conditions for
an operator to have a frequently hypercyclic random vector.

Theorem 1.2.3. Let T be an operator on E and let (un)n∈Z be a sequence in E.
Assume that T (un) = un−1 for every n ∈ Z, the series

∑
n∈Z un is unconditionally

convergent and span{un | n ∈ Z} is dense in E. Then there exists a random variable
X with full support such that the random vector

∞∑
n=−∞

Xnun

is almost surely well-de�ned and frequently hypercyclic for the operator T , and it
induces a strongly mixing measure with full support for T , where (Xn)n∈Z is a sequence
of i.i.d. copies of X. If un = 0 for all n ≤ −1 then the measure is even exact for T .

Proof. Let (δn)n∈Z be the sequence of positive numbers obtained by applying Lemma
1.2.2 to

∑
n≥0 un and

∑
n≤−1 un. Then limn→∞ δn =∞ and limn→−∞ δn =∞. The

result follows by applying Proposition 1.2.1 to (min(δn, δ−n))n≥0 in order to obtain
the existence of a random variableX of full support such that

∑
n∈Z P(|X| ≥ δn) <∞,

and then by using Theorem 1.1.8.

Remark 1.2.4. The random variableX in Theorem 1.2.3 can be assumed to be centred.
Indeed, the random vector

∑∞
n=−∞(Xn − E(X))un is still frequently hypercyclic for

the operator T since
∑∞
n=−∞ un is a �xed point of T .

Remark 1.2.5. In this chapter, we are mostly only interested in the existence of a
random variable X as given in Theorem 1.2.3. For a more precise information on
which random variable can be employed, one has to go back to Theorem 1.1.8.

In view of later applications in Chapters 3 and 4, we would like the random variable
X to be subgaussian. We present two ways to achieve this.

De�nition 1.2.6. A real random variable X is subgaussian if there exist some σ > 0
and M > 0 such that E(eλX) ≤Meλ

2σ2

for every λ ∈ R. A complex random variable
X is subgaussian if its real and imaginary parts are subgaussian.

A sequence of random variables (Xn)n≥0 is subgaussian if each Xn, n ≥ 0, is
subgaussian with the same constants σ and M .
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One could call (Xn)n≥0 a uniformly subgaussian sequence to stress the fact that
the constant σ is the same for each random variable of the sequence. A Gaussian
variable is of course subgaussian, see [66, Chapitre 8, Proposition I.1].

Being a subgaussian random variable X means that the expectation of eλX is no
greater, up to a factor, than the one if X was Gaussian. Another way to de�ne a
subgaussian variable is by bounding the tail of the probability distribution.

Lemma 1.2.7. Let X be a random variable. Then X is subgaussian if and only if
there exists K > 0 and τ > 0 such that P(|X| > t) ≤ Ke−t2/τ2

for every t ≥ 0.
A sequence of random variables (Xn)n≥0 is subgaussian if and only if each Xn,

n ≥ 0, satis�es this property with the same constants τ and K.

Proof. Without loss of generality, we can assume that X is a real variable. First,
assume that X is subgaussian. Let t ≥ 0 and λ > 0. Markov's inequality yields

P(|X| > t) = P(X > t or X < −t) ≤ P(eλX > eλt) + P(e−λX > eλt) ≤ 2Meλ
2σ2−tλ,

where M > 0 and σ > 0 are the constants in De�nition 1.2.6. Take λ := t/(2σ2) to
conclude the �rst part of the proof.

Now, assume that for every t ≥ 0, we have P(|X| > t) ≤ Ke−t
2/τ2

, and let
λ ∈ R. Without loss of generality, we can assume that λ > 0. Use the formula
E(Y ) =

∫∞
0

P(Y > t)dt (see [66, Chapitre 0, Proposition IV.2]) for a positive random
variable Y to get

E(eλX) =

∫ ∞
0

P(eλX > t)dt =

∫ 1

0

P(eλX > t)dt+

∫ ∞
1

P(X > log(t)/λ)dt

≤ 1 +K

∫ ∞
1

e− log(t)2/(τ2λ2)dt.

By the change of variables u = log(t), we have∫ ∞
1

e− log(t)2/(τ2λ2)dt =

∫ ∞
0

eue−u
2/(τ2λ2)du

=

∫ ∞
0

exp

(
−
(
u

τλ
− τλ

2

)2

+
λ2τ2

4

)
du

= e
λ2τ2

4

∫ ∞
0

exp

(
−
(
u

τλ
− τλ

2

)2)
du

A last change of variables y = u/(τλ)− (τλ)/2 �nally yields

E(eλX) ≤ 1 +Kτλe
λ2τ2

4

∫ ∞
− τλ2

e−y
2

dy,

hence, since the last integral is bounded above by
∫∞
−∞ e−y

2

dy, one can �nd some

positive constants M and σ such that E(eλX) ≤Meλ
2σ2

for all λ ∈ R.

The de�nition of a subgaussian variable and a version of Lemma 1.2.7 can be found
in [54, pp. 4-5]. In [54], a subgaussian variable is in fact subgaussian with constant
M = 1 in our setting. We will need this restriction in Chapter 3, but that de�nition
from [54] is in fact equivalent to be centred and subgaussian.
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Lemma 1.2.8. A real random variable X is subgaussian with constant M = 1 if and
only if X is subgaussian and centred.

Proof. Suppose that X is subgaussian with constants M = 1 and σ > 0. For all
λ ∈ R, we have E(eλX) ≤ eλ2σ2

. By using the Dominated Convergence Theorem, this
is equivalent to

∞∑
n=0

λnE(Xn)

n!
≤
∞∑
n=0

λ2nσ2n

n!
,

hence 1 + λE(X) + o(λ) ≤ 1 + o(λ). Now, if λ > 0, then E(X) ≤ o(λ)/λ, implying
that E(X) ≤ 0 by letting λ converge to 0. The same argument with λ < 0 shows that
E(X) ≥ 0, and E(X) = 0.

Assume now that X is centred and subgaussian with some positive constants σ

and M given by De�nition 1.2.6. Pick τ > σ and de�ne K := [−
√

log(M)
τ2−σ2 ,

√
log(M)
τ2−σ2 ].

For every λ /∈ K, we have

E(eλX) ≤Meλ
2σ2

≤ eλ
2τ2

.

Now let ν ≥ τ that will be taken large. Let λ ∈ K, λ 6= 0. We aim to show that
E(eλX) ≤ eλ2ν2

, which by the Dominated Convergence Theorem is equivalent to

∞∑
n=0

λnE(Xn)

n!
≤
∞∑
n=0

λ2nν2n

n!
,

or
∞∑
n=0

λnE(Xn+2)

(n+ 2)!
≤
∞∑
n=1

λ2(n−1)ν2n

n!
=

∞∑
n=0

λ2nν2(n+1)

(n+ 1)!
.

Thus we want to prove that E(X2)/2 + f(λ) ≤ ν2 + g(λ) for any λ ∈ K, where
f, g : K −→ R are some continuous functions. This is equivalent to show that
supλ∈K(f(λ)−g(λ)) ≤ ν2−E(X2)/2. Since f and g are continuous andK is compact,
this supremum is �nite, and such a ν exists.

The �rst approach to allow X to be subgaussian is by assuming the unconditional
convergence of the series

∑
n∈Z∗

√
log(|n|)un, where Z∗ = Z \ {0}. This assumption

guarantees the almost sure convergence of the random series
∑∞
n=−∞Xnun, where

(un)n∈Z is a sequence in E. This fact will be used in Chapter 3, so we highlight it in
the following lemma.

Lemma 1.2.9. Let (un)n∈Z be a sequence of vectors of E. Assume that the se-
ries

∑
n∈Z∗

√
log(|n|)un is unconditionally convergent. Then, for every subgaussian

sequence (Xn)n∈Z, the random vector

∞∑
n=−∞

Xnun

is almost surely well-de�ned. In particular, the result holds for every non-constant
Gaussian variable.
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Proof. Let c > 0. Let K > 0 and τ > 0 be the constants associated with (Xn)n∈Z in
Lemma 1.2.7. We then have∑

n∈Z∗
P
(
|Xn| ≥ c

√
log(|n|)

)
≤ K

∑
n∈Z∗

e−c
2 log(|n|)/τ2

=
∑
n∈Z∗

K

|n|c2/τ2 .

If c2 > τ2 then the last series converges and
∑
n∈Z∗ P(|X| ≥ c

√
log(|n|)) converges.

It follows from the Borel-Cantelli lemma that

P
( ⋃
n0≥1

⋂
|n|≥n0

{
|Xn| < c

√
log(|n|)

})
= 1

and hence, almost surely, |Xn| < c
√

log(|n|) for every |n| large enough. Therefore,
by the unconditional convergence of

∑
n∈Z∗

√
log(|n|)un, the series

∑
n∈ZXnun is

almost surely convergent. Furthermore, it is also measurable by Lemma 1.1.1.

Theorem 1.2.10. Let T be an operator on E and let (un)n∈Z be a sequence in E.
Assume that T (un) = un−1 for every n ∈ Z, span{un | n ∈ Z} is dense in E and
assume that the series

∑
n∈Z∗

√
log(|n|)un is unconditionally convergent. Then for

every subgaussian random variable X with full support, the random vector

∞∑
n=−∞

Xnun

is almost surely well-de�ned and frequently hypercyclic for the operator T , and it
induces a strongly mixing measure with full support for T , where (Xn)n∈Z is a sequence
of i.i.d. copies of X. If un = 0 for all n ≤ −1, then the measure is even exact for T .
In particular, the result holds for every non-constant Gaussian variable.

Proof. As in the proof of Lemma 1.2.9, we have that there is some c > 0 such that∑
n∈Z∗

P
(
|X| ≥ c

√
log(|n|)

)
<∞.

The result then follows by Theorem 1.1.8.

The next result uses a di�erent assumption on (un)n∈Z than Theorem 1.2.10, in
the case where E is a Banach space. Recall the de�nition of type.

De�nition 1.2.11. Let E be a Banach space and 1 ≤ p ≤ 2. Then E has type p if
there exists C > 0 such that for every x1, . . . , xn ∈ E, n ≥ 1,∥∥∥∥ n∑

k=1

gkxk

∥∥∥∥
L1(Ω,P;E)

≤ C
( n∑
k=1

‖xk‖p
)1/p

,

where (gk)nk=1 is a sequence of independent standard Gaussian variables.

The de�nition is usually expressed with a Rademacher sequence and sometimes
in terms of the L2(Ω,P;E)-norm. But by [51, Proposition 7.1.18] and the Kahane-
Khintchine inequalities [51, Theorem 6.2.6], this leads to the same de�nition.
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Theorem 1.2.12. Assume that E is a Banach space of type 1 ≤ p ≤ 2. Let T be
an operator on E and let (un)n∈Z be a sequence in E. Assume that T (un) = un−1

for every n ∈ Z and span{un | n ∈ Z} is dense in E. Assume that the series∑∞
n=−∞ ‖un‖p converges. Let X be a standard Gaussian random variable of full

support and let (Xn)n∈Z be a sequence of i.i.d. copies of X. Then the random vector

v :=

∞∑
n=−∞

Xnun

is almost surely well-de�ned and frequently hypercyclic for the operator T , and it
induces a strongly mixing measure with full support for T . If un = 0 for all n ≤ −1,
then the measure is even exact for T .

Proof. Since E has type p, we have for every M ≥ N that

E
(∥∥∥ M∑

n=N

Xnun

∥∥∥) ≤ Cp( M∑
n=N

‖un‖p
)1/p

, (1.2.1)

where Cp > 0 is some constant depending only on p. Therefore, the random series∑∞
n=−∞Xnun converges in L1(Ω;E), and since (Xn)n∈Z is a standard Gaussian se-

quence of independent random variables, v is almost surely well-de�ned by Theorem
0.5.4.

By Proposition 1.1.4, it remains to show that P(v ∈ O) > 0 for every non-empty
open subset O of E. It is enough to show this on a base of open subsets of E.

So let η > 0 and y =
∑d
n=−d ynun ∈ E. We will prove that P(v ∈ B‖·‖(y, η)) > 0

where B‖·‖(y, η) is the open ball centred at y and of radius η. Let N ≥ d be an
integer. De�ne

B :=

{∥∥∥∥ N∑
n=−N

(Xn − yn)un

∥∥∥∥ < η

2

}
, C :=

{∥∥∥∥ ∑
|n|≥N+1

Xnun

∥∥∥∥ < η

2

}
,

where yn := 0 if d < |n| ≤ N , and let A := B ∩ C. By the triangle inequality we get
on A

‖v − y‖ ≤
∥∥∥∥ N∑
n=−N

(Xn − yn)un

∥∥∥∥+

∥∥∥∥ ∑
|n|≥N+1

Xnun

∥∥∥∥ < η

2
+
η

2
= η.

This shows that A ⊆ {v ∈ B‖·‖(y, η)}. Thus it su�ces to prove that P(A) > 0. Since
(Xn)n∈Z is i.i.d., we have by Lemma 1.1.3 that

P(A) = P(B)P(C).

Since X has full support and (Xn)n∈Z is i.i.d., we get P(B) > 0. The last step is to
show that P(C) > 0. The Markov inequality yields

1− P(C) = P

(∥∥∥∥ ∑
|n|≥N+1

Xnun

∥∥∥∥ ≥ η/2
)
≤ (η/2)−1E

(∥∥∥∥ ∑
|n|≥N+1

Xnun

∥∥∥∥
)
.

It follows from (1.2.1) that if we take N ≥ d large enough then 1 − P(C) < 1, i.e.
P(C) > 0.
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Remark 1.2.13. We end this section by noticing that all of our results can be extended,
with the same proofs, to an operator T such that there exist �nitely many sequences
of vectors (u

(k)
n )n∈Z, 1 ≤ k ≤ N , such that span{u(k)

n | n ∈ Z, 1 ≤ k ≤ N} is dense
in E and T (u

(k)
n ) = u

(k)
n−1 for all n ∈ Z and 1 ≤ k ≤ N . In that case, the sequence of

random variables is replaced by a family of i.i.d. random variables (Xn,k)n∈Z,1≤k≤N .

1.3 Applications

1.3.1 Weighted shifts

We list the applications of Theorem 1.2.3 and Theorem 1.2.10 to unilateral and bi-
lateral weighted shifts.

If T is a (unilateral) weighted shift with sequence of weights (wn)n≥1, de�ne
βn := w1 . . . wn if n ≥ 1, and β0 := 1. If T is a bilateral weighted shift with sequence
of weights (wn)n∈Z, de�ne βn := w1 . . . wn if n ≥ 1, βn := (

∏0
k=−n+1 wk)−1 if n ≤ −1,

and β0 := 1.
In the �rst result, let E be a locally bounded or locally convex F-sequence space

over N in which span{en | n ∈ N} is dense. We then apply the results of Section 1.2
to un = en

βn
for n ≥ 0 and un = 0 for n ≤ −1.

Theorem 1.3.1. Let T : E −→ E be a weighted shift with sequence of weights
(wn)n≥1.

(i) Assume that the series
∑
n∈N

en
βn

is unconditionally convergent. Then there
exists a random variable X with full support such that the random vector

∞∑
n=0

Xn

βn
en

is almost surely well-de�ned and frequently hypercyclic for the operator T , and it
induces an exact measure with full support for T , where (Xn)n≥0 is a sequence
of i.i.d. copies of X.

(ii) If the series
∑
n≥1

√
log(n)

βn
en is unconditionally convergent then X can be any

subgaussian random variable with full support. In particular, the result holds for
every non-constant Gaussian variable.

This generalizes the qualitative parts of [74, Theorem 2.3] and [80, Theorem 1];
their quantitative parts are contained in Theorem 1.1.8.

We next consider a locally bounded or locally convex F-sequence space E over
Z in which span{en | n ∈ Z} is dense. We then apply the results of Section 1.2 to
un = en

βn
, n ∈ Z.

Theorem 1.3.2. Let T : E −→ E be a bilateral weighted shift with sequence of
weights (wn)n∈Z.
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(i) Assume that the series
∑
n∈Z

en
βn

is unconditionally convergent. Then there ex-
ists a random variable X with full support such that the random vector

∞∑
n=−∞

Xn

βn
en

is almost surely well-de�ned and frequently hypercyclic for the operator T , and
it induces a strongly mixing measure with full support for T , where (Xn)n∈Z is
a sequence of i.i.d. copies of X.

(ii) If the series
∑
n∈Z∗

√
log(|n|)
βn

en is unconditionally convergent then X can be any
subgaussian random variable with full support. In particular, the result holds for
every non-constant Gaussian variable.

Theorems 1.3.1 and 1.3.2 apply, in particular, to any chaotic unilateral or bilateral
weighted shift on a F-sequence space in which (en)n is an unconditional basis, see
Theorems 0.1.19 and 0.1.23. The existence of an exact or strongly mixing measure
with full support has already been proved in [77, Corollary 2 and Remark 3]. A
di�erent approach has also led to the existence of a strongly mixing measure in [67,
Theorem 1] for a class of weighted shifts on c0(N) or `p(N), 1 ≤ p <∞.

It was already known that, in this setting, the unconditional convergence of
∑
n
en
βn

implies the frequent hypercyclicity of the weighted shift, see Propositions 0.1.26 and
0.1.27. By modifying the coe�cients of this series, one can construct periodic points
for the shift. This was used to prove that the convergence of

∑
n
en
βn

implies that the
shift is chaotic in Theorems 0.1.19 and 0.1.23, see [45, Theorem 8]. By multiplying the
coe�cients of this series with random variables, we now get an almost surely frequently
hypercyclic random vector that induces an exact or strongly mixing measure. This
phenomenon was already known for chaotic weighted shifts on `p, 1 ≤ p < ∞, see
[11, Section 7.1], for the so-called Taylor shift, see [75, Theorem 1.3], or for the
di�erentiation operator on H(C), see [80, Theorem 1]. This now holds for very general
chaotic weighted shifts.

Remark 1.3.3. The bilateral weighted shift on `2(Z) with weights wn = 2, n ≥ 1,
and wn = 1/2, n ≤ 0, is invertible and satis�es the assumptions of Theorem 1.3.2.
On the other hand, no invertible measure preserving transformation can be exact, see
[32, p. 86]. Thus the measure induced by the vector v in Theorem 1.1.8 cannot be
exact for all operators T .

It might be an interesting fact that on the space H(C) of entire functions or the
space H(D(0, R)) of holomorphic functions on D(0, R) := {z ∈ C | |z| < R}, every
chaotic weighted shift satis�es the assumption of the second assertion of Theorem
1.3.1.

Theorem 1.3.4. On the space E = H(C) or H(D(0, R)) with R > 0, let T : E −→
E be a chaotic weighted shift with sequence of weights (wn)n≥1. Then for every
subgaussian random variable X with full support the random series

∞∑
n=0

Xn

βn
zn
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is almost surely holomorphic and frequently hypercyclic for the operator T , and it
induces an exact measure with full support for T , where (Xn)n∈Z is a sequence of
i.i.d. copies of X. In particular, the result holds for every non-constant Gaussian
variable.

Proof. By Theorem 1.3.1, it su�ces to show that if T is chaotic on E then the series∑
n≥1

√
log(n)

βn
en is unconditionally convergent in E.

On H(C), T is chaotic if and only if limn→∞ |βn|1/n = ∞, see Example 0.1.21.
Therefore, for any r ≥ 1 and 0 < ρ < 1, there exists n0 ≥ 1 such that for every
n ≥ n0, we have rn

√
log(n)/|βn| ≤ ρn.

On H(D(0, R)), T is chaotic if and only if lim supn→∞ |βn|−1/n ≤ 1/R, see Ex-
ample 0.1.22. Let 0 < r < R and 0 < ρ < 1 be such that r < ρR, there exists
n0 ≥ 1 such that for every n ≥ n0, we have log(n)1/(2n)|βn|−1/n ≤ ρ/r and hence
rn
√

log(n)/|βn| ≤ ρn.

For the di�erentiation operator on H(C), this result was proved in the Gaus-
sian case in [11, Remark 2 after Proposition 8.1]. For the Taylor shift on H(D) =
H(D(0, 1)), which is given by the weights wn = 1, n ≥ 1, the frequent hypercyclicity
of the random function was proved in the Gaussian case in [75, Theorem 1.3].

One can ask the same question about the spaces `p, 1 ≤ p < ∞. In fact, it is al-
ready known that

∑∞
n=0

Xn
βn
en is almost surely well-de�ned and frequently hypercyclic

on those spaces if the random variables Xn, n ≥ 0, are Gaussian and the weighted
shift is chaotic, see [10, Section 5.5.2] or [11, Section 7.1]. However, the second asser-
tion of Theorem 1.3.1 cannot be applied to every chaotic weighted shift de�ned on `p,
1 ≤ p <∞. Indeed, consider the sequence (βn)n≥1 := (log(n)1/2+1/pn1/p)n≥1. Then∑
n≥0

√
log(n)/βnen is not in `p but the weighted shift associated with (βn)n≥1 is

chaotic. Note that Theorem 1.2.12 can be applied to any chaotic weighted shift on `p,
for every 1 ≤ p ≤ 2, since `p has type min(p, 2) by [51, Proposition 7.1.4], 1 ≤ p <∞.

However, on the space of all sequences ω := KN, every shift T is chaotic since∑
n≥0 en/βn converges, where (βn)n≥0 is the sequence associated with T . If X is a

random variable then limt→∞ P(|X| > t) = 0, and there exists a sequence (δn)n≥0 of
positive numbers such that

∑
n≥0 P(|X| > δn) is �nite. Furthermore,

∑
n≥0 δnen/βn

is unconditionally convergent; recall that ω is endowed with the coordinatewise con-
vergence, see Example 0.1.4. Therefore, Theorem 1.1.8 implies the next result.

Theorem 1.3.5. Let T : ω −→ ω be a weighted shift with sequence of weights
(wn)n≥1. Let X be a random variable with full support. Then the random vector∑∞
n=0

Xn
βn
en is almost surely well-de�ned and frequently hypercyclic for the operator

T , and it induces an exact measure with full support for T , where (Xn)n≥0 is a se-
quence of i.i.d. copies of X.

In their article [74], Mouze and Munnier have also studied some polynomials of a
frequently hypercyclic weighted shift on `p, 1 ≤ p < ∞. But their Lemma 4.1 says
that certain polynomials of a weighted shift can be seen as a shift with respect to
another basis. The proof of this lemma shows the following.

Lemma 1.3.6 ([74, Lemma 4.1]). Let T : KN −→ KN be a weighted shift. Let P (z) =∑d
k=1 akz

k be a polynomial with a1 6= 0. Then there exist vectors un =
∑n
j=0 βj,nej,
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n ≥ 0, such that (un)n≥0 is an algebraic basis of KN and P (T )(un) = un−1 for every
n ≥ 1.

In fact, this result implies that span{en | n ∈ N} = span{un | n ∈ N}. Note also
that P (T )(u0) = 0. Therefore, together with Theorem 1.2.3, we deduce the following
result.

Theorem 1.3.7. Let E be a locally bounded or locally convex F-sequence space in
which span{en | n ∈ N} is dense. Let T : E −→ E be a weighted shift and

P (z) =
∑d
k=1 akz

k be a polynomial with a1 6= 0. Assume that the series
∑
n≥0 un is

unconditionally convergent in E, where (un)n≥0 is given by Lemma 1.3.6. Then there
exists a random variable X with full support such that the random vector

v :=

∞∑
n=0

Xnun

is almost surely well-de�ned and frequently hypercyclic for the operator P (T ), and it
induces an exact measure with full support for P (T ), where (Xn)n≥0 is a sequence of
i.i.d. copies of X.

This result improves and generalizes the qualitative part of [74, Theorem 4.3]; its
quantitative part is contained in Theorem 1.1.8.

1.3.2 Operators satisfying the Frequent Hypercyclicity Crite-

rion

In [77, Theorem 1], Murillo-Arcila and Peris proved that every operator satisfying
the Frequent Hypercyclicity Criterion, see Theorem 0.1.31, has a strongly mixing
invariant measure with full support. They used the Bernoulli shift on a subset of
NZ to construct such a measure. In [11, Proposition 8.1], it is even shown that
such operators admit a strongly mixing Gaussian measure. We will show here the
existence of a strongly mixing measure of full support as the distribution of some
random vector

∑
n∈ZXnun. We will need Lemma 1.3.9. Its proof is contained in the

proof of [44, Lemma 3.2]. In this subsection, E will be again a locally bounded or
locally convex separable F-space.

For this subsection, we need a weaker notion than hypercyclicity.

De�nition 1.3.8. Let T be an operator on E. A vector x ∈ E is called supercyclic
for T if the set

{λTn(x) | n ∈ N, λ ∈ K}

is dense in E.

Lemma 1.3.9. Let T be an operator on E satisfying the Frequent Hypercyclicity
Criterion, and let S and E0 be respectively the map and dense set given by that
criterion. Let (ak)k≥1 be a sequence of non-zero scalars. If (xk)k≥1 is a dense sequence
in E0 then there exists an increasing sequence (nk)k≥1 of positive integers such that
the vector x :=

∑
k≥1 akS

nk(xk) is well-de�ned and supercyclic for T .
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Proof. By conditions (i) and (ii) of the Frequent Hypercyclicity Criterion, we know
that (Tn(x))n≥0 and (Sn(x))n≥0 converge to 0 for every x ∈ E0. Therefore, together
with (iii), one can construct by induction an increasing sequence of positive integers
(nk)k≥1 such that ‖akSnk(xk)‖ ≤ 1

2k
for every k ≥ 1, and∥∥∥∥ 1

al
Tnl
( k∑
j=1

ajS
nj (xj)

)
− xl

∥∥∥∥ < 1

2l
for every 1 ≤ l ≤ k,

where ‖ · ‖ is an F-norm de�ning the topology of E. The �rst condition tells us that
(
∑s
k=1 akS

nk(xk))s≥1 is Cauchy in E, hence converges. The second condition tells us
that the vector x :=

∑
k≥1 akS

nk(xk) is supercyclic for T .

Theorem 1.3.10. Let T be an operator on E satisfying the Frequent Hypercyclicity
Criterion. Then there exists a supercyclic vector x for T , a sequence (un)n≥0 in E
with u0 = x and T (un) = un−1 for every n ≥ 1, and a random variable X with full
support such that the random vector

v :=

∞∑
n=0

XnT
n(x) +

∞∑
n=1

X−nun

is almost surely well-de�ned and frequently hypercyclic for the operator T , and it
induces a strongly mixing measure with full support for T , where (Xn)n∈Z is a sequence
of i.i.d. copies of X.

Proof. Let S be the map and E0 be the dense set given by the Frequent Hypercyclicity
Criterion and let ‖ · ‖ be an F-norm de�ning the topology of E. Let (xk)k≥1 be a
dense sequence in E0.

For each k ≥ 1, choose a real number 0 < ak < 1 such that

sup
F⊆N, F �nite

∥∥∥∥∑
n∈F

akS
n(xk)

∥∥∥∥ ≤ 1

2k
(1.3.1)

and

sup
F⊆N, F �nite

∥∥∥∥∑
n∈F

akT
n(xk)

∥∥∥∥ ≤ 1

2k
. (1.3.2)

This is possible by (i) and (ii) of the Frequent Hypercyclicity Criterion. Indeed, by
unconditional convergence and [57, Theorems 3.3.8 and 3.3.9], there exists N ≥ 1
such that ‖

∑
n∈F akS

n(xk)‖ ≤ 2−k−1 whenever minF ≥ N and |ak| ≤ 1, and by
continuity one can choose ak > 0 small enough to get ‖

∑
n∈F akS

n(xk)‖ ≤ 2−k−1

whenever maxF ≤ N . The same arguments hold for the second inequality.
Now let (nk)k≥1 be the sequence given by Lemma 1.3.9 and de�ne the vector

x :=
∑
k≥1 akS

nk(xk). If n ≥ 0, by the triangle inequality and (1.3.1), we have for
every M ≥ N ≥ 1 that∥∥∥∥ M∑

k=N

akS
nk+n(xk)

∥∥∥∥ ≤ M∑
k=N

‖akSnk+n(xk)‖ ≤
M∑
k=N

1

2k
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and hence
un :=

∑
k≥1

akS
nk+nxk,

n ≥ 0, is well-de�ned, where u0 = x. We also set un = T−n(x), n ≤ −1. It is then
easy to check that T (un) = un−1 for every n ∈ Z. We will apply Theorem 1.2.3 to
(un)n∈Z. For the statement of the theorem, we then replace (Xn)n∈Z by (X−n)n∈Z.
Note that span{un | n ∈ Z} is dense in E since x is supercyclic for T .

Thus it remains to show that
∑
n∈Z un is unconditionally convergent. Let ε > 0

and let k0 ≥ 1 be such that
∑
k≥k0+1 21−k ≤ ε. For each k ≥ 1, by (i) and (ii) of the

Frequent Hypercyclicity Criterion, there exists Nk ≥ 1 such that∥∥∥∥∑
n∈F

akT
n(xk)

∥∥∥∥ < ε

k0
and

∥∥∥∥∑
n∈F

akS
n(xk)

∥∥∥∥ < ε

k0

for every �nite set F ⊆ N with minF ≥ Nk. Let F ⊆ N be a �nite subset with
minF ≥ max1≤k≤k0(Nk + nk). We have∑

n∈F
u−n =

∑
n∈F

∑
k≥1

akT
nSnk(xk) =

∑
k≥1

∑
n∈F

akT
nSnk(xk)

=

k0∑
k=1

∑
n∈F

akT
nSnk(xk) +

∑
k≥k0+1

∑
n∈F

akT
nSnk(xk).

The �rst term is smaller than ε with respect to ‖ · ‖ since minF ≥ Nk + nk for each
1 ≤ k ≤ k0. The triangle inequality, condition (iii) of the Frequent Hypercyclicity
Criterion and inequalities (1.3.1) and (1.3.2) yield∥∥∥∥ ∑

k≥k0+1

∑
n∈F

akT
nSnk(xk)

∥∥∥∥ ≤ ∑
k≥k0+1

∥∥∥∥∑
n∈F

akT
nSnk(xk)

∥∥∥∥
≤

∑
k≥k0+1

(∥∥∥∥ ∑
n∈F,n<nk

akS
nk−n(xk)

∥∥∥∥+

∥∥∥∥ ∑
n∈F,n≥nk

akT
n−nk(xk)

∥∥∥∥
)

≤
∑

k≥k0+1

2

2k
.

By de�nition of k0, we �nally get ‖
∑
n∈F u−n‖ ≤ 2ε. This shows the unconditional

convergence of
∑
n≤0 un.

Again by the triangle inequality and (1.3.1), we also have∥∥∥∥∑
n∈F

un

∥∥∥∥ =

∥∥∥∥∑
n∈F

∑
k≥1

akS
nk+n(xk)

∥∥∥∥
≤

k0∑
k=1

∥∥∥∥∑
n∈F

akS
nk+n(xk)

∥∥∥∥+
∑

k≥k0+1

∥∥∥∥∑
n∈F

akS
nk+n(xk)

∥∥∥∥
≤

k0∑
k=1

∥∥∥∥∑
n∈F

akS
nk+n(xk)

∥∥∥∥+
∑

k≥k0+1

1

2k
.
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As before, the �rst term is smaller than ε since minF ≥ Nk for each 1 ≤ k ≤ k0, and
the second term is smaller than ε by de�nition of k0. This shows the unconditional
convergence of

∑
n≥0 un.

Example 1.3.11. Bonilla and Grosse-Erdmann [22, Theorem 4.2] used the Frequent
Hypercyclicity Criterion to prove the frequent hypercyclicity of the translation oper-
ators Ta : H(C) −→ H(C), f −→ f(· + a), a ∈ C \ {0}. Therefore, Theorem 1.3.10
says that each operator Ta, a ∈ C \ {0}, has an almost surely frequently hypercyclic
random vector.

1.4 A-frequent hypercyclicity

A frequently hypercyclic vector for a given operator T means that this vector visits
via T each non-empty open set of the space plenty of times. The number of visits
is quanti�ed by the lower density. Quite recently in the literature, other ways of
quantifying how often the orbit of a vector visits every region of the space have been
studied, see [38] and [39].

The notions of regular and strongly regular matrices can be found in [23].

De�nition 1.4.1. Let A = (ai,j)i,j≥1 be an in�nite matrix of complex numbers.
Then A is

(i) regular if supn≥1

∑
j≥1 |an,j | < ∞, limn→∞ an,j = 0 for every j ≥ 1, and

limn→∞
∑
j≥1 an,j = 1,

(ii) strongly regular if A is regular and limn→∞
∑
j≥1 |an,j − an,j+1| = 0,

(iii) stochastic if for all n, j ≥ 1, one has an,j ≥ 0 and
∑
j≥1 an,j = 1.

De�nition 1.4.2. Let A be a regular matrix with non-negative real entries. The
lower A-density of a set F ⊆ N is the quantity

dA(F ) = lim inf
n→∞

∞∑
j=1

an,j1F (j).

De�nition 1.4.3. Let A be a regular matrix with non-negative real entries. Let E
be an F-space. An operator T : E −→ E is A-frequently hypercyclic if there exists
x ∈ E such that, for every non-empty open set U of E, the set {n ∈ N | Tn(x) ∈ U}
has positive lower A-density. Such a vector is called a A-frequently hypercyclic vector
for T .

Example 1.4.4. When the matrix A is given by an,j = 1/n for 1 ≤ j ≤ n and
an,j = 0 for j > n, A-frequent hypercyclicity is the classic frequent hypercyclicity.
When an,j = 1/(j log(n + 1)) for 1 ≤ j ≤ n and an,j = 0 for j > n, A-frequent
hypercyclicity is the so-called log-frequent hypercyclicity.

The random vector constructed in Theorem 1.1.8 is frequently hypercyclic. In
order to prove that this vector is also A-frequently hypercyclic for certain regular
matrices A, the following generalized Birkho� ergodic theorem will be needed.
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Theorem 1.4.5 ([53, Theorem 8]). Let (M,B, µ) be a probability space and A =
(ai,j)i,j≥1 be a stochastic strongly regular matrix. Let T : M −→ M be a measure-
preserving and ergodic map, and let f ∈ L1(M,µ). Then

lim
n→∞

∞∑
j=1

an,j(f ◦ T j−1) =

∫
M

fdµ µ-a.s.

Theorem 1.4.6. Let E be a locally bounded or locally convex F-space. Let T : E −→
E be an operator and let (un)n∈Z be a sequence in E such that T (un) = un−1 for
every n ∈ Z and span{un | n ∈ Z} is dense in E. Let X be a random variable of full
support and let (Xn)n∈Z be a sequence of i.i.d. copies of X. Assume that there exists
a sequence of positive numbers (δn)n∈Z such that∑

n∈Z
P (|X| ≥ δn) <∞

and the series
∑
n∈Z δnun is unconditionally convergent in E. Then the random vector

v :=

∞∑
n=−∞

Xnun

is almost surely well-de�ned. Furthermore, let A be a stochastic strongly regular ma-
trix. Then v is almost surely A-frequently hypercyclic for T .

Proof. The proof is exactly the same as the proof of Theorem 1.1.8 by using Theorem
1.4.5 instead of the Birkho� Ergodic Theorem.

Theorem 1.4.5 allows us to recover the result of Ernst and Mouze [39, Theorem
3.9] in the case of iterates of a single operator. They considered the matrix D̃s =
(an,j)n,j≥1 given by an,j := αj/

∑n
k=k0

αk for 1 ≤ j ≤ n and an,j = 0 for j > n, where
αk := ek/ logs(k) if k ≥ k0 and αk = 0 otherwise. Here, s ≥ 1 is a positive integer, logs
denotes the logarithm iterates s times and k0 is a su�ciently large positive integer
such that the sequence (k/ logs(k))k≥k0 is increasing. Let us show that the matrix
D̃s is strongly regular and stochastic.

Lemma 1.4.7. The matrix D̃s de�ned above is strongly regular and stochastic.

Proof. It is trivially checked that D̃s is stochastic and regular. Let us show that D̃s

is strongly regular.
Let n ≥ 1 be large. De�ne Sn :=

∑n
k=k0

αk. By de�nition of D̃s, we have

lim
n→∞

∞∑
j=1

|an,j − an,j+1| =
n−1∑
k=k0

αk+1 − αk
Sn

+
αn
Sn

=
2αn
Sn
− αk0
Sn

.

We will show that Sn � en/ logs(n) logs(n), where a � b means a ≤ b and b ≤ a
up to some constants independent of n ∈ N or x > 0, and this will imply that
limn→∞ αn/Sn = 0, thus will conclude the proof.
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De�ne the function

f : [k0,∞[ −→ R, x 7−→ ex/ logs(x) logs(x).

For every x ≥ k0, the derivative of f is given by

∂xf(x) = ex/ logs(x) logs(x)
( 1

logs(x)
− x

logs(x)2

1

x
∏s−1
j=1 logj(x)

)
+

ex/ logs(x)

x
∏s−1
j=1 logj(x)

= ex/ logs(x)

(
1 +

1∏s−1
j=1 logj(x)

( 1

x
− 1

logs(x)

))
. (1.4.1)

From this, it follows that
∂xf(x) � ex/ logs(x). (1.4.2)

The map x 7−→ 1
x −

1
logs(x) is increasing for x > 0 large. Then the second factor in the

right-hand term of (1.4.1) is positive and increasing, and since the �rst factor is also
positive and increasing for x large, we deduce that the derivative of f is increasing
for x large. Therefore, for all n ≥ 1 large enough, we have

f(n) =

n−1∑
k=k0

(f(k + 1)− f(k)) =

n−1∑
k=k0

∫ k+1

k

∂xf(x)dx

.
n−1∑
k=k0

∂xf(k + 1) �
n∑

k=k0

∂xf(k), (1.4.3)

and similarly

f(n) &
n∑

k=k0

∂xf(k)− ∂xf(n). (1.4.4)

By using (1.4.3) and (1.4.2), we get

∂xf(n)∑n
k=k0

∂xf(k)
.
∂xf(n)

f(n)
� en/ logs(n)

en/ logs(n) logs(n)
,

which converges to 0 when n goes to ∞. Then, by (1.4.3), (1.4.4) and (1.4.2), we
�nally get that f(n) � Sn.

Corollary 1.4.8. Let E be a locally bounded or locally convex F-space. Let T :
E −→ E be an operator satisfying the Frequent Hypercyclicity Criterion. Then T has
a random vector that is almost surely D̃s-frequently hypercyclic for T for any s ≥ 1.

Remark 1.4.9. It was already pointed out in [39, Remark 3.10(2)] that [39, Theo-
rem 3.9] can also be proved thanks to ergodic theory arguments via Theorem 1.4.5.
Theorem 1.4.6 originates from that remark.
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Chapter 2

Random vectors and

C0-semigroups

We investigate in this chapter the case of C0-semigroups. Two approaches to �nding
a frequently hypercyclic vector are presented.

The idea of the �rst approach is to try to mimic what has been done in Section 1.1.
However, only a result analogous to Proposition 1.1.4 for semigroups will be proved,
namely Proposition 2.2.2. The sequence of random variables (Xn)n∈Z in Proposition
1.1.4 is replaced by the Brownian motion. This means that for semigroups, we are
a priori quite restrictive since only the normal distribution is considered. For a C0-
semigroup (Tt)t≥0 on a separable Fréchet space E, we will assume that there exists
a family (ut)t∈R of vectors of E such that Ts(ut) = ut−s for every s ≥ 0 and t ∈ R.
Instead of a series as in Proposition 1.1.4, we will integrate this family of vectors with
respect to the Brownian motion. It is thus a stochastic integral for functions with
values in a Fréchet space. It should be noted that we have not been able to �nd any
examples of this method.

The second approach is inspired by the results of Chakir and El Mourchid [26].
Again, we will construct a frequently hypercyclic random vector via a stochastic inte-
gral, see Theorem 2.3.1. The family (ut)t will consist of eigenvectors of the generator
of the semigroup with respect to purely imaginary eigenvalues, hence only complex
Fréchet spaces will be considered. This time, we will have three examples of this
approach.

The stochastic integral for scalar-valued functions is the well-known Itô integral,
see Section 0.4. The case of Fréchet space-valued integrands is more delicate and
seems to be quite recent in the literature. We will use the de�nition of van Neerven
andWeis [96]. Their stochastic integral is de�ned in a Pettis manner for Banach space-
valued functions de�ned on a bounded interval. Nevertheless, it can be extended for
Fréchet space-valued functions de�ned on an arbitrary interval, and their results still
hold with the same proofs.

Recall that by Remark 0.1.44, a C0-semigroup (Tt)t≥0 has the same set of fre-
quently hypercyclic vectors as each Tt, t > 0. Therefore, we could apply Theorem
1.2.3 to T1, but this would not guarantee that the resulting measure is strongly mixing

53
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for the semigroup.
This chapter is divided into three parts. Section 2.1 de�nes and states some

properties of the stochastic integral for Fréchet space-valued functions. Some proofs
that di�er from [96] are postponed to Section A.3 of the appendix. Sections 2.2 and
2.3 present the �rst and second approaches, respectively.

For the remainder of the chapter, let E be a separable Fréchet space over K = R
or C, and let (Bt)t∈R be a Brownian motion over a probability space (Ω,A,P). This
stochastic process is real (resp. complex) if E is real (resp. complex).

2.1 Stochastic integral in Fréchet spaces

This section is devoted to the de�nition and some properties of the stochastic integral
in vector spaces developed by van Neerven and Weis [96]. They de�ned the integral for
functions on a bounded interval and with values in a real Banach space. Nevertheless,
it can be de�ned for functions on an arbitrary interval and with values in a real or
complex Fréchet space, and the relevant properties still hold with essentially the
same proofs. For measurable functions taking values in a separable Banach space,
the de�nition of the stochastic integral from [96] coincides with that of Rosi«ski and
Suchanecki [86], see Theorem 2.1.6.

Proofs of the results for which modi�cations in the Fréchet case might not be
obvious are given in Section A.3. In the sequel, we will only prove some results that
are not in [96].

For the remainder of this section, let I ⊆ R be an interval, which can be un-
bounded. See Section 0.4 for a reminder of the Itô integral.

De�nition 2.1.1. Let φ : I −→ E be a weakly L2 function. Then φ is called
stochastically integrable if for all measurable sets A ∈ B(I), there exists a random
vector YA : Ω −→ E such that for all x∗ ∈ E∗, one has

x∗(YA) =

∫
I

1A(t)x∗
(
φ(t)

)
dBt

almost surely. In that case, we write YA =
∫
A
φ(t)dBt.

The random vectors YA are Gaussian since x∗(YA) is a Gaussian random variable
for any x∗ ∈ E∗. Furthermore, they are uniquely determined almost surely. Indeed,
assume that Y is a random vector such that x∗(Y ) = 0 almost surely, for any x∗ ∈
E∗. Since E is separable, the topological space (E∗, σ(E∗, E)) is also separable by
[89, Subsection IV.1.7]. Let (x∗n)n∈N ⊆ E∗ be a dense sequence in (E∗, σ(E∗, E)),
which thus separates points of E. Then almost surely, x∗n(Y ) = 0 for all n ∈ N, which
is equivalent to Y = 0 almost surely.

By the Fernique theorem, see Theorem 0.5.3, we have YA ∈ Lp(Ω;E) for every
1 ≤ p <∞. See Section A.1 for the de�nition of the spaces Lp(Ω;E), 1 ≤ p <∞.

Here are two easy consequences of De�nition 2.1.1.

Lemma 2.1.2 ([96, pp. 138 and 139]). Let φ, ψ : I −→ E be two stochastically
integrable functions, let a, b ∈ K and T : E −→ F be a continuous linear map,
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where F is another separable Fréchet space. Then the functions aφ+ bψ and Tφ are
stochastically integrable, and we have∫

I

(
aφ(t) + bψ(t)

)
dBt = a

∫
I

φ(t)dBt + b

∫
I

ψ(t)dBt

and ∫
I

Tφ(t)dBt = T

∫
I

φ(t)dBt.

In the case of scalar-valued functions, any square-integrable function is stochasti-
cally integrable. In a Fréchet space, this is no longer true: for every 1 ≤ p < 2, there
exists a bounded measurable function de�ned on [0, 1] with values in `p that is not
stochastically integrable, see [86, Example 3.1].

De�nition 2.1.3. Let φ : I −→ E be a weakly L2 function. We de�ne the conjugate-
linear map Iφ : L2(I) −→ (E∗)

′
by

Iφ(f) : E∗ −→ K, x∗ 7−→
∫
I

x∗(φ(t))f(t)dt

for every f ∈ L2(I).

Here, (E∗)
′
denotes the algebraic dual of E∗.

We will say that Iφ is γ-radonifying if Iφ takes values in E and the linear map IφS
is γ-radonifying, where S : L2(I)∗ −→ L2(I) is the canonical isometry. This is equiv-
alent to saying that

∑
n≥0 gnIφ(fn) converges almost surely in E, where (gn)n∈N is a

sequence of i.i.d. standard Gaussian random variables and (fn)n∈N is an orthonormal
basis of L2(I). Note that L2(I) is separable by [50, Proposition 1.2.29].

The map associated with a weakly L2 function characterizes its stochastic inte-
grability, as the next result says. Its proof is postponed to Section A.3.

Theorem 2.1.4 ([96, Theorem 2.3]). Let φ : I −→ E be a weakly L2 function. The
following assertions are equivalent, where c = 1 if K = R and c = 2 if K = C:

(i) φ is stochastically integrable,

(ii) there exists a random vector Y : Ω −→ E such that for every x∗ ∈ E∗, we have

x∗(Y ) =

∫
I

x∗(φ(t))dBt

almost surely,

(iii) there exists a Gaussian measure µ on E with covariance operator Q : E∗ −→ E
such that for every x∗ ∈ E∗,

c

∫
I

|x∗(φ(t))|2dt = x∗Qx∗,
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(iv) there exist a separable Hilbert space H and a γ-radonifying operator T : H −→ E
such that for every x∗ ∈ E∗,

c

∫
I

|x∗(φ(t))|2dt ≤ ‖T ∗(x∗)‖2H ,

(v) the map Iφ takes values in E, and is continuous and γ-radonifying.

If one of these assertions holds, then φ is Pettis integrable on every bounded interval
included in I, and µ is the distribution of the random vector

∫
I
φ(t)dBt.

This theorem also shows that if a function is stochastically integrable with respect
to some Brownian motion, then it is stochastically integrable with respect to any
Brownian motion.

Although the stochastic integral is de�ned in a Pettis manner, any stochastically
integrable function can be approximated by step functions.

De�nition 2.1.5. A step function φ : I −→ E is a function of the form φ =∑n
i=1 ai1]ti−1,ti[ where ai ∈ E for all 1 ≤ i ≤ n, n ∈ N0 and t0 ≤ · · · ≤ tn ∈ I.

Remark that every step function is stochastically integrable.

Theorem 2.1.6 ([96, Theorem 2.5]). Let φ : I −→ E be a weakly L2 function. Then
φ is stochastically integrable if and only if there exists a sequence (φn)n∈N of step
functions such that

(i) for all x∗ ∈ E∗, limn→∞ x∗φn = x∗φ in measure,

(ii) there exists a random vector Y : Ω −→ E such that Y = limn→∞
∫
I
φn(t)dBt in

probability.

In that case, we have Y =
∫
I
φ(t)dBt, the convergence in (i) is in L2(I), and the

convergence in (ii) is in Lp(Ω;E) for every 1 ≤ p <∞.

See Section A.3 for the proof of Theorem 2.1.6. This characterization of the
stochastic integral has been taken as its de�nition in [86] for Banach space-valued
measurable functions.

The proof of the next result follows the same lines as [96, Corollary 2.8].

Proposition 2.1.7. Let φ : [0,∞[ −→ E be stochastically integrable. Then

lim
t→∞

∫ t

0

φ(s)dBs =

∫ ∞
0

φ(s)dBs

in Lp(Ω;E), for every 1 ≤ p <∞.

Proof. Let ‖ · ‖ be a continuous seminorm, and let 1 ≤ p < ∞. Let (tn)n≥0 be
a sequence of positive numbers converging to ∞. Let n ≥ 0. Denote by Rn the
covariance operator of the distribution νn of

∫∞
tn
φ(s)dBs, and let Q be the covariance

operator of the distribution µ of
∫∞

0
φ(s)dBs. By Theorem 2.1.4, we get

x∗Rnx
∗ = c

∫ ∞
tn

|x∗φ|2ds ≤ c
∫ ∞

0

|x∗φ|2ds = x∗Qx∗,
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where c = 1 if K = R and c = 2 if K = C. By Theorem 0.5.12, this implies
that the sequence (νn)n≥0 is uniformly tight. On the other hand, we also have
limn→∞ x∗Rnx

∗ = 0. By Theorem 0.5.7, we deduce that limn→∞ ν̂n(x∗) = 1 for all
x∗ ∈ E∗. Therefore, by [95, Theorems I.3.6 and IV.3.1], we get that limn→∞ νn = δ0
weakly, where δ0 is the Dirac measure at 0 (that is, δ0(A) = 1 if 0 ∈ A and δ0(A) = 0
if 0 /∈ A, for all A ∈ B(E)).

We conclude the proof by using [19, Corollary 3.8.8]. We just need to check that

lim
R→∞

sup
n∈N

∫
{x∈E,‖x‖p>R}

‖x‖pdνn(x) = 0.

Let ε > 0. Since (νn)n≥0 is uniformly tight, there exists a compact set K ⊆ E, thus
bounded, such that νn(K) > 1−ε. LetR > 0 be so large thatK ⊆ {x ∈ E, ‖x‖p ≤ R}.
For all n ≥ 0, by the Cauchy-Schwarz inequality and Theorem 0.5.12, we get that∫

{x∈E,‖x‖p>R}
‖x‖pdνn(x) ≤

(∫
E

‖x‖pdνn(x)
)1/2(∫

E

12
{x∈E,‖x‖p>R}dνn(x)

)1/2

≤
(∫

E

‖x‖pdµ(x)
)1/2

ε1/2.

We conclude that supn≥0

∫
{x∈E,‖x‖p>R} ‖x‖

pdνn(x) ≤Mε1/2 for some constant M ≥
0. Since ε was arbitrary, we are done.

Lemma 2.1.8. Let φ : I −→ E be stochastically integrable. Then for any s ∈ R,
φ(· − s) is stochastically integrable on I + s and the random vectors

∫
I+s

φ(t− s)dBt
and

∫
I
φ(t)dBt are identically distributed.

Proof. For all x∗ ∈ E∗, we have by a change of variables and Theorem 2.1.4 that

c

∫
I+s

|x∗(φ(t− s))|2dt = c

∫
I

|x∗(φ(t))|2dt = x∗Qx∗,

where c = 1 if K = R and c = 2 if K = C, and Q is the covariance operator
of the distribution µ of

∫
I
φ(t)dBt. By Theorem 2.1.4, we deduce that φ(· − s) is

stochastically integrable and µ is the distribution of
∫
I+s

φ(t− s)dBt.

Lemma 2.1.9. Let A,B ∈ B(I) and φ, ϕ : I −→ E be two stochastically integrable
functions. If A and B are disjoint then the random vectors

∫
A
φ(t)dBt and

∫
B
ϕ(t)dBt

are independent.

Proof. The random vectors X :=
∫
A
φ(t)dBt and Y :=

∫
B
ϕ(t)dBt are independent if

and only if x∗(X) and y∗(Y ) are independent for all x∗, y∗ ∈ E∗, see [25, p. 23]. By
Lemma 2.1.2 and Itô isometry, we have〈

x∗(X), y∗(Y )
〉
L2(Ω)

=
〈∫

A

x∗(φ(t))dBt,
∫
B

y∗(ϕ(t))dBt
〉
L2(Ω)

= c
〈
x∗φ, y∗ϕ

〉
L2(I)

= 0,

where c = 1 if K = R and c = 2 if K = C. Since (x∗(X), y∗(Y )) is a Gaussian random
vector by linearity of the stochastic integral, this implies that x∗(X) and y∗(Y ) are
independent by [51, Proposition E.2.12].
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We end this section with a result characterizing the stochastically integrable func-
tions with values in a space of functions. This will be useful for concrete examples.

Recall the de�nition of cotype.

De�nition 2.1.10. Let E be a Banach space and 2 ≤ q ≤ ∞. Then E has cotype q
if there exists C > 0 such that for all n ∈ N0 and every x1, . . . , xn ∈ E, we have

‖(xk)nk=1‖q ≤ C
∥∥∥∥ n∑
k=1

gkxk

∥∥∥∥
L1(Ω,P;E)

,

where (gk)nk=1 is a sequence of independent standard Gaussian variables.

Every Banach space has cotype ∞. The space c0 has no �nite cotype, see [51,
Corollary 7.1.10].

Theorem 2.1.11. Let (S,B, µ) be a σ-�nite measure space, let 1 ≤ p < ∞, and set
E := Lp(S,B, µ). Then a measurable function φ : I −→ E is stochastically integrable
if and only if ∥∥∥(∫

I

|φ(t, ·)|2dt
)1/2∥∥∥

E
<∞.

Theorem 2.1.11 is a direct consequence of [96, Corollary 2.10] by noticing that
Lp(S,B, µ) has �nite cotype for any 1 ≤ p <∞, see [51, Proposition 7.1.4].

2.2 Random vector: First method

The idea of the �rst method to get a random vector for semigroups is to reuse the
arguments of Section 1.1 for a single operator by replacing series with stochastic
integrals. However, we have not been able to prove results analogous to Theorems
1.1.8 or 1.2.3 for C0-semigroups. Furthermore, we did not �nd any example of C0-
semigroups that satis�es the assumptions of the only result we obtained, Proposition
2.2.2. Nevertheless, this part was left as it might still be interesting.

The �nal parts of the proofs of the main results of Sections 2.2 and 2.3 are the
same, so we put it in a lemma.

Lemma 2.2.1. Let (Tt)t≥0 be a C0-semigroup on E. Let v : Ω −→ E be a random
vector such that its probability distribution is ergodic for (Tt)t≥0 and P(v ∈ O) > 0 for
every non-empty open subset O of E. Then v is almost surely frequently hypercyclic
for (Tt)t≥0.

Proof. Let µ be the probability distribution of v. Let O be a non-empty open subset
of E. The Birkho� Ergodic Theorem for semigroups, Theorem 0.1.46, can be applied
to T and µ and gives

lim
N→∞

1

N

∫ N

0

(1O ◦ Tt)(x)dt = µ(O) µ-a.s.
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Let A be a Borel subset of E such that µ(A) = 1 and the previous equality holds
everywhere on A. Then, if we set B := v−1(A) ⊆ Ω, we have P(B) = P(v−1(A)) =
µ(A) = 1 and

lim
N→∞

1

N

∫ N

0

(1O ◦ Tt)(v)dt = P(v ∈ O) > 0

on B. Since E is separable, we can take a countable base of open subsets of E and
get that almost surely, the set {t ≥ 0 | Tt(v) ∈ O} has positive lower density for
every non-empty open subset O of E. The random vector v is therefore almost surely
frequently hypercyclic for (Tt)t≥0.

The next proposition is the analogous result to Proposition 1.1.4. Their proofs are
the same, but we need to use the Birkho� Ergodic Theorem for semigroups through
Lemma 2.2.1, and replace all series with stochastic integrals.

Proposition 2.2.2. Let (Tt)t≥0 be a C0-semigroup on E, and let (ut)t∈R be a family
of vectors in E such that Ts(ut) = ut−s for every s ≥ 0 and t ∈ R. Let (Bt)t∈R be a
Brownian motion. Assume that t 7−→ ut is stochastically integrable, and set

v :=

∫
R
utdBt.

If P(v ∈ O) > 0 for every non-empty open subset O of E, then v is almost surely
frequently hypercyclic for the C0-semigroup (Tt)t≥0, and it induces a strongly mixing
measure with full support for (Tt)t≥0.

Proof. De�ne the probability measure

µ : B(E) −→ [0, 1], A 7−→ P(v ∈ A).

Let s ≥ 0, we �rst show that µ is Ts-invariant. Let A ∈ B(E). By the de�nitions
of µ and v and by Lemmas 2.1.2 and 2.1.8, we have

µ(T−1
s (A)) = P(Ts(v) ∈ A) = P

(∫
R
ut−sdBt ∈ A

)
= P

(∫
R
utdBt ∈ A

)
.

We conclude by de�nitions of v and µ that µ(T−1
s (A)) = P(v ∈ A) = µ(A). The

measure µ is thus Ts-invariant.
Now we claim that µ is (Tt)t≥0-strongly mixing. Let f and g be two bounded and

continuous real-valued functions de�ned on E. We aim to show that

lim
t→∞

∫
E

(f ◦ Tt)gdµ =

∫
E

fdµ
∫
E

gdµ.

Since the set of bounded continuous functions on E is dense in L2(E,µ) by [31,
Theorem 18.1], this will imply the claim by [31, p. 26]. First, by de�nition of µ, this
is equivalent to showing that

lim
t→∞

∫
Ω

f(Tt(v))g(v)dP =

∫
Ω

f(v)dP
∫

Ω

g(v)dP.
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Let ε > 0. Since f and g are continuous and bounded, by Proposition 2.1.7, Lemma
A.1.3 and the Dominated Convergence Theorem, there exists N ≥ 0 such that∥∥∥∥g(∫ N

−∞
utdBt

)
− g(v)

∥∥∥∥
L1(Ω,P)

< ε (2.2.1)

and ∥∥∥∥f(∫ ∞
−N

utdBt

)
− f(v)

∥∥∥∥
L1(Ω,P)

< ε. (2.2.2)

Let s > 2N , write

f(Ts(v))g(v) = f(Ts(v))g(v)− f(Ts(v))g

(∫ N

−∞
utdBt

)
+ f(Ts(v))g

(∫ N

−∞
utdBt

)
− f

(∫ ∞
−N+s

ut−sdBt

)
g

(∫ N

−∞
utdBt

)
+ f

(∫ ∞
−N+s

ut−sdBt

)
g

(∫ N

−∞
utdBt

)
. (2.2.3)

For the �rst two terms, using the assumption that f is bounded and the inequality
(2.2.1) yield∣∣∣∣ ∫

Ω

f(Ts(v))g(v)dP−
∫

Ω

f(Ts(v))g

(∫ N

−∞
utdBt

)
dP
∣∣∣∣

≤ ‖f‖∞
∥∥∥∥g(∫ N

−∞
utdBt

)
− g(v)

∥∥∥∥
L1(Ω,P)

≤ ‖f‖∞ε.

Now, for the third and fourth terms, de�ne the random vectors

X :=

∫ −N+s

−∞
ut−sdBt, Y :=

∫ ∞
−N+s

ut−sdBt, U :=

∫ −N
−∞

utdBt, V :=

∫ ∞
−N

utdBt.

Then Lemma 2.1.8 implies that X and U are identically distributed, and so are Y and
V . By Lemma 2.1.9, X and Y are independent, and so are U and V . Therefore, the
random variables f(X + Y )− f(Y ) and f(U + V )− f(V ) are identically distributed.
Now, by using Lemma 2.1.2, we get that∣∣∣∣∣

∫
Ω

(
f(Ts(v))g

(∫ N

−∞
utdBt

)
− f

(∫ ∞
−N+s

ut−sdBt

)
g

(∫ N

−∞
utdBt

))
dP

∣∣∣∣∣
≤ ‖g‖∞

∥∥∥∥f(∫ ∞
−∞

ut−sdBt

)
− f

(∫ ∞
−N+s

ut−sdBt

)∥∥∥∥
L1(Ω,P)

= ‖g‖∞
∥∥∥∥f(∫ ∞

−∞
utdBt

)
− f

(∫ ∞
−N

utdBt

)∥∥∥∥
L1(Ω,P)

≤ ‖g‖∞ε,
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where we have used (2.2.2) for the last inequality. For the last term of (2.2.3), since
s > 2N and by using Lemma 2.1.9 and then Lemma 2.1.8, one has∫

Ω

f

(∫ ∞
−N+s

ut−sdBt

)
g

(∫ N

−∞
utdBt

)
dP

=

∫
Ω

f

(∫ ∞
−N+s

ut−sdBt

)
dP
∫

Ω

g

(∫ N

−∞
utdBt

)
dP

=

∫
Ω

f

(∫ ∞
−N

utdBt

)
dP
∫

Ω

g

(∫ N

−∞
utdBt

)
dP.

Therefore, using again (2.2.1) and (2.2.2) gives∣∣∣∣ ∫
Ω

f

(∫ ∞
−N+s

ut−sdBt

)
g

(∫ N

−∞
utdBt

)
dP−

∫
Ω

f(v)dP
∫

Ω

g(v)dP
∣∣∣∣

≤ ‖f‖∞
∥∥∥g(∫ N

−∞
utdBt

)
− g(v)

∥∥∥
L1(Ω,P)

+ ‖g‖∞
∥∥∥f (∫ ∞

−N
utdBt

)
− f(v)

∥∥∥
L1(Ω,P)

≤ ‖f‖∞ε+ ‖g‖∞ε.

We can �nally conclude that∣∣∣∣∫
Ω

f(Ts(v))g(v)dP−
∫

Ω

f(v)dP
∫

Ω

g(v)dP
∣∣∣∣ ≤ 2‖f‖∞ε+ 2‖g‖∞ε,

and since ε > 0 was arbitrary, we eventually get that limt→∞
∫

Ω
f(Tt(v))g(v)dP =∫

Ω
f(v)dP

∫
Ω
g(v)dP. The measure µ is thus (Tt)t≥0-strongly mixing.

The result now follows by Lemma 2.2.1.

In the same spirit as Theorem 1.2.12, we have the following result.

Theorem 2.2.3. Let (Tt)t≥0 be a C0-semigroup on a separable Banach space E of
type 2. Let (ut)t∈R be a family of vectors in E such that Ts(ut) = ut−s for every s ≥ 0
and t ∈ R, and span{ut | t /∈ A} is dense in E for every A ∈ B(R) with zero Lebesgue
measure. Let (Bt)t∈R be a Brownian motion. Assume that t 7−→ ut ∈ L2(R;E). Then
the random vector

v :=

∫
R
utdBt.

is almost surely well-de�ned and frequently hypercyclic for (Tt)t≥0, and it induces a
strongly mixing measure with full support for (Tt)t≥0.

Proof. We �rst prove that v is almost surely well-de�ned. De�ne the linear map J :
φ 7−→

∫
R φ(t)dBt de�ned on the space of E-valued step functions. Let φ =

∑n
i=1 ai1Ai

be a step function. Since E has type 2 and by using properties (ii) to (iv) of De�nition
0.4.1, we have

‖J(φ)‖2L2(Ω;E) ≤ C
n∑
i=1

λ(Ai)‖ai‖2E = C‖φ‖2L2(R;E),
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where C > 0 is some constant depending only on E and λ is the Lebesgue measure
on R. Therefore, J is a continuous embedding, and the density of the space of step
functions in L2(R;E), see [50, Remark 1.2.20], allows us to extend J on L2(R;E).
Theorem 2.1.6 then implies that J(φ) =

∫
R φdBt for every φ ∈ L

2(R;E). This shows
that v is almost surely well-de�ned since the map t 7−→ ut belongs to L2(R;E).

Let Q be the covariance operator of the probability distribution Pv of v. By
Proposition 0.5.13, it su�ces to show that Q is one-to-one to prove that Pv has full
support. Let x∗ ∈ Ker(Q). By de�nition of Q, we have

0 = x∗(Q(x∗)) =

∫
E

|x∗|2dPv =

∫
Ω

|x∗(v)|2dP,

implying that x∗(v) = 0 almost surely. By de�nition of v and Lemma 2.1.2, we get
that

0 = x∗(v) =

∫
R
x∗(ut)dBt

almost surely. Therefore, Itô's isometry yields that x∗(ut) = 0 for every t ∈ R outside
some set of zero Lebesgue measure. By assumption, we get x∗ = 0.

The result now follows by Proposition 2.2.2.

Remark 2.2.4. In the proof of Theorem 2.2.3, in order to show that v is almost surely
well-de�ned, we actually proved that L2(R;E) is continuously embedded in the space
of stochastically integrable functions. This was already known in [86, Proposition
5.2].

As mentioned above, we have not been able to prove analogous results to Theorems
1.1.8 or 1.2.3 for C0-semigroups. In the proof of Proposition 2.2.2, the independent
and stationary increments of the Brownian motion play a crucial role. The idea
was then to prove the existence of a Lévy process with respect to which t 7−→ ut is
stochastically integrable, under some deterministic conditions on (ut)t∈R. A sought
condition was the Pettis integrability of t 7−→ ut. If this plan could work, one would
then hope to �nd another proof of the frequent hypercyclicity criterion for semigroups
[78, Theorem 3], as we did for operators.

2.3 Random vector: Second method

In our second approach, we will make assumptions close to those of the main result
of Chakir and El Mourchid [26, Theorem 3.2]. The semigroup will be de�ned on
a complex Fréchet space since we will consider purely imaginary eigenvalues of the
generator.

Theorem 2.3.1. Let (Tt)t≥0 be a C0-semigroup on a separable complex Fréchet space
E. Let A be the generator of (Tt)t≥0, and let (ut)t∈I be a family of vectors in Dom(A)
such that A(ut) = itut for every t ∈ I, where I is a non-empty interval of R, and
span{ut | t /∈ B} is dense in E for every B ∈ B(I) with zero Lebesgue measure.
Let (Bt)t∈I be a complex Brownian motion. Assume that t 7−→ ut is stochastically
integrable, and set

v :=

∫
I

utdBt.
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Then v is almost surely frequently hypercyclic for the C0-semigroup (Tt)t≥0, and it
induces a strongly mixing measure with full support for (Tt)t≥0.

Proof. Let Q be the covariance operator of the probability distribution Pv of v.
Let x∗, y∗ ∈ E∗. By using the de�nition of Q and Lemmas 2.1.2 and 0.4.7, we

have

y∗Qx∗ =

∫
E

y∗(x)x∗(x)dPv(x) =

∫
Ω

y∗
(∫

I

utdBt
)
x∗
(∫

I

utdBt
)
dP

= E
(∫

I

y∗(ut)dBt

∫
I

x∗(ut)dBt
)

= 2

∫
I

y∗(ut)x∗(ut)dt; (2.3.1)

note that we have used the linearisation of the Itô isometry.
We �rst prove that Pv is (Tt)t≥0-invariant. Let x∗, y∗ ∈ E∗ and t ≥ 0. By using

(2.3.1) twice, (ii) of Proposition 0.1.36 and the assumption on (us)s∈I , we have

y∗TtQT
∗
t x
∗ = T ∗t y

∗QT ∗t x
∗ = 2

∫
I

T ∗t y
∗(us)T ∗t x

∗(us)ds

= 2

∫
I

y∗Tt(us)x∗Tt(us)dt = 2

∫
I

eitsy∗(us)e
−itsx∗(us)ds

= y∗Qx∗.

By (i) of Theorem 0.5.14, this shows that Pv is (Tt)t≥0-invariant.
Now, let us show that Pv is strongly mixing for (Tt)t≥0. Let x∗, y∗ ∈ E∗ and t ≥ 0.

By using (2.3.1), (ii) of Proposition 0.1.36 and the assumption on (ut)t∈I , we have

y∗QT ∗t (x∗) = 2

∫
I

y∗(us)T ∗t x
∗(us)ds = 2

∫
I

y∗(us)x∗(eitsus)ds

= 2

∫
I

e−itsy∗(us)x∗(us)ds.

Since s 7−→ y∗(us)x∗(us) is integrable, by the Riemann-Lebesgue lemma, see [50,
Lemma 2.4.3], we get that limt→∞ y∗QT ∗t (x∗) = 0. We conclude that Pv is strongly
mixing for (Tt)t≥0 by (ii) of Theorem 0.5.14.

Finally, we show that Pv has full support. It su�ces to show that Q is one-to-one
by Proposition 0.5.13. Let x∗ ∈ Ker(Q). Again by (2.3.1), we have

0 = x∗Qx∗ = 2

∫
I

|x∗(us)|2ds,

hence x∗(us) = 0 almost everywhere on I. Therefore, x∗ = 0 by hypothesis and
linearity and continuity of x∗.

We conclude the proof by using Lemma 2.2.1.

As a �rst application, let us apply Theorem 2.3.1 to the chaotic translation semi-
groups. See Example 0.1.37 for the de�nition. It is shown in [26, Example 4.1]
that these semigroups admit a strongly mixing Gaussian measure, by constructing a
stochastic process. We reuse their arguments to apply Theorem 2.3.1.
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Theorem 2.3.2. Let 1 ≤ p <∞, I ∈ {[0,∞[,R} and an admissible weight ρ : I −→
]0,∞[. If the integral

∫
I
ρ(x)dx is �nite, then the random vector∫

R

et√
1 + t2

dBt,

where et(x) = eitx, x ∈ I, t ∈ R, is almost surely frequently hypercyclic for the
translation semigroup (Tt)t≥0 on Lpρ(I), and it induces a strongly mixing measure
with full support for (Tt)t≥0.

Proof. For every s ∈ R, de�ne the function us : I −→ C by

us(x) :=
eisx√
1 + s2

for all x ∈ I. Since
∫
I
ρ(x)dx <∞, we get that us ∈ Lpρ(I) for all s ∈ R.

It is clear that Tt(us) = eistus for every s ∈ R and t ≥ 0. By (ii) of Proposition
0.1.36, this implies that us ∈ Dom(A) and A(us) = isus for every s ∈ R, where A is
the generator of the semigroup.

Now, let φ ∈ (Lpρ(I))∗ = Lq
ρ−q/p

(I), where 1/p + 1/q = 1, be such that φ(us) = 0

for all s /∈ B, where B ∈ B(R) has zero Lebesgue measure. Then

0 = φ(us) =

∫
I

eisx√
1 + s2

φ(x)dx,

hence
∫
I
eisxφ(x)dx = 0 for all s /∈ B. Since φ ∈ L1(I) by the fact that

∫
I
ρ(x)dx <∞

and Hölder's inequality, we get that φ = 0 almost everywhere by [87, Theorem 9.11],
and thus φ = 0. This shows that span{us | s /∈ B} is dense in Lpρ(I) for any B ∈ B(R)
with zero Lebesgue measure.

We now prove that ∥∥∥(∫
R
|us(·)|2ds

)1/2∥∥∥
Lpρ(I)

<∞.

For any x ∈ I, we have ∫
R
|us(x)|2ds =

∫
R

1

1 + s2
ds,

and thus ∥∥∥(∫
R
|us(·)|2ds

)1/2∥∥∥p
Lpρ(I)

=

∫
I

(∫
R

1

1 + s2
ds
)p/2

ρ(x)dx,

which is �nite since
∫
I
ρ(x)dx <∞.

By Theorem 2.1.11, the map s 7−→ us is stochastically integrable. We conclude
the proof by applying Theorem 2.3.1.

Remark 2.3.3. By Example 0.1.43, the translation semigroup on Lpρ(I) is chaotic if and
only if

∫
I
ρ(x)dx is �nite. Therefore, by Theorem 2.3.2, we have found a frequently

hypercyclic random vector for any chaotic translation semigroup.
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The second example was studied by El Mourchid and Latrach in [35, Proposition
3.4], who proved the existence of a strongly mixing Gaussian measure for the semi-
group under consideration. It turns out that their arguments are the same to check
the assumptions of Theorem 2.3.1.

Theorem 2.3.4. Let 1 ≤ p < ∞ and A be the weighted shift on `p with sequence
of weights (wn)n≥1. Set βn := w1 . . . wn for all n ≥ 1, and β0 := 1. If the quantity
lim supn→∞(1/|βn|)1/n is �nite, then there exists η > 0 such that the random vector∫ η

−η

( intn
βn

)
n≥0

dBt

is almost surely frequently hypercyclic for the C0-semigroup (Tt)t≥0 := (etA)t≥0, and
it induces a strongly mixing measure with full support for (Tt)t≥0.

Proof. For all λ ∈ C, de�ne the sequence vλ := (λn/βn)n≥0. Then vλ ∈ `p if and
only if

∑
n≥0 |λ|np/|βn|p < ∞, and in that case we have A(vλ) = (λn+1/βn)n≥0 =

λvλ. The power series
∑
n≥0 λ

n/βn has a radius of convergence R := 1/ρ, where

ρ := lim supn→∞(1/|βn|)1/n <∞.
Let η ∈ ]0, R[, and de�ne us := vis for every −η < s < η. By our previous

calculations, we have us ∈ `p and A(us) = isus for all −η < s < η.
Let φ = (φn)n≥0 ∈ (`p)∗ = `q, where 1/p + 1/q = 1, be such that φ(us) = 0 for

almost all −η < s < η. De�ne the analytic function F : D(0, R) −→ C by

F (λ) :=

∞∑
n=0

λnφn
βn

= φ(vλ)

for all λ ∈ D(0, R). Since F = 0 almost everywhere on i]−η, η[, we conclude that
F = 0 on D(0, R), and φ = 0. This means that span{ut | t /∈ B} is dense in `p for
any B ∈ B(]−η, η[) with zero Lebesgue measure.

For all n ≥ 0, we have∫ η

−η
|us(n)|2ds =

∫ η

−η

|is|2n

|βn|2
ds ≤ 2ηη2n

|βn|2
,

implying that ∥∥∥(∫ η

−η
|us(·)|2ds

)1/2∥∥∥p
`p
≤
∞∑
n=0

2p/2ηp/2ηnp

|βn|p
,

which is �nite since η < R. Therefore, by Theorem 2.1.11, the map s 7−→ us is
stochastically integrable.

We conclude the proof by applying Theorem 2.3.1.

We now study the translation semigroups on H(C). We will need the notion of
Hilbert seminorm: it is a seminorm p : H(C) −→ [0,∞[ for which there exists a
semi-scalar product 〈·, ·〉 on H(C) such that p(x) = 〈x, x〉 for all x ∈ H(C).
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Theorem 2.3.5. For each t ≥ 0, de�ne the translation operator

Tt : H(C) −→ H(C), f 7−→ f(·+ t).

Then the random vector
∫ 2π

0
eitzdBt is almost surely frequently hypercyclic for the

C0-semigroup (Tt)t≥0, and it induces a strongly mixing measure with full support for
(Tt)t≥0.

Proof. It is easy to check that (Tt)t≥0 is indeed a C0-semigroup. Furthermore, its
generator is the di�erentiation operator D : H(C) −→ H(C).

For every s ∈ [0, 2π], set us(z) := eisz, z ∈ C. Clearly, D(us) = isus for any
s ∈ [0, 2π]. The space span{us | s /∈ B} is dense in H(C) by [47, Lemma 2.34], for
any B ∈ B([0, 2π]) with zero Lebesgue measure. Furthermore, the map s 7−→ us is
weakly L2 since {us | s ∈ [0, 2π]} is bounded in H(C). We now show that the map
Iφ of De�nition 2.1.3 takes values in H(C) and is γ-radonifying, where φ(s) := us,
s ∈ [0, 2π].

Let f ∈ L2([0, 2π]). De�ne the function F : C −→ C by

F (z) :=

∫ 2π

0

us(z)f(s)ds

for every z ∈ C. It is well-de�ned since the maps s 7−→ us(z) and f are in L2([0, 2π]),
for any z ∈ C. Let z, h ∈ C, we have

F (z + h)− F (z)

h
=

∫ 2π

0

eis(z+h) − eisz

h
f(s)ds.

An application of the Dominated Convergence Theorem then shows that

lim
h→0

F (z + h)− F (z)

h
=

∫ 2π

0

iseiszf(s)ds,

and F is holomorphic on C.
Let x∗ ∈ H(C)∗. We show that x∗(F ) =

∫ 2π

0
x∗(us)f(s)ds = Iφ(f)(x∗). Let

N ≥ 1. Then by linearity of x∗ and the integral, one has

x∗
( N∑
k=0

ikzk

k!

∫ 2π

0

skf(s)ds
)

=

N∑
k=0

x∗
( ikzk
k!

)∫ 2π

0

skf(s)ds

=

∫ 2π

0

N∑
k=0

x∗
( ikzk
k!

)
skf(s)ds

=

∫ 2π

0

x∗
( N∑
k=0

ikskzk

k!

)
f(s)ds. (2.3.2)

The right-hand side converges to
∫ 2π

0
x∗(us)f(s)ds by the Dominated Convergence

Theorem. As for the left-hand side, let us prove that it converges to x∗(F ) as N goes
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to ∞. Let r > 0 be �xed. Then∥∥∥ N∑
k=0

ikzk

k!

∫ 2π

0

skf(s)ds− F (z)
∥∥∥
r

=
∥∥∥∫ 2π

0

∞∑
k=N+1

ikskzk

k!
f(s)ds

∥∥∥
r

≤
∫ 2π

0

∞∑
k=N+1

skrk

k!
|f(s)|ds ≤

∞∑
k=N+1

rk

k!
‖sk‖L2([0,2π])‖f‖L2([0,2π]),

where we have used the Cauchy-Schwarz for the last inequality. The right-hand side
converges to 0 when N goes to∞. By continuity of x∗, we conclude that the left-hand
side of (2.3.2) converges to x∗(F ). Therefore, x∗(F ) = Iφ(f)(x∗), so that Iφ(f) = F ,
and hence Iφ takes values in H(C). The map Iφ is also continuous: for every r ≥ 0,
we have ‖Iφ(f)‖r ≤

√
2πe2πr‖f‖L2([0,2π]).

By Theorem 2.1.4, in order to prove that t 7−→ ut is stochastically integrable,
it remains to show that Iφ is γ-radonifying. Let (fn)n∈Z = (eins/

√
2π)n∈Z be the

canonical orthonormal basis of L2([0, 2π]). By [71, Examples 28.9(4)] and [71, Lemma
28.1], the space H(C) has a system of Hilbert seminorms generating its topology. Let
‖ · ‖ be such a seminorm. Since it is continuous, there exist some r > 0 and C > 0
such that ‖ · ‖ ≤ C‖ · ‖r Let (gn)n∈Z be an i.i.d. Gaussian sequence. Let 0 ≤ N ≤M
be two positive integers; we have, by using the facts that ‖ · ‖ is a Hilbert seminorm
for the �rst equality and gn, n ≥ 0, are independent for the second one,

E
(∥∥∥ M∑

n=N

gnIφ(fn)
∥∥∥2
)

=

M∑
n,m=N

E
(
gngm

)
〈Iφ(fn), Iφ(fm)〉

=

M∑
n=N

‖Iφ(fn)‖2

≤ C
M∑
n=N

‖Iφ(fn)‖2r

= C

M∑
n=N

∥∥∥∫ 2π

0

eiszfn(s)ds
∥∥∥2

r
,

where 〈·, ·〉 is the semi-scalar product associated to ‖ · ‖. For each n ∈ N such that
n > r and all z ∈ C such that |z| = r, we have∫ 2π

0

eiszfn(s)ds =
1√
2π

∫ 2π

0

eisze−isnds =
1√
2π

ei2π(z−n) − 1

i(z − n)
,

and then

E
(∥∥∥ M∑

n=N

gnIφ(fn)
∥∥∥2
)
≤ C

2π

M∑
n=N

∥∥∥ei2π(z−n) − 1

i(z − n)

∥∥∥2

r
≤ C

2π

M∑
n=N

(e2πr + 1)2

(n− r)2

provided that N > r. We can conclude that the series
∞∑
n=0

gnIφ(fn)
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converges in L2(Ω;E). The same arguments show that
∑
n≤0 gnIφ(fn) also converges

in L2(Ω;E), hence Iφ is γ-radonifying by Theorem 0.5.4. By Theorem 2.1.4, the map
s 7−→ us is thus stochastically integrable.

The result now follows by Theorem 2.3.1.

Remark 2.3.6. By Remark 0.1.44, any frequently hypercyclic vector for the semigroup
(Tt)t≥0 is also a frequently hypercyclic for each Tt, t > 0. Therefore, the random
vector

∫ 2π

0
eitzdBt is almost surely frequently hypercyclic for the translation operator

T1 : H(C) −→ H(C), f 7−→ f(·+ 1); see also Example 1.3.11.

We repeat our remark made at the end of Section 2.2: in Theorem 2.3.1, we still
assume that the map t 7−→ ut is stochastically integrable. Then one may ask if we
could �nd a deterministic assumption to get the stochastic integrability of t 7−→ ut,
possibly replacing the Brownian motion with another stochastic process.



Chapter 3

Rate of growth of random

power series

For a given frequently hypercyclic weighted shift de�ned on the space of entire func-
tions H(C), the rate of growth of the frequently hypercyclic vectors of this shift can
be studied. More precisely, an admissible rate of growth for the frequently hypercyclic
functions of an operator T on H(C) is a map g : [0,∞[ −→ [0,∞[ for which there
exists a frequently hypercyclic function f for T such that

sup
|z|=r

|f(z)| ≤ g(r)

for all r ≥ 0 large enough.
Recall from Chapter 1 that for a given chaotic weighted shift T on the space H(C)

with weights (wn)n≥1, we have proved in Theorem 1.3.4 that the random vector

∞∑
n=0

Xn

w1 . . . wn
zn

is almost surely an entire function and frequently hypercyclic for T , where the complex
random variables Xn, n ≥ 0, are i.i.d. and subgaussian with full support.

In the present chapter, we are interested in the rate of growth of general random
series

∑
n≥0 anXnen where (en)n∈N is a sequence of polynomials and f =

∑
n≥0 anen

is entire. We will prove that almost surely, the inequality

max
|z|=r

∣∣∣∣∑
n≥0

anXnen(z)

∣∣∣∣ ≤ c√log(A(r))

√∑
n≥0

|an|2 max
|z|=r

|en(z)|2 (3.0.1)

holds for a large amount of r's, where A is some function and c > 0 is some constant.
Two approaches to the problem are presented. In both approaches, random series on
the unit disk D will also be considered.

The �rst approach leads to a general result without restrictions on f . The rate
of growth will be valid for any r outside some set of �nite logarithmic measure. This

69
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extends results of Erd®s and Rényi [37] and Kuryliak, Skaskiv and Skaskiv [63], and
improves a result of Kuryliak [62, Theorem 3]; see Theorems 3.1.17 and 3.2.10.

The second approach provides an inequality valid for any r large enough, but
only for some functions f . However, unlike the �rst method, there will be a single
general result, namely Theorem 3.3.4, for functions de�ned on C or D. We obtain, in
particular, a generalization of a result of Nikula [80, Proposition 2].

Throughout this chapter, we will use the following notations. Every random vari-
able considered will be de�ned on the probability space (Ω,A,P). If a and b are two
positive real numbers, the notation a . b means that there exists some C > 0 such
that a ≤ Cb and C does not depend on any current variable such as n ∈ N, r > 0 or
ω ∈ Ω. For example, r2 − 2r + 1 . r2 for r > 0 large enough means that there exist
C > 0 and r0 > 0 such that for every r ≥ r0, one has r2−2r+1 ≤ Cr2. The notation
a � b means a . b and b . a. To make the reading easier, logm means the logarithm
iterated m times, and log0 is the identity map. Lastly, if a complex-valued function
f is de�ned on a closed disk centred at the origin and of radius r > 0 then we de�ne

‖f‖r := sup
|z|=r

|f(z)|.

3.1 On C with an exceptional set

We �rst study the rate of growth for random power series on C with subgaussian
coe�cients, where we accept a certain exceptional set of radii r. This is the situation
typically encoutered in the Wiman-Valiron theory, see [48] and [49]. The main ideas
in this section come from Erd®s and Rényi [37], Kuryliak [62] and Steele [92].

In this section, (en)n≥0 will always denote the sequence of monomials i.e., en(z) =
zn for every z ∈ C and n ≥ 0.

First of all, we must make sure that the random vector
∑
n≥0 anXnen is almost

surely convergent in H(C). This is a corollary of Lemma 1.2.9.

Lemma 3.1.1. Let f =
∑
n≥0 anen be an entire function and (Xn)n≥0 be a sub-

gaussian sequence. Then the random vector
∑
n≥0 anXnen is almost surely an entire

function.

Proof. Since f is entire, we have limn→∞ |an|1/n = 0. Therefore, for every r > 0,
there exist 0 < ρ < 1 and n0 ≥ 1 such that for every n ≥ n0, rn

√
log(n)|an| ≤ ρn.

This implies that
∑
n≥1

√
log(n)anen converges unconditionally in H(C). Lemma

1.2.9 then assures us that
∑
n≥0 anXnen is almost surely an entire function.

De�nition 3.1.2. Let f =
∑
n≥0 anen be an entire function. We de�ne the functions

µf , Sf and Gf : [0,∞[ −→ R for any r ≥ 0 by

µf (r) = sup
n≥0
|an|rn,

Sf (r) =

√√√√ ∞∑
n=0

|an|2r2n,
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Gf (r) =

∞∑
n=0

|an|rn.

The function µf is called the maximum term of f .

The function µf is standard in the theory of entire functions. The function Sf
is less common, but appears in Erd®s and Rényi [37] and Steele [92]. Note that

Sf (r) =
√∑

n≥0 |an|2 max|z|=r |zn|2, so that it coincides with the term on the right-

hand side of (3.0.1).
Since f is an entire function, the maps µf , Sf and Gf are well-de�ned. If f is not

a constant then µf converges to ∞ as the next result implies.

Lemma 3.1.3. For every entire function f , the maximum term µf is continuous. If
f is not constant then limr→∞ µf (r) =∞.

Proof. For the continuity of µf , see [52, Satz 4.2]. If f is not constant then there
exists n ≥ 1 such that an 6= 0, and since µf (r) ≥ |an|rn for every r ≥ 0, the result
follows.

Example 3.1.4. Let f(z) := ez =
∑
n≥0 r

n/n!, z ∈ C. By noticing that rn/n! =
r . . . r/(1 . . . n), it is clear that (rn/n)n≥0 reaches its maximum at brc. Then Stirling's
formula yields

µf (r) � rbrcebrc

brcbrc
√

2πbrc
,

which implies that µf (r) � er/
√
r.

Let (Xn)n≥0 be a subgaussian sequence of centred independent random variables
and f =

∑
n≥0 anen be an entire function. The aim of this section is to prove that

there exists a measurable set E of �nite logarithmic measure and some constant c > 0
such that, almost surely, the inequality∥∥∥∥∥

∞∑
n=0

anXnen

∥∥∥∥∥
r

≤ c
√

log2(µf (r))Sf (r) (3.1.1)

holds for all r /∈ E large enough.

De�nition 3.1.5. A measurable set E ⊆ [0,∞[ is of �nite logarithmic measure if∫
E∩[1,∞[

t−1dt is �nite.

Example 3.1.6. If E =
⋃
n≥1[an, bn] ⊆ [0,∞[ with an < bn < an+1 for all n ≥ 1, then

E is of �nite logarithmic measure if and only if
∑
n≥2(bn − an)/an < ∞. Thus, the

sets
⋃
n≥1[nβ , nβ + 1/nα], α, β > 0 with α + β > 1, and

⋃
n≥1[nα, nαe1/nβ ], α > 0,

β > 1, are of �nite logarithmic measure.

Remark 3.1.7. In order to show that some property holds outside a set of �nite
logarithmic measure, it su�ces to prove that there exists a set of �nite logarithmic
measure such that the property holds outside this set and for r su�ciently large.
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The next two lemmas are inspired by [63, Lemma 3.2 and p. 143].
The �rst lemma is an application of [49, Lemma 6.15]. For the sake of complete-

ness, we provide the proof.

Lemma 3.1.8. Let f =
∑
n≥0 anen be a non-constant entire function. Then for

every δ > 0 there exists an open set E ⊆ [0,∞[ of �nite logarithmic measure such
that for every r /∈ E, one has

∂r log(Gf (r)) ≤ 1

r
log1+δ(Gf (r)).

Proof. Let r0 > 0 be such that Gf (r) > 1 for all r ≥ r0, which is possible since f is
non-constant. Let E ⊆ ]r0,∞[ be the set where the inequality of the lemma is false.
Since both sides of the inequality are continuous, the set E is open. Using the change
of variables x = log(Gf (r)) yields∫

E∩[1,∞[

1

r
dr ≤

∫
E∩[1,∞[

∂r log(Gf (r))

log1+δ(Gf (r))
dr ≤

∫ ∞
1

1

x1+δ
dx <∞,

so that E is of �nite logarithmic measure.

Lemma 3.1.9. Let f =
∑
n≥0 anen be a non-constant entire function. Then, for

every δ > 0, there exists an open set E of �nite logarithmic measure such that for any
r /∈ E, one has

∞∑
n=0

n|an|rn ≤ Gf (r) log1+δ(Gf (r))

Proof. First notice that for every r > 0, one has ∂rGf (r) = r−1
∑
n≥0 n|an|rn and

thus
∞∑
n=0

n|an|rn = r∂rGf (r) = rGf (r)∂r log(Gf (r)).

Let E be the open set given by Lemma 3.1.8. Then we get for every r /∈ E
∞∑
n=0

n|an|rn ≤ rGf (r)
1

r
log1+δ(Gf (r)).

Lemma 3.1.13 is proved in Kahane [55, Chapter 6, Theorem 2] and will be crucial
for our purposes. It will also be used in the next section. For the sake of completeness,
we provide its proof. We will need the next three results.

Lemma 3.1.10 ([55, Chapter 6, Theorem 1]). Let (T, µ) be a measurable space, where
T is a separable topological space and µ is a �nite Borel measure on T , and let B be
a complex vector space of bounded continuous complex-valued functions de�ned on T
and closed under complex conjugation. Let (Xn)Kn=1 be a �nite subgaussian sequence
of centred independent real random variables with constant σ > 0, and (fn)Kn=1 be a
�nite sequence of elements of B. Assume that there exists some ρ > 0 such that, for
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every real function f ∈ B, there exists a measurable set I ⊆ T such that µ(I) ≥ µ(T )/ρ
and |f(t)| ≥ ‖f‖∞/2 for every t ∈ I. Then for every s ≥ 1/(2ρ), the random vector

P =
∑K
n=1Xnfn satis�es

P

(
‖P‖∞ > 8σ

√
log(2ρs)

√√√√ K∑
n=1

‖fn‖2∞

)
≤ 2

s
,

where ‖f‖∞ := supt∈T |f(t)| for each f ∈ B.
Proof. First assume that for every 1 ≤ n ≤ K, the function fn is real and set r :=∑K
n=1 ‖fn‖2∞ and C := ‖P‖∞. Assume that fn 6= 0 for some 1 ≤ n ≤ K. By

assumptions on the measurable space (T, µ), C is measurable. Indeed, since T is
separable, there exists a dense countable subset D ⊆ T , hence C = supt∈D |P (t)| by
continuity of P . Since each P (t), t ∈ D, is measurable, the random variable C is also
measurable.

Let λ > 0. Since the random variables Xn, 1 ≤ n ≤ K, are independent, centred
and subgaussian, by Lemma 1.2.8, we have for every t ∈ T ,

E(eλP (t)) = E

(
K∏
n=1

eλXnfn(t)

)
=

K∏
n=1

E(eλXnfn(t)) ≤
K∏
n=1

eλ
2fn(t)2σ2

≤ eλ
2rσ2

,

(3.1.2)
where σ > 0 is the constant associated with (Xn)Kn=1 in De�nition 1.2.6. Without loss
of generality, we can assume that µ(T ) = 1. By assumption, for every ω ∈ Ω, there
exists a measurable set I ⊆ T depending on ω such that µ(I) ≥ 1/ρ and |P (t)| ≥ C/2
for every t ∈ I, hence C/2 ≤ P (t) or C/2 ≤ −P (t). This implies that

eλC/2 ≤ ρ
∫
I

eλC/2dµ ≤ ρ
∫
T

(
eλP (t) + e−λP (t)

)
dµ

and therefore

E(eλC/2) ≤ ρE
(∫

T

(
eλP (t) + e−λP (t)

)
dµ

)
.

By the Fubini theorem and (3.1.2), we deduce that E(eλC/2) ≤ 2ρeλ
2rσ2

. Therefore,
Markov's inequality yields

P
(
C

2
≥ λrσ2 +

log(2ρs)

λ

)
≤ E

(
exp

(
λC

2
− log(2ρs)− λ2rσ2

))
≤ 1

s
.

By taking λ = σ−1
√

log(2ρs)/
√
r and recalling that C = ‖P‖∞, we get

P
(
‖P‖∞ ≥ 4

√
rσ
√

log(2ρs)
)
≤ 1

s
.

Now, if P is complex, then by taking the real and imaginary parts of P and applying
to them the previous inequality, we get that

P
(
‖P‖∞ ≥ 8

√
rσ
√

log(2ρs)
)
≤ P

(
‖Re(P )‖∞ ≥ 4

√
rσ
√

log(2ρs)
)

+ P
(
‖Im(P )‖∞ ≥ 4

√
rσ
√

log(2ρs)
)
≤ 2

s
.

Note that Re(P ) and Im(P ) are in B since B is closed under complex conjugation.
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For the proof of Bernstein's inequality, see [66, Chapitre 5, Lemme IV.12]. A map
t 7−→

∑N
n=−N ane

int where an ∈ C for all −N ≤ n ≤ N , and N ≥ 1, is called a
complex trigonometric polynomial of degree less than or equal to N .

Lemma 3.1.11 (Bernstein inequality). For every complex trigonometric polynomial
p : [0, 2π] −→ C of degree less than or equal to N ≥ 1, one has ‖p′‖∞ ≤ N‖p‖∞.

Lemma 3.1.12 ([55, Chapter 5, Proposition 5]). For every complex trigonometric
polynomial p : [0, 2π] −→ C of degree less than or equal to N ≥ 1, there exists a closed
set I ⊆ [0, 2π] of Lebesgue measure 1/N such that |p(t)| ≥ ‖p‖∞/2 for every t ∈ I.

Proof. Since p is continuous, there exists some t0 ∈ [0, 2π] such that |p(t0)| = ‖p‖∞.
Extend p periodically to R, and let t ∈ R. By the Mean Value Theorem, |p(t)−p(t0)| ≤
sups∈[0,2π] |p′(s)||t − t0|. Then, by Bernstein's inequality, we get |p(t) − p(t0)| ≤
N‖p‖∞|t− t0|, hence

|p(t)| ≥ |p(t0)| − |p(t)− p(t0)| ≥ (1−N |t− t0|)‖p‖∞.

If t ∈ I :=
{
s mod 2π | s ∈ [t0 − 1/(2N), t0 + 1/(2N)]

}
then |p(t)| ≥ ‖p‖∞/2. This

concludes the proof since I has indeed Lebesgue measure 1/N .

Combining the two previous results yields Lemma 3.1.13, with T = [0, 2π] endowed
with the Lebesgue measure, B the space of complex trigonometric polynomials, ρ =
2πN and s = 2Np.

In the following results, the random variables Xn may be complex: one needs to
apply Lemma 3.1.10 to Re(Xn) and Im(Xn).

Lemma 3.1.13 ([55, Chapter 6, Theorem 2]). Let (Xn)Kn=1 be a subgaussian sequence
of centred independent random variables. Let (an)Kn=1 be a �nite sequence of complex
numbers, (qn)Kn=1 be a �nite sequence of complex trigonometric polynomials of degree
less than or equal to N ≥ 1 and p > 0 a real number. Then there exists a constant
c > 0 that depends only on the distribution of (Xn)Kn=1 and p such that

P

(
sup

θ∈[0,2π]

∣∣∣∣ K∑
n=1

anXnqn(θ)

∣∣∣∣ > c
√

log(N)

√√√√ K∑
n=1

|an|2‖qn‖2∞

)
≤ c

Np
.

Lemma 3.1.13 says that the �rst terms of the random series
∑
n≥0 anXnen already

give the kind of rate of growth (3.1.1) we are seeking. One may then hope that the
rest of the terms are small in some sense.

To get a rate of growth for a random entire function, we will use a deterministic
result which gives a link between the maximum modulus of an entire function f i.e.,
‖f‖r, r > 0, and its maximum term µf . This theorem can be proved with the Wiman-
Valiron theory, see Hayman [48, Theorem 6] and also [37, p. 48] and [92, p. 550]. This
result is due to Rosenbloom [85].

Theorem 3.1.14. Let f be a non-constant entire function. For every δ > 0, there
exists a set E ⊆ [0,∞[ of �nite logarithmic measure such that for every r /∈ E, one
has

‖f‖r ≤ µf (r)
√

log(µf (r))
(

log2(µf (r))
)1+δ

.
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Both sides of the inequality given by Theorem 3.1.14 are continuous where they
are de�ned, see Lemma 3.1.3 and [52, Satz 1.1]. Consequently, the set E can be
chosen to be open.

Lemma 3.1.15. Let f =
∑
n≥0 anen be a non-constant entire function and let

(Xn)n≥0 be a subgaussian sequence of centred independent random variables. Let
0 < α < 1 and δ > 0. Then the random vector

∑
n≥0 anXnen is almost surely

an entire function, and there exist a constant c > 0 and a set E ⊆ [0,∞[ of �nite
logarithmic measure such that for any r /∈ E,

P

(∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

≥ c
√

log(N)Sf (r)

)
.

1

N2/(1−α)

for every N ≥
(

log(µf (r))
) 3

2 +δ
, and E can be chosen to be open.

Proof. The series
∑
n≥0 anXnen is almost surely an entire function by Lemma 3.1.1.

Take the open set E ⊆ [0,∞[ as the �nite union of the open sets of �nite logarithmic
measure given by Lemma 3.1.9 and Theorem 3.1.14 applied to z 7−→

∑
n≥0 |an|zn

and δ/2 > 0, and set β := 1/(1− α).
De�ne Bn := {|Xn| ≥ nα} ⊆ Ω for each n ≥ 1. We get that, since (Xn)n≥0 is a

subgaussian sequence,

P(Bn) . e−n
2α/τ2

.
1

n3

for every n ≥ 1 and some τ > 0 given by Lemma 1.2.7.

Let r /∈ E be large enough and N ≥
(

log(µf (r))
) 3

2 +δ
. De�ne B(r) :=

⋃
n>Nβ Bn.

Then

P(B(r)) ≤
∑
n>Nβ

P(Bn) .
∑
n>Nβ

1

n3
.

1

N2β
(3.1.3)

for r > 0 large enough. On the complement of B(r), we get that∥∥∥∥ ∑
n>Nβ

anXnen

∥∥∥∥
r

≤
∑
n>Nβ

|Xn||an|rn ≤
∑
n>Nβ

nα|an|rn

≤ N−1
∑
n>Nβ

n|an|rn.

The last inequality holds because if n ≥ Nβ then nα ≤ n/N . By Lemma 3.1.9 and
Theorem 3.1.14, we �nally get that∥∥∥∥ ∑

n>Nβ

anXnen

∥∥∥∥
r

≤ N−1Gf (r) log1+ δ
2 (Gf (r))

. N−1µf (r)
√

log(µf (r)) log
1+ δ

2
2 (µf (r)) log1+ δ

2 (µf (r))

. N−1µf (r) log
3
2 +δ(µf (r)) ≤ µf (r) ≤ Sf (r). (3.1.4)
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Therefore, there is a constant c̃ > 0 such that if r /∈ E is large enough then

P

(∥∥∥∥ ∑
n>Nβ

anXnen

∥∥∥∥
r

> c̃Sf (r)

)
≤ P(B(r)) .

1

N2β
,

where the �rst inequality holds by (3.1.4), and the second one holds by (3.1.3).
By Lemma 3.1.13 applied to qn = rneint, n ≥ 0, p = 2 and K = bNβc, we have

on the other hand

P

(∥∥∥∥ ∑
0≤n≤Nβ

anXnen

∥∥∥∥
r

≥ c
√

log(N)Sf (r)

)
.

1

N2β

for some constant c ≥ c̃, and hence

P

(∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

≥ 2c
√

log(N)Sf (r)

)
.

1

N2β
+

1

N2β

for r large enough, r /∈ E.

The next lemma is the last result we will need. Versions of it can be found in
[37, p. 49], [62, Lemma 8] or [92, p. 555].

Lemma 3.1.16. Let h : [r0,∞[ −→ [0,∞[ be a continuous non-decreasing function
such that limr→∞ h(r) = ∞ and h(r0) ≥ 1, where r0 ≥ 0. Let E ⊆ [r0,∞[ be an
open set of �nite logarithmic measure. Then there exists a non-decreasing sequence
(rk)k∈J , where J ⊆ N0, such that for every k ∈ J ,

(i) rk /∈ E,

(ii) h(rk) ≥ k,

(iii) for any r /∈ E, there exists k ∈ J such that r ≤ rk and h(rk) ≤ h(r) + 1.

Proof. De�ne for each k ≥ 1 the closed, possibly empty, set

Uk :=
{
r ≥ r0 | k ≤ h(r) ≤ k + 1

}
.

These sets are indeed closed since h is continuous. They are also bounded since
limr→∞ h(r) = ∞, and thus they are compact. De�ne J := {k ∈ N0 | Uk \ E 6=
∅}. For each k ∈ J , there exists rk ∈ Uk \ E such that rk = sup(Uk \ E). Since
limr→∞ h(r) =∞ and E is of �nite logarithmic measure, the set J is in�nite.

Let r ≥ r0. Since h(r0) ≥ 1, there exists k ∈ N0 such that k ≤ h(r) ≤ k + 1. If
r /∈ E then k ∈ J , and r ≤ rk by de�nition of rk. By de�nition of Uk, we also have
h(rk) ≤ h(r) + 1.

Theorem 3.1.17 is the main result of this section. First, thanks to the Borel-
Cantelli lemma, we will prove the desired inequality for a suitable sequence (rn)n≥1

chosen with Lemma 3.1.16. The properties of this sequence and the Maximum Prin-
ciple will conclude the proof of Theorem 3.1.17.
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Theorem 3.1.17. Let f =
∑
n≥0 anen be a non-constant entire function and (Xn)n≥0

be a subgaussian sequence of centred independent random variables. Then the random
vector

∑
n≥0 anXnen is almost surely an entire function, and there exist a constant

c > 0 and an open set E ⊆ [0,∞[ of �nite logarithmic measure such that almost
surely, there exists r0 > 0 such that∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
r

≤ c
√

log2(µf (r))Sf (r)

for every r ≥ r0, r /∈ E.

Proof. Take the open set E ⊆ [0,∞[ of �nite logarithmic measure as the �nite union
of the sets given by Lemma 3.1.15 applied to f , α ∈ ]0, 1[ and a �xed δ > 0, and
Theorem 3.1.14 applied to z 7−→

∑
n≥0 |an|zn and δ > 0. By Lemma 3.1.16 applied

to h = log(Sf ) and r0 ≥ 0 so large that log(Sf (r0)) ≥ 1, we get a non-decreasing
sequence (rk)k∈J converging to ∞, where J ⊆ N0, and satisfying assertions (i), (ii)
and (iii) of the lemma.

Set β := 1/(1− α). De�ne for each k ∈ J the real number

Nk := log
3
2 +δ(µf (rk))

and the measurable set

Ak :=

{∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
rk

≥ c
√

log(Nk)Sf (rk)

}
⊆ Ω,

where c > 0 is the constant of Lemma 3.1.15. We can assume that Nk ≥ 1 for all
k ∈ J . Then (i) of Lemma 3.1.16, Lemma 3.1.15 and the de�nition of Nk imply that∑

k∈J

P(Ak) .
∑
k∈J

1

N2β
k

=
∑
k∈J

1

logβ(3+2δ)(µf (rk))
.

By Theorem 3.1.14, for every r /∈ E, we have

µf (r) ≤ Sf (r) ≤
∑
n≥0

|an|rn ≤ µf (r)
√

log(µf (r))
(

log2(µf (r))
)1+δ

.

This implies that log(Sf (r)) � log(µf (r)) for r /∈ E. Therefore

∑
k∈J

P(Ak) .
∑
k∈J

1

logβ(3+2δ)(Sf (rk))
.
∞∑
k=1

1

kβ(3+2δ)
<∞

by (i) and (ii) of Lemma 3.1.16. This in turn implies by the Borel-Cantelli lemma
that for almost surely every ω ∈ Ω, there exists k0(ω) ∈ J such that for every k ∈ J
with k ≥ k0(ω), ∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
rk

≤ c
√

log(Nk)Sf (rk). (3.1.5)
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Let r /∈ E be large, and let k ≥ k0(ω) be such that k ∈ J given by (iii) of Lemma
3.1.16. The Maximum Principle and inequality (3.1.5) yield∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
r

≤
∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
rk

≤ c
√

log(Nk)Sf (rk)

.
√

log2(µf (rk))Sf (rk).

Since µf ≤ Sf and Sf (rk) ≤ eSf (r) by (iii) of Lemma 3.1.16, we get that∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

.
√

log2(Sf (rk))Sf (rk) .
√

log2(Sf (r))Sf (r).

We conclude the proof by using the fact that log(Sf (r)) . log(µf (r)) for r /∈ E.
Note that the constant c in (3.1.5) is possibly replaced by a larger constant c̃, but
independently of ω ∈ Ω.

In Kuryliak [62], the sequence (rk)k≥1 was constructed from the maximum term
µf . The idea of constructing this sequence from Sf instead comes from [37] and [92].

The previous theorem includes the result of Erd®s and Rényi [37, Theorem 2]
who used Rademacher random variables. Indeed, every bounded random variable is
subgaussian. Recall that a Rademacher variable is a random variable X : Ω −→ R
such that P(X = 1) = 1/2 = P(X = −1). In their main result, [37, Theorem 1],
Erd®s and Rényi obtained a rate of growth written in terms of the maximum term.
The following theorem extends this result to arbitrary centred subgaussian sequences.

Theorem 3.1.18. Let f =
∑
n≥0 anen be a non-constant entire function and (Xn)n≥0

be a subgaussian sequence of centred independent random variables. Then the random
vector

∑
n≥0 anXnen is almost surely an entire function and for every δ > 0, there

exist a constant c > 0 and an open set E ⊆ [0,∞[ of �nite logarithmic measure such
that almost surely, there exists r0 > 0 such that∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
r

≤ cµf (r)
(

log(µf (r))
)1/4(

log2(µf (r))
)1+δ

for every r ≥ r0, r /∈ E.

Proof. This result is a direct consequence of Theorem 3.1.17. Let δ > 0. De�ne
the open set E as the �nite union of the sets given by Theorem 3.1.14 applied to
z 7−→

∑
n≥0 |an|zn and Theorem 3.1.17 applied to f . Let r /∈ E, Theorem 3.1.14

yields

S2
f (r) ≤ µf (r)

∑
n≥0

|an|rn ≤ µf (r)µf (r)
√

log(µf (r))
(

log2(µf (r))
)1+δ

.

It remains to apply Theorem 3.1.17 to conclude the proof.

This corollary also improves the special case of ρ = 1 in the result of Kuryliak
[62, Theorem 3] since in the article, the exponent of the iterated logarithm is 3/2 + δ.
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3.2 On the disk with an exceptional set

We now study the rate of growth for random power series on D with subgaussian
coe�cients, where we accept a certain exceptional set of radii r. Kuryliak, Skaskiv
and Skaskiv [63] obtained a result on D and more generally on a polydisk for uni-
formly bounded random variables. Theorem 3.2.10 generalizes [63, Theorem 2.3] to
subgaussian random variables, in the case of holomorphic functions on D. The main
ideas in this section come from [63], combined with ideas of the previous section.

Again in this section, (en)n≥0 will always denote the sequence of monomials i.e.,
en(z) = zn for every z ∈ D and n ≥ 0.

First of all, we must make sure that the random vector
∑
n≥0 anXnen is almost

surely convergent in H(D). Like Lemma 3.1.1, this is a corollary of Lemma 1.2.9.

Lemma 3.2.1. Let f =
∑
n≥0 anen ∈ H(D) and let (Xn)n≥0 be a subgaussian se-

quence. Then the random vector
∑
n≥0 anXnen is almost surely a holomorphic func-

tion on D.

Proof. Since f is holomorphic on D, we have lim supn→∞ |an|1/n ≤ 1. Therefore,
for every 0 < r < 1, there exist 0 < ρ < 1 and n0 ≥ 1 such that for every n ≥ n0,
rn
√

log(n)|an| ≤ ρn. This implies that
∑
n≥1

√
log(n)anen converges unconditionally

inH(D). Lemma 1.2.9 then ensures that
∑
n≥0 anXnen is almost surely a holomorphic

function on D.

The aim of this section is to bound the sup-norm of the random power series∑
n≥0 anXnen outside some subset of �nite logarithmic measure of [0, 1[.

De�nition 3.2.2. A measurable set E ⊆ [0, 1[ is of �nite logarithmic measure if∫
E

1
1−tdt is �nite.

Example 3.2.3. If E =
⋃
n≥1[an, bn] ⊆ [0,∞[ with 0 < an < bn < an+1 < 1 for all n ≥

1, then E is of �nite logarithmic measure if and only if
∑
n≥1(bn− an)/(1− bn) <∞.

Thus, the sets
⋃
n≥2[1 − 1/nα, 1 − 1/nα + 1/nβ ], α, β > 0, β > 1 + α, are of �nite

logarithmic measure.

Remark 3.2.4. In order to show that some property holds outside a set of �nite
logarithmic measure, it su�ces to prove that there exists a set of �nite logarithmic
measure such that the property holds outside this set and for r close enough to 1.

The proof of the main theorem of this section, Theorem 3.2.10, is similar to the
the proof of Theorem 3.1.17. The �rst term of the series will give the growth we are
seeking, and the remaining terms will be smaller than the �rst ones. Lemma 3.2.8
will be the probabilistic tool needed, and it is again a corollary of Lemma 3.1.13.

The maximum term µf of a function f ∈ H(D) and the functions Sf and Gf are
de�ned exactly in the same way as for entire functions, see De�nition 3.1.2.

For the sake of completeness, we provide the proof of the next lemma.

Lemma 3.2.5 ([61, Lemma 1]). Let f =
∑
n≥0 anen ∈ H(D) be non-constant with∑

n≥0 |an| > 1. Then for every δ > 0 there exists an open set E ⊆ [0, 1[ of �nite
logarithmic measure such that for every r /∈ E, one has

∂r log(Gf (r)) ≤ 1

1− r
log1+δ(Gf (r)).
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Proof. Let 0 < r0 < 1 and ε > 0 be such that log(Gf (r)) ≥ ε for all r0 < r < 1. Let
E ⊆ ]r0, 1[ be the set where the inequality is false. It is an open set since both sides
of the inequality are continuous. Using the change of variables x = log(Gf (r)) yields∫

E

1

1− r
dr ≤

∫
E

∂r log(Gf (r))

log1+δ(Gf (r))
dr ≤

∫ 1

ε

1

x1+δ
dx <∞.

Theorem 3.2.6 will be the analogous deterministic theorem to Theorem 3.1.14 we
will need.

Theorem 3.2.6 ([61, Theorem 2]). Let f =
∑
n≥0 anen ∈ H(D) be non-constant.

Then for every δ > 0 there exists an open set E ⊆ [0, 1[ of �nite logarithmic measure
such that

‖f‖r ≤
µf (r)

(1− r)1+δ
log

1+δ
2

(µf (r)

1− r

)
for every r /∈ E.

Lemma 3.2.7. Let f =
∑
n≥0 anen ∈ H(D) be non-constant, and let δ > 0. There

exists an open set E of �nite logarithmic measure such that for any r /∈ E, one has

∞∑
n=0

n|an|rn .
µf (r)

(1− r)2+δ
log3(1+δ)/2

(µf (r)

1− r

)
.

Proof. By multiplying f with a constant we can assume that µf (r) > 1 if r is su�-
ciently big, and then also

∑
n≥0 |an| > 1.

First notice that
∑
n≥0 n|an|rn � ∂rGf (r) = Gf (r)∂r log(Gf (r)). Take the open

set E ⊆ [0, 1[ as the �nite union of the open sets of �nite logarithmic measure given
by Lemma 3.2.5 and Theorem 3.2.6 applied to z 7−→

∑
n≥0 |an|zn and δ > 0. Then

we get for every r /∈ E close enough to 1,

∞∑
n=0

n|an|rn .
µf (r)

(1− r)1+δ
log

1+δ
2
(µf (r)

1− r
) 1

1− r

(
log(µf (r))

+ (1 + δ)
(

log
( 1

1− r
)

+
1

2
log2

(µf (r)

1− r
)))1+δ

.

Thus we get that

∞∑
n=0

n|an|rn .
µf (r)

(1− r)2+δ
log

1+δ
2
(µf (r)

1− r
)
(1 + δ)1+δ

(3

2
log
(µf (r)

1− r
))1+δ

=
(3

2

)1+δ
(1 + δ)1+δ µf (r)

(1− r)2+δ
log3(1+δ)/2

(µf (r)

1− r
)
.

The next lemma is analogous to Lemma 3.1.15.
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Lemma 3.2.8. Let f =
∑
n≥0 anen ∈ H(D) be non-constant, and let (Xn)n≥0 be a

subgaussian sequence of centred independent random variables. Let 0 < α < 1 and
δ > 0. Then the random vector

∑
n≥0 anXnen is almost surely a holomorphic function

on D, and there exist a constant c > 0 and an open set E ⊆ [0, 1[ of �nite logarithmic
measure such that for any r /∈ E,

P

(∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

≥ c
√

log(N)
µf (r)

(1− r) 1+δ
2

log(1+δ)/4
(µf (r)

1− r

))
.

1

N2/(1−α)

for every N ≥ 1
(1−r)2+δ

(
log
(µf (r)

1−r
))3(1+δ)/2

.

Proof. The series
∑
n≥0 anXnen is almost surely holomorphic on D by Lemma 3.2.1.

Take the open set E ⊆ [0, 1[ as the �nite union of the open sets of �nite logarithmic
measure given by Theorem 3.2.6 and Lemma 3.2.7 applied to δ > 0, and set β :=
1/(1− α).

De�ne Bn := {|Xn| ≥ nα} ⊆ Ω for each n ≥ 1. We get that, since (Xn)n≥0 is a
subgaussian sequence,

P(Bn) . e−n
2α/τ2

.
1

n3

for every n ≥ 1 and some τ > 0 given by Lemma 1.2.7.

Let r /∈ E be close enough to 1 and N ≥ (1−r)−(2+δ)
(

log
(
µf (r)/(1−r)

))3(1+δ)/2

.

De�ne now B(r) :=
⋃
n>Nβ Bn. Then

P(B(r)) ≤
∑
n>Nβ

P(Bn) .
∑
n>Nβ

1

n3
.

1

N2β
. (3.2.1)

On the complement of B(r), we get that∥∥∥∥ ∑
n>Nβ

anXnen

∥∥∥∥
r

≤
∑
n>Nβ

|Xn||an|rn ≤
∑
n>Nβ

nα|an|rn

≤ 1

N

∑
n>Nβ

n|an|rn.

The last inequality holds because if n ≥ Nβ then nα ≤ n/N . By Lemma 3.2.7, we
�nally get that∥∥∥∥ ∑

n>Nβ

anXnen

∥∥∥∥
r

.
1

N

µf (r)

(1− r)2+δ
log3(1+δ)/2

(µf (r)

1− r

)
≤ µf (r) (3.2.2)

for r /∈ E. Therefore, there is a constant c̃ > 0 such that if r /∈ E is close enough to
1 then

P

(∥∥∥∥ ∑
n>Nβ

anXnen

∥∥∥∥
r

> c̃
√

log(N)
µf (r)

(1− r) 1+δ
2

log(1+δ)/4
(µf (r)

1− r

))
≤ P(B(r))

.
1

N2β
,
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where the �rst inequality holds by (3.2.2), and the second one holds by (3.2.1).
By Lemma 3.1.13 applied to qn = rneint, n ≥ 0, p = 2 and K = bNβc, we have

on the other hand

P

(∥∥∥∥ ∑
0≤n≤Nβ

anXnen

∥∥∥∥
r

≥ c
√

log(N)Sf (r)

)
.

1

N2β

for some constant c ≥ c̃. Furthermore, we get by Theorem 3.2.6

S2
f (r) ≤ µf (r)

∞∑
n=0

|an|rn ≤
µf (r)2

(1− r)1+δ
log(1+δ)/2

(µf (r)

1− r

)
,

and hence

P

(∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

≥ 2c
√

log(N)
µf (r)

(1− r) 1+δ
2

log(1+δ)/4
(µf (r)

1− r

))
.

1

N2β
+

1

N2β

for r close enough to 1, r /∈ E.

Lemma 3.2.9. Let h, g : [r0, 1[ −→ [0,∞[ be two continuous non-decreasing functions
such that limr→∞ h(r) = ∞, h(r0) ≥ 1 and g(r0) ≥ 1, where 0 ≤ r0 < 1. Let
E ⊆ [r0, 1[ be an open set of �nite logarithmic measure. Then there exists a family
(rl,k)(l,k)∈J ⊆ [r0, 1[, where J ⊆ N2

0, such that for every (l, k) ∈ J ,

(i) rl,k /∈ E,

(ii) h(rl,k) ≥ k and g(rl,k) ≥ l,

(iii) for any r /∈ E, there exists (l, k) ∈ J such that r ≤ rl,k, h(rl,k) ≤ h(r) + 1 and
g(rl,k) ≤ g(r) + 1.

Proof. De�ne for each k, l ≥ 1 the closed, possibly empty, set

Ul,k :=
{
r0 ≤ r < 1 | k ≤ h(r) ≤ k + 1 and l ≤ g(r) ≤ l + 1

}
.

These sets are indeed closed since h and g are continuous. They are also bounded since
limr→1 h(r) =∞, and thus they are compact. De�ne J := {(l, k) ∈ N2

0 | Ul,k \E 6= ∅}.
For each (l, k) ∈ J , there exists rl,k ∈ Ul,k \ E such that rl,k = sup(Ul,k \ E).

Let r0 ≤ r < 1. Since h(r0) ≥ 1 and g(r0) ≥ 1, there exists (l, k) ∈ N2
0 such

that k ≤ h(r) ≤ k + 1 and l ≤ g(r) ≤ l + 1. If r /∈ E then (l, k) ∈ J , and r ≤ rl,k
by de�nition of rl,k. By de�nition of Ul,k, we also have h(rl,k) ≤ h(r) + 1 and
g(rl,k) ≤ g(r) + 1.

Theorem 3.2.10 is the main result of this section.

Theorem 3.2.10. Let f =
∑
n≥0 anen ∈ H(D) be non-constant, and let (Xn)n≥0 be

a subgaussian sequence of centred independent random variables. Then the random
vector

∑
n≥0 anXnen is almost surely a holomorphic function on D, and for every
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δ > 0, there exist a constant c > 0 and an open set E ⊆ [0, 1[ of �nite logarithmic
measure such that almost surely, there exists r0 > 0 such that

∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

≤ c µf (r)

(1− r) 1+δ
2

log
1+δ
4

(µf (r)

1− r

)
for every r0 ≤ r < 1, r /∈ E.

Proof. Without loss of generality, we can assume that µf (r) > e for every 0 < r < 1
close enough to 1 since f is not a constant. Pick 0 < α < 1 and set β := 1/(1 − α).
Take the open set E ⊆ [0, 1[ of �nite logarithmic measure given by Lemma 3.2.8
applied to α and δ > 0.

Let (rl,k)l,k∈J , where J ⊆ N2
0, be the family given by Lemma 3.2.9 applied to

h(r) = log(1/(1 − r)), g = log(µf ) and 0 ≤ r0 < 1 so large that h(r0) ≥ 1 and
g(r0) ≥ 1 . De�ne for each (l, k) ∈ J the real number

Nl,k :=
1

(1− rl,k)2+δ
log3(1+δ)/2

(µf (rl,k)

1− rl,k

)
≥ 1

and the measurable set

Al,k :=

{∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
rl,k

≥ c
√

log(Nl,k)
µf (rl,k)

(1− rl,k)
1+δ
2

log
1+δ
4

(µf (rl,k)

1− rl,k

)}
,

where c > 0 is the constant of Lemma 3.2.8. We can assume that Nl,k ≥ 1 for all
(l, k) ∈ J . Then Lemma 3.2.8, the de�nition of Nl,k and (i) and (ii) of Lemma 3.2.9
imply that

∑
(l,k)∈J

P(Al,k) .
∑

(l,k)∈J

1

N2β
l,k

=
∑

(l,k)∈J

(1− rl,k)2β(2+δ)

log3β(1+δ)(
µf (rl,k)
1−rl,k )

≤
∑

(l,k)∈J

1

ek2β(2+δ)(l + k)3β(1+δ)
.

Therefore
∑

(l,k)∈J P(Al,k) < ∞ and by the Borel-Cantelli lemma, we have that for
almost surely every ω ∈ Ω, there exist l0(ω), k0(ω) ≥ 1 such that for every l ≥ l0(ω)
and k ≥ k0(ω) such that (l, k) ∈ J , one has

∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
rl,k

≤ c
√

log(Nl,k)
µf (rl,k)

(1− rl,k)
1+δ
2

log
1+δ
4

(µf (rl,k)

1− rl,k

)
. (3.2.3)

Let r /∈ E be such that r ≥ rl0(ω),k(ω). By (iii) of Lemma 3.2.9, there exist
l ≥ l0(ω) and k ≥ k0(ω) such that (l, k) ∈ J and r ≤ rl,k. Let ε > 0. The Maximum
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Principle and inequality (3.2.3) yield∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

≤
∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
rl,k

≤ c
√

log(Nl,k)
µf (rl,k)

(1− rl,k)
1+δ
2

log
1+δ
4

(µf (rl,k)

1− rl,k

)
.

µf (rl,k)

(1− rl,k)
1+δ
2 +ε

log
1+δ
4 +ε

(µf (rl,k)

1− rl,k

)
,

the last inequality holds if r is close enough to 1, and then also rl,k. By (iii) of Lemma
3.2.9, we �nally get that∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
r

.
µf (r)

(1− r) 1+δ
2 +ε

log
1+δ
4 +ε

(µf (r)

1− r

)
.

Note that the constant c in (3.2.3) is possibly replaced by a larger constant c̃, but
independently of ω ∈ Ω.

3.3 Without an exceptional set

We now present the second approach. This method yields a rate of growth valid
without an exceptional set of �nite logarithmic measure. In addition, it can be applied
to random entire functions or to random functions de�ned on the unit disk D.

For the rest of this section, let E be the space H(C) or H(D) and let w = ∞ if
E = H(C), or w = 1 if E = H(D). Assume that the random vector

∑∞
n=0 anXnen

is almost surely well-de�ned on the Fréchet space E, where (Xn)n≥0 is a subgaussian
sequence of centred independent random variables and f =

∑
n≥0 anen ∈ E. We

want to prove that∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

.
√

log(A(r))

√∑
n≥0

|an|2‖en‖2r

holds for r > 0 large enough almost surely, under some conditions on the function A.
Note that here, (en)n≥0 is no longer necessarily the sequence of monomials.

De�nition 3.3.1. Let (en)n≥0 be a sequence in E and f =
∑
n≥0 anen ∈ E. We

de�ne the function Sf : [0,∞[ −→ [0,∞] for any r ≥ 0 by

Sf (r) =

√√√√ ∞∑
n=0

|an|2‖en‖2r. (3.3.1)

Proposition 3.3.2. Let f =
∑
n≥0 anen ∈ E where (en)n≥0 is a sequence of poly-

nomials in E such that for every n ≥ 0, the degree of en is at most n. Let (Xn)n≥0

be a subgaussian sequence of centred independent random variables and (rk)k≥1 be a
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sequence of positive numbers converging to w. Assume that there exists a sequence of
positive integers (A(rk))k≥1 such that (A(rk)−1)k≥1 is p-summable for some p > 0.
Then there exists c > 0 such that almost surely, there exists k0 ≥ 1 such that for every
k ≥ k0, ∥∥∥∥A(rk)∑

n=0

anXnen

∥∥∥∥
rk

≤ c
√

log(A(rk))Sf (rk).

Proof. Lemma 3.1.13 gives, for every k ≥ 1,

P

(∥∥∥∥A(rk)∑
n=0

anXnen

∥∥∥∥
rk

> c
√

log(A(rk))Sf (rk)

)
≤ c

A(rk)p
.

for some constant c > 0. The result follows by the Borel-Cantelli lemma.

To show that
√

log(A)Sf bounds the sup-norm of v :=
∑
n≥0 anXnen along the

sequence (rk)k≥1, that is, ‖v‖rk .
√

log(A(rk))Sf (rk) holds for every k ≥ 1 large
enough almost surely, it remains to estimate ‖

∑
n≥A(rk)+1 anXnen‖rk for each k ≥ 1.

Note that lim infk→∞ Sf (rk) > 0 as soon as there exists n ≥ 0 such that anen 6= 0.

Proposition 3.3.3. Let f =
∑
n≥0 anen ∈ E where (en)n≥0 is a sequence of polyno-

mials such that for every n ≥ 0, the degree of en is at most n. Let (Xn)n≥0 be a sub-
gaussian sequence of centred independent random variables such that

∑∞
n=0 anXnen is

almost surely convergent and let (rk)k≥1 be a sequence of positive numbers converging
to w. Assume that there exists a sequence (A(rk))k≥1 of positive integers such that
(A(rk)−1)k≥1 is p-summable for some p > 0 and that, almost surely, the sequence
(‖
∑
n≥A(rk)+1 anXnen‖rk)k≥1 is bounded. Then there exists c > 0 such that almost

surely, there exists k0 ≥ 1 such that for every k ≥ k0,∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
rk

≤ c
√

log(A(rk))Sf (rk).

Proof. By Proposition 3.3.2, there is some c > 0 such that, almost surely, there exist
M > 0 and k1 ≥ 1 such that for every k ≥ k1,∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
rk

≤
∥∥∥∥A(rk)∑
n=0

anXnen

∥∥∥∥
rk

+

∥∥∥∥ ∑
n≥A(rk)+1

anXnen

∥∥∥∥
rk

≤ c
√

log(A(rk))Sf (rk) +M,

where M > 0 is some constant that depends on ω ∈ Ω. If f = 0 there is nothing to
prove. Assume that f 6= 0. Since lim infk→∞ Sf (rk) > 0 and limk→∞A(rk) =∞, we
deduce that there exists k0 ≥ k1 such that for every k ≥ k0,∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
rk

≤ 2c
√

log(A(rk))Sf (rk).
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Now we give conditions when the function
√

log(A)Sf is actually a rate of growth
for v. This is the main result of this section. The proof uses ideas of the work of
Nikula [80, Proposition 2].

Theorem 3.3.4. Let f =
∑
n≥0 anen ∈ E where (en)n≥0 is a sequence of polynomials

such that for every n ≥ 0, the degree of en is at most n. Let (Xn)n≥0 be a subgaussian
sequence of centred independent random variables such that

∑∞
n=0 anXnen is almost

surely convergent, and let (Aj)j≥1 be a non-decreasing sequence of positive functions
de�ned on ]0, w[ such that A1 is non-decreasing. Assume that the following conditions
hold:

(i) the series ∑
j≥1

√
log(Aj+1(r))

√ ∑
n≥Aj(r)+1

|an|2‖en‖2r

is bounded in δ < r < w for some 0 < δ < w,

(ii) there exists an increasing sequence of positive numbers (rk)k≥1 converging to w
such that the family (Aj(rk)−1)j,k≥1 is well-de�ned and p-summable for some
p > 0.

Then there exists c > 0 such that almost surely, there exists k0 ≥ 1 such that for every
k ≥ k0, ∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
rk

≤ c
√

log(A1(rk))Sf (rk).

Furthermore, if the condition

(iii) the sequences
(

log(A1(rk+1))/ log(A1(rk))
)
k≥1

and
(
Sf (rk+1)/Sf (rk)

)
k≥1

are

bounded

holds then there exists c > 0 such that almost surely, there exists r0 > 0 such that∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

≤ c
√

log(A1(r))Sf (r)

for every r0 ≤ r < w.

Proof. We can assume that the functions Aj , j ≥ 1, take integer values greater than or
equal to 2. Indeed, the assumptions (i) to (iii) still hold for the sequence (dAje+2)j≥1.

Lemma 3.1.13 gives, for every k, j ≥ 1,

P

(∥∥∥∥ Aj+1(rk)∑
n=Aj(rk)+1

anXnen

∥∥∥∥
rk

> c
√

log(Aj+1(rk))

√ ∑
n≥Aj(rk)+1

|an|2‖en‖2rk

)
≤ c

Aj+1(rk)p

for some constant c > 0, and hence almost surely for every k ≥ 1 and j ≥ 1 with k
large enough, we get that∥∥∥∥ Aj+1(rk)∑

n=Aj(rk)+1

anXnen

∥∥∥∥
rk

≤ c
√

log(Aj+1(rk))

√ ∑
n≥Aj(rk)+1

|an|2‖en‖2rk
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by the Borel-Cantelli lemma since the family (Aj(rk)−1)j,k≥1 is p-summable by (ii).
Then the sequence

(∥∥∑
n≥A1(rk)+1 anXnen

∥∥
rk

)
k≥1

is almost surely bounded by (i),
hence Proposition 3.3.3 gives almost surely the inequality∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
rk

≤ c
√

log(A1(rk))Sf (rk)

for every k ≥ 1 large enough, where c > 0 is a constant. This proves the �rst part of
the theorem.

Assume that (iii) holds. Let k ≥ 1 and let rk ≤ r < rk+1. By assumption (iii)
and the Maximum Principle, we get for almost surely every ω ∈ Ω and if k is large
enough that∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
r

≤
∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
rk+1

≤ c
√

log(A1(rk+1))Sf (rk+1)

= c

√
log(A1(rk+1))

log(A1(rk))

Sf (rk+1)

Sf (rk)

√
log(A1(rk))Sf (rk)

≤ C
√

log(A1(rk))Sf (rk) ≤ C
√

log(A1(r))Sf (r),

where C > 0 is a constant. This concludes the proof.

We point out the following fact.

Lemma 3.3.5. Let f =
∑
n≥0 anen and g =

∑
n≥0 bnen be elements of E where

(en)n≥0 is a sequence of polynomials such that for every n ≥ 0, the degree of en is
at most n. Suppose that there exist some C1, C2 > 0 such that C1an ≤ bn ≤ C2an
for all n ≥ 0. If f satis�es the assumptions of Theorem 3.3.4 for some sequences
(Aj)j≥1 and (rk)k≥1 then g satis�es the assumptions of Theorem 3.3.4 with the same
sequences (Aj)j≥1 and (rk)k≥1.

Proof. If the series in (i) of Theorem 3.3.4 is bounded for f , it also bounded for g by
assumption. Condition (ii) depends only on the sequences (Aj)j≥1 and (rk)k≥1, and
condition (iii) is again satis�ed by assumption on the coe�cients of the series de�ning
f and g.

Without the assumptions (ii) and (iii) of Theorem 3.3.4, we can prove that the
function

√
log(A1)Sf bounds the expectation of the sup-norm of the random series∑

n≥0 anXnen. The main argument comes from [10, Section 5.5.4].
We �rst prove two lemmas, the second one being a consequence of the Orlicz-

Jensen inequality.

Lemma 3.3.6. Let X1, . . . , XN be independent real subgaussian random variables
with constants M = 1 and σ > 0 in De�nition 1.2.6, and let a1, . . . , an be real

numbers. Then
∑N
n=1 anXn is subgaussian with constantsM = 1 and σ

√∑N
n=1 |an|2.
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Proof. Let λ ∈ R. By independence, we have

E(eλ
∑N
n=1 anXn) =

N∏
n=1

E(eλanXn) ≤
N∏
n=1

eλ
2σ2|an|2 = eλ

2σ2 ∑N
n=1 |an|

2

,

hence
∑N
n=1 anXn is subgaussian with constants M = 1 and σ

√∑N
n=1 |an|2

Remark 3.3.7. Let X1, . . . , XN be complex subgaussian random variables such that
the real variables Re(X1), . . . ,Re(XN ), Im(X1), . . . , Im(XN ) are independent. Then
Lemma 3.3.6 still holds with the same proof and a little more calculations, with
X1, . . . , XN and complex numbers a1, . . . , aN . This means that the real and imaginary

parts of
∑N
n=1 anXn are subgaussian with constants M = 1 and σ

√∑N
n=1 |an|2.

Lemma 3.3.8. Let X1, . . . , XN be real subgaussian random variables with constants
K > 0 and τ > 0 as in Lemma 1.2.7. Then

E(max(|X1|, . . . , |XN |)) ≤
√

log(N + 1)
√
K + 1τ.

Proof. De�ne the function ψ2 : [0,∞[ −→ [0,∞[, x 7−→ ex
2 − 1, and

‖X‖ψ2
:= inf

{
a > 0 | E

(
ψ2

( |X|
a

))
≤ 1
}
∈ [0,∞]

for any random variable X. For any subgaussian random variable X with constants
K > 0 and τ > 0 in Lemma 1.2.7, we have that for any a >

√
K + 1τ , using the

formula E(f(Y )) = f(0) +
∫∞

0
f ′(t)P(Y > t)dt for any positive random variable Y

and any continuously di�erentiable function f : [0,∞[ −→ [0,∞[, see [66, Chapitre 0,
Proposition IV.2],

E
(
ψ2

( |X|
a

))
=

∫ ∞
0

2t

a2
et

2/a2P(|X| > t)dt ≤ K

a2

∫ ∞
0

2tet
2/a2e−t

2/τ2

dt

=
K

a2

∫ ∞
0

e(1/a2−1/τ2)tdt = K
τ2

a2 − τ2
≤ 1,

thus ‖X‖ψ2 ≤
√
K + 1τ . Therefore, the Orlicz-Jensen inequality (see [66, Chapitre

0, Proposition IV.3]) yields

E
(

max(|X1|, . . . , |XN |)
)
≤
√

log(N + 1) max
1≤n≤N

‖Xn‖ψ2
≤
√

log(N + 1)
√
K + 1τ.

Theorem 3.3.9. If the hypotheses and the assumption (i) of Theorem 3.3.4 hold and
if lim infr→w A1(r) > 1, then there exists c > 0 such that

E

(∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

)
≤ c
√

log(A1(r))Sf (r)

for every δ < r < w, where δ > 0 is given by assumption (i) of Theorem 3.3.4.
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Proof. By the triangle inequality, we can assume that the random variablesXn, n ≥ 0,
are real and an, n ≥ 0, are real numbers.

We may assume again that the functions Aj , j ≥ 1, take integer values greater
than or equal to 2.

Let δ < r < w. Let M ≥ N ≥ 0. For a �xed ω ∈ Ω, let Pω be the polynomial
Pω(t) :=

∑M
n=N anXn(ω)en(reit), 0 ≤ t ≤ 2π. By the Mean Value Theorem and then

by Bernstein's inequality, see Lemma 3.1.11, we have

|Pω(t)− Pω(s)| ≤ ‖P ′ω‖∞|t− s| ≤M‖Pω‖∞|t− s|

for every 0 ≤ t, s ≤ 2π. Let c > 1, de�ne ε := (c − 1)/(cM) and let Γ be a �nite
ε-net of the compact interval [0, 2π] whose size is of order M . This implies that
‖Pω‖∞ ≤ c sups∈Γ |Pω(s)|.

Now, Lemma 3.3.6 ensures that for any s ∈ Γ,
∑M
n=N anXnen(reis) is subgaussian

with constants M = 1 and σ
√∑M

n=N |an|2‖en‖2r. Notice that in the proof of Lemma

1.2.7, one can easily see that K = 2 and τ = 2σ
√∑M

n=N |an|2‖en‖2r. Therefore,
Lemma 3.3.8 yields that

E

(∥∥∥∥ M∑
n=N

anXnen

∥∥∥∥
r

)
≤ cE

(
sup
s∈Γ

∣∣∣∣ M∑
n=N

anXnen(reis)

∣∣∣∣
)

.
√

log(M)

√√√√ M∑
n=N

|an|2‖en‖2r.

Applying the previous inequality gives

E

(∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

)
≤ E

(∥∥∥∥A1(r)∑
n=0

anXnen

∥∥∥∥
r

)
+
∑
j≥1

E

(∥∥∥∥ Aj+1(r)∑
n=Aj(r)+1

anXnen

∥∥∥∥
r

)

.
√

log(A1(r))Sf (r) +
∑
j≥1

√
log(Aj+1(r))

√ ∑
n≥Aj(r)+1

|an|2‖en‖2r,

and this yields the result since, by assumption (i) of Theorem 3.3.4, the second term
is bounded.

The proofs of Theorem 3.1.17 and 3.3.4 share the same ideas. The �rst terms of
the random series are more relevant than the tail, and the desired rate of growth is
proved to hold along some sequence (rk)k≥1. Then, by using the Maximum Principle,
the inequality still holds for large r > 0.

Functions of �nite order. As an application of Theorem 3.3.4 to end this section,
let f =

∑
n≥0 anen be an entire function, where (en)n≥0 is the sequence of monomials.

If f is of �nite order and satis�es the Assumption 3.3.14 below then we can obtain
an admissible rate of growth for the random entire function

∑
n≥0 anXnen valid for

any large r > 0. Note that here, this random series is almost surely convergent by
Lemma 3.1.1.
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De�nition 3.3.10. Let f be a non-constant entire function. The order of f , written
ρf , is the quantity

ρf = lim sup
r→∞

log2(‖f‖r)
log(r)

.

In other words, ρf is the least constant such that, for every ε > 0, there is some

c > 0 such that, for all r > 0, one has ‖f‖r ≤ cer
ρf+ε

.
The maximum term can also be used to compute the order as the next result says.

Theorem 3.3.11 ([52, Satz 4.5]). Let f be a non-constant entire function. Then we
have the equality

ρf = lim sup
r→∞

log2(µf (r))

log(r)
.

Note that limr→∞ µf (r) = ∞ by Lemma 3.1.3, and the limit in the theorem is
well-de�ned.

When the order of an entire function is �nite, its growth is related to its maximum
term. For a proof of the next theorem, see [52, Satz 4.6].

Theorem 3.3.12. Let f be a non-constant entire function of �nite order. Then
log(‖f‖r) � log(µf (r)).

De�nition 3.3.13. Let f =
∑
n≥0 anen be a non-constant entire function. De�ne

the function Nf : [0,∞[ −→ R by

Nf (r) := inf
{
n0 ≥ 1 | ∀n ≥ n0, |an|rn < 1

}
for all r ≥ 0.

We will assume the following on the function Nf .

Assumption 3.3.14. There exist ε > 0, an integer m ∈ {0, 1} and a real number
b > 0 such that for every r > 0 large enough,

Nf (reε) . (logm(Sf (r)))
b
.

The function Nf will be needed to check assumption (i) of Theorem 3.3.4. Then,
Assumption 3.3.14 will serve to get the growth written only with Sf , and to ensure
that (iii) of Theorem 3.3.4 is satis�ed.

The next result is an application of Theorem 3.3.4.

Theorem 3.3.15. Let f =
∑
n≥0 anen be a non-constant entire function satisfying

Assumption 3.3.14, where (en)n≥0 is the sequence of monomials, and let (Xn)n≥0 be
a sequence of independent centred subgaussian random variables. Then the random
vector

∑
n≥0 anXnen is almost surely an entire function, and there exists a constant

c > 0 such that almost surely, there exists r0 > 0 such that∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

≤ c
√

logm+1(Sf (r))Sf (r)

for every r ≥ r0.
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Proof. Let ε > 0 and m ∈ {0, 1} be given by Assumption 3.3.14, and de�ne the
functionMf : ]0,∞[ −→ R by

Mf (r) = max
(
Nf (reε), logm(Sf (r))

)
for every r > 0. Since the function Sf is continuous and limr→∞ Sf (r) = ∞, there
exists an increasing sequence (rk)k≥1 of positive real numbers converging to ∞ such
that logm(Sf (rk+1)) = logm(Sf (rk))+1 and logm(Sf (rk)) ≥ k for each k ≥ 1. Take a
real number p > 1. We prove that f satis�es the assumptions of Theorem 3.3.4 with
Aj := jMf , j ≥ 1.

Let us check condition (i). Let j ≥ 1 and r > 0 be large enough. By de�nitions of
Mf and Nf , we have |an|rn ≤ e−εn for every n ≥ A1(r), and thus∑

n≥Aj(r)+1

|an|2r2n ≤
∑

n≥Aj(r)+1

e−2εn ≤
∫ ∞
Aj(r)

e−2εxdx = 2−1ε−1e−2εAj(r).

In order to verify (i), we will show that∑
j≥1

√
log(Aj+1(r))e−εAj(r) =

∑
j≥1

√
log((j + 1)A1(r))e−εA1(r)j (3.3.2)

converges to 0 when r goes to ∞; note that the series converges for all r su�ciently
large. The idea is to use the Dominated Convergence Theorem. It is enough to show
that for every j ≥ 1, the function

fj : ]1,∞[ −→ R, x 7−→ log((j + 1)x)e−2εjx

is non-increasing for x su�ciently large, uniformly in j, and that it converges to 0
when x goes to ∞. Indeed, denoting by µ the counting measure on N0, we have∑

j≥1

√
log((j + 1)A1(r))e−εA1(r)j =

∫
N0

√
fj(A1(r))dµ(j).

Since limr→∞A1(r) = ∞ and A1 is increasing, let r0 ≥ 1 be such that fj ◦ A1 is
non-increasing on [r0,∞[ for all j ≥ 1. Then (fj ◦ A1)(r) ≤ (fj ◦ A1)(r0) for every
j ≥ 1 and r ≥ r0, and the series (3.3.2) converges to 0 when x goes to ∞ by the
Dominated Convergence Theorem.

First, it is clear that limx→∞ fj(x) = 0. For every x > 1, the derivative of fj is
given by

∂xfj(x) = −2εj log((j + 1)x)e−2εjx +
e−2εjx

x
,

which is negative if and only if 1 < 2εjx log((j + 1)x). But this holds for every x > 0
large enough, uniformly in j, since the right-hand side of the inequality converges to
∞ when x goes to ∞. Thus fj is decreasing for x large enough, uniformly in j ≥ 1.

By de�nition ofMf and construction of the sequence (rk)k≥1, we have

∞∑
k=1

1

Mf (rk)p
≤
∞∑
k=1

1

logm(Sf (rk))p
≤
∞∑
k=1

1

kp
<∞.
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Therefore, assumption (ii) of Theorem 3.3.4 is satis�ed.
By construction of (rk)k≥1, the sequence (Sf (rk+1)/Sf (rk))k≥1 is bounded. This

implies in turn that the sequence( log(Mf (rk+1))

log(Mf (rk))

)
k≥1

is bounded. Indeed, by Assumption 3.3.14 and de�nition ofMf , we have

log(Mf (rk+1))

log(Mf (rk))
.

logm+1(Sf (rk+1))

logm+1(Sf (rk))

if k is su�ciently large. Therefore, assumption (iii) of Theorem 3.3.4 is satis�ed, and
we get that there exists c > 0 such that, almost surely, there exists r0 > 0 such that
for every r ≥ r0, ∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
r

≤ c
√

log(Mf (r))Sf (r).

Using again Assumption 3.3.14 concludes the proof.

Remark 3.3.16. Let f =
∑
n≥0 anen be a non-constant entire function satisfying

Assumption 3.3.14, where (en)n≥0 is the sequence of monomials. Let g =
∑
n≥0 bnen

be another entire function and assume that there are some C1, C2 > 0 such that
C1an ≤ bn ≤ C2an for all n ≥ 0. Then the conclusion of Theorem 3.3.15 also applies
to g by Lemma 3.3.5.

We now apply Theorem 3.3.15 to functions of �nite order.

Theorem 3.3.17. Let f =
∑
n≥0 anen be a non-constant entire function of �nite

order satisfying Assumption 3.3.14, where (en)n≥0 is the sequence of monomials, and
let (Xn)n≥0 be a sequence of independent centred subgaussian random variables. Then
the random vector

∑
n≥0 anXnen is almost surely an entire function, and there exists

a constant c > 0 such that almost surely, there exists r0 > 0 such that∥∥∥∥ ∞∑
n=0

anXnen

∥∥∥∥
r

≤ c
√

logm+1(µf (r))Sf (r)

for every r ≥ r0.

Proof. Since f is of �nite order, the entire function z 7−→
∑
n≥0 |an|zn is also of �nite

order by Theorem 3.3.11. By Theorem 3.3.12 applied to z 7−→
∑
n≥0 |an|zn, we have

log(Sf (r)) ≤ log

( ∞∑
n=0

|an|rn
)

. log(µf (r)).

Since µf (r) ≤ Sf (r) for all r ≥ 0, this also implies that log(Sf (r)) � log(µf (r)), and
in turn logm+1(Sf (r)) � logm+1(µf (r)). The result follows from Theorem 3.3.15.

Remark 3.3.18. Remark 3.3.16 still holds for a function f of �nite order satisfying
Assumption 3.3.14.
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Theorems 3.3.4 and 3.3.17 give a rate of growth valid without an exceptional set
of �nite logarithmic measure, in contrast to Theorems 3.1.17 and 3.2.10, but only for
some functions. Nevertheless, these results will be su�cient to obtain a generalization
of the works of Nikula [80] and Mouze and Munnier [75] in Chapter 4 and to consider
some other operators.

Example 3.3.19. If f(z) = ez =
∑
n≥0 z

n/n!, then it is not di�cult to show that

Sf (r) � er/r1/4, log(µf (r)) � r, and Nf (r) . r, see Example 3.1.4 and Lemmas 4.1.6
and 4.1.8. Thus Theorem 3.3.17 gives the upper bound∥∥∥∥ ∞∑

n=0

Xn

n!
zn
∥∥∥∥
r

≤ c
√

log(r)
er

r1/4
,

which con�rms the result obtained by Nikula [80, Proposition 2].
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Chapter 4

Rate of growth for operators

Theorem 1.3.4 from Chapter 1 says that the random series

∞∑
n=0

Xn

w1 . . . wn
zn

is almost surely holomorphic and frequently hypercyclic for a given chaotic weighted
shift T on H(C) (resp. H(D)) with sequence of weights (wn)n∈N0 , and the complex
random variablesXn, n ∈ N, are i.i.d. and subgaussian with full support. As discussed
in the introduction of Chapter 3, the present chapter aims to �nd an upper bound for
the maximum modulus of this random vector, which then gives an admissible rate of
growth for the frequently hypercyclic functions of T .

When applied to chaotic weighted shifts on H(C) or H(D), Theorems 3.1.17 and
3.3.4 will extend the works of Nikula [80], Bernal-González and Bonilla [15] and Mouze
and Munnier [75], see Theorems 4.1.9, 4.1.14 and 4.2.7, respectively.

We will also consider the di�erential operators on the space of harmonic functions
on the plane and chaotic weighted shifts on Köthe sequence spaces in Sections 4.3 and
4.4, respectively.

In Section 4.5, we will discuss the possible optimality of the rate of growth found
in the previous sections.

Throughout this chapter, we will use the same notations as in Chapter 3 that we
recall here. Every random variable considered will be de�ned on the probability space
(Ω,A,P). If a and b are two positive real numbers, the notation a . b means that
there exists some C > 0 such that a ≤ Cb and C does not depend on any current
variable such as n ∈ N, r > 0 or ω ∈ Ω. The notation a � b means a . b and b . a.
To make the reading easier, logm means the logarithm iterated m times. Lastly, if
a complex-valued function f is de�ned on a disk centred at the origin and of radius
r > 0, then we de�ne

‖f‖r := sup
|z|=r

|f(z)|.

95
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4.1 Entire functions

In this section, we consider weighted shifts de�ned on the Fréchet space H(C). Theo-
rem 0.1.19 combined with Theorem 3.1.17 applied to f(z) =

∑
n≥0 z

n/βn immediately
yields an admissible rate of growth for each chaotic weighted shift, where the sequence
(βn)n≥0 is de�ned in Subsection 1.3.1. However, it is only valid outside a set of �nite
logarithmic measure.

Theorem 4.1.1. Let T be a chaotic weighted shift on H(C) with respect to the basis of
monomials (en)n≥0 and with sequence of weights (wn)n≥1. Let (Xn)n≥0 be a sequence
of i.i.d. centred subgaussian random variables with full support. Then the random
vector

∑∞
n=0

Xn
βn
en is almost surely an entire function, is frequently hypercyclic for

T and there exist a constant c > 0 and an open set E ⊆ [0,∞[ of �nite logarithmic
measure such that almost surely, there exists r0 > 0 such that

∥∥∥∥ ∞∑
n=0

Xn

βn
en

∥∥∥∥
r

≤ c
√

log2(µf (r))

√√√√ ∞∑
n=0

r2n

|βn|2

for every r ≥ r0, r /∈ E, where f :=
∑
n≥0 en/βn.

The frequent hypercyclicity of the random vector is obtained by Theorem 1.3.4.
In Section 3.3, another approach for �nding a rate of growth for random sums

valid for any r large enough was presented. We will see that the �rst assumptions (i)
and (ii) of Theorem 3.3.4 are satis�ed for every chaotic weighted with respect to the
basis of monomials. Unfortunately, we are in general not able to construct a suitable
sequence (rk)k≥1 in order to obtain the rate of growth valid for any r large enough.

Proposition 4.1.2. Let T be a chaotic weighted shift on H(C) with respect to the
basis of monomials (en)n≥0 and with sequence of weights (wn)n≥1. Let (Xn)n≥0 be
a sequence of i.i.d. centred subgaussian random variables with full support. Then the
random vector

∑∞
n=0

Xn
βn
en is almost surely an entire function, is frequently hyper-

cyclic for T and satis�es, for every α > 3/2, the assumption (i) of Theorem 3.3.4

with Aj(r) := max
{
n ≥ 0 | |βn| ≤ rnnα

}
.j, j ≥ 1, r > 0.

Proof. By Theorem 1.3.4, the random vector
∑∞
n=0

Xn
βn
en is almost surely entire and

frequently hypercyclic for T .
First, since T is chaotic on H(C), which is equivalent to limn→∞ |βn|1/n = ∞,

see Example 0.1.21, the function A1 is well-de�ned. Furthermore, we have that
limr→∞A1(r) = ∞. Indeed, let n ≥ 1 be an integer and r > |βn|1/n/nα/n. Then
A1(r) ≥ n and since n was arbitrary, limx→∞A1(x) =∞.

Let us check assumption (i) of Theorem 3.3.4. Let j ≥ 1 and r > 0. By de�nition
of Aj , we have rn/|βn| ≤ 1/nα for every n ≥ Aj(r) + 1 and thus

∑
n≥Aj(r)+1

r2n

|βn|2
≤

∑
n≥Aj(r)+1

1

n2α
≤
∫ ∞
Aj(r)

1

x2α
dx = (2α− 1)−1Aj(r)

1−2α.
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In order to verify assertion (i) of Theorem 3.3.4, we will show that∑
j≥1

√
log(Aj+1(r))Aj(r)

1/2−α =
∑
j≥1

√
log
(
A1(r)(j + 1)

)
(A1(r)j)1/2−α (4.1.1)

converges to 0 when r goes to ∞. The idea is to use the Dominated Convergence
Theorem, as in the proof of Theorem 3.3.15. It is enough to show for every j ≥ 1
that the function

fj : ]0,∞[ −→ R, x 7−→ log(xj)(xj)1−2α

is non-increasing and converges to 0 when x goes to ∞. First, it is clear that
limx→∞ fj(x) = 0. For every x > 0, the derivative of fj is given by

∂xfj(x) = log(xj)(1− 2α)
j

(xj)2α
+

j

(xj)2α

which is negative if and only if 1 < (2α − 1) log(xj). But this holds for every x > 0
large enough, uniformly in j ≥ 1, since the right-hand side of the inequality converges
to∞ when x goes to∞. Thus fj is decreasing away from 0, uniformly in j ≥ 1. Note
that j 7−→

√
fj(r) is integrable on N with respect to the counting measure for every

r > 0 since α > 3/2, which allows us to use the Dominated Convergence Theorem and
conclude that (4.1.1) converges to 0 when r goes to ∞. This concludes the proof.

Observe that, once it is proved that a weighted shift satis�es the �rst two assump-
tions of Theorem 3.3.4, then other weighted shifts still satisfy those assumptions.

Lemma 4.1.3. Let (wn)n≥1 be a weight sequence such that the assumptions of The-
orem 3.3.4 are satis�ed for an = w−1

1 . . . w−1
n , n ≥ 0, with some sequence (Aj)j≥1.

Let (w̃n)n≥1 be a weight sequence such that there exists c > 0 such that |w̃1 . . . w̃n| ≥
c|w1 . . . wn| for every n ≥ 1. Then the assumptions (i) and (ii) of Theorem 3.3.4 still
hold for an = w̃−1

1 . . . w̃−1
n , n ≥ 0, with the same sequence (Aj)j≥1.

Condition (ii) of Theorem 3.3.4 can always be satis�ed with the functions Aj in
Proposition 4.1.2: since limr→∞A1(r) =∞, such a sequence (rk)k≥1 must exist. This
allows us to get the �rst two assumptions of the theorem.

To fully apply Theorem 3.3.4, we have to choose a sequence (rk)k≥0 satisfying
both assumptions (ii) and (iii) of the theorem. We do not know whether it is possible
to achieve this for any weighted shift on H(C) with the choice of the functions Aj ,
j ≥ 1, of Proposition 4.1.2. However, by choosing a slightly di�erent function A1,
and for some weighted shifts, we can fully apply Theorem 3.3.4 through Theorem
3.3.17. This will be the content of the next subsections. It turns out that for those
examples, one can apply Proposition 4.1.2. We will only compute the function A1 of
Proposition 4.1.2 for the di�erentiation operator below. Since we still need to estimate
the associated series in (3.3.1) in order to check assumption (iii) of Theorem 3.3.4,
we will instead apply Theorem 3.3.17 to the examples in the following subsections.
The advantage of this method is that we do not need to estimate the series (3.3.1),
although we will be able to do so for some of our examples.

Lemma 4.1.4. Let T be the di�erentiation operator on H(C). Then A1(r) . r and
log(r) . log(A1(r)) where A1 is de�ned in Proposition 4.1.2.
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Proof. Let α > 3/2. Let r > 0 be large and set n := A1(r). Then n! ≤ rnnα, which
implies

n log(n)− (n− 1) =

∫ n

1

log(x)dx ≤
n∑
k=1

log(k) = log(n!) ≤ n log(r) + α log(n).

Thus

log(n) ≤ log(r) + α
log(n)

n
+
n− 1

n
,

which yields A1(r) . r. The other inequality is similarly proved.

The following result will be used to estimate the series in the formula for the rate
of growth of frequently hypercyclic functions.

Theorem 4.1.5 ([33, Theorem IV.2.5]). Let −∞ ≤ a < b ≤ ∞ and g, h : ]a, b[ −→ R
be two twice continuously di�erentiable functions. Assume that

(i) the integral
∫ b
a
|g(t)|eh(t)dt is �nite,

(ii) there exists a unique a < c < b such that ∂2
t h(c) < 0, h′ changes sign only at c,

h reaches a maximum at c and g(c) 6= 0.

Then for every x > 0 large enough, one has∫ b

a

g(t)exh(t)dt � exh(c)

√
x
.

4.1.1 Operators with weights nα

We consider on the space H(C) the weighted shift with respect to the basis of mono-
mials (en)n≥0 of H(C) and with weights wn = nα, n ≥ 1, where α > 0 is a parameter.

We have βn = n!α for all n ≥ 1. It is easy to check that limn→∞ w
1/n
n = 1, hence this

operator is well-de�ned on H(C), and limn→∞ β
1/n
n = ∞, hence it is also chaotic on

H(C); see Example 0.1.21.
We will apply Theorem 3.3.17 to the entire function f :=

∑
n≥0 en/n!α. To

check that f satis�es Assumption 3.3.14, we will estimate its maximum term and the
function Nf in De�nition 3.3.13.

Lemma 4.1.6. For any r > 0 large enough, we have

log(r)α−1 . log(Nf (r)) and Nf (r) . r1/α.

Proof. By de�nition of Nf , if n = Nf (r)− 1 then rn/n!α ≥ 1. This implies∫ n

1

log(x)dx =

n∑
k=2

∫ k

k−1

log(x)dx ≤
n∑
k=1

log(k) = log(n!) ≤ α−1n log(r)

and then

log(n) ≤ log(r)

α
+
n− 1

n
≤ log(r1/α) + 1.
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We conclude that Nf (r) . r1/α.
If n = Nf (r) then rn ≤ n!α, and∫ n+1

1

log(x)dx =

n∑
k=1

∫ k+1

k

log(x)dx ≥
n∑
k=1

log(k) ≥ α−1n log(r),

which implies
n log(r)

(n+ 1)α
+

n

n+ 1
≤ log(n+ 1),

hence log(r)α−1 . log(Nf (r)).

Lemma 4.1.7. For any r > 0, we have

µf (r) � eαr
1/α

√
r
.

Proof. By noticing that
rn

n!α
=

r

1α
. . .

r

nα
,

we easily get by using Stirling's formula

µf (r) =
rbr

1/αc

br1/αc!α
� rbr

1/αcebr
1/αcα

br1/αcαbr1/αcbr1/αcα/2
.

Thanks to the estimates

ebr
1/αcα

er1/αα
� 1,

br1/αc
r1/α

� 1 and
rbr

1/αc

br1/αcαbr1/αc
� 1,

we get the estimate of the lemma.

Before concluding, we will use Theorem 4.1.5 to estimate the series S2
f of Theorem

3.3.17 in the following lemma, whose proof is somewhat technical.

Lemma 4.1.8. Let β > 0 be a positive real number. Then for every r > 0 large
enough, one has

∞∑
n=0

rn

n!β
� r

1
2β−

1
2 eβr

1/β

.

Proof. The proof is divided into two steps. First, we use a comparison series-integral,
and then apply Theorem 4.1.5 to conclude.

Let r > 0 be large. By Stirling's formula, we have

∞∑
n=1

rn

n!β
�
∞∑
n=1

rnenβ

nβ(n+1/2)
.

De�ne the function

Gr : [1,∞[ −→ R, t 7−→ t log(reβ)− β
(
t+

1

2

)
log(t).
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Its derivative is given by

∂tGr(t) = log(reβ)− β
(
1 +

1

2t
+ log(t)

)
for every t > 1. Then ∂tGr(t) > 0 if and only if log(r)

β > 1
2t + log(t). The function

t 7−→ 1/(2t) + log(t) has a unique minimum at 1/2 and converges to ∞ when t goes
to ∞. We deduce that for r large enough, there exists a unique x = x(r) ≥ 1/2 that
maximises Gr and

log(r)

β
=

1

2x
+ log(x). (4.1.2)

Notice that limr→∞ x(r) =∞. We can now write

∞∑
n=1

rn

n!β
&

∑
2≤n≤bxc

∫ n

n−1

eGr(t)dt+
∑
n>bxc

∫ n+1

n

eGr(t)

=

∫ ∞
1

eGr(t)dt−
∫ bxc+1

bxc
eGr(t)dt

≥
∫ ∞

1

eGr(t)dt− eGr(x).

Similarly, one shows that

∞∑
n=1

rn

n!β
.
∫ ∞

1

eGr(t)dt+ eGr(x). (4.1.3)

We begin by estimating the integral in (4.1.3). For all y ≥ 1/x, one has

Gr(xy)

β
= xy

(
1 +

1

2x
+ log(x)

)
−
(
xy +

1

2

)
log(xy)

= xy +
y

2
+ xy log(x)− xy log(xy)− log(xy)

2

= x(y − y log(y)) +
y

2
− log(y)

2
− log(x)

2
.

The change of variables t = xy then yields∫ ∞
1

eGr(t)dt =

∫ ∞
1/x

x
eβx(y−y log(y))

xβ/2
eβy/2

yβ/2
dy.

Pick 0 < δ < β. Let 0 < ε < 1 be such that βy(1− log(y)) < δ for all 0 < y < ε. We
can now apply Theorem 4.1.5 to h : y 7−→ βy(1 − log(y)) and g : y 7−→ eβy/2/yβ/2

with c = 1, and we get ∫ ∞
ε

xexh(y)g(y)dy � x 1
2−

β
2 eβx.
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By (4.1.2), we have

r1/β = e1/(2x)x = x
(

1 +
1

2x
+ o
( 1

x

))
, (4.1.4)

and we get ∫ ∞
ε

xexh(y)g(y)dy � r
1
2β−

1
2 eβr

1/β

.

Recalling the de�nition of ε, we also have∫ ε

1/x

xeGr(xy)dy ≤ eβε/2x
∫ ε

1/x

exδdy ≤ εeβε/2xexδ,

which is negligible compared to x1/2−β/2eβx since δ < β. In conclusion, the integral
in (4.1.3) is estimated by ∫ ∞

1

eGr(t)dt � r
1
2β−

1
2 eβr

1/β

.

We now show that the second term of the right-hand side of (4.1.3) is bounded
by eβr

1/β

/
√
r, which will �nish the proof. By (4.1.4), we can write

r1/β = x
(
1 + g(x) +G(x)

)
, (4.1.5)

where g : ]0,∞[ −→ R and G : ]0,∞[ −→ R are such that

lim
y→∞

yg(y) =
1

2
and lim

y→∞

G(y)

g(y)
= 0. (4.1.6)

(a) Let us show that limr→∞ rx/xβx = e−1/2. By passing to the logarithm and using
(4.1.5), we have

x log(r)− xβ log(x) = log(r)
(
r1/β − xg(x)− xG(x)

)
− β

(
r1/β − xg(x)− xG(x)

)
log
(
r1/β − xg(x)− xG(x)

)
= log(r)r1/β − log(r)(xg(x) + xG(x))

− β
(
r1/β − xg(x)− xG(x)

)(
log(r1/β) + log

(
1− xg(x) + xG(x)

r1/β

))
= log(r)r1/β − log(r)(xg(x) + xG(x))− βr1/β log(r1/β)

+ β(xg(x) + xG(x)) log(r1/β) + β(xg(x) + xG(x)) log
(

1− xg(x) + xG(x)

r1/β

)
− βr1/β log

(
1− xg(x) + xG(x)

r1/β

)
= β(xg(x) + xG(x)) log

(
1− xg(x) + xG(x)

r1/β

)
− βr1/β log

(
1− xg(x) + xG(x)

r1/β

)
.

The �rst term of the right-hand side converges to 0 when r goes to ∞ by (4.1.6). As
for the second term, we have

r1/β log
(

1− xg(x) + xG(x)

r1/β

)
= r1/β

(
− xg(x) + xG(x)

r1/β
+ o
(xg(x) + xG(x)

r1/β

))
,
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which converges to −1/2 when r goes to ∞. We conclude that limr→∞(x log(r) −
xβ log(x)) = −1/2.

(b) By (4.1.5), we get

exβ = eβr
1/β

e−βxg(x)e−βxG(x) � eβr
1/β

and
xβ/2 = (r1/β − xg(x)− xG(x))β/2 � r1/2.

These three assertions imply that the second term in (4.1.3) is bounded by the quantity
eβr

1/β

/
√
r, concluding the proof.

Theorem 3.3.17 then yields the following result.

Theorem 4.1.9. Let (Xn)n≥0 be a sequence of i.i.d. centred subgaussian random
variables with full support, α > 0 and let (en)n≥0 be the sequence of monomials.
Then the random vector

∑∞
n=0

Xn
n!α en is almost surely an entire function, is frequently

hypercyclic for the weighted shift associated with the sequence of weights (nα)n≥1 and
there exists c > 0 such that almost surely, there exists r0 > 0 such that∥∥∥∥ ∞∑

n=0

Xn

n!α
en

∥∥∥∥
r

≤ c
√

log(r)r
1
4α−

1
2 eαr

1/α

for every r ≥ r0.

Proof. First, the random vector
∑
n≥0Xn/n!αen is almost surely entire and frequently

hypercyclic for the weighted shift by Theorem 1.3.4. By using Lemma 4.1.7 and
Theorem 3.3.11, we get that f =

∑
n≥0 en/n!α is of �nite order. Noticing that

log(µf ) ≤ log(Sf ), by Lemmas 4.1.6 and 4.1.7, we see that Assumption 3.3.14 is
satis�ed with b = 1, m = 1 and any ε > 0. We conclude by applying Theorem 3.3.17.
The series S2

f is estimated by Lemma 4.1.8 applied to β = 2α.

The case α = 1 corresponds to the di�erentiation operator.

Theorem 4.1.10. Let (Xn)n≥0 be a sequence of i.i.d. centred subgaussian random
variables and let (en)n≥0 be the sequence of monomials. Then the random vector∑∞
n=0

Xn
n! en is almost surely an entire function, is frequently hypercyclic for the dif-

ferentiation operator and there exists c > 0 such that almost surely, there exists r0 > 0
such that ∥∥∥∥ ∞∑

n=0

Xn

n!
en

∥∥∥∥
r

≤ c
√

log(r)
er

r1/4

for every r ≥ r0.

This result have already been obtained by Nikula [80, Proposition 2]. By Drasin
and Saksman [34, Theorem 1.1], it is already known that r 7−→ er/r1/4 is the optimal
growth for the di�erentiation operator.



4.1 � Entire functions 103

4.1.2 Dunkl operator

Another example of a weighted shift on H(C) is the Dunkl operator. The product of
its �rst n weights is given by

βn := 2n
(⌊n

2

⌋
!
)

Γ

(⌊
n+ 1

2

⌋
+ α+ 1

)
Γ(α+ 1)−1,

n ≥ 1, where α > −1/2 and Γ is the gamma function, see [33, Exemple III.9.9].
We have the estimate

βn � (n+ α+ 1)n+α+1e−(n+α+1)

by [15, Lemma 1]. Therefore, we have limn→∞ β
1/n
n = ∞, and the operator is

chaotic, see Example 0.1.21. We will apply Theorem 3.3.17 to the entire function
f :=

∑
n≥0 en/αn where αn := (n + α + 1)n+α+1e−(n+α+1), n ≥ 1. Since αn � βn,

f satis�es the assumptions of Theorem 3.3.4 if and only if
∑
n≥0 en/βn does so by

Remark 3.3.18. Therefore, we just need to show that Theorem 3.3.17 can be applied
to f .

As in the previous section, we must check that Assumption 3.3.14 is satis�ed for
f . We begin by estimating the function Nf .

Lemma 4.1.11. For every 0 < ε < 1, there exists r0 > 0 such that for every r ≥ r0,
we have

(1− ε) log(r) ≤ log(Nf (r)) ≤ (1 + ε) log(r).

Proof. If n = Nf (r)− 1 then

log(n+ α+ 1) ≤ n log(r)

n+ α+ 1
+ 1,

which proves the second inequality.
If n = Nf (r) then log(r) n

n+α+1 +1 < log(n+α+1). Let δ > 0, there exists r0 > 0
such that for every r ≥ r0,

(1− δ) log(r) ≤ log(r)
n

n+ α+ 1
+ 1 < log(n+ α+ 1) ≤ (1 + δ) log(n).

Now choose δ > 0 such that (1 − δ)(1 + δ)−1 = 1 − ε, we then have (1 − ε) log(r) ≤
log(Nf (r)).

Lemma 4.1.12. For any r > 0 large enough, we have

log(µf (r)) � r.

Proof. By de�nition of µf ,

µf (r) = max
n≥0

rnen+α+1

(n+ α+ 1)n+α+1
= max

n≥0

(
re

n+ α+ 1

)n+α+1

r−(α+1).
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De�ne the function g : ]0,∞[ −→ R by g(x) = (x + α + 1)(log(re) − log(x + α + 1))
for every x > 0. Its derivative is given by

∂xg(x) = log(re)− log(x+ α+ 1) + (x+ α+ 1)(−(x+ α+ 1)−1)

and is positive if and only if x < r − α − 1. Therefore, µf (r) is attained at either
νf (r) = dr − α− 1e or νf (r) = br − α− 1c.

We then have

log(µf (r))

r
=
νf (r) + α+ 1

r
log
( re

νf (r) + α+ 1

)
− (α+ 1)

log(r)

r

which converges to 1 when r goes to in�nity since limr→∞(νf (r) + α+ 1)/r = 1.

Before making the conclusion, we will use Theorem 4.1.5 to estimate the series
Sf

2 of Theorem 3.3.17 in the following lemma, whose proof is a little bit technical.

Lemma 4.1.13. Let α > −1/2 be a real number. Then for every r > 0 large enough,
one has

∞∑
n=0

r2ne2(n+α+1)

(n+ α+ 1)2(n+α+1)
� e2r

r2(α+3/4)
.

Proof. The result is equivalent to

∞∑
n=0

( re

n+ α+ 1

)2(n+α+1)

�
√
re2r.

Let r > 0 be large, and de�ne the function

fr : ]0,∞[ −→ R, x 7−→ 2
(
x+ α+ 1

)(
log(re)− log

(
x+ α+ 1

))
.

For each x > 0, we have ∂xfr(x) > 0 if and only if log(re)−log(x+α+1)−1 > 0 if and
only if r − α− 1 > x. Therefore, the derivative of fr only vanishes at x := r − α− 1.
We can then write

∞∑
n=0

( re

n+ α+ 1

)2(n+α+1)

≥
( re

α+ 1

)2(α+1)

+
∑

1≤n≤bxc

∫ n

n−1

( re

t+ α+ 1

)2(t+α+1)

dt+
∑
n>bxc

∫ n+1

n

( re

t+ α+ 1

)2(t+α+1)

dt

≥
∫ ∞

0

( re

t+ α+ 1

)2(t+α+1)

dt− efr(x).

Similarly, we have

∞∑
n=0

( re

n+ α+ 1

)2(n+α+1)

≤
∫ ∞

0

( re

t+ α+ 1

)2(t+α+1)

dt+ 2efr(x). (4.1.7)
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Recalling that x = r − α− 1, the second term of the right-hand side of (4.1.7) is

efr(x) =
( re

x+ α+ 1

)2(x+α+1)

= e2r.

We now estimate the integral of the right-hand side of (4.1.7). First, we have for
r large such that re/(α+ 1) > 1,∫ 1

0

( re

t+ α+ 1

)2(t+α+1)

dt ≤ (re)2(2+α)

(α+ 1)2(2+α)
.
√
re2r.

Therefore, we just need to estimate the integral on [1,∞[ instead on [0,∞[. By the
change of variables t = s+ α+ 1 and setting a := 2 + α, we get that∫ ∞

1

( re

s+ α+ 1

)2(s+α+1)

ds =

∫ ∞
a

(re)2t

t2t
dt =

∫ ∞
a

e2t log(re)−2t log(t)dt.

De�ne the function

Gr : ]0,∞[ −→ R, t 7−→ 2t log(re)− 2t log(t).

Its derivative is given by

∂tGr(t) = 2 log(r)− 2 log(t)

for every t > 0. The derivative of Gr only vanishes at r. Now, we make the change
of variables t = ry to get that∫ ∞

1

( re

s+ α+ 1

)2(s+α+1)

ds =

∫ ∞
a/r

re2ry log(re)−2ry log(ry)dy

=

∫ ∞
a/r

re2ry(1−log(y))dy.

Pick 0 < δ < 1. Let 0 < ε < 1 be such that y(1 − log(y)) < δ for all 0 < y < ε. We
can now apply Theorem 4.1.5 to h : y 7−→ 2y(1 − log(y)) and g : y 7−→ 1 with c = 1
to get ∫ ∞

ε

re2ry(1−log(y))dy �
√
re2r.

By de�nition of ε > 0, we also have∫ ε

a/r

re2ry(1−log(y)) ≤ εre2rδ,

the right-hand term being negligible compared to
√
re2r since δ < 1. In conclusion,

the integral of the right-hand side of (4.1.7) is estimated by
√
re2r, concluding the

proof.

Theorem 3.3.17 then yields the following result.
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Theorem 4.1.14. Let (βn)n≥0 be the product of the weights associated with the Dunkl
operator. Let (Xn)n≥0 be a sequence of i.i.d. centred subgaussian random variables
and let (en)n≥0 be the sequence of monomials. Then the random vector

∑∞
n=0

Xn
βn
en

is almost surely an entire function, is frequently hypercyclic for the Dunkl operator
and there exists c > 0 such that almost surely, there exists r0 > 0 such that∥∥∥∥ ∞∑

n=0

Xn

βn
en

∥∥∥∥
r

≤ c
√

log(r)
er

rα+3/4
. (4.1.8)

for every r ≥ r0.

Proof. First, the random vector
∑
n≥0Xn/βnen is almost surely entire and frequently

hypercyclic for the Dunkl operator by Theorem 1.3.4. By Lemmas 4.1.11 and 4.1.12,
if δ > 0 is �xed and for every r > 0 large enough and 0 < ε < 1, we have

log(Nf (reδ)) ≤ (1 + ε) log(reδ) . (1 + ε) log2(µf (r)),

hence Nf (reδ) ≤ log(µf (r))C for some C > 0. Furthermore, Lemma 4.1.12 and
Theorem 3.3.11 tell us that

∑
n≥0 en/αn is of �nite order, hence Assumption 3.3.14

is satis�ed with b = C and m = 1; notice that log(µf ) ≤ log(Sf ). We conclude that
Theorem 3.3.17 can be applied to f , and hence to

∑
n≥0 en/βn by Remark 3.3.18.

Finally, the series S2
f is estimated by Lemma 4.1.13.

Therefore, (4.1.8) gives a better rate of growth than the one found by Bernal-
González and Bonilla [15, Theorem 5]. By their Theorem 6, this could even be the
optimal growth. However, their bound works for any function ϕ tending to in�nity
instead of

√
log(·), but see the discussion in Section 4.6.

4.1.3 Aron-Markose operators

As a last example, we consider the operators Tλ,b introduced by Aron and Markose
[4]. They are de�ned by Tλ,b(f) = f ′(λz+ b), f ∈ H(C), where the parameters λ and
b are complex. If λ ∈ C \ {0, 1}, we know that these operators are weighted shifts
with respect to the basis ((z − a)n)n≥0.

Lemma 4.1.15 ([65, Proposition 2.1]). Let λ ∈ C \ {0, 1} and b ∈ C. Then the
operator Tλ,b(f) is a weighted shift with respect to the basis ((z − a)n)n≥0 with a :=
b/(1− λ), and its weight sequence is (wn)n≥1 = (nλn−1)n≥1.

Proof. De�ne for each n ∈ N the map en(z) = (z − a)n, z ∈ C. Then for every n ≥ 1
and z ∈ C, we have

Tλ,b(en)(z) = n(λz + b− a)n−1 = nλn−1
(
z +

b− a
λ

)n−1

= nλn−1en−1(z),

and Tλ,b(e0) = 0.
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It is easy to see that Tλ,b is chaotic on H(C) if and only if |λ| ≥ 1. Indeed, we
only need to show that limn→∞ |βn|1/n = ∞, where βn := n!λn(n−1)/2, n ≥ 1, see
Theorem 0.1.19 and Example 0.1.21. A comparison series-integral allows us to write

log(|βn|1/n) � n−1

∫ n

1

log(x)dx+ (n− 1)
log(|λ|)

2

= log(n)− n− 1

n
+ (n− 1)

log(|λ|)
2

.

The right-hand side converges to ∞ if |λ| ≥ 1 and to −∞ otherwise, hence the claim.
We will show that the entire function f(z) :=

∑
n≥0 z

n/βn, z ∈ C, is of �nite
order and satis�es Assumption 3.3.14. We can assume without loss of generality that
λ > 1. Indeed, only the modulus of λ matters and if |λ| = 1, then Nf and µf are the
same as for the di�erentiation operator, see Lemmas 4.1.6 and 4.1.7 .

Lemma 4.1.16. For every 0 < ε < 1, there exists r0 > 0 such that for every r ≥ r0,
we have

(1− ε) log(r) ≤ log(λ)

2
Nf (r) ≤ (1 + ε) log(r).

Proof. If n = Nf (r)− 1 then

log(r)n ≥ log(n!) + n(n− 1)
log(λ)

2
≥

n∑
k=2

∫ k

k−1

log(x)dx+ n(n− 1)
log(λ)

2

= n log(n)− (n− 1) + n(n− 1)
log(λ)

2
.

Therefore

log(r) +
n− 1

n
≥ (n+ 1)

log(λ)

2

(
2 log(n)

(n+ 1) log(λ)
+
n− 1

n+ 1

)
.

Let 0 < δ < 1, if r is large enough then we have

(1 + δ) log(r) ≥ log(λ)

2
Nf (r)(1− δ).

Now choose δ > 0 such that (1 + δ)(1− δ)−1 = 1 + ε, we then have

(1 + ε) log(r) ≥ log(λ)

2
Nf (r).

A similar argument shows the other inequality of the lemma.

Lemma 4.1.17. For any r > 0 large enough, we have

log(µf (r)) � log(r)2.

Proof. By de�nition of µf and Stirling's formula,

µf (r) � (re)−1/2 max
n≥0

((
re

n+ 1/2

)n+1/2
1

λn(n−1)/2

)
.
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Let r > 0. De�ne the function gr : ]0,∞[ −→ R by

gr(x) = (x+ 1/2)(log(re)− log(x+ 1/2))− x(x− 1)

2
log(λ)

for every x > 0. Its derivative is given by

∂xgr(x) = log(re)− log(x+ 1/2)− 1− 2x− 1

2
log(λ)

and is positive if and only if

x

(
1 +

log(x+ 1/2)

x log(λ)

)
<

log(r)

log(λ)
+

1

2
.

Let xmax(r) be the value of x where gr reaches its maximum. Therefore, µf (r) is
attained at either νf (r) = dxmax(r)e or νf (r) = bxmax(r)c. Furthermore, xmax(r) is
such that, for every 0 < ε < 1, there exists r0 ≥ 1 such that for every r ≥ r0, one has

(1− ε)
(

log(r)

log(λ)
+

1

2

)
≤ xmax(r) ≤ log(r)

log(λ)
+

1

2
.

If νf (r) = dxmax(r)e, then

log(µf (r)) & − log(re)

2
− log(λ)

2

(
log(r)

log(λ)
+

1

2
+ 1

)(
log(r)

log(λ)
+

1

2
+ 1− 1

)
+

((
log(r)

log(λ)
+

1

2

)
(1− ε) +

1

2

)(
log(re)− log

(
log(r)

log(λ)
+

1

2
+ 1 +

1

2

))
= log(r)2

(
− log(re)

2 log(r)2
− log(λ)

2

(
1

log(λ)
+

3

2 log(r)

)(
1

log(λ)
+

1

2 log(r)

)
+

((
1

log(λ)
+

1

2 log(r)

)
(1− ε) +

1

2 log(r)

)
.

(
log(re)

log(r)
− log(r)−1 log

(
log(r)

log(λ)
+ 2

)))
.

The terms in the largest brackets of the right-hand side of the equality converge to

−2−1 log(λ)−1 + log(λ)−1(1− ε)

when r goes to ∞, which is positive if ε is small enough. Therefore, log(µf (r)) &
log(r)2. Similarly, one can prove that log(µf (r)) . log(r)2, and that log(µf (r)) �
log(r)2 if νf (r) = bxmax(r)c.

Theorem 4.1.18. Let (Xn)n≥0 be a sequence of i.i.d. centred subgaussian random
variables with full support, (en)n≥0 = ((z − a)n)n≥0, and let b ∈ C and λ ∈ C \ {1}
such that |λ| ≥ 1. Then the random vector

∑∞
n=0

Xn
n!λn(n−1)/2 en is almost surely an
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entire function, is frequently hypercyclic for Tλ,b and there exists c > 0 such that
almost surely, there exists r0 > 0 such that

∥∥∥∥ ∞∑
n=0

Xn

n!λn(n−1)/2
en

∥∥∥∥
r

≤ c
√

log(µ(r))

√√√√ ∞∑
n=0

(r + |a|)2n

n!2|λ|n(n−1)

for every r ≥ r0, where a := b/(1 − λ) and for each r ≥ 1, µ(r) := log(r) if |λ| > 1
and µ(r) := r otherwise.

Proof. The random vector
∑
n≥0Xn/(n!λn(n−1)/2)en is almost surely an entire func-

tion and frequently hypercyclic for the weighted shift by Theorem 1.3.4; note that
its proof carries over verbatim to weighted shifts on H(C) with respect to the basis
(en)n≥0.

Assume that |λ| > 1. Let ε > 0 and δ > 0. By Lemmas 4.1.16 and 4.1.17, for
every r > 0 large enough, we have

2−1 log(|λ|)Nf (reδ) ≤ (1 + ε) log(reδ) . (1 + ε)
√

log(µf (r)),

hence Nf (reδ) . log(µf (r))1/2 for r > 0 large enough. Furthermore, Lemma 4.1.17
and Theorem 3.3.11 tell us that f is of �nite order, hence Assumption 3.3.14 is satis�ed
with b = 1/2 and m = 1; notice that log(µf ) ≤ log(Sf ). If |λ| = 1 then Lemmas 4.1.6
and 4.1.7 yield the same conclusion with b = 1. By applying Theorem 3.3.17, we can
conclude that almost surely, for r large enough,

‖v‖r .
√

log(µ(r))

√√√√∑
n≥0

r2n

n!2|λ|n(n−1)
,

where v(z) :=
∑
n≥0Xn/βnz

n, z ∈ C. Noticing that

‖u‖r = sup
|z|=r

|v(z − a)| ≤ sup
|z|≤r+|a|

|v(z)| = ‖v‖r+|a|,

where u :=
∑
n≥0Xn/βnen, we get almost surely the inequality

‖u‖r .
√

log(µf (r + |a|))

√√√√∑
n≥0

(r + |a|)2n

n!2|λ|n(n−1)

for any r > 0 large enough. This concludes the proof.

Note that the series in the rate of growth obtained in Theorem 4.1.18 is the series∑
n≥0 ‖en‖2r/|βn|2 associated with the �xed point

∑
n≥0 en/βn of Tλ,b that appears in

Theorem 3.3.4. Indeed, we have ‖en‖r = (r+ |a|)n for every r > 0 and integer n ≥ 0.
It is enough to show this for n = 1. Let r > 0. By de�nition of ‖ · ‖r and assuming
a = ρeiϕ 6= 0, we get

sup
0≤θ≤2π

|eiθr − a| = sup
0≤θ≤2π

ρ
∣∣∣ei(θ−ϕ) r

ρ
− 1
∣∣∣ = ρ sup

0≤θ≤2π

∣∣∣eiθ r
ρ
− 1
∣∣∣.
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De�ne the function f : [0, 2π] −→ [0,∞[ by f(θ) := |eiθ rρ − 1|2, θ ∈ [0, 2π]. A simple
study of function shows that f reaches its maximum at θ = π and f(π) = (r/ρ+ 1)2.
Therefore, ‖e1‖r = (r + |a|) for every r > 0.

Remark 4.1.19. Recall that by Theorem 1.3.1, the probability distribution of the
frequently hypercyclic random vector in Theorem 4.1.18 is strongly mixing. It was
already known that the Aron-Markose operators are strongly mixing with respect to
some Gaussian measure of full support, see [79, Proposition 2.3] and its proof.

We point out that more generally, one can consider the weights wn = nαλn−1,
n ≥ 1, where λ ∈ C is such that |λ| ≥ 1, and α > 0. The computations for these
weights are similar. In the same vein, Theorem 3.3.17 can be applied to the weights
de�ned by βn = (n + α + 1)n+α+1e−(n+α+1)λn(n−1)/2, n ≥ 1, where α > −1/2 and
λ ∈ C is such that |λ| ≥ 1.

4.2 Functions on an open disk

In this section, we consider weighted shifts de�ned on the Fréchet space H(D). Theo-
rem 0.1.19 combined with Theorem 3.2.10 applied to f(z) =

∑
n≥0 z

n/βn immediately
yields an admissible rate of growth for each chaotic weighted shift, where the sequence
(βn)n≥0 is de�ned in Subsection 1.3.1. However, it is only valid outside a set of �nite
logarithmic measure.

Theorem 4.2.1. Let T be a chaotic weighted shift on H(D) with respect to the basis of
monomials (en)n≥0 and with sequence of weights (wn)n≥1. Let (Xn)n≥0 be a sequence
of i.i.d. centred subgaussian random variables with full support. Then the random
vector

∑∞
n=0

Xn
βn
en is almost surely holomorphic on D, is frequently hypercyclic for

T and there exist a constant c > 0 and an open set E ⊆ [0,∞[ of �nite logarithmic
measure such that almost surely, there exists 0 < r0 < 1 such that∥∥∥∥ ∞∑

n=0

Xn

βn
en

∥∥∥∥
r

≤ c µf (r)

(1− r) 1+δ
2

log
1+δ
4

(µf (r)

1− r

)
for every r0 ≤ r < 1, r /∈ E.

The frequent hypercyclicity of the random vector is obtained by Theorem 1.3.4.
As in the previous section, we will show that Theorem 3.3.4 can always be partially

applied to chaotic weighted shifts on H(D). Unlike the corresponding result for the
space H(C), we distinguish two cases. The only di�erence lies in the choice of the
function A1 in order to ensure that limr→1A1(r) = ∞, but the proof is actually the
same as that of Proposition 4.1.2.

Proposition 4.2.2. Let T be a chaotic weighted shift on H(D) with respect to the
basis of monomials (en)n≥0 and with sequence of weights (wn)n≥1. Let (Xn)n≥0 be
a sequence of i.i.d. centred subgaussian random variables with full support. Assume
that there exists α > 3/2 such that for every n0 ≥ 1, infn≥n0

|βn|/nα < 1. Then the
random vector

∑∞
n=0

Xn
βn
en is almost surely holomorphic on D, is frequently hypercyclic
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for T and satis�es the assumption (i) of Theorem 3.3.4 with

Aj(r) := max
{
n ≥ 0 | |βn| ≤ rnnα

}
.j,

for all 0 ≤ r < 1 and j ≥ 1.

Proof. The proof is exactly the same as that of Proposition 4.1.2. First note that A1

is well-de�ned since T is chaotic, which is equivalent to lim infn→∞ |βn|1/n ≥ 1 by
0.1.22. We just need to show that limr→1A1(r) = ∞. Let n0 ≥ 1; by assumption,
there exists n ≥ n0 such that |βn| < nα. This is equivalent to |βn|1/n/nα/n < 1, thus
for every |βn|1/n/nα/n < r < 1, we have A1(r) ≥ n ≥ n0. Since n0 was arbitrary,
limr→1A1(r) =∞.

The proof of the next result is also exactly the same as that of Proposition 4.1.2.

Proposition 4.2.3. Let T be a chaotic weighted shift on H(D) with respect to the
basis of monomials (en)n≥0 and with sequence of weights (wn)n≥1. Let (Xn)n≥0 be
a sequence of i.i.d. centred subgaussian random variables with full support. Assume
that there exist α > 3/2 and an integer n0 ≥ 1 such that for every n ≥ n0, |βn| ≥ nα.
Then the random vector

∑∞
n=0

Xn
βn
en is almost surely holomorphic on D, is frequently

hypercyclic for T and satis�es the assumption (i) of Theorem 3.3.4 with Aj = A.j,
j ≥ 1, where A : [0, 1[ −→ [0,∞[ is any function such that limr→1A(r) =∞.

Remark 4.2.4. Notice that Lemma 4.1.3 still holds for operators on H(D).

Condition (ii) of Theorem 3.3.4 can always be satis�ed with the function A1 in
Propositions 4.2.2 or 4.2.3: since limr→∞A1(r) = ∞, such a sequence (rk)k≥1 must
exist. This allows us to get assumptions (i) and (ii) of the theorem.

As in the previous section, in order to fully apply Theorem 3.3.4, we have to choose
a sequence (rk)k≥0 satisfying both assumptions (ii) and (iii) of the theorem. Again,
we do not know if it is possible to achieve this for any weighted shift on H(D) with
the choice of the function A1 in Propositions 4.2.2 or 4.2.3. However, by choosing
a slightly di�erent function A1, and for some weighted shifts, we can fully apply
Theorem 3.3.4. This will be the content of the next subsections. In Subsection 4.2.1,
we will �rst prove an analogous result to [46, Theorem 1].

Let us compute the function A1 of Proposition 4.2.2 only for the so-called Taylor
shift.

Lemma 4.2.5. Let T : H(D) −→ H(D) be the Taylor shift, that is, T (zn) = zn−1

for any n ≥ 1, and T (1) = 0. Then log(A1(r)) � − log(1− r) where A1 is de�ned in
Proposition 4.2.2.

Proof. Let α > 3/2. Let 0 < r < 1 be close enough to 1 and set n := A1(r). Then
1 ≤ rnnα, which is equivalent to

0 ≤ n log(r) + α log(n).

Thus
n

log(n)
≤ α

− log(r)
,

which yields log(A1(r)) . − log(− log(r)). A Taylor development at 1 of the logarithm
yields the inequality A1(r) . − log(1−r). The other inequality is similarly proved.
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4.2.1 Rate of growth of hypercyclic functions

We begin by proving in this short subsection an analogous result of [46, Theorem 1]
on the growth of hypercyclic functions for chaotic weighted shifts on H(D). Its proof
is the same as the one of [46, Theorem 1]. As usual, the quantity βn, n ≥ 0, stands
for the product of the �rst n weights of the shift, see Subsection 1.3.1.

Theorem 4.2.6. Let T : H(D) −→ H(D) be a chaotic weighted shift. Let φ : [0, 1[ −→
[0,∞[ be such that limr→1 φ(r) = ∞. Then there exists a hypercyclic function f ∈
H(D) for T such that ‖f‖r . φ(r)µ(r) for all 0 < r < 1 close enough to 1, where
µ(r) := maxn≥0 r

n/|βn|.

Proof. Without loss of generality, we can assume that inf0≤r<1 φ(r) > 0. For f =∑∞
n=0 anz

n ∈ H(D) and all n ≥ 0, de�ne

pn(f) := sup
0<r<1

‖
∑∞
j=n ajz

j‖r
φ(r)µ(r)

.

De�ne the space

X :=
{
f =

∞∑
n=0

anz
n ∈ H(D) | sup

n∈N
pn(f) <∞∧ lim

n→∞
pn(f) = 0

}
and ‖f‖X := supn≥0 pn(f), f ∈ X. The space X endowed with the norm ‖ · ‖X
is a Banach space and the set of polynomials is dense in X. Furthermore, X is
continuously embedded in H(D).

We will check that the sequence of operators Tn : X −→ H(D), f 7−→ Tn(f)
satis�es the hypotheses of the Universality Criterion, see [47, Theorem 3.24]. As in
the proof of [46, Theorem 1], all we need is to prove that limn→∞ ‖en/βn‖X = 0,
where (en)n≥0 is the sequence of monomials.

Let ε > 0. There exists 0 < r0 < 1 such that for every r0 ≤ r < 1, one has
φ(r) ≥ ε−1. Then for all n ≥ 0, we have

sup
r0≤r<1

rn

|βn|φ(r)µ(r)
≤ ε

and

sup
0≤r≤r0

rn

|βn|φ(r)µ(r)
≤ rn0
|βn|

sup
0≤r≤r0

1

φ(r)µ(r)
≤ rn0
|βn|

1

inf0≤r<1 φ(r)
.

The last right-hand term converges to 0 when n goes to in�nity since T is chaotic;
recall that T is chaotic if and only if

∑∞
n=0 z

n/βn ∈ H(D), see Theorem 0.1.19.
We conclude that limn→∞ ‖en/βn‖X = 0, as desired. This implies the claim of the
theorem like in the proof of [46, Theorem 1].

4.2.2 Weighted Taylor shifts

We consider the weighted shift Tα : H(D) −→ H(D) with respect to the basis of
monomials of H(D), with weights wn = nα/(n − 1)α, n ≥ 2, and w1 = 1, where
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α ∈ R. This operator is well-de�ned on H(D). We have βn = nα for all n ≥ 1. Since
limn→∞ |βn|1/n = 1, the operator Tα is also chaotic on H(D), see Example 0.1.22.

These operators have been studied in [76]. The case α = 0 corresponds to the
so-called Taylor shift.

In order to avoid a too long proof, we will distinguish two cases depending on
whether α ≤ 0 or α > 0. We begin with the case α ≤ 0.

Theorem 4.2.7. Let (Xn)n≥0 be a sequence of i.i.d. centred subgaussian random
variables with full support, let (en)n≥0 be the sequence of monomials and let α ≤ 0.
Then the random vector X0e0 +

∑∞
n=1Xn/n

αen is almost surely holomorphic on D, is
frequently hypercyclic for the weighted shift Tα and there exists c > 0 such that almost
surely, there exists 0 < r0 < 1 such that∥∥∥∥X0e0 +

∞∑
n=1

Xn

nα
en

∥∥∥∥
r

≤ c
√
| log(1− r)|(1− r)α−1/2

for every r0 ≤ r < 1.

Proof. The random vector X0e0 +
∑
n≥1Xn/n

αen is almost surely holomorphic on D
and frequently hypercyclic for Tα by Theorem 1.3.4. Set Aj(r) = dj | log(1−r)|/(1−r)
with d > 1 to be determined later.

Set β := −2α and let 0 < r < 1. De�ne the function

gr : [0,∞[ −→ [0,∞[, x 7−→ r2xxβ . (4.2.1)

It is elementary to show that gr has a single maximum at xmax(r) := −β/(2 log(r)).
We have | log(1 − r)|/(1 − r) ≥ xmax(r) for r close to 1 and hence, for every j ≥ 1,
one has Aj(r) ≥ xmax(r) and thus∑

n≥Aj(r)+1

gr(n) ≤
∑

n≥Aj(r)+1

∫ n

n−1

gr(x)dx =

∫ ∞
Aj(r)

gr(x)dx.

Let j ≥ 1, two consecutive changes of variables y = 2| log(r)|x and then u = y −
2| log(r)|Aj(r) yield∫ ∞

Aj(r)

gr(x)dx =

∫ ∞
2| log(r)|Aj(r)

yβe−y

2β+1| log(r)|β+1
dy

=
1

2β+1| log(r)|β+1

∫ ∞
0

(
u+ 2| log(r)|Aj(r)

)β
e−(u+2| log(r)|Aj(r))du

=
Aj(r)

βe−2| log(r)|Aj(r)

2| log(r)|

∫ ∞
0

(
u
(
2| log(r)|Aj(r)

)−1
+ 1
)β
e−udu.

Since | log(r)|Aj(r) ≥ | log(1 − r)| for 0 < r < 1, the last integral is bounded in
δ < r < 1 for every 0 < δ < 1.

In order to apply Theorem 3.3.4 to f :=
∑
n≥0 en/n

α, we will show that

∑
j≥1

√
log(Aj+1(r))

√
Aj(r)βe−2| log(r)|Aj(r)

| log(r)|
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converges to 0 when r goes to 1. The idea is to use the Dominated Convergence
Theorem. First note that the series converges for any 0 < r < 1 since d > 1. Let
j ≥ 1 and 0 < r < 1. We make the change of variables r = 1 − e−x, where x > 0,
hence Aj(r) = djxex for every j ≥ 1. A simple calculation gives

log(Aj+1(r))
Aj(r)

βe−2| log(r)|Aj(r)

| log(r)|

= ((j + 1) log(d) + log(x) + x)
(djxex)βe2 log(1−e−x)djxex

− log(1− e−x)
.

Therefore it is enough to show for every j ≥ 1 that the function

fj : ]0,∞[ −→ ]0,∞[, x 7−→ x
(xex)βe2 log(1−e−x)Mxex

− log(1− e−x)

is non-increasing and converges to 0 when x goes to ∞, where M := dj .
By taking the logarithm of fj , we get for every x > 0 that

log(fj(x)) = log(x) + β log(xex) + 2 log(1− e−x)Mxex − log
(
− log(1− e−x)

)
= log(x) + β log(xex) + 2Mx(−1 + o(e−x)ex)− log

(
e−x + o(e−x)

)
= x

(
log(x)

x
+ β +

β log(x)

x
+ 2M(−1 + o(e−x)ex)− log(1 + o(e−x)ex)

x
+ 1

)
.

Thus limx→∞ log(fj(x)) = −∞ if β + 1 < 2M , and limx→∞ fj(x) = 0.
Now we prove that fj is non-increasing. The derivative of the function log(fj) is

given by

∂x log(fj)(x) =
1

x
+ β

(
1

x
+ 1

)
+ 2M

(
x

1− e−x
+ log(1− e−x)ex(x+ 1)

)
− e−x

log(1− e−x)(1− e−x)

=
1

x
+ β

(
1

x
+ 1

)
+ 2M

(
x

1− e−x
+ ex(x+ 1)

(
− e−x − e−2x

2
+ o(e−2x)

))
− e−x

(−e−x + o(e−x))(1− e−x)
,

where in the second equality we have used the Taylor expansions of order 1 and 2 of
the logarithm at 1. We conclude that limx→∞ ∂x log(fj)(x) = β − 2M + 1 for every
x > 0, hence ∂x log(fj)(x) < 0, provided 2M > β+ 1. Thus fj is non-increasing away
from 0, uniformly in j ≥ 1, if 2d > β + 1.

This shows that assumption (i) of Theorem 3.3.4 is satis�ed. By taking rk =
1−e−k, it is clear that assumption (ii) is also satis�ed, for any 1 < p <∞. It remains
to check assumption (iii). It is also clear that (log(A1(rk+1))/ log(A1(rk)))k≥1 is
bounded. Let 0 < r < 1. Set I(r) :=

∑
n≥1 n

βr2n, thus S2
f (r) = 1 + I(r). It su�ces

to show that (I(rk+1)/I(rk))k≥1 is bounded. By comparing again series and integrals,
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where we set N := bxmax(r)c, we have

∑
n≥1

gr(n) ≤
N−1∑
n=1

∫ n+1

n

gr(x)dx+ gr(N) + gr(N + 1) +
∑

n≥N+2

∫ n

n−1

gr(x)dx

≤
∫ ∞

1

gr(x)dx+ 2gr(xmax(r))

≤
∫ ∞

0

gr(x)dx+ 2gr(xmax(r))

and

∑
n≥1

gr(n) ≥
N∑
n=1

∫ n

n−1

gr(x)dx+
∑

n≥N+1

∫ n+1

n

gr(x)dx

=

∫ ∞
0

gr(x)dx−
∫ N+1

N

gr(x)dx ≥
∫ ∞

0

gr(x)dx− gr(xmax(r)).

The change of variables y = 2| log(r)|x and the Taylor expansion of order 1 at 1 of
the logarithm yield that, for every 0 < r < 1 close enough to 1,∫ ∞

0

gr(x)dx =

∫ ∞
0

e2 log(r)xxβdx =
1

| log(r)|β+12β+1

∫ ∞
0

e−yyβdy � 1

(1− r)β+1
.

Recalling the de�nition (4.2.1) of gr above, notice that gr(xmax(r)) � 1/(1− r)β . We
can conclude that

1

(1− r)β+1
− 1

(1− r)β
. I(r) .

1

(1− r)β+1
+

1

(1− r)β
, (4.2.2)

for every 0 < r < 1 close enough to 1. Then, applying this inequality for r = rk and
r = rk+1 �nally gives

I(rk+1)

I(rk)
.

(
1

(1− rk+1)β+1
+

1

(1− rk+1)β

)(
1

(1− rk)β+1
− 1

(1− rk)β

)−1

for every k ≥ 1 large enough, and the right-hand side is bounded. This shows that also
(iii) of Theorem 3.3.4 holds. Thus we can apply Theorem 3.3.4. Since log(A1(r)) .
| log(1− r)| and, by (4.2.2),

Sf (r) =
√

1 + I(r) � (1− r)α−1/2,

the result follows.

Now we deal with the case α > 0.

Theorem 4.2.8. Let (Xn)n≥0 be a sequence of i.i.d. centred subgaussian random
variables with full support, let (en)n≥0 be the sequence of monomials and let α > 0.
Then the random vector X0e0 +

∑∞
n=1Xn/n

αen is almost surely holomorphic on D, is
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frequently hypercyclic for the weighted shift Tα and there exists c > 0 such that almost
surely, there exists 0 < r0 < 1 such that∥∥∥∥X0e0 +

∞∑
n=1

Xn

nα
en

∥∥∥∥
r

≤ c


√
| log(1− r)|(1− r)α−1/2 if α < 1/2√
| log(1− r)| if α > 1/2

| log(1− r)| if α = 1/2

for every r0 ≤ r < 1.

Proof. The random vector X0e0 +
∑
n≥1Xn/n

αen is almost surely holomorphic on
D and frequently hypercyclic for Tα by Theorem 1.3.4. Since βn = nα ≥ n0, the
case α = 0 of the previous theorem already gives that the conditions (i) and (ii) of
Theorem 3.3.4 are satis�ed with the same functions Aj , j ≥ 1, thanks to Lemma 4.1.3
and Remark 4.2.4. It only remains to check that the second sequence in (iii) is also
bounded with (rk)k≥1 = (1− e−k)k≥1.

Let 0 < r < 1 and de�ne the function

gr : ]0,∞[ −→ [0,∞[, x 7−→ r2xx−2α. (4.2.3)

This function is decreasing on ]0,∞[, which implies∑
n≥2

gr(n) ≤
∑
n≥2

∫ n

n−1

gr(x)dx =

∫ ∞
1

gr(x)dx

and ∑
n≥1

gr(n) ≥
∑
n≥1

∫ n+1

n

gr(x)dx =

∫ ∞
1

gr(x)dx.

De�ne I(r) :=
∑
n≥1 gr(n) and J(r) :=

∫∞
1
gr(x)dx. Assume that the sequence

(J(rk+1)/J(rk))k≥1 is bounded, this would imply that

I(rk+1)

I(rk)
≤
J(rk+1) + r2

k+1

J(rk)
=
J(rk+1)

J(rk)
+

r2
k+1

J(rk)
,

and (I(rk+1)/I(rk))k≥1 would be bounded, note that J(rk) ≥ J(r1) for all k ≥ 1.
Therefore, let us show that (J(rk+1)/J(rk))k≥1 is indeed bounded. Let 0 < r < 1.

The change of variables y = 2| log(r)|x gives

J(r) =

∫ ∞
1

x−2αe2 log(r)xdx =
1

| log(r)|−2α+12−2α+1

∫ ∞
2| log(r)|

y−2αe−ydy.

We distinguish three cases. In the �rst one, we show directly that the sequence
(I(rk+1)/I(rk))k≥1 is bounded.

Case α > 1/2

Since α > 1/2, for every 0 < r < 1 we have
∞∑
n=1

n−2αr2n ≤
∞∑
n=1

1

n2α
<∞,

hence the function I is bounded and increasing on [0, 1[, and (I(rk+1)/I(rk))k≥1 is
bounded.
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Case 0 < α < 1/2

Since α < 1/2, the function y 7−→ y−2αe−y is integrable on ]0,∞[, hence

J(r) .
1

| log(r)|−2α+1

∫ ∞
0

y−2αe−ydy � 1

(1− r)−2α+1
,

where we have used for the last equality the Taylor expansion of order 1 at 1 of the
logarithm. Similarly, one has

J(r) &
1

| log(r)|−2α+1

∫ ∞
0

y−2αe−ydy � 1

(1− r)−2α+1
,

hence (J(rk+1)/J(rk))k≥1 is bounded.

Case α = 1/2

For this last case, we use the inequalities

2−1e−x log

(
1 +

2

x

)
≤
∫ ∞
x

y−1e−ydy ≤ e−x log

(
1 +

1

x

)
valid for x > 0, see [82, Inequalities 6.8.1]. We then have

J(r) =

∫ ∞
2| log(r)|

y−1e−ydy ≤ e2 log(r) log

(
1 +

1

2| log(r)|

)
.

Using a Taylor expansion of order 1 at 1 of the logarithm gives

log

(
1 +

1

2| log(r)|

)
= log (1− 2 log(r))− log (−2 log(r))

= log (1− 2 log(r))− log
(
2(1− r) + o(1− r)

)
= log (1− 2 log(r))− log(1− r)− log

(
2 + o(1− r)(1− r)−1

)
� − log(1− r),

showing that J(r) . − log(1−r). Similar calculations �nally yield J(r) � − log(1−r),
and (J(rk+1)/J(rk))k≥1 is bounded. Thus Theorem 3.3.4 can again be applied. The
result then follows with similar estimates as at the end of the proof of Theorem 4.2.7
and by noting that I(r) ≤ J(r) + 1.

If α = 0, the operator T0 is the so-called Taylor shift. This is indeed the result
obtained by Mouze and Munnier in [75, Theorem 1.3 and p. 627]. They even proved
that the optimal rate of growth is r 7−→

√
1/(1− r), see [75, Theorem 1.4].

The rate of growth for the operators Tα has also been studied by Mouze and
Munnier in [76] with non-probabilistic methods, see [76, Theorem 1.3 and Proposition
2.1]. When α 6= 1/2, they showed that the optimal growth is indeed given by (1 −
r)α−1/2 if α < 1/2 and by 1 if α > 1/2. If α = 1/2 then

√
| log(1− r)| is a minimal

rate of growth, while | log(1− r)| is an admissible one. Therefore, our result suggests
that

√
| log(1− r)| could be the optimal rate of growth for T1/2, see Section 4.6.
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4.2.3 Logarithmic weights

As a last example of operators on H(D), we consider the weighted shifts Tα with
respect to the basis of monomials of H(D), with weights wn = (log(n))α/(log(n−1))α,
n ≥ 3, w2 = log(2)α and w1 = 1, where α ∈ R. These operators are well-de�ned on
H(D). We have βn = (log(n))α, n ≥ 2, and β1 = 1. Since limn→∞ |βn|1/n = 1, they
are also chaotic on H(D), see Example 0.1.22.

We �rst need two technical lemmas.

Lemma 4.2.9. For any β > 0, we have

lim sup
x→0

∫ ∞
0

e−u
( log(2−1u+ 2x)

− log(x)
+ 1
)−β

du ≤ 1.

Proof. Let x > 0. By using the change of variables t = u/(2x) + 2, we get∫ ∞
0

e−u
( log(2−1u+ 2x)

− log(x)
+ 1
)−β

du =

∫ ∞
0

e−u
(

log
( u

2x
+ 2
))−β

(− log(x))βdu

= (− log(x))β2x

∫ ∞
2

e−(t−2)2x

log(t)β
dt. (4.2.4)

Let 0 < γ < 1 and set A := 1/xγ . We divide the last integral on the intervals [2, A]
and [A,∞[. First notice that

(− log(x))β2x

∫ ∞
A

e−(t−2)2x

log(t)β
dt ≤ (− log(x))β

2x

log(A)β

∫ ∞
A

e−(t−2)2xdt

≤ (− log(x))β
2x

log(A)β
e−A2xe4x

2x

= γ−βe−2x1−γ
e4x,

which converges to γ−β when x goes to 0.
We now show that the integral in (4.2.4) on [2, A] converges to 0 when x goes to

0. For each n ≥ 1, de�ne

In :=

∫ A

e

1

log(t)n
dt.

By induction, one can prove that

In =
I1

(n− 1)!
−
n−1∑
j=1

( A

log(A)j
− e
) (j − 1)!

(n− 1)!
(4.2.5)

for every n ≥ 1. Now, setting n := bβc, we have log(t)β ≥ log(t)n for any t ≥ e.
Therefore, ∫ A

2

e−(t−2)2x

log(t)β
dt ≤

∫ e

2

1

log(t)β
dt+

∫ A

e

1

log(t)n
dt.

Assume �rst that β ≥ 1. By the formula (4.2.5), we have

(− log(x))β2xIn = (− log(x))β2x

(
I1

(n− 1)!
−
n−1∑
j=1

( A

log(A)j
− e
) (j − 1)!

(n− 1)!

)
. (4.2.6)
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For any 0 ≤ j ≤ n− 1, we have

(− log(x))β2x
A

log(A)j
= 2| log(x)|β−j x

1−γ

γj
,

which converges to 0 as x goes to 0 since 0 < γ < 1, and so does (− log(x))β2xe.
Now, we have I1 = li(A)− li(e), where li is the logarithmic integral, see [82, De�nition
6.2.8]. Using the fact that li(A) = O(A/ log(A)), see [82, Formula 6.12.2], we get

(− log(x))β2xI1 = (− log(x))β2x
(
li(A)− li(e)

)
. (− log(x))βx

A

log(A)
=

(− log(x))βx1−γ

− log(x)γ
,

which converges to 0 when x goes to 0. All of this shows that the right-hand term in
(4.2.6) converges to 0, and in turn that (4.2.4) converges to γ−β in the case β ≥ 1.

If 0 < β < 1 then

x(− log(x))β
∫ A

2

e−(t−2)2x

log(t)β
dt ≤ x(− log(x))β

∫ e

2

1

log(t)β
dt+ x(− log(x))β

∫ A

e

1dt,

which again converges to 0.
We conclude that

lim sup
x→0

∫ ∞
0

e−u
(

log(2−1u+ 2x)

− log(x)
+ 1

)−β
du ≤ 1

γβ

for any 0 < γ < 1. The results follows by taking the limit when γ goes to 1.

Lemma 4.2.10. For any β > 0, we have

lim inf
x→0

∫ ∞
0

e−u
( log(2−1u+ 2x)

− log(x)
+ 1
)−β

du ≥ 1.

Proof. Let ρ > 0 and 0 < ε < 1/2, and assume that x > 0 is such that − log(x) ≥ ρ
and x ≤ ε. Then log(2−1u + 2x)(− log(x))−1 ≤ 0 if 2−1u + 2ε ≤ 1 and log(2−1u +
2x)(− log(x))−1 ≤ log(2−1u+ 2ε)ρ−1 otherwise. Therefore,

lim inf
x→0

∫ ∞
0

e−u
( log(2−1u+ 2x)

− log(x)
+ 1
)−β

du

≥
∫ 2−4ε

0

e−udu+

∫ ∞
2−4ε

e−u
( log(2−1u+ 2ε)

ρ
+ 1
)−β

du.

An application of the Dominated Convergence Theorem yields the claim.

We are now ready for the main result of this subsection.

Theorem 4.2.11. Let (Xn)n≥0 be a sequence of i.i.d. centred subgaussian random
variables with full support, let (en)n≥0 be the sequence of monomials and let α ∈
R. Then the random vector

∑∞
n=0Xn/βnen is almost surely holomorphic on D, is
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frequently hypercyclic for the weighted shift Tα and there exists c > 0 such that almost
surely, there exists 0 < r0 < 1 such that∥∥∥∥X0e0 +X1e1 +

∞∑
n=2

Xn

(log(n))α
en

∥∥∥∥
r

≤ c
√
| log(1− r)| | log(1− r)|−α√

1− r

for every r0 ≤ r < 1.

Proof. The random vector X0e0 +X1e1 +
∑
n≥2Xn/(log(n))αen is almost surely holo-

morphic on D and frequently hypercyclic for Tα by Theorem 1.3.4.
If α ≥ 0, then βn = log(n)α ≥ n0 for any n ≥ 3, and the case α = 0 of Theorem

4.2.7 already yields that condition (i) of Theorem 3.3.4 is satis�ed for the operator
Tα, with the same functions Aj , j ≥ 1, thanks to Lemma 4.1.3 and Remark 4.2.4.
Since βn ≥ nα for every n ≥ 1 if α < 0, the same conclusion applies to the case α < 0.
It only remains to check conditions (ii) and (iii). Choosing (rk)k≥1 = (1 − e−k)k≥1,
the proof of Theorem 4.2.7 shows that (ii) and the �rst part of (iii) hold. As in the
proof of Theorem 4.2.7, it remains to show that (I(rk+1)/I(rk))k≥1 is bounded, where
I(r) :=

∑
n≥2 r

2n/(log(n))2α for 0 < r < 1.

Case α ≥ 0

Set β := 2α and let 0 < r < 1. By comparing series and integrals, we get that

∞∑
n=2

r2n

(log(n))β
≤ r4

(log(2))β
+

∞∑
n=3

∫ n

n−1

r2x

(log(x))β
dx =

r4

(log(2))β
+

∫ ∞
2

r2xdx
(log(x))β

and
∞∑
n=2

r2n

(log(n))β
≥
∞∑
n=2

∫ n+1

n

r2x

(log(x))β
dx =

∫ ∞
2

r2xdx
(log(x))β

.

The changes of variables y = 2| log(r)|x and u = y − 4| log(r)| yield for r > e−1

∫ ∞
2

r2x

(log(x))β
dx =

1

2| log(r)|

∫ ∞
4| log(r)|

e−y
(

log

(
y

2| log(r)|

))−β
dy

=
e−4| log(r)|

2| log(r)|

∫ ∞
0

e−u
(

log

(
u+ 4| log(r)|

2| log(r)|

))−β
du

=
e−4| log(r)|

2| log(r)|
(
− log(| log(r)|)

)−β ∫ ∞
0

e−u
(

log(2−1u+ 2| log(r)|)
− log(| log(r)|)

+ 1

)−β
du.

Lemmas 4.2.9 and 4.2.10 show that the last integral converges to 1 as r goes to 1, the
case β = 0 being trivial. Therefore, we have

1

| log(r)|
(
− log(− log(r))

)−β
. I(r) .

r4

(log(2))β
+

1

| log(r)|
(
− log(− log(r))

)−β
,

(4.2.7)
and supk≥1 I(rk+1)/I(rk) is �nite.
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Case α < 0

Set β := −2α and let 0 < r < 1. De�ne the function

gr : ]1,∞[ −→ [0,∞[, x 7−→ r2x(log(x))β . (4.2.8)

It is elementary to show that gr has a single maximum at xmax(r), where the equality

xmax(r) log(xmax(r)) = −β/(2 log(r)) (4.2.9)

holds. By comparing series and integrals, where we set N := bxmax(r)c and assume
that r is so large that N ≥ 2, we get

∑
n≥2

gr(n) ≤
N−1∑
n=2

∫ n+1

n

gr(x)dx+ gr(N) + gr(N + 1) +
∑

n≥N+2

∫ n

n−1

gr(x)dx

≤
∫ ∞

2

gr(x)dx+ 2gr(xmax(r))

and

∑
n≥2

gr(n) ≥ gr(2) +

N∑
n=3

∫ n

n−1

gr(x)dx+
∑

n≥N+1

∫ n+1

n

gr(x)dx

= gr(2) +

∫ ∞
2

gr(x)dx−
∫ N+1

N

gr(x)dx

≥ gr(2) +

∫ ∞
2

gr(x)dx− gr(xmax(r)).

The same calculations as in the previous case give, for r > e−1,∫ ∞
2

gr(x)dx =
1

2| log(r)|

∫ ∞
4| log(r)|

e−y
(

log

(
y

2| log(r)|

))β
dy

=
e−4| log(r)|

2| log(r)|

∫ ∞
0

e−u
(

log

(
u+ 4| log(r)|

2| log(r)|

))β
du

=
e−4| log(r)|

2| log(r)|
(
− log(| log(r)|)

)β ∫ ∞
0

e−u
(

log(2−1u+ 2| log(r)|)
− log(| log(r)|)

+ 1

)β
du.

The integral converges to
∫∞

0
e−udu = 1 when r goes to 1. Indeed, �x 0 < ε < 1/2

and ρ > 0; we can assume that | log(r)| < ε and − log(| log(r)|) ≥ ρ. Now, for any
u ≥ (1− 2ε)2, we have log(2−1u+ 2ε) ≥ 0, and

log(2−1u+ 2| log(r)|)
− log(| log(r)|)

≤ log(2−1u+ 2ε)

− log(| log(r)|)
≤ log(2−1u+ 2ε)

ρ
.

Remark also that for any 0 < u < (1− 4ε)2, we have log(2−1u+ 2| log(r)|) ≤ 0. This
allows us to use the Dominated Convergence Theorem.
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Therefore, if J(r) := 1
| log(r)|

(
− log(− log(r))

)β
then we have

J(r) + gr(2)− gr(xmax(r)) . I(r) . J(r) + gr(xmax(r)), (4.2.10)

hence
I(rk+1)

I(rk)
.
J(rk+1)

J(rk)

1 + grk+1
(xmax(rk+1))/J(rk+1)

1 + grk(2)/J(rk)− grk(xmax(rk))/J(rk)

for every k ≥ 1. It is clear that supk≥1 J(rk+1)/J(rk) <∞ and limr→1 gr(2)/J(r) = 0.
We will prove that limr→1 gr(xmax(r))/J(r) = 0 and this will show that the hypotheses
of Theorem 3.3.4 hold. For every 0 < r < 1, we have

gr(xmax(r))

J(r)
�
r2xmax(r)

(
log(xmax(r))

)β
(1− r)

| log(1− r)|β
.

By (4.2.9), we can write

gr(xmax(r))

J(r)
� r2xmax(r)

| log(1− r)|β

(
−β

xmax(r)2 log(r)

)β
(1− r).

Let ε > 0; for r close enough to 1, one has xmax(r) log(xmax(r)) ≤ (xmax(r))1+ε.
Then, again by (4.2.9) and with a Taylor expansion of order 1 of the logarithm at 1,
we get that

gr(xmax(r))

J(r)
.
r2(−β/(2 log(r)))1/(1+ε)

| log(1− r)|β

(
−1

log(r)

)β
(− log(r))

β/(1+ε)
(1− r)

� r2(−β/(2 log(r)))1/(1+ε)

| log(1− r)|β
1

(1− r)β
(1− r)β/(1+ε)

(1− r)

≤ 1

| log(1− r)|β
(1− r)−β+β/(1+ε)+1.

If ε > 0 is chosen small enough such that −β+β/(1 + ε) + 1 > 0, then the right-hand
side converges to 0 when r goes to 1. We deduce that

lim
r→1

gr(xmax(r))

J(r)
= 0. (4.2.11)

Thus we can apply Theorem 3.3.4. As in the proof of Theorem 4.2.7, we have that
log(A1(r)) . | log(1− r)| for 0 < r < 1 close enough to 1. For Sf , we have for α ≥ 0,
by (4.2.7),

Sf (r) =
√

1 + r2 + I(r) � r2 +
1√
| log(r)|

(
− log(− log(r))

)−α
� | log(1− r)|−α√

1− r
,
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and for α < 0, by (4.2.10) and (4.2.11),

Sf (r) =
√

1 + r2 + I(r) � 1√
| log(r)|

(
− log(− log(r))

)−α
� | log(1− r)|−α√

1− r
.

4.3 Harmonic functions on the plane

This section is devoted to di�erential operators de�ned on the space of harmonic
functions on R2 denoted by H(R2), endowed with the topology of local uniform con-
vergence. The notation ∂x (resp. ∂y) denotes the partial derivative with respect to
the �rst variable (resp. the second variable).

De�nition 4.3.1. Let f : R2 −→ R be an in�nitely di�erentiable function. Then f
is harmonic if ∂2

xf + ∂2
yf = 0.

Let α = (α1, α2) ∈ N2 with α 6= 0. Then the operator Dα de�ned on H(R2) by

Dα(f) = ∂α1
x ∂α2

y f, f ∈ H(R2),

is frequently hypercyclic, see [17, Theorem 4.3].
Our aim is to �nd an admissible rate of growth for frequently hypercyclic functions

of each di�erential operator on H(R2) with a probabilistic approach. It will be in fact
the same for all of them. The optimal rate of growth for the frequently hypercyclic
functions of the operators ∂x and ∂y on H(RN ), N ≥ 2, has been studied in [17,
Theorem 4.2] and [41, Theorem 2.1] in terms of the L2-norm on spheres. The growth
of hypercyclic functions of di�erential operators de�ned on H(RN ) has been studied
in [3] and [2].

Let us set some notations.

De�nition 4.3.2. A polynomial p : R2 −→ R is homogeneous of degree m ∈ N if
there is (ai,j)i+j=m ⊆ R such that p(x, y) =

∑
i+j=m ai,jx

iyj for all x, y ∈ R.

The space of homogeneous harmonic polynomials of degreem ∈ N is notedHm(R2)
and the space span

⋃
m≥0Hm(R2) is dense in H(R2) by [5, Corollary 5.34]. For

α = (α1, α2) ∈ N2 de�ne |α| := α1 + α2, and set N2
0 := N2 \ {(0, 0)}. For any

f ∈ H(R2) and r > 0, we de�ne

‖f‖2,r :=

(∫
S(r)

|f |2dσ

)1/2

,

where S(r) is the circle of radius r centred at the origin of R2 and σ is the normalized
Lebesgue measure on S(r).
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Let p ∈ H(R2) be a polynomial. When restricted to the circle of radius r > 0
centred at the origin, p can be viewed as a trigonometric polynomial. Indeed, let
(x, y) ∈ S(r), then

p(x, y) = p
(
r
(eis + e−is

2

)
, r
(eis − e−is

2i

))
for some s ∈ [0, 2π]. Thus, Lemma 3.1.13 holds for polynomials in H(R2). Therefore,
by carefully reading the proof of Theorem 3.3.4, one can see that this result still holds
for functions in H(R2).

Theorem 4.3.3. Let f =
∑
n≥0 anen ∈ H(R2) where (en)n≥0 is a sequence of poly-

nomials such that for every n ≥ 0, the degree of en is at most Cn, where C > 0 is

some constant. Set Sf (r) :=
√∑

n≥0 a
2
n‖en‖2r for any r > 0. Let (Xn)n≥0 be a cen-

tred subgaussian sequence of independent random variables such that
∑∞
n=0 anXnen

is almost surely convergent and let (Aj)j≥1 be a non-decreasing sequence of positive
functions de�ned on ]0,∞[ such that A1 is non-decreasing.

If the conditions (i) and (ii) of Theorem 3.3.4 are satis�ed with w =∞, then there
exists c > 0 such that almost surely, there exists k0 ≥ 1 such that for every k ≥ k0,∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
rk

≤ c
√

log(A1(rk))Sf (rk).

Furthermore, if the condition (iii) holds then there exists c > 0 such that almost surely,
there exists r0 > 0 such that∥∥∥∥ ∞∑

n=0

anXnen

∥∥∥∥
r

≤ c
√

log(A1(r))Sf (r)

for every r ≥ r0.

4.3.1 A random vector for di�erential operators

First of all, we must �nd a frequently hypercyclic random vector for each operator
Dα, α ∈ N2

0. We will need the following lemma.

Lemma 4.3.4. [3, Lemma 4] Let m, k ∈ N and u ∈ Hm(R2). Then there exists
P(k,0)(u) ∈ Hm+k(R2) such that ∂kxP(k,0)(u) = u and

‖P(k,0)(u)‖2,1 �
m!

(m+ k)!
‖u‖2,1.

Furthermore, the map P(k,0) : Hm(R2) −→ Hm+k(R2) is linear.

Of course, this result also holds for the partial derivatives with respect to the
second variable. The proof in [3, Lemma 4] gives only one inequality, but with the help
of [3, Remark at p. 152], one can obtain the claim of Lemma 4.3.4. This immediately
yields the next result.
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Lemma 4.3.5 ([2, Lemma 2]). Let m ∈ N, α = (α1, α2) ∈ N2 and u ∈ Hm(R2).
Then the polynomial P(α1,α2)(u) := P(0,α2)(P(α1,0)(u)) ∈ Hm+|α|(R2) is such that
DαP(α1,α2)(u) = u and

‖P(α1,α2)(u)‖2,1 �
m!

(m+ |α|)!
‖u‖2,1.

Furthermore, the map P(α1,α2) : Hm(R2) −→ Hm+|α|(R2) is linear.

Proof. De�ne P(α1,α2)(u) := P(0,α2)(P(α1,0)(u)). Then by Lemma 4.3.4 applied twice,
we have DαP(α1,α2)(u) = u and

‖P(α1,α2)(u)‖2,1 �
(m+ α1)!

(m+ |α|)!
‖P(α1,0)(u)‖2,1 �

m!

(m+ |α|)!
‖u‖2,1.

The linearity of P(α1,α2) is obvious by linearity of P(0,α2) and P(α1,0).

The bound given in the previous lemma is not exactly the one stated in [2, Lemma
2], but it can be deduced from its proof given there and Lemma 4.3.4.

Lemma 4.3.6. The maps P(1,0) and P(0,1) commute, and for every j ≥ 0, P(j+1,0) =
P(j,0)P(1,0) and P(0,j+1) = P(0,j)P(0,1). Therefore, P(i,j)P(k,l) = P(k,l)P(i,j) for every
i, j, k, l ∈ N. Furthermore, the maps P(1,0) and P(0,1) are injective on Hn(R2), for
every n ≥ 1.

Proof. For any n ≥ 0, de�ne the harmonic polynomials

un :=

bn/2c∑
j=0

(−1)jxn−2jy2j

(n− 2j)!(2j)!
and vn :=

bn/2c∑
j=0

(−1)jxn−2jy2j+1

(n− 2j)!(2j + 1)!
.

By simple calculations, one can get the formulas ∂xun = un−1, ∂xvn = vn−1, ∂yun =
−vn−2 and ∂yvn = un, for any n ≥ 0, setting u−1 = v−2 = v−1 = 0.

For any n ≥ 1, the vectors un and vn−1 are linearly independent since x 7−→
un(x, 1) is a polynomial of degree n and x 7−→ vn−1(x, 1) is a polynomial of degree
n− 1, hence Hn(R2) = 〈un, vn−1〉 since dimHn(R2) = 2 by [5, Proposition 5.8].

Let n ≥ 1 and u ∈ Hn(R2). Let us show that P(1,0)(u) is the unique polynomial
belonging to Hn+1(R2) such that ∂xP(1,0)(u) = u. Write P(1,0)(u) = aun+1 + bvn for
some a, b ∈ R. Using the previous formulas, we get u = P(1,0)(u) = aun+bvn−1, which
implies that P(1,0)(u) is the unique polynomial in Hn+1(R2) such that ∂xP(1,0)(u) = u
since un and vn−1 are linearly independent. The same result holds for P(0,1)(u). Now,
it is readily shown that P(1,0)P(0,1)(u) = P(0,1)P(1,0)(u). Indeed, ∂x∂yP(1,0)P(0,1)(u) =
u, which implies by uniqueness that P(1,0)(u) = ∂yP(1,0)P(0,1)(u). Then again by
uniqueness, we get P(1,0)P(0,1)(u) = P(0,1)P(1,0)(u).

Now, if u ∈ H0(R2) = 〈1〉, we can assume without loss of generality that u = 1.
In that case, one can easily see in the proof of [3, Lemma 4] that P(1,0)(1) = x
and P(0,1)(1) = y, or simply set P(1,0)(1) = x and P(0,1)(1) = y, and Lemma 4.3.4
holds for u = 1 with these de�nitions of P(1,0) and P(0,1). We want to prove that
P(1,0)P(0,1)(1) = P(0,1)P(1,0)(1), that is P(1,0)(y) = P(0,1)(x), which is equivalent to
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∂xP(0,1)(x) = y by uniqueness proved above. But P(0,1)(x) = xy since ∂y(xy) = x
and by uniqueness. Therefore, ∂xP(0,1)(x) = ∂x(xy) = y.

Similarly, it is easy to show that P(j+1,0) = P(j,0)P(1,0) and P(0,j+1) = P(0,j)P(0,1)

for every j ≥ 0.

For the next two results, for each α = (α1, α2) ∈ N2
0, de�ne the set

Mα :=
{
P(i,α2)(u) | u ∈ {1, y}, 0 ≤ i ≤ α1 − 1

}
∪
{
P(0,j)(u) | u ∈ {1, x}, 0 ≤ j ≤ α2 − 1

}
.

Here, we denote by x (resp. y) the function f ∈ H(R2) de�ned by f(x, y) = x (resp.
f(x, y) = y), for every (x, y) ∈ R2.

Lemma 4.3.7. Let α = (α1, α2) ∈ N2
0. The vectors of the set Mα are linearly

independent.

Proof. The claim clearly holds if |α| = 1. Assume that it also holds for any α ∈ N2
0

such that |α| ≤ m, for some m ≥ 1. Let α = (α1, α2) ∈ N2
0 with |α| = m + 1 and

assume without loss of generality that α1 ≥ 1.
Let a0, . . . , aα1−1, b0, . . . , bα1−1, c0, . . . , bα2−1, d0, . . . , dα2−1 ∈ R be such that

α1−1∑
i=0

(aiP(i,α2)(1) + biP(i,α2)(y)) +

α2−1∑
j=0

(cjP(0,j)(1) + djP(0,j)(x)) = 0.

By taking ∂α1−1
x ∂α2

y on both sides of the equality, we get aα1−1 + bα1−1y = 0, hence
aα1−1 = bα1−1 = 0. The other coe�cients are then also equal to zero by the induction
hypothesis.

Lemma 4.3.8. Let α = (α1, α2) ∈ N2
0. The subspace of H(R2) generated by the

set
⋃
n≥0 P(nα1,nα2)(Mα) is equal to span

⋃
m≥0Hm(R2), and is therefore dense in

H(R2).

Proof. We clearly have H0(R2) = 〈1〉 = 〈P(0,0)(1)〉.
Let n ∈ N and set Sn := P(nα1,nα2). Then

Sn(P(i,α2)(1)) ∈ Hn|α|+i+α2
(R2)

Sn(P(i,α2)(y)) ∈ Hn|α|+i+α2+1(R2)

}
if 0 ≤ i ≤ α1 − 1,

Sn(P(0,j)(1)) ∈ Hn|α|+j(R2)

Sn(P(0,j)(x)) ∈ Hn|α|+j+1(R2)

}
if 0 ≤ j ≤ α2 − 1.

Let m ≥ 1. There exist n ∈ N and 0 ≤ r ≤ |α| − 1 such that m = n|α|+ r. Since
dimHm(R2) = 2 by [5, Proposition 5.8], we then have

Hm(R2) =


〈
Sn(P(0,0)(1)), Sn−1(P(α1−1,α2)(y))

〉
if r = 0, n ≥ 1,〈

Sn(P(0,r)(1)), Sn(P(0,r−1)(x))
〉

if 1 ≤ r ≤ α2 − 1,〈
Sn(P(0,α2)(1)), Sn(P(0,α2−1)(x))

〉
if r = α2,〈

Sn(P(r−α2,α2)(1)), Sn(P(r−α2−1,α2)(y))
〉

if α2 + 1 ≤ r ≤ |α| − 1.
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Indeed, the last three cases follow by using Lemmas 4.3.6 and 4.3.7. For the �rst case,
remark that Sn(P(0,0)(1)) = Sn−1(P(α1,α2)(1)), and that P(α1,α2)(1) and P(α1−1,α2)(y)
are linearly independent by arguing as in the proof of Lemma 4.3.7.

Lemma 4.3.9. Let α = (α1, α2) ∈ N2
0, m ∈ N and u ∈ Hm(R2). The series∑

n≥1

√
log(n)P(nα1,nα2)(u) converges unconditionally in H(R2).

Proof. Let u ∈ Hm(R2). Remark that ‖p‖2,r = ‖p‖2,1rn for every r > 0 and for any
homogeneous polynomial p of degree n ≥ 0. By using [41, Lemma 5.1] and Lemma
4.3.5, we get for every r > 0 that∑

n≥1

√
log(n)‖P(nα1,nα2)(u)‖r .

∑
n≥1

√
log(n)‖P(nα1,nα2)(u)‖2,2r

.
∑
n≥1

√
log(n)

m!(2r)n|α|+m

(n|α|+m)!
‖u‖2,1,

and the series
∑
n≥1

√
log(n)P(nα1,nα2)(u) is unconditionally convergent.

These lemmas and Theorem 1.2.10 allow us to obtain a frequently hypercyclic
random vector for any di�erentiation operator.

Theorem 4.3.10. Let α = (α1, α2) ∈ N2
0 and X be a subgaussian random variable

with full support. Then the random vector

v :=
∑

u∈{1,x}

α2−1∑
j=0

∞∑
n=0

Xn,j,uP(nα1,nα2)(P(0,j)(u))

+
∑

u∈{1,y}

α1−1∑
i=0

∞∑
n=0

Xn,i,uP(nα1,nα2)(P(i,α2)(u)) (4.3.1)

is almost surely well-de�ned and frequently hypercyclic for Dα, where Xn,i,u, n ∈ N,
0 ≤ i ≤ α1 − 1, u ∈ {1, y}, and Xn,j,u, n ∈ N, 0 ≤ j ≤ α2 − 1, u ∈ {1, x}, are i.i.d.
copies of X.

Proof. In order to use Theorem 1.2.10, we must �nd a sequence (un)n∈Z of harmonic
functions such that Dα(un) = un−1. As we said in Remark 1.2.13, the proof of Theo-
rem 1.2.10 still holds if there exist some N ≥ 1 and a family of vectors (un,j)n∈Z,1≤j≤N
such that for every 1 ≤ j ≤ N and n ∈ Z, one has Dα(un,j) = un−1,j . Here, we
take the family of sequences (un,j,u)n≥0 = (P(nα1,nα2)P(0,j)(u))n≥0, 0 ≤ j ≤ α2 − 1,
u ∈ {1, x}, and (vn,i,u)n≥0 = (P(nα1,nα2)P(i,α2)(u))n≥0, 0 ≤ i ≤ α1 − 1, u ∈ {1, y}.

Lemma 4.3.6 implies that Dα(un,j,u) = un−1,j,u and Dα(vn,i,u) = vn−1,i,u for
every n ≥ 0, where u−1,j,u = v−1,i,u = 0. By Lemma 4.3.8, the span of this family of
vectors is dense in H(R2). Finally, Lemma 4.3.9 allows us to apply Theorem 1.2.10
to get the result.
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4.3.2 Rate of growth

In order to �nd an admissible rate of growth for the frequently hypercyclic vectors of
the di�erential operators, we will use Theorem 4.3.3.

Theorem 4.3.11. Let α = (α1, α2) ∈ N2
0 and X be a centred subgaussian random

variable with full support. Then there exists c > 0 such that almost surely, there exists
r0 > 0 such that

‖v‖r ≤ c
√

log(r)
er

r1/4

for every r ≥ r0, where v is de�ned in (4.3.1).

Proof. Let u ∈ {1, x, y}, 0 ≤ i ≤ α1−1 and 0 ≤ j ≤ α2, and set m := |α|. Recall that
‖p‖2,r = ‖p‖2,1rn for every r > 0 and for any homogeneous polynomial p of degree
n ≥ 0. By [2, inequality (2.4)] and Lemma 4.3.5, we have

‖P(nα1,nα2)(P(i,j)(u))‖2r � ‖P(nα1,nα2)(P(i,j)(u))‖22,r �
r2(nm+i+j+deg(u))

(nm+ i+ j + deg(u))!2
.

(4.3.2)
We show that the assumptions (i) and (ii) of Theorem 3.3.4 with Ak(r) = dkr/m,
r > 0, k ≥ 1, where d > e, are satis�ed for the series

∑
n≥0 P(nα1,nα2)(P(i,j)(u)).

Let r > 0. Some simple calculations yield

∑
n≥Ak(r)+1

r2(mn+i+j+deg(u))

(mn+ i+ j + deg(u))!2
≤

∑
n≥Ak(r)+1

r2mn

(mn)!2

=
∑
n≥1

r2m(n+Ak(r))

(m(n+Ak(r)))!2

≤ rAk(r)

(mAk(r))!2

∑
n≥1

r2mn

(mAk(r))2nm

� r2dkr

(dkr)!2
.

By using Stirling's formula, our task is now to prove that

sup
r>0

∑
k≥1

√
log
(dkrn
m

) ed
kr

dkdkr
√
dkr

<∞. (4.3.3)

By using the same arguments as in the proof of Proposition 4.1.2, it is enough to show
that for every M > e, the function

fM : ]1,∞[ −→ ]0,∞[, x 7−→
√

log(x)
ex

Mx
√
x
,

is non-increasing away from 0, uniformly in M > e, and converges to 0 when x goes
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to ∞. For any x > 1, we have

log(f(x)) =
log2(x)

2
− x log(M) + x− log(x)

2

= x

(
− log(M) + 1 +

log2(x)− log(x)

2x

)
.

If M > e then limx→∞ f(x) = 0. For any x > 1, we have

∂x log(f)(x) =
1

2 log(x)x
− log(M) + 1− 1

2x
.

Then ∂x log(f)(x) is negative if and only if 1 < 2x log(x)(log(M)−1 + 1/(2x)), which
holds ifM > e and x > e. Setting nowM = dk, the Dominated Convergence Theorem
allows us to conclude that (4.3.3) holds.

It remains to estimate the series∑
u∈{1,x}

α2−1∑
j=0

∞∑
n=0

‖P(nα1,nα2)(P(0,j)(u))‖2r +
∑

u∈{1,y}

α1−1∑
i=0

∞∑
n=0

‖P(nα1,nα2)(P(i,α2)(u))‖2r

(4.3.4)
By using (4.3.2), we see that

α2−1∑
j=0

∞∑
n=0

‖P(nα1,nα2)(P(0,j)(1))‖2r +

α1−1∑
i=0

∞∑
n=0

‖P(nα1,nα2)(P(i,α2)(1))‖2r

�
α2−1∑
j=0

∞∑
n=0

r2(nm+j)

(nm+ j)!2
+

α1−1∑
i=0

∞∑
n=0

r2(nm+i+α2)

(nm+ i+ α2))!2

=

∞∑
n=0

r2n

n!2

The same conclusion holds for u = x and u = y in (4.3.4). By Lemma 4.1.8, we
deduce that the series (4.3.4) is estimated by e2r/r1/2.

It is now easy to check that assumption (iii) of Theorem 3.3.4 is satis�ed with
(rk)k≥1 = (k)k≥1, and Theorem 4.3.3 can be applied.

4.4 Köthe sequence spaces

In this section, we study the growth of frequently hypercyclic functions of chaotic
weighted shifts de�ned on Köthe sequence spaces, see [71, Chapter 27]. Linear dy-
namics of shifts on such spaces were studied in [27].

De�nition 4.4.1. A Köthe matrix is a matrix A = (am,n)m,n≥0 of positive numbers
such that for all m,n ≥ 0, one has am,n ≤ am+1,n.

De�nition 4.4.2. Let 1 ≤ p ≤ ∞ and A be a Köthe matrix. The Köthe sequence
space of order p is de�ned as

λp(A) :=
{

(xn)n≥0 ∈ KN | ∀m ≥ 0,

∞∑
n=0

|xn|pam,n <∞
}
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if p <∞, and

λ∞(A) :=
{

(xn)n≥0 ∈ KN | ∀m ≥ 0, sup
n∈N
|xn|am,n <∞

}
.

These spaces are endowed with the seminorms ‖x‖m :=
(∑

n≥0 |xn|pam,n
)1/p

if p <

∞, and ‖x‖m := supn≥0 |xn|am,n if p =∞, for all m ≥ 0 and x ∈ λp(A).

We will need a probabilistic result.

Proposition 4.4.3 ([1, Proposition 1.8]). Let A = (ai,j)1≤i,j≤n be a real matrix
and let (Xi,j)1≤i,j≤n be independent standard Gaussian real random variables. De�ne
GA := (ai,jXi,j)1≤i,j≤n. For every 1 < p ≤ ∞, we have

E‖GA : `np −→ `n1‖ � ‖A ◦A : `np/2 −→ `n1/2‖
1/2 + ‖(A ◦A)t : `n∞ −→ `np∗/2‖

1/2.

Furthermore,

E‖GA : `n1 −→ `n1‖ � ‖A ◦A : `n1/2 −→ `n1/2‖
1/2 + max

1≤j≤n

√
log(j + 1)b∗j ,

where bj := ‖(ai,j)1≤i≤n‖2, 1 ≤ j ≤ n, and (b∗j )1≤j≤n is the non-increasing rearrange-
ment of (bj)1≤j≤n.

Lemma 4.4.4. Let e1, . . . , eN be the canonical basis of `Np , where 1 ≤ p ≤ ∞ and

N ≥ 1. Let a1, . . . , aN ∈ R and let (Xi)
N
i=1 be independent standard Gaussian real

random variables. Then there exists a constant c > 0, independent of N , such that
for every R ≥ 1, one has

P
(∥∥∥ N∑

n=1

anXnen

∥∥∥
p
> c
√
R
( N∑
n=1

|an|p
)1/p

)
≤ 1

eR

if 1 ≤ p <∞, and

P
(∥∥∥ N∑

n=1

anXnen

∥∥∥
∞
> c
√

log(N + 1)
√
R max

1≤n≤N
|an|

)
≤ 1

eR
.

Proof. De�ne f : RN −→ [0,∞[, x 7−→ ‖
∑N
n=1 anxnen‖p, X := (X1, . . . , XN ) and

S := ‖(an)1≤n≤N‖p, and let p∗ be the conjugate exponent of p. We can assume that
S 6= 0. For every x, y ∈ RN , one has that

|f(x)− f(y)| ≤
∥∥∥ N∑
n=1

an(xn − yn)en

∥∥∥
p

=
( N∑
n=1

|an|p|xn − yn|p
)1/p

≤ max
1≤n≤N

|xn − yn|S ≤ ‖x− y‖2S,

with the obvious modi�cations for p =∞. By Markov's inequality and [24, Theorem
5.5], we get for any λ > 0 that

P
(
f(X) >

R

λ
+
λS2

2
+ E(f(X))

)
≤ e−RE

(
eλ(f(X)−E(f(X)))

)
e−

λ2S2

2 ≤ e−R.
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Choosing λ =
√

2R/S yields

P
(
f(X) >

√
2RS + E(f(X))

)
≤ e−R.

Now, notice that ‖
∑N
n=1 anXnen‖p = ‖GA : `Np∗ −→ `N1 ‖, where A is the diagonal

matrix with entries (an)1≤n≤N . Using Proposition 4.4.3, we get E(f(X)) . S if
1 ≤ p < ∞ and E(f(X)) .

√
log(N + 1)S if p = ∞, and this combined with the

previous inequality concludes the proof.

The next theorem is the main result of this section.

Theorem 4.4.5. Let 1 ≤ p ≤ ∞ and A be a Köthe matrix. Let T be a chaotic
weighted shift on λp(A) with weight sequence (wn)n≥1 such that

∑
n≥0Xnen/βn is

almost surely convergent, where (Xn)n≥0 is a sequence of i.i.d. standard Gaussian
random variables. Let (Aj)j≥1 be a non-decreasing sequence of positive functions
de�ned on N. Assume that the following conditions hold, where a := 1/2 if 1 ≤ p <∞
and a := 1 if p =∞:

(i) the quantity

sup
m≥0

∑
j≥1

log(Aj+1(m))a
∥∥∥(a1/p

m,n

βn

)
n≥Aj(m)+1

∥∥∥
`p

is �nite, with the usual modi�cation for p =∞,

(ii) the family (Aj(m)−1)j,m≥1 is q-summable for some q > 0.

Then there exists c > 0 such that almost surely, there exists m0 ≥ 0 such that∥∥∥∥ ∞∑
n=0

Xn

βn
en

∥∥∥∥
m

≤ c log(A1(m))a
∥∥∥(a1/p

m,n

βn

)
n≥0

∥∥∥
`p

for every m ≥ m0, with the usual modi�cation for p =∞.

Proof. For every a0, . . . , aN ∈ K and any m ≥ 0, we have∥∥∥∥ N∑
n=0

anen

∥∥∥∥
m

= ‖(|an|a1/p
m,n)0≤n≤N‖p.

Therefore, the theorem is proved by repeating verbatim the proof of Theorem 3.3.4,
but by using Lemma 4.4.4 instead of Lemma 3.1.13.

We now apply the previous theorem to the space of rapidly decreasing sequences
s de�ned as

s :=

{
x ∈ KN | for all 0 ≤ t <∞,

∞∑
n=0

|xn|et log(n+1) <∞
}
.

This space is a Köthe sequence space with matrix A = (m
log(n)
k )k,n≥0, where (mk)k≥0

can be any increasing sequence of positive numbers tending to in�nity and setting
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m
log(0)
k = 1 for all k ≥ 0. By [27, Proposition 4.1] and [27, Proposition 3.3], we have

s = λp(A) for any 1 ≤ p ≤ ∞.
We will �nd an admissible rate of growth for the frequently hypercyclic sequences

of the operator
T : s −→ s, x 7−→ ((n+ 1)xn+1)n≥0.

To end this section, we will show that this operator is conjugate to a natural operator
on the space of 2π-periodic in�nitely di�erentiable functions.

First of all, let us prove that
∑
n≥0Xnen/βn is almost surely frequently hypercyclic

for T , where (en)n≥0 is the canonical basis of s, (Xn)n≥0 is a sequence of i.i.d. standard
Gaussian random variables and βn := n! for all n ≥ 0. Let k ≥ 0, then we have

∞∑
n=1

√
log(n)

∥∥∥ en
βn

∥∥∥
k

=

∞∑
n=1

√
log(n)

m
log(n)
k

n!
<∞.

By Theorem 1.3.1, the random series
∑
n≥0Xnen/βn is almost surely convergent and

frequently hypercyclic for T . In the sequel, we will assume that
∑
k≥0m

−q
k converges

for some q > 0 and that, without loss of generality, mk ≥ 1 for all k ≥ 0.
Let 1 ≤ p <∞. Our aim is to prove that

sup
k≥0

∑
j≥1

√
log(Aj+1(k))

( ∑
n≥Aj(k)+1

m
log(n)
k

|βn|p

)1/p

is �nite, where Aj(k) := djm
1/p
k with d > e and all j ≥ 1, k ≥ 0.

Some simple calculations yield

∑
n≥Aj(k)+1

m
log(n)
k

|βn|p
≤

∑
n≥Aj(k)+1

mn
k

n!p
=
∑
n≥1

m
n+Aj(k)
k

(n+Aj(k))!p

≤
m
Aj(k)
k

Aj(k)!p

∑
n≥1

mn
k

Aj(k)np

=
m
Aj(k)
k

Aj(k)!p
1

djp − 1
.

By using Stirling's formula, our task is now to prove that

sup
k≥0

∑
j≥1

√
log(Aj(k))

eAj(k)

djAj(k)
√
Aj(k)

<∞. (4.4.1)

By using the same arguments as in the proof of Proposition 4.1.2, it is enough to show
that for every M > e, the function

fM : ]1,∞[ −→ ]0,∞[, x 7−→
√

log(x)
ex

Mx
√
x
,

is non-increasing away from 0, uniformly inM > e, and converges to 0 when x goes to
∞. This has already been done in the proof of Theorem 4.3.11. Setting now M = dj ,
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the Dominated Convergence Theorem allows us to conclude that (4.4.1) holds, and
Theorem 4.4.5 can be applied to T .

For p =∞, similar calculations show that

sup
k≥0

∑
j≥1

log(Aj+1(k))
∥∥∥(mlog(n)

k

βn

)
n≥Aj(k)+1

∥∥∥
`∞

<∞,

and we can use Theorem 4.4.5.
We have thus obtained the following result.

Proposition 4.4.6. Let T : s −→ s, x 7−→ ((n + 1)xn+1)n≥0. Set a := 1/2 if
1 ≤ p < ∞ and a := 1 if p = ∞. Then the random vector

∑
n≥0Xnen/n! is almost

surely frequently hypercyclic for T , where (Xn)n≥0 is a sequence of i.i.d. standard
Gaussian random variables. Furthermore, if

∑
k≥0m

−q
k converges for some q > 0

then, for any 1 ≤ p ≤ ∞, there exists c > 0 such that almost surely, there exists
k0 ≥ 0 such that ∥∥∥∥ ∞∑

n=0

Xn

n!
en

∥∥∥∥
k

≤ c log(mk)a
( ∞∑
n=0

m
log(n)
k

n!p

)1/p

for every k ≥ k0, with the usual modi�cation for p =∞.

The space s is isomorphic to many Fréchet spaces, see [71, Example 29.4(1)]. Here,
we consider the space C∞2π(R) of 2π-periodic in�nitely di�erentiable complex-valued
functions on R, endowed with the seminorms

‖f‖m := max
0≤k≤m

‖f (k)‖L2([−π,π]), f ∈ C∞2π(R), m ∈ N.

This space is isomorphic to s, see [71, Example 29.5(1)]. Every function f ∈ C∞2π(R)
has a representation f =

∑
n∈Z ane

inx, where (an)n∈Z is the sequence of Fourier
coe�cients of f .

Let us de�ne the operator B : E −→ E de�ned on the subspace E := {f =∑
n∈N ane

inx ∈ C∞2π(R)} by

B(f) = e−ix∂xf, f ∈ E.

This operator is a weighted shift with respect to the Fourier coe�cients and with
sequence of weights (in)n∈N. The space E is also isomorphic to s via the isomorphism
F : E −→ s, f =

∑
n∈N ane

inx 7−→ (an)n∈N. For any m ≥ 0 and f =
∑
n∈N ane

inx ∈
B, we have

‖f‖2m = max
0≤k≤m

‖f (k)‖2L2([−π,π]) = max
0≤k≤m

∥∥∥ ∞∑
n=0

iknkane
inx
∥∥∥2

L2([−π,π])

= 2π max
0≤k≤m

∞∑
n=0

n2k|an|2 = 2π

∞∑
n=0

n2m|an|2 =
∥∥∥ ∞∑
n=0

nmane
inx
∥∥∥2

L2([−π,π])
.

By using the previous proposition, we can obtain an admissible rate of growth
for the frequently hypercyclic functions of B. Notice that if (Xn)n≥0 is a standard
Gaussian sequence, then so is (Xn/i

n)n≥0.
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Proposition 4.4.7. Let B : E −→ E, f 7−→ e−ix∂xf . Then the random vector∑
n≥0Xne

inx/(inn!) is almost surely frequently hypercyclic for B, where (Xn)n≥0 is
a sequence of i.i.d. standard Gaussian random variables. Furthermore, there exists
c > 0 such that almost surely, there exists k0 ≥ 0 such that∥∥∥∥ ∞∑

n=0

nk
Xn

inn!
einx

∥∥∥∥
L2([−π,π])

≤ c
√

2k

( ∞∑
n=0

n2k

n!2

)1/2

.

for every k ≥ k0.

Proof. It su�ces to use Proposition 4.4.6 with the sequence (mk)k≥0 = (e2k)k≥0 and
p = 2 and to notice that

F−1

( ∞∑
n=0

Xn

inn!
en

)
=

∞∑
n=0

Xn

inn!
einx

is frequently hypercyclic for B whenever
∑
n≥0Xn/(i

nn!)en is so for T .

4.5 Optimality

So far we have found an admissible rate of growth for some chaotic weighted shifts
on H(C) or H(D). A natural question is to �nd the optimal growth. The function

r 7−→
√∑

n≥0 ‖en‖2r/|βn|2, up to a logarithmic factor, has been proved to be an

admissible growth for the weighted shifts considered in the previous sections. In

[34], Drasin and Saksman proved that r 7−→
√∑

n≥0 r
2/n!2 is in fact an admissible

growth for the di�erentiation operator and is the optimal one, by constructing a
frequently hypercyclic function with this rate of growth. In [75] and [76], Mouze and
Munnier used the same construction to get a holomorphic function whose growth is
the optimal one for some weighted shifts on H(D). This construction relied on the
so-called Rudin-Shapiro polynomials.

In this section, we do not pretend to obtain the optimal rate of growth for every
chaotic weighted shift. Instead, we show that the above-mentioned construction can
be generalized to any chaotic weighted shift on H(C) or H(D) in order to get a
frequently hypercyclic vector. Then, it would remain to calculate the growth of this
function and prove that it is optimal.

This section is divided into four parts. First, we de�ne some notations and explain
the construction of the frequently hypercyclic function. Then, this function is proved
to be well-de�ned. Finally, we prove in two parts that it is frequently hypercyclic for
the given chaotic weighted shift.

Notations. Let T : E −→ E be a chaotic weighted shift on the Fréchet space
E = H(C) or E = H(D), with respect to the basis of monomials (en)n≥0 and with
sequence of weights (wn)n≥1. As usual, we de�ne βn := w1 . . . wn for every n ≥ 1,
and β0 := 1.

If q =
∑n
j=0 bjej is a polynomial of degree n ≥ 0, we de�ne ‖q‖l1 :=

∑n
j=0 |bj |.

Let (qk)k≥1 be a dense sequence of polynomials with rational coe�cients, and let
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(lk)k≥1 be a sequence of positive integers such that ‖qk‖l1 ≤ lk for every k ≥ 1 and

limk→∞ lk = ∞. For each k ≥ 1, set qk =
∑dk
j=0 b

(k)
j ej , where dk := deg(qk), and

de�ne q̃k :=
∑dk
j=0 βjb

(k)
j ej .

For each positive integer N ≥ 1, choose a �nite sequence (εNn )N−1
n=0 of complex

numbers of modulus equal to 1 and such that at least half of them are equal to 1;
de�ne pN :=

∑N−1
n=0 ε

N
n en. In [34], [75] and [76], the Rudin-Shapiro polynomials have

in fact been taken. But the properties of those polynomials are only used to bound
the sup-norm, which we do not perform here.

Choose any monotone sequence (δk)k≥1 and (rk)k≥1 of positive real numbers such
that limk→∞ δk = 0 and limk→∞ rk = w, where w := ∞ if E = H(C), or w := 1 if
E = H(D). We partition the set of positive even integers into

Ak :=
{

2k(2j − 1) | j ≥ 1
}
, k ≥ 1.

Let (αk)k≥1, (jn)n≥1, (an)n≥1 and (Nn)n≥1 be strictly increasing sequences of
positive integers satisfying the following properties: for every k ≥ 1 and every n ∈ Ak
with an ≥ αk,

(1) αk > dk,

(2) ‖q̃k‖l1 ≤ αk,

(3) max0≤l≤dk |βl|lk
∑
j≥jnk

rjk
|βj | ≤ 1/2k, where for each k ≥ 1, nk is the smallest

m ∈ Ak such that am ≥ αk,

(4) max0≤l≤dk |βl|lk
∑
j≥αk

rjk
|βj | ≤ δk,

(5)
∑
j≥Cαk

j
|βj |r

j
k ≤ δk, where C > 0 is the constant in (9),

(6) an . jn,

(7) jn+1 ≤ c(1)
k jn for some c(1)

k > 1,

(8) (Nn − 1)αk + dk < jn+1 − jn ≤ c(2)
k bNn/2c for some c(2)

k > 0,

(9) Can ≤ jn+2 − jn+1 for some C > 0,

(10) jn ≤ c(3)
k

∑n−1
m∈Ak,am≥αk(jm+1 − jm) for some c(3)

k > 0.

The constants c(1)
k , c(2)

k and c(3)
k in inequalities (7), (8) and (10) can depend on k.

Since T is chaotic, such a sequence (αk)k≥1 can always be chosen to satisfy proper-
ties (1) to (5), given (jn)n≥1 and (an)n≥1. Furthermore, note that the properties (6)
to (10) can also always be satis�ed, whether the shift is chaotic or not. For example,
in [34], the sequences are set to an = n/10, jn = n2 and Nn = bn/αkc for the di�eren-
tiation operator, while in [75] and [76], an = 2n−1, jn = 2n and Nn = b2n−1/αkc for
the weighted Taylor shifts. However, that does not mean that these are good choices
for every chaotic shift. These sequences should be chosen in order to ensure the right
optimal rate of growth.
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For each n ≥ 1, de�ne In := {jn, . . . , jn+1 − 1} and if n ∈ Ak, k ≥ 1,

Qn :=
∑
j∈In

c
(k)
j−jn
βj

ej−jn ,

where the sequence of coe�cients (c
(k)
i )

jn+1−1−jn
i=0 is such that

pNn(zαk)q̃k(z) =

jn+1−1−jn∑
j=0

c
(k)
j zj , z ∈ C,

and de�ne

Pn :=


0 if n is odd,

0 if n ∈ Ak and an < αk,

zjnQn(z) if n ∈ Ak and an ≥ αk.
(4.5.1)

Observe that (8) ensures that the degree of pNn(zαk)q̃k(z) is at most jn+1 − jn − 1,
and Qn is well-de�ned. For the sake of clarity, we de�ne for each k ≥ 1 the set
Bk := {n ∈ Ak | an ≥ αk}.

Finally, de�ne f :=
∑
n≥1 Pn. This function will be proved to be well-de�ned and

frequently hypercyclic for T .

Proposition 4.5.1. The function f =
∑
n≥1 Pn is well-de�ned and frequently hyper-

cyclic for T , where the polynomials Pn, n ≥ 1, are de�ned in (4.5.1).

The function f is well-de�ned. Let k ≥ 1 and n ∈ Bk. We �rst study the blocks
of coe�cients of the polynomial Pn. For any z ∈ C, we have

pNn(zαk)q̃k(z) =

(Nn−1∑
j=0

εNnj zjαk
)( dk∑

l=0

βlb
(k)
l zl

)
=

Nn−1∑
j=0

dk∑
l=0

εNnj βlb
(k)
l zjαk+l.

We have (j + 1)αk − jαk − dk > 0 for any j ≥ 0 since αk > dk by (1). This implies
that c(k)

jαk+l = εNnj βlb
(k)
l for every 0 ≤ j ≤ Nn − 1 and 0 ≤ l ≤ dk. Therefore,

Qn =

Nn−1∑
j=0

dk∑
l=0

εNnj βlb
(k)
l

βjαk+l+jn

ejαk+l

and

Pn =

Nn−1∑
j=0

dk∑
l=0

εNnj βlb
(k)
l

βjαk+l+jn

ejαk+l+jn . (4.5.2)

To be clearer, the coe�cients of Pn are divided into distinct blocks as follows: the
�rst one starts from degree jn and ends at jn + dk, then the second one starts from
degree jn + αk and ends at jn + αk + dk, and so on; see Figure 4.1.
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jn jn + dk jn + αk jn + αk + dk jn+1

N

Figure 4.1: Blocks of coe�cients of Pn: bold lines indicate possibly non-zero coe�-
cients.

Let 0 < r < ω and let k0 ≥ 1 be such that r ≤ rk0 . We have by using (4.5.2), the
triangle inequality, the fact that ‖qk‖l1 ≤ lk, nk = minBk and (3),

∑
n≥1

‖Pn‖r ≤
∑
k≥1

∑
n∈Bk

Nn−1∑
j=0

dk∑
l=0

|εNnj |
|βl||b(k)

l |rαkj+l+jn
|βαkj+l+jn |

≤
∑
k≥1

max
0≤l≤dk

|βl|lk
∑
n∈Bk

Nn−1∑
j=0

dk∑
l=0

rαkj+l+jn

|βαkj+l+jn |

≤
k0−1∑
k=1

max
0≤l≤dk

|βl|lk
∑
j≥jnk

rjk0
|βj |

+
∑
k≥k0

max
0≤l≤dk

|βl|lk
∑
j≥jnk

rjk
|βj |

≤
k0−1∑
k=1

max
0≤l≤dk

|βl|lk
∑
j≥jnk

rjk0
|βj |

+
∑
k≥k0

1

2k
.

Thus the series
∑
n≥0 Pn converges on any disk of radius 0 < r < w and centred at

the origin, and the function f is then well-de�ned.

Frequent hypercyclicity I. Let k ≥ 1 and n ∈ Bk. De�ne

B(k)
n :=

{
jn + jαk ∈ In | εNnj = 1, 0 ≤ j ≤ Nn − 1

}
,

and let s ∈ B(k)
n . We are going to show that

‖T s(f)− qk‖rk . δk. (4.5.3)

Write s = jn + mαk with m ∈ {0, . . . , Nn − 1}. For any l ≥ 1 and ñ ∈ Bl such
that ñ < n, we have jñ+1− 1 < jn since (jñ)ñ≥1 is strictly increasing, and T s(ej) = 0
for any j ∈ Iñ. Therefore, by continuity and linearity of T , we have

T s(f) = T s(Pn) +
∑
ñ>n

T s(Pñ) = T s(Pn) +
∑
k̃≥1

∑
ñ∈B

k̃
,ñ>n

∑
j∈Iñ

c
(k̃)
j−jñ
βj−s

ej−s.

It follows by (4.5.2) and de�nition of T that

T s(Pn) =

Nn−1∑
j=m

dk∑
l=0

εNnj βlb
(k)
l

βjαk+l+jn−s
ejαk+l+jn−s.
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For j = m and since εNnm = 1, we have

dk∑
l=0

εNnm βlb
(k)
l

βmαk+l+jn−jn−mαk
emαk+l+jn−jn−mαk =

dk∑
l=0

b
(k)
l el = qk.

Observe by (4.5.2) that the coe�cients of Pn of degree s + dk + 1 ≤ j ≤ jn + (m +
1)αk − 1 = s− 1 + αk are equal to zero. Therefore,

T s(f)− qk =

jn+1−1∑
j=s+αk

c
(k)
j−jn
βj−s

ej−s +
∑
k̃≥1

∑
ñ∈B

k̃
,ñ≥n+1

∑
j∈Iñ

c
(k̃)
j−jñ
βj−s

ej−s.

Denote by S1 the �rst sum and by S2 the second series. By the triangle inequality
and the fact that ‖qk‖l1 ≤ lk, we have

‖S1‖rk ≤
jn+1−1∑
j=s+αk

|c(k)
j−jn |
|βj−s|

rj−sk ≤
jn+1−1∑
j=s+αk

‖q̃k‖l1
|βj−s|

rj−sk

≤ max
0≤l≤dk

|βl|lk
∑

j≥s+αk

rj−sk

|βj−s|

= max
0≤l≤dk

|βl|lk
∑
j≥αk

rjk
|βj |
≤ δk, (4.5.4)

where the last inequality holds by (4). For S2, again by the triangle inequality we get
that

‖S2‖rk ≤
∑
k̃≥1

∑
ñ∈B

k̃
,ñ≥n+1

∑
j∈Iñ

|c(k̃)
j−jñ |
|βj−s|

rj−sk .

For every k̃ ≥ 1, ñ ∈ Bk̃ and j ∈ Iñ, by (2) and (6), one has

|c(k̃)
j−jñ | ≤ ‖q̃k̃‖l1 ≤ αk̃ ≤ añ . jñ ≤ j,

which implies

‖S2‖rk .
∑
k̃≥1

∑
ñ∈B

k̃
,ñ≥n+1

∑
j∈Iñ

j

|βj−s|
rj−sk ≤

∑
j≥jn+2

j

|βj−s|
rj−sk .

Note that n + 1 is not in Ak, allowing us to sum from jn+2. Since s ≤ jn+1 and
Cαk ≤ Can ≤ jn+2 − jn+1 for some C > 0 by (9), we have

‖S2‖rk .
∑

j≥Cαk

j

|βj |
rjk ≤ δk, (4.5.5)

where the last inequality holds by (5).
Combining the inequalities (4.5.4) and (4.5.5) shows (4.5.3).
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Frequent hypercyclicity II. Let k ≥ 1, we now want to show that the set Dk :=⋃
n∈Bk B

(k)
n has positive lower density. This will �nally conclude that the function f

is frequently hypercyclic for T .
Let N ≥ 1 be large enough. There exists m ∈ Bk such that either jm ≤ N < jm+1

or jm+1 ≤ N < jm+2. Assume �rst that jm ≤ N < jm+1. Then we get, since for
every n ≥ 1 at least half of the coe�cients of pNn are equal to 1 and by using (8),
(10) and (7),∣∣Dk ∩ {0, . . . , N}

∣∣
N + 1

≥
∑m−1
n∈Bk |B

(k)
n |

N + 1
&

∑m−1
n∈BkbNn/2c
N + 1

≥ 1

c
(2)
k c

(3)
k

jm
jm+1

≥ 1

c
(1)
k c

(2)
k c

(3)
k

.

Now, assume that jm+1 ≤ N < jm+2. By (8) and (10), since m + 1 does not belong
to Ak and for every n ≥ 1 at least half of the coe�cients of pNn are equal to 1, we
get that ∣∣Dk ∩ {0, . . . , N}

∣∣
N + 1

≥
∑m+1
n∈Bk |B

(k)
n |

N + 1
&

1

c
(2)
k c

(3)
k

jm+2

jm+2
=

1

c
(2)
k c

(3)
k

.

Taking the limit as N goes to ∞ shows that the set Dk has positive lower density.

4.6 Conclusion

As discussed in Section 4.5, one natural question is to �nd the optimal rate of growth
for chaotic weighted shifts. Theorem 3.1.17 says that the function Sf associated with
the entire function f is always, up to a logarithmic factor, an admissible rate of growth
that is valid outside some set of �nite logarithmic measure. And by Theorem 3.3.4,
the inequality can even sometimes hold everywhere. Then one may ask whether the
rate of growth found in Theorem 4.1.1 holds everywhere for any chaotic weighted
shift.

In [80, Proposition 6], it is proved that the logarithmic factor is optimal for the
random frequently hypercyclic vector associated with the di�erentiation operator.
But it is known by [34, Theorem 1.1] that the optimal growth for the frequently
hypercyclic vectors is actually the function Sf , where f is the exponential function.
With a careful reading of the proofs, one can see that this logarithmic factor comes
from a probabilistic result, namely Lemma 3.1.13.

The function Sf associated with a chaotic weighted shift is also the optimal rate
of growth for almost any weighted Taylor shifts considered in Subsection 4.2.2, except
possibly for T1/2, see [76, Theorem 1.3]. And [15, Theorem 6] indicates that this
function could also be the optimal rate of growth for the Dunkl operator.

Therefore, we might think that for every chaotic weighted shift de�ned on H(D)
or H(C), the map Sf is actually always the optimal rate of growth. This claim is
supported by the construction of a frequently hypercyclic vector in Section 4.5 since
this led to the proof of the optimality for the di�erentiation operator in [34] and for
some weighted Taylor shifts in [75] and [76].

Finally, we point out that even if optimality were proved, the probabilistic meth-
ods of this chapter may still be of some interest. Recall that by Theorem 0.1.19,
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the chaoticity of a weighted shift is equivalent to the unconditional convergence of∑
n≥0 en/βn. Therefore, our results say that a random perturbation of the coe�cients

of this series could nearly gives the optimal rate of growth. We might expect that a
frequently hypercyclic function with the optimal growth would be more complicated
to construct. Furthermore, these results also imply that, in a measure-theoretical
sense, there are many functions with a quasi-optimal growth.

We then ask the following questions to conclude Chapter 4.

Question 4.6.1. Let T : H(C) −→ H(C) be a chaotic weighted shift with weight
sequence (wn)n∈N0

. Is the map

ST : [0,∞[ −→ [0,∞[, r 7−→

√√√√ ∞∑
n=0

r2n∏n
j=1 w

2
n

optimal for the growth of frequently hypercyclic functions of T? If not, for which class
of shifts T is the map ST the optimal rate of growth?

Question 4.6.2. Let T : H(D) −→ H(D) be a chaotic weighted shift with weight
sequence (wn)n∈N0 . Is the map

ST : [0, 1[ −→ [0,∞[, r 7−→

√√√√ ∞∑
n=0

r2n∏n
j=1 w

2
n

optimal for the growth of frequently hypercyclic functions of T? If not, for which class
of shifts T is the map ST the optimal rate of growth?
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Throughout the appendix, let E be a separable Fréchet space over the �eld K = R or
C.

A.1 Bochner spaces

In this section, we de�ne the Bochner spaces for Fréchet space-valued functions. These
spaces are de�ned in the same way as the classical Bochner spaces, see [50, Chapter
1] for the Banach case. We will prove that they are Fréchet spaces too. This result is
stated and proved in [64, Proposition 1], but it might have been proved before.

De�nition A.1.1. Let (S,B, µ) be a measure space. Let 1 ≤ p < ∞. We de�ne
the space Lp(S,B, µ;E) as the space of all equivalence classes of measurable functions
f : S −→ E for which ∫

S

‖f‖pdµ <∞

for all continuous seminorms ‖ · ‖ on E. This space is also noted Lp(S;E).

For a given non-decreasing sequence (‖ · ‖k)k≥1 of seminorms of E generating its
topology, we de�ne for each real number 1 ≤ p <∞ and integer k ≥ 1 the seminorm
‖ · ‖p,k by

‖f‖p,k :=
(∫

S

‖f‖pkdµ
)1/p

for every f ∈ Lp(S;E).
We now prove that the space Lp(S;E) endowed with this sequence of seminorms

is a Fréchet space. The proof is actually a straightforward modi�cation of the scalar
case, see [87, Theorem 3.11].

Theorem A.1.2. Let 1 ≤ p <∞. The space Lp(S;E) endowed with the sequence of
seminorms (‖ · ‖p,k)k≥1 is a Fréchet space.

Proof. First we show that (‖ · ‖p,k)k≥1 is a separating sequence. Let f ∈ Lp(S;E) be
such that ‖f‖p,k = 0 for all k ∈ N0. Then for each k ∈ N0, there exists a set Ak ⊆ E
of measure zero such that ‖f‖k = 0 outside Ak. Set A :=

⋃
k≥1Ak. This set has

measure zero, and f = 0 outside A.

141
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We now show that every Cauchy sequence is convergent. Let (fn)n≥1 be Cauchy
in Lp(S;E). There exists an increasing sequence (nk)k≥1 of positive integers such
that for all k ≥ 1, one has

‖fnk+1
− fnk‖p,k ≤

1

2k
.

Fix n ≥ 1. Set gk,n :=
∑k
j=1 ‖fnj+1

− fnj‖n for each k ≥ 1, and gn :=
∑
j≥1 ‖fnj+1

−
fnj‖n. By using the Minkowski inequality in Lp(S;K), we have supk≥1 ‖gk,n‖Lp(S) <
∞, implying that ∫

S

lim inf
k→∞

gpk,ndµ ≤ lim inf
k→∞

∫
S

gpk,ndµ <∞

by Fatou's lemma, see [87, Lemma 1.28]. We deduce that gn <∞ almost everywhere.
Therefore, almost everywhere, we have

∑
j≥1 ‖fnj+1 − fnj‖n < ∞ for every n ≥ 1.

Since E is complete, we deduce that

fnk = fn1
+

k−1∑
j=1

(fnj+1
− fnj )

converges to some function f almost everywhere when k goes to ∞. On a set of mea-
sure zero, we can set f and each fk, k ≥ 1, to 0, and (fnk)k≥1 converges everywhere.
Thus f is measurable by Lemma 1.1.1. We must show that f ∈ Lp(S;E) and that
(fn)n≥1 converges to f in Lp(S;E). Let k ≥ 1 and ε > 0. There exists N ≥ 1 such
that for all n,m ≥ N , one has ‖fn − fm‖p,k < ε. By Fatou's lemma, we get∫

S

‖f − fm‖pkdµ ≤ lim inf
j→∞

∫
S

‖fnj − fm‖
p
kdµ ≤ ε

p

for all m ≥ N . We deduce that f = f − fm + fm ∈ Lp(S;E), and limm→∞ ‖f −
fm‖p,k = 0 for every k ≥ 1.

As in the scalar case, the previous proof shows that a Cauchy sequence in Lp(S;E)
has an almost everywhere convergent subsequence.

Lemma A.1.3. Let 1 ≤ p < ∞. Let (fn)n∈N be a sequence of measurable functions
converging to f in Lp(S;E). Then there exists an increasing sequence (nk)k∈N such
that limk→∞ fnk = f almost everywhere.

A.2 γ-radonifying operators

We will now state the main property of γ-radonifying operators used in this work,
namely the ideal property. The proof is given in [51, Theorem 9.1.10] for maps with
values in a Banach space. Since the de�nition given there is not De�nition 0.5.8 but
an equivalent one, we will give the relevant de�nitions for the Fréchet space case. All
the proofs of the stated results remain the same as in [51], see the references given in
each result.

In the remainder of this section, let (gn)n∈N be a standard Gaussian sequence,
that is, an i.i.d. sequence of Gaussian random variables with mean 0 and variance 1.
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De�nition A.2.1. Let H be a separable Hilbert space and 1 ≤ p < ∞ be a real
number. A linear map T : H −→ E is γ-summing if

supE
(∥∥∥ k∑

j=0

gjT (hj)
∥∥∥p) <∞

for all continuous seminorms ‖ · ‖ on E, where the supremum is taken over all �nite
orthonormal systems (hj)

k
j=0 in H. The space of all γ-summing operators is denoted

by γp∞(H,E).

By the Kahane-Khintchine inequalities, see [51, Theorem 6.2.6], all the spaces
γp∞(H,E), 1 ≤ p <∞, are equal. In [66, Chapitre 3, Théorème IV.1], these inequal-
ities are stated in a Banach space framework, but the proof carries over verbatim to
the Fréchet space case.

Lemma A.2.2 ([51, p. 255]). Every γ-summing map T : H −→ E is continuous.

Proof. Let ‖ · ‖ be a continuous seminorm on E. Since T is γ-summing, there exists
some M > 0 such that ‖T (h)‖ ≤M‖h‖H for all h ∈ H. This yields the continuity of
T .

For the remainder of this section, let (‖ · ‖n)n∈N0
be a sequence of seminorms of

E generating its topology.

De�nition A.2.3. Let H be a separable Hilbert space and let 1 ≤ p <∞. For each
n ∈ N0 and every T ∈ γp∞(H,E), we de�ne

‖T‖γp∞(H,E),n := supE
(∥∥∥ k∑

j=0

gjT (hj)
∥∥∥p
n

)1/p

,

where the supremum is taken over all �nite orthonormal systems (hj)
k
j=0 in H.

Endowed with the sequence of seminorms (‖ · ‖γp∞(H,E),n)n∈N0 de�ned above, the
space γp∞(H,E) is complete, as the next result says.

Proposition A.2.4 ([51, Proposition 9.1.2]). Let H be a separable Hilbert space and
1 ≤ p <∞. The space γp∞(H,E) is a Fréchet space.

The γ-radonifying operators will be de�ned as the limit of �nite rank operators.

De�nition A.2.5. Let H be a separable Hilbert space. For h∗ ∈ H∗ and x ∈ E,
de�ne the linear map

h∗ ⊗ x : H −→ E, h 7−→ h∗(h)x.

A �nite rank operator T : H −→ E is a linear map of the form T =
∑N
n=1 h

∗
n ⊗ xn,

where h∗1, . . . , h
∗
N ∈ H∗ are orthonormal and x1, . . . , xN ∈ E, N ≥ 1.

Every �nite rank operator is γ-summing, see [51, Proposition 9.1.3].
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De�nition A.2.6. Let H be a separable Hilbert space and 1 ≤ p < ∞. The space
γp(H,E) is de�ned as the closure in γp∞(H,E) of the �nite rank operators. The
elements of γp(H,E) are called γ-radonifying operators.

As with the γ-summing operators, all the spaces γp(H,E), 1 ≤ p <∞, are equal.
We now state the ideal property.

Theorem A.2.7 ([51, Theorem 9.1.10]). Let T : H −→ E be a γ-radonifying operator
on a separable Hilbert space H. Let G be another separable Hilbert space, F be another
separable Fréchet space, and let S : G −→ H and U : E −→ F be continuous and
linear maps. Then the map UTS is γ-radonifying.

The last result states that De�nitions 0.5.8 and A.2.6 are equivalent.

Theorem A.2.8 ([51, Theorem 9.1.17]). Let H be a separable Hilbert space and
1 ≤ p < ∞. Let (hn)n∈N be an orthonormal basis of H and T : H −→ E be a
continuous linear map. Then T ∈ γp(H,E) if and only if

∑
n≥0 gnT (hn) converges

in Lp(Ω;E) and if and only if
∑
n≥0 gnT (hn) converges almost surely.

A.3 Stochastic calculus in Fréchet spaces

We will give a proof of Theorems 2.1.4 and 2.1.6 in this section. We will need some
results. First, we recall some topologies on a Fréchet space E and its dual E∗. Our
main references are [71] and [89].

De�nition A.3.1. Let F be the set of all �nite sets of E∗. The topology generated
by the seminorm system (pF )F∈F , where

pF : E −→ [0,∞[, y 7−→ sup
x∗∈F

|x∗(y)|,

for each F ∈ F , is called the weak topology on E and is denoted by σ(E,E∗).

De�nition A.3.2. Let F be the set of all �nite sets of E. The topology generated
by the seminorm system (pF )F∈F , where

pF : E∗ −→ [0,∞[, x∗ 7−→ sup
y∈F
|x∗(y)|,

for each F ∈ F , is called the weak topology on E∗ and is denoted by σ(E∗, E).

Recall that a set A ⊆ F of a vector space F is absolutely convex if it is convex
and λx ∈ A for all scalars λ ∈ K such that |λ| ≤ 1 and x ∈ A.

De�nition A.3.3. LetM be the set of all absolutely convex and σ(E∗, E)-compact
sets of E∗. The topology generated by the seminorm system (pM )M∈M, where

pM : E −→ [0,∞[, y 7−→ sup
x∗∈M

|x∗(y)|,

for each M ∈M, is called the Mackey topology on E and is denoted by τ(E,E∗).
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De�nition A.3.4. LetM be the set of all absolutely convex and σ(E,E∗)-compact
sets of E. The topology generated by the seminorm system (pM )M∈M, where

pM : E∗ −→ [0,∞[, x∗ 7−→ sup
y∈M
|x∗(y)|,

for each M ∈M, is called the Mackey topology on E∗ and is denoted by τ(E∗, E).

We will need Proposition A.3.6 in the proof of Theorem 2.1.4. It is proved in the
given reference for Banach spaces, but we give the proof for the sake of completeness.

First, we need a preliminary lemma. Recall that a map R : E∗ −→ E is positive
if x∗Rx∗ ≥ 0 for all x∗ ∈ E∗, and is symmetric if x∗Ry∗ = y∗Rx∗ for all x∗, y∗ ∈ E∗.

Lemma A.3.5 ([94, Lemma 4 and its proof]). Let R : E∗ −→ E be a positive
symmetric map. Then there exists a Hilbert space HR and a continuous linear map
iR : H∗R −→ E such that R = iRIi

∗
R, where I : HR −→ H∗R is the canonical conjugate-

linear operator. More precisely, HR is the completion of E∗/M under the norm
induced by R, given by 〈x∗+M,y∗+M〉HR = x∗Ry∗, x∗, y∗ ∈ E∗, where M = {x∗ ∈
E∗ | x∗Rx∗ = 0}, and i∗R : E∗ −→ HR, x

∗ 7−→ x∗ +M is the inclusion map.

A positive symmetric map Q : E∗ −→ (E∗)
′
is de�ned in the same way as a

positive symmetric map from E∗ to E: for all x∗, y∗ ∈ E∗, one has (Qx∗)(x∗) ≥ 0
and (Qy∗)(x∗) = (Qx∗)(y∗).

Proposition A.3.6 ([43, Proposition 2.2]). Let Q : E∗ −→ (E∗)′ be a positive
symmetric map. Suppose that there exists a positive symmetric map R : E∗ −→ E
such that (Qx∗)(x∗) ≤ x∗Rx∗ for every x∗ ∈ E∗. Then Q(E∗) ⊆ E.

Proof. Let iR : H∗R −→ E be the map given by Lemma A.3.5. Fix x∗ ∈ E∗, and
de�ne the linear map

φx∗ : i∗R(E∗) −→ K, i∗R(y∗) 7−→ (Qx∗)(y∗).

Let y∗ ∈ E∗. By the Cauchy-Schwarz inequality applied to the sesquilinear form
(x∗, y∗) 7−→ (Qx∗)(y∗), the assumption and Lemma A.3.5, we get that

|φx∗(i∗R(y∗))| ≤
(
(Qx∗)(x∗)

)1/2(
(Qx∗)(y∗)

)1/2 ≤ ‖i∗R(x∗)‖HR‖i∗R(y∗)‖HR .

This shows that φx∗ is well-de�ned and continuous on (i∗R(E∗), ‖ · ‖HR). Therefore,
we can continuously extend φx∗ on HR, and the extension is still noted φx∗ . Now, for
every y∗ ∈ E∗, we have

y∗(iR(φx∗)) = (y∗ ◦ iR)(φx∗) = φx∗(y
∗ ◦ iR) = (Qx∗)(y∗)

We deduce that Qx∗ = iR(φx∗) ∈ E.

The last notion we will need is the following one. Let V ⊆ E be non-empty. The
polar of V , noted V ◦, is the subset of E∗ de�ned by

V ◦ :=
{
x∗ ∈ E∗ | |x∗(y)| ≤ 1 for all y ∈ V

}
.

By convention, the inner product on a vector space is linear in the �rst argument
and conjugate-linear in the second argument.
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Proof of Theorem 2.1.4. The implication (i) =⇒ (ii) is trivial.
Assume that (ii) holds. Then for all x∗ ∈ E∗, the random variable x∗(Y ) is

Gaussian, hence Y is Gaussian. Let Q be the covariance operator of its distribution
µ. For every x∗ ∈ E∗, we have by the Itô isometry, see Theorem 0.4.4 for the real
case and Lemma 0.4.7 for the complex case,

x∗Qx∗ =

∫
E

|x∗|2dµ =

∫
Ω

|x∗(Y )|2dP = c

∫
I

|x∗(φ(t))|2dt.

This shows (iii).
Now assume that (iii) holds. Set H := (E∗)∗, where the closure is taken in

the space L2(µ). It is a separable space by [50, Proposition 1.2.29]. Take the γ-
radonifying operator T := K : H −→ E given by Theorem 0.5.9. From Q = KJK∗,
where J : H∗ −→ H is the canonical conjugate-linear identi�cation operator, and by
hypothesis, it follows that

c

∫
I

|x∗
(
φ(t)

)
|2dt = x∗Qx∗ = (x∗ ◦K)JK∗(x∗)

= ‖K∗(x∗)‖2H = ‖T ∗(x∗)‖2H
for all x∗ ∈ E∗, and (iv) holds.

We now show that (iv) =⇒ (v). De�ne the conjugate-linear map Q : E∗ −→
(E∗)

′
by

Qx∗ : E∗ −→ K, y∗ 7−→
∫
I

y∗
(
φ(t)

)
x∗
(
φ(t)

)
dt

for all x∗ ∈ E∗. It is well-de�ned since φ is weakly L2, and is clearly a positive
symmetric map. Let J : H∗ −→ H be the canonical conjugate-linear identi�cation
operator. We �nish the proof of the implication in �ve steps.

(a) By hypothesis, we have for all x∗ ∈ E∗ that

c

∫
I

|x∗
(
φ(t)

)
|2dt ≤ ‖T ∗(x∗)‖2H = (T ∗(x∗))(JT ∗(x∗)) = x∗(TJT ∗(x∗)).

Hence, setting R := TJT ∗ : E∗ −→ E, we have

c(Qx∗)(x∗) ≤ x∗Rx∗ (A.3.1)

for all x∗ ∈ E∗. By Proposition A.3.6, we conclude that Q(E∗) ⊆ E.

(b) By hypothesis and Theorem 0.5.9, R is a Gaussian covariance operator. Then
by Theorem 0.5.12, inequality (A.3.1) and since Q(E∗) ⊆ E, Q is also a Gaussian
covariance operator.

(c) Let us prove that Iφ takes values in E. De�ne G := {x∗ ◦ φ | x∗ ∈ E∗} ⊆ L2(I).
Let f ∈ L2(I). Then

f ∈ Ker(Iφ) ⇐⇒ Iφ(f) = 0

⇐⇒ ∀x∗ ∈ E∗, Iφ(f)(x∗) = 0

⇐⇒ ∀x∗ ∈ E∗,
∫
I

x∗(φ(t))f(t)dt = 0

⇐⇒ f ∈ G⊥.
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Therefore, Ker(Iφ) = G⊥, and L2(I) = G⊕Ker(Iφ). Since Im(Q) ⊆ E by (a), we get
that Iφ(G⊕Ker(Iφ)) ⊆ E.

It remains to prove that Iφ(G) ⊆ E. Let g ∈ G. There exists a sequence (gn)n≥1 ⊆
G converging to g in L2(I). Since Iφ(G) ⊆ E, for each n ≥ 1, there exists xn ∈ E such
that Iφ(gn) = xn. We show that (xn)n≥1 is Cauchy in E. Let ‖ · ‖ be a continuous
seminorm on E. For all x∗ ∈ E∗ and every integers n,m ≥ 1, we have

|x∗(xn − xm)| = |(Iφ(gn)− Iφ(gm))(x∗)|

=
∣∣∣ ∫
I

x∗(φ(t))gn(t)dt−
∫
I

x∗(φ(t))gm(t)dt
∣∣∣

≤ ‖x∗φ‖L2(I)‖gn − gm‖L2(I),

where the last inequality is justi�ed by the Cauchy-Schwarz inequality. De�ne the set
V := {x ∈ E, ‖x‖ < 1}. By [88, Theorems 3.15 and 3.16], the polar of V is σ(E∗, E)-
compact and metrizable in the σ(E∗, E) topology, hence it is sequentially complete
and bounded for σ(E∗, E). On the other hand, the linear map (E∗, σ(E∗, E)) −→
L2(I), x∗ 7−→ x∗φ has a sequentially closed graph. By [94, Lemma 3], we then get
supx∗∈V ◦ ‖x∗φ‖L2(I) <∞. Therefore,

‖xn − xm‖ = sup
x∗∈V ◦

|x∗(xn − xm)| ≤ sup
x∗∈V ◦

‖x∗φ‖L2(I)‖gn − gm‖L2(I),

the equality holds by [88, Theorem 1.34] and [71, Proposition 22.14]. Since (gn)n≥1

is convergent in L2(I), we conclude that (xn)n≥1 is Cauchy for ‖ · ‖. Since ‖ · ‖ was
arbitrary, the sequence (xn)n≥1 is thus Cauchy in E. By completeness, there exists
x ∈ E such that (xn)n≥1 converges to x in E. Now let x∗ ∈ E∗. By continuity of x∗,
we have that limn→∞ Iφ(gn)(x∗) = limn→∞ x∗(xn) = x∗(x). On the other hand, by
the Cauchy-Schwarz inequality,∣∣Iφ(gn)(x∗)− Iφ(g)(x∗)

∣∣ ≤ ‖x∗φ‖L2(I)‖gn − g‖L2(I),

implying that limn→∞ Iφ(gn)(x∗) = Iφ(g)(x∗). We conclude that Iφ(g)(x∗) = x∗(x)
for all x∗ ∈ E∗, and Iφ(g) = x ∈ E.

(d) We now prove that Iφ is continuous. De�ne the linear map

K : E∗ −→ L2(I), x∗ 7−→ x∗ ◦ φ.

Let S : L2(I)∗ −→ L2(I) be the canonical conjugate-linear identi�cation operator.
We �rst show that K∗ = Iφ ◦ S. Let f∗ ∈ L2(I)∗ and x∗ ∈ E∗. By de�nition of K∗,
we have

K∗(f∗)(x∗) = f∗(K(x∗)) = 〈x∗ ◦ φ, S(f∗)〉L2(I) = Iφ(S(f∗))(x∗).

This implies that K∗(f∗) = Iφ(S(f∗)), and in turn K∗ = Iφ ◦ S. By [71, Lemma
23.28], the map K : (E∗, σ(E∗, E)) −→ (L2(I), σ(L2(I), L2(I)∗)) is continuous if and
only if K∗(L2(I)∗) ⊆ E. Since K∗ = Iφ ◦ S and Iφ takes values in E by (c), K is
indeed continuous with respect to the weak topologies. By [71, Lemma 23.29], K∗ is
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continuous with respect to the Mackey topologies. Since L2(I)∗ and E are Mackey
spaces by [89, Subsection IV.3.4], that is, their respective original topologies are the
Mackey topology, we conclude that K∗ : L2(I)∗ −→ E is continuous. Finally, Iφ is
also continuous thanks to K∗ = Iφ ◦ S.

(e) For all x∗, y∗ ∈ E∗, one has

Iφ
(
K(x∗)

)
(y∗) =

∫
I

y∗(φ(t))K(x∗)dt =

∫
I

y∗(φ(t))x∗(φ(t))dt = y∗Qx∗.

Therefore, (Iφ ◦S) ◦S−1 ◦K = Iφ ◦K = Q. We also have (Iφ ◦S)∗ = K. Since Q is a
covariance operator by (b), Lemma 0.5.10 applied to Iφ ◦ S and L2(I)∗ then implies
that Iφ is γ-radonifying. Note that L2(I) is separable by [50, Proposition 1.2.29].

We have thus proved (v).

It remains to show (v) =⇒ (i). Let A ∈ B(I) and de�ne φA := 1Aφ and

MA : L2(I) −→ L2(I), f 7−→ 1Af.

For all f ∈ L2(I) and x∗ ∈ E∗, we have

IφA(f)(x∗) =

∫
I

x∗(φA(t))f(t)dt =

∫
A

x∗(φ(t))f(t)dt = Iφ(MA(f))(x∗).

This shows that IφA = Iφ ◦MA. Since MA is obviously continuous, the map IφA is
γ-radonifying by the ideal property, see Theorem A.2.7.

Let (fn)n∈N ⊆ L2(I) be an orthonormal basis. Denote by

I : L2(I) −→ L2(Ω), f 7−→
∫
I

f(t)dBt

the Itô isometry. Since (I(fn))n∈N is a standard Gaussian sequence and IφA is γ-
radonifying, the random series YA :=

∑
n≥0 I(fn)IφA(fn) converges almost surely.

Let x∗ ∈ E∗, we have

x∗(YA) =

∞∑
n=0

I(fn)x∗(IφAfn) =

∞∑
n=0

I
(
x∗(IφAfn)fn

)
=
∞∑
n=0

I
(
〈x∗ ◦ φA, fn〉L2(I)fn

)
= I

( ∞∑
n=0

〈x∗ ◦ φA, fn〉L2(I)fn

)
=

∫
I

x∗φA(t)dBt

almost surely, where we have used the continuity of x∗ for the �rst equality, the
de�nition of IφA for the third one, the linearity and continuity of I in the fourth one,
and the fact that (fn)n∈N is an orthonormal basis and the de�nition of I for the last
one. We then deduce that x∗(YA) =

∫
I
x∗φA(t)dBt almost surely, for every x∗ ∈ E∗.

In conclusion, φ is stochastically integrable.
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As for the Pettis integrability of φ, let A ∈ B(I) be a set of �nite measure. Let
x∗ ∈ E∗. Then 1A ∈ L2(I), Iφ(1A) ∈ E, and

x∗(Iφ(1A)) = Iφ(1A)(x∗) =

∫
I

x∗(φ(t))1A(t)dt,

and φ is Pettis integrable on A.

We state two results from [96], adapted to the case of functions de�ned on an
arbitrary interval and taking values in a Fréchet space. They will be used in the proof
of Theorem 2.1.6.

Theorem A.3.7 ([96, Corollary 2.7]). Let φ, ψ : I −→ E be two weakly measurable
functions on an interval I ⊆ R. Assume that φ is stochastically integrable and that∫

I

|x∗ψ(t)|2dt ≤
∫
I

|x∗φ(t)|2dt

for every x∗ ∈ E∗. Then ψ is stochastically integrable and for all 1 ≤ p <∞ and all
continuous seminorms ‖ · ‖ on E, we have

E
(∥∥∥∫

I

ψ(t)dBt
∥∥∥p) ≤ E

(∥∥∥∫
I

φ(t)dBt
∥∥∥p).

Proof. By assumption and (iv) of Theorem 2.1.4, we get for all x∗ ∈ E∗ that

c

∫
I

|x∗ψ(t)|2dt ≤ c
∫
I

|x∗φ(t)|2dt ≤ ‖T ∗x∗‖2H .

Again by (iv) of Theorem 2.1.4, we can conclude that ψ is stochastically integrable.
By (iii) of Theorem 2.1.4 applied to both φ and ψ, we have x∗Rx∗ ≤ x∗Qx∗ for

all x∗ ∈ E∗, where R and Q are the covariance operators of the distributions µR and
µQ of

∫
I
ψ(t)dBt and

∫
I
φ(t)dBt, respectively. By Theorem 0.5.12, we �nally get that∫

E

‖x‖pdµR(x) ≤
∫
E

‖x‖qdµQ(x).

The next result is a dominated convergence theorem for the stochastic integral.

Theorem A.3.8 ([96, Theorem 6.2]). Let (φn)n∈N be a sequence of E-valued stochas-
tically integrable functions de�ned on an interval I ⊆ R. Assume that there exists a
weakly L2 function φ : I −→ E such that for every x∗ ∈ E∗, one has

lim
n→∞

∫
I

|x∗φn(t)− x∗φ(t)|2dt = 0.

If there exists a stochastically integrable function ψ : I −→ E such that for every
x∗ ∈ E∗ and all n ≥ 0, one has∫

I

|x∗φn(t)|2dt ≤
∫
I

|x∗ψ(t)|2dt,
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then φ is stochastically integrable and for every 1 ≤ p <∞, we have, in Lp(Ω;E),

lim
n→∞

∫
I

φn(t)dBt =

∫
I

φ(t)dBt.

Proof. By using the assumptions, we get that∫
I

|x∗φ(t)|2dt ≤
∫
I

|x∗ψ(t)|2dt

for all x∗ ∈ E∗. By Theorem A.3.7, φ is stochastically integrable.
The rest of the proof follows as in [96, Theorem 6.2].

Proof of Theorem 2.1.6. Assume that such a sequence of step functions exists. Let
x∗ ∈ E∗. By Lemma 2.1.2, we have x∗(Y ) = limn→∞

∫
I
x∗φn(t)dBt in probability.

The random vectors on the right-hand side are Gaussian, and thus the convergence
takes place in L2(Ω) by [86, Lemma 2.1]. By the Itô isometry, the sequence (x∗φn)n∈N
is Cauchy in L2(I). Thus by (i), we necessarily have limn→∞ x∗φn = x∗φ in L2(I).
Again by the Itô isometry, we get that x∗(Y ) =

∫
I
x∗φ(t)dBt almost surely. By (ii) of

Theorem 2.1.4, we conclude that φ is stochastically integrable on I with integral Y .
Assume that φ is stochastically integrable. If I is a bounded interval, the result is

proved in [96, Theorem 2.5] when φ is a Banach space-valued function, but the proof
carries over verbatim to the case of Fréchet spaces. It I is unbounded, for the sake
of simplicity, we assume that I = [0,∞[. By Theorem 2.1.4, φ is Pettis integrable on
any bounded intervals. For all integers k ≥ 0, n ≥ 1, 1 ≤ j ≤ 2n and N ≥ 1, de�ne

φn,k,j := 2n
∫ k+ j

2n

k+ j−1
2n

φ(t)dt,

φNn :=

N−1∑
k=0

2n∑
j=1

1]k+ j−1
2n ,k+ j

2n ]φn,k,j ,

and ϕN := φ1[0,N ]. For all n,N ∈ N0, de�ne also Gn,N as the �nite σ-algebra on [0, N ]

generated by the intervals of the form ]k + j−1
2n , k + j

2n ], 0 ≤ k ≤ N − 1, 1 ≤ j ≤ 2n.
Let x∗ ∈ E∗. It is an easy task to check that E(x∗ϕN | Gn,N ) = x∗φNn almost

everywhere on [0, N ], for every n,N ≥ 1, see [18, Example 10.1.2]. Since (Gn,N )n≥1

is increasing and σ
(⋃

n≥1 Gn,N
)

= B([0, N ]), we get that limn→∞ x∗φNn = x∗ϕN in
L2([0, N ];R) by [50, Theorem 3.3.2].

Now, de�ne the step functions φN := φNN1[0,N ] for every integer N ≥ 1. Let us
show that limN→∞ x∗φN = x∗φ in L2([0,∞[). Notice that φMN = φNN on [0,M ] for
any N ≥ M ≥ 1. Let ε > 0, and let N0 ≥ 1 be such that

∫∞
N
|x∗φ(t)|2dt ≤ ε2 for

every N ≥ N0. Now let M0 ≥ N0 be such that ‖x∗φN0

N − x∗ϕN0
‖L2([0,N0]) ≤ ε for

every integer N ≥M0. We then have for any N ≥M0,

‖x∗φN − x∗φ‖L2([0,∞[) ≤ ‖x∗φN0

N − x
∗ϕN0‖L2([0,N0])

+ ‖x∗φN − x∗φ‖L2([N0,N ]) + ‖x∗φ‖L2([N,∞[).
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The �rst and third terms are smaller than ε since N ≥ M0 ≥ N0. For the second
term, �rst note that

‖x∗φN − x∗φ‖L2([N0,N ]) ≤ ‖x∗φN‖L2([N0,N ]) + ‖x∗φ‖L2([N0,∞[).

The second term of the right-hand side is smaller than ε by de�nition of N0. For the
�rst term, notice that x∗φN = x∗φNN = E(x∗φ | GN ) almost everywhere on [N0, N ],
where GN is the �nite σ-algebra on [N0, N ] generated by the intervals of the form
]k + j−1

2N
, k + j

2N
], N0 ≤ k ≤ N − 1, 1 ≤ j ≤ 2N ; see [18, Example 10.1.2]. Therefore,

by a corollary of the conditional Jensen inequality, see [50, Corollary 2.6.30], we have
‖x∗φN‖L2([N0,N ]) ≤ ‖x∗φ‖L2([N0,N ]). We then conclude that ‖x∗φN −x∗φ‖L2([0,∞[) ≤
4ε, and thus limN→∞ x∗φN = x∗φ in L2([0,∞[)

Again by [50, Corollary 2.6.30], we have ‖x∗φN‖L2([0,∞[) ≤ ‖x∗φ‖L2([0,∞[) for every
N ≥ 1. Since every step function is stochastically integrable, Theorem A.3.8 yields
(ii) with convergence in every Lp(Ω;E), 1 ≤ p <∞.
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Notations

Numbers

bxc largest n ∈ N such that n ≤ x < n+ 1
dxe smallest n ∈ N such that n− 1 < x ≤ n
|z| modulus of the complex number z
Im(z) imaginary part of z
Re(z) real part of z

Sets

|A| number of elements of the set A
{A complement of the set A
dens(A) lower density of A
1A characteristic function of the set A
C set of complex numbers
D open unit disk
K scalar �eld
N set of natural integers 0, 1, 2, . . .
N0 set of positive integers 1, 2, . . .
R set of real numbers
Z set of integers

Vector spaces

c0 space of null sequences
H(C) space of entire functions
H(D) space of holomorphic functions on D
H(R2) space of harmonic functions on R2

λp(A) Köthe sequence space of order p
`Np RN endowed with ‖ · ‖p
`p space of p-summable sequences
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Functional analysis

‖ · ‖E norm on the vector space E
‖ · ‖p p-norm, 1 ≤ p ≤ ∞
〈·, ·〉H inner product on H (linear in the �rst argument)
E
′

algebraic dual of the vector space E
E∗ topological dual of the Fréchet space E
F⊥ orthogonal complement of F
Im image of a function
Ker kernel of a linear map
σ(E,E∗) weak topology on E
σ(E∗, E) weak topology on E∗

span linear span
τ(E,E∗) Mackey topology on E
τ(E∗, E) Mackey topology on E∗

V ◦ polar of the set V

Measure theory and Probability

B(E) Borel sets of a topological space E
E(X) expectation of the random variable X
E(· | ·) conditional expectation
Id identity map
i.i.d. independent and identically distributed
Lp(S,A, µ;E) equivalence classes of p-integrable functions f : S −→ E
Lp(S;E) the space Lp(S,A, µ;E)
Lp(S,A, µ) = Lp(S) the space Lp(S,A, µ;E) if E = R or E = C
Lp(S, µ) the space Lp(S)
µ̂ characteristic functional of µ
P probability measure

Miscellaneous

‖f‖r sup|z|≤r |f(z)| for a function f
decreasing strictly decreasing
increasing strictly increasing
negative strictly negative
o(·) little o notation
O(·) big o notation
positive strictly positive
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