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Parity-time (PT) symmetry can be achieved in a standard photonic
structure formed by coupled waveguides with balanced gain and loss.
It is characterized by a mode dispersion changing abruptly from
propagating modes (PT-symmetric) to amplified/decaying modes (PT-
broken), at a certain value of gain/loss called the exceptional point
(EP). [1] We investigate the impact of inserting a material with
chirality in the gap between two rectangular coupled PT-symmetric
waveguides. At degeneracies between TE- and TM- polarized achiral
modes, we observe a variety of avoided crossings dependent on the
PT nature of the interacting modes.
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Introducing a chiral material in the gap of a pair of PT-
symmetric waveguides results in a variety of avoided
crossing patterns occurring at achiral degeneracies in
the mode dispersion, accessible through modulation of
the gap width. Fundamental differences are observed
between same-parity and opposite-parity avoided
crossings: splitting in the real versus imaginary
dispersion, and elliptical vs linear polarizations. The
coupled-mode model reproduces these features in
much detail, enough to form the basis for quantitative
designs and the study of novel geometries. It also
shows that gain and loss are fundamental to obtain the
local breaking effect.
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Eigenvectors evolution over
avoided crossings

In supermode basis for 𝛾 = 0:

All avoided crossings are accurately reproduced by our model

▪ PT-symmetric rectan-
gular waveguides with
𝑛 = 2 − 𝑖𝛾 or 2 + 𝑖𝛾

Simulated via Matlab toolbox SimPhotonics :
Finite Element Method Maxwell equations
solver now able to model chirality

12nm gap: Crossing between same-parity achiral modes

32nm gap: Crossing between symmetric 𝑻𝑴 mode & 𝑻𝑬 EP

44nm gap: Crossing between achiral opposite-parity modes
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with 𝐶𝑇𝐸 = 𝐶𝑇𝑀 = 𝐶 and 𝐴 = 𝐶2 − 𝛾2

⇒ Without PT-symmetry, no 𝑢𝑝-𝑑𝑛 chiral coupling
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Chirality creates an anticrossing: Dispersions split and polarizations
becomes strongly elliptical, with opposite phases.

Chirality creates a trimodal anticrossing: Same-parity dispersions
split and opposite-parity dispersions join. EP is displaced.

Chirality creates a local PT-broken zone: Dispersions join in real
space and split in imaginary space. Polarizations are tilted.

▪ Modes swap dominant
field component ⇒ Quasi-𝑇𝐸
and quasi-𝑇𝑀 asymptotically

▪ 180° phase variation ⇒
≈ ellipticity, ≠ handedness,
Δ𝜙 = 0 or 180° in center

Prospects
▪ Sensing with trimodal anticrossing bulk-like sensitivity
▪ Switching between linear and elliptical polarization in

PT-broken zone

𝑔=gain, 𝑙=loss 
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Bulk-like
splitting !
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𝑻𝑬 & 𝑻𝑴 PT achiral
mode dispersion

▪ Achiral/chiral gap
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