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Abstract
In this paper, we deepen the study of two-player Stackelberg games played on graphs in which
Player 0 announces a strategy and Player 1, having several objectives, responds rationally by following
plays providing him Pareto-optimal payoffs given the strategy of Player 0. The Stackelberg-Pareto
synthesis problem, asking whether Player 0 can announce a strategy which satisfies his objective,
whatever the rational response of Player 1, has been recently investigated for ω-regular objectives.
We solve this problem for weighted graph games and quantitative reachability objectives such that
Player 0 wants to reach his target set with a total cost less than some given upper bound. We show
that it is NEXPTIME-complete, as for Boolean reachability objectives.
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1 Introduction

Formal verification, and more specifically model-checking, is a branch of computer science
which offers techniques to check automatically whether a system is correct [3, 18]. This is
essential for systems responsible for critical tasks like air traffic management or control of
nuclear power plants. Much progress has been made in model-checking both theoretically
and in tool development, and the technique is now widely used in industry.

Nowadays, it is common to face more complex systems, called multi-agent systems, that
are composed of heterogeneous components, ranging from traditional pieces of reactive code,
to wholly autonomous robots or human users. Modelling and verifying such systems is a
challenging problem that is far from being solved. One possible approach is to rely on game
theory, a branch of mathematics that studies mathematical models of interaction between
agents and the understanding of their decisions assuming that they are rational [32, 38].
Typically, each agent (i.e. player) composing the system has his own objectives or preferences,
and the way he manages to achieve them is influenced by the behavior of the other agents.

Rationality can be formalized in several ways. A famous model of agents’ rational behavior
is the concept of Nash equilibrium (NE) [31] in a multiplayer non-zero sum game graph that
represents the possible interactions between the players [36]. Another model is the one of
Stackelberg games [39], in which one designated player – the leader, announces a strategy to
achieve his goal, and the other players – the followers, respond rationally with an optimal
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response depending on their goals (e.g. with an NE). This framework is well-suited for
the verification of correctness of a controller intending to enforce a given property, while
interacting with an environment composed of several agents each having his own objective.
In practical applications, a strategy for interacting with the environment is committed before
the interaction actually happens.

Our contribution. In this paper, we investigate the recent concept of two-player Stackelberg
games, where the environment is composed of one player aiming at satisfying several objectives,
and its related Stackelberg-Pareto synthesis (SPS) problem [12, 14]. In this framework, for
Boolean objectives, given the strategy announced by the leader, the follower responses
rationally with a strategy that ensures him a vector of Boolean payoffs that is Pareto-optimal,
that is, with a maximal number of satisfied objectives. This setting encompasses scenarios
where, for instance, several components of the environment can collaborate and agree on
trade-offs. The SPS problem is to decide whether the leader can announce a strategy that
guarantees him to satisfy his own objective, whatever the rational response of the follower.

The SPS problem has been solved in [14] for ω-regular objectives. We here solve this
problem for weighted game graphs and quantitative reachability objectives for both players.
Given a target of vertices, the goal is to reach this target with a cost as small as possible. In
this quantitative context, the follower responds to the strategy of the leader with a strategy
that ensures him a Pareto-optimal cost vector given his series of targets. The aim of the
leader is to announce a strategy in a way to reach his target with a total cost less than some
given upper bound, whatever the rational response of the follower. We show that the SPS
problem is NEXPTIME-complete (Theorem 2), as for Boolean reachability objectives.

It is well-known that moving from Boolean objectives to quantitative ones allows to
model richer properties. This paper is a first step in this direction for the SPS problem for
two-player Stackelberg games with multiple objectives for the follower. Our proof follows
the same pattern as for Boolean reachability [14]: if there is a solution to the SPS problem,
then there is one that is finite-memory whose memory size is at most exponential. The
non-deterministic algorithm thus guesses such a strategy and checks whether it is a solution.
However, a crucial intermediate step is to prove that if there exists a solution, then there
exists one whose Pareto-optimal costs for the follower are exponential in the size of the
instance (Theorem 6). The proof of this non trivial step (which is meaningless in the Boolean
case) is the main contribution of the paper. Given a solution, we first present some hypotheses
and techniques that allow to locally modify it into a solution with smaller Pareto-optimal
cost vectors. We then conduct a proof by induction on the number of follower’s targets, to
globally decrease the cost vectors and to get an exponential number of Pareto-optimal cost
vectors. The NEXPTIME-hardness of the SPS problem is trivially obtained by reduction
from this problem for Boolean reachability. Indeed, the Boolean version is equivalent to the
quantitative one with all weights put to zero and with the given upper bound equal to zero.
Notice that the two versions differ: we exhibit an example of game that has a solution to the
SPS problem for quantitative reachability, but none for Boolean reachability.

Related work. During the last decade, multiplayer non-zero sum games and their
applications to reactive synthesis have raised a growing attention, see for instance the
surveys [4, 11, 24]. When several players (like the followers) play with the aim to satisfy their
objectives, several solution concepts exist such as NE, subgame perfect equilibrium (SPE) [33],
secure equilibria [16, 17], or admissibility [2, 5]. Several results have been obtained, for
Boolean and quantitative objectives, about the constrained existence problem which consists
in deciding whether there exists a solution concept such that the payoff obtained by each
player is larger than some given threshold. Let us mention [19, 36, 37] for results on the
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constrained existence for NEs and [7, 8, 10, 35] for SPEs. Some of them rely on a recent
elegant characterization of SPE outcomes [6, 22].

Stackelberg games with several followers have been recently studied in the context of
rational synthesis: in [21] in a setting where the followers are cooperative with the leader,
and later in [29] where they are adversarial. Rational responses of the followers are, for
instance, to play an NE or an SPE. The rational synthesis problem and the SPS problem
are incomparable, as illustrated in [34, Section 4.3.2]: in rational synthesis, each component
of the environment acts selfishly, whereas in SPS, the components cooperate in a way to
obtain a Pareto-optimal cost. In [30], the authors solve the rational synthesis problem that
consists in deciding whether the leader can announce a strategy satisfying his objective, when
the objectives of the players are specified by LTL formulas. Complexity classes for various
ω-regular objectives are established in [19] for both cooperative and adversarial settings.
Extension to quantitative payoffs, like mean-payoff or discounted sum, is studied in [25, 26]
in the cooperative setting and in [1, 20] in the adversarial setting.

The concept of rational verification has been introduced in [27], where instead of deciding
the existence of a strategy for the leader, one verifies that some given leader’s strategy
satisfies his objective, whatever the NE responses of the followers. An algorithm and its
implementation in the EVE system are presented in [27] for objectives specified by LTL
formulas. This verification problem is studied in [28] for mean-payoff objectives for the
followers and an omega-regular objective for the leader, and it is solved in [9] for both NE
and SPE responses of the followers and for a variety of objectives including quantitative
objectives. The Stackelberg-Pareto verification problem is solved in [15] for some ω-regular
or LTL objectives.
Structure of the paper. In Section 2, we introduce the concept of Stackelberg-Pareto
games with quantitative reachability costs. We also recall several useful related notions. In
Section 3, we show that if there exists a solution to the SPS problem, then there exists one
whose Pareto-optimal costs are exponential in the size of the instance. In Section 4, we prove
that the SPS problem is NEXPTIME-complete by using the result of the previous section.
Finally, we give a conclusion and some future work.

2 Preliminaries and Studied Problem

We introduce the concept of Stackelberg-Pareto games with quantitative reachability costs.
We present the related Stackelberg-Pareto synthesis problem and state our main result.

2.1 Graph Games
Game arenas. A game arena is a tuple A = (V, V0, V1, E, v0, w) where: (1) (V, E) is a
finite directed graph with V as set of vertices and E as set of edges (it is supposed that every
vertex has a successor), (2) V is partitioned as V0 ∪ V1 such that V0 (resp. V1) represents
the vertices controlled by Player 0 (resp. Player 1), (3) v0 ∈ V is the initial vertex, and (4)
w : E → N is a weight function that assigns a non-negative integer2 to each edge, such that
W = maxe∈E w(e) denotes the maximum weight. An arena A is binary if w(e) ∈ {0, 1} for
all e ∈ E.

Plays and histories. A play in an arena A is an infinite sequence of vertices ρ = ρ0ρ1 . . . ∈
V ω such that ρ0 = v0 and (ρk, ρk+1) ∈ E for all k ∈ N. Histories are finite sequences

2 Notice that null weights are allowed.
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h = h0 . . . hk ∈ V + defined similarly. We denote last(h) the last vertex hk of the history h

and by |h| its length (equal to k). Let PlayA denote the set of all plays in A, HistA the set of
all histories in A, and Histi

A the set of all histories in A ending on a vertex in Vi, i = 0, 1.
The mention of the arena will be omitted when it is clear from the context. If a history h is
prefix of a play ρ, we denote it by h ⊑ ρ. Given a play ρ = ρ0ρ1 . . ., we denote by ρ≤k the
prefix ρ0 . . . ρk of ρ, and by ρ≥k its suffix ρkρk+1 . . .. We also write ρ[k,ℓ] for ρk . . . ρℓ. The
weight of ρ[k,ℓ] is equal to w(ρ[k,ℓ]) = Σℓ−1

j=kw(ρj , ρj+1).

Strategies. Let i ∈ {0, 1}, a strategy for Player i is a function σi : Histi → V assigning to
each history h ∈ Histi a vertex v = σi(h) such that (last(h), v) ∈ E. We denote by Σi the set
of all strategies for Player i. We say that a strategy σi is memoryless if for all h, h′ ∈ Histi,
if last(h) = last(h′), then σi(h) = σi(h′). A strategy is considered finite-memory if it can be
encoded by a Mealy machine and its memory size is the number of states of the machine [23].

A play ρ is consistent with a strategy σi if for all k ∈ N, ρk ∈ Vi implies that ρk+1 =
σi(ρ≤k). Consistency is extended to histories as expected. We denote Playσi

(resp. Histσi)
the set of all plays (resp. histories) consistent with σi. Given a couple of strategies (σ0, σ1)
for Players 0 and 1, there exists a single play that is consistent with both of them, that we
denote by out(σ0, σ1) and call the outcome of (σ0, σ1).

Reachability costs. Given an arena A, let us consider a subset T ⊆ V of vertices called
target. We say that a play ρ = ρ0ρ1 . . . visits the target T , if ρk ∈ T for some k. We define a
cost function costT : Play → N, where N = N∪ {∞}, that assigns to every play ρ the quantity
costT (ρ) = min{w(ρ≤k) | ρk ∈ T}, that is, the weight to the first visit of T if ρ visits T , and
∞ otherwise. The cost function is extended to histories in the expected way.

2.2 Stackelberg-Pareto Synthesis Problem
Stackelberg-Pareto games. Let t ∈ N \ {0}, a Stackelberg-Pareto reachability game (SP
game) is a tuple G = (A, T0, T1, . . . , Tt) where A is a game arena and Ti are targets for all
i ∈ {0, . . . , t}, such that T0 is Player 0’s target and T1, . . . , Tt are the t targets of Player 1.
When A is binary, we say that G is binary. The dimension t of G is the number of Player 1’s
targets, and we denote by Gamest (resp. BinGamest) the set of all (resp. binary) SP games
with dimension t. The notations PlayG and HistG may be used instead of PlayA and HistA.

To distinguish the two players with respect to their targets, we introduce the follow-
ing terminology. The cost of a play ρ is the tuple cost(ρ) ∈ Nt such that cost(ρ) =
(costT1(ρ), . . . , costTt

(ρ)). The value of a play ρ is a non-negative integer or ∞ defined by
val(ρ) = costT0(ρ). The value can be viewed as the score of Player 0 and the cost as the score
of Player 1. Both functions are extended to histories in the expected way. In the sequel,
given a cost c ∈ Nt, we denote by ci the i-th component of c and by cmin the component of
c that is minimum, i.e. cmin = min{ci | i ∈ {1, . . . , t}}.

In an SP game, Player 0 wishes to minimize the value of a play with respect to the usual
order < on N extended to N such that n < ∞ for all n ∈ N. To compare the costs of Player
1, the following component-wise order is introduced. Let c, c′ ∈ Nt be two costs, we say that
c ≤ c′ if ci ≤ c′

i for all i ∈ {1, . . . , t}. Moreover, we write c < c′ if c ≤ c′ and c ̸= c′. Notice
that the order defined on costs is not total. Given two plays with respective costs c and c′, if
c < c′, then Player 1 prefers the play with lower cost c.

Stackelberg-Pareto synthesis problem. Given an SP game and a strategy σ0 for Player 0,
we consider the set Cσ0 of costs of plays consistent with σ0 that are Pareto-optimal for Player 1,
i.e., minimal with respect to the order ≤ on costs. Hence, Cσ0 = min{cost(ρ) | ρ ∈ Playσ0}.
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Figure 1 Arena A (on the left) – Witness tree (on the right)

Notice that Cσ0 is an antichain. A cost c is said to be σ0-fixed Pareto-optimal if c ∈ Cσ0 .
Similarly, a play is said to be σ0-fixed Pareto-optimal if its cost is σ0-fixed Pareto-optimal.
We will omit the mention of σ0 when it is clear from context.

The problem we study is the following one: given an SP game G and a bound B ∈ N, is
there a strategy σ0 for Player 0 such that, for all strategies σ1 for Player 1, if the outcome
out(σ0, σ1) is Pareto-optimal, then the value of the outcome is below B. It is equivalent to
say that for all ρ ∈ Playσ0 , if cost(ρ) is σ0-fixed Pareto-optimal, then val(ρ) is below B.

▶ Problem 1. The Stackelberg-Pareto Synthesis problem (SPS problem) is to decide, given
an SP game G and a bound B, whether

∃σ0 ∈ Σ0, ∀σ1 ∈ Σ1, cost(out(σ0, σ1)) ∈ Cσ0 ⇒ val(out(σ0, σ1)) ≤ B. (1)

Any strategy σ0 satisfying (1) is called a solution and we denote it by σ0 ∈ SPS(G, B).
Our main result is the following theorem.

▶ Theorem 2. The SPS problem is NEXPTIME-complete.

The non-deterministic algorithm is exponential in the number of targets t and in the size
of the binary encoding of the maximum weight W and the bound B. The general approach
to obtain NEXPTIME-membership is to show that when there is a solution σ0 ∈ SPS(G, B),
then there exists one that is finite-memory and whose memory size is exponential. An
important part of this paper is devoted to this proof. Then we show that such a strategy
can be guessed and checked to be a solution in exponential time.

Example. To provide a better understanding of the SPS problem, let us solve it on a
specific example. The arena A is displayed on Figure 1 where the vertices controlled by
Player 0 (resp. Player 1) are represented as circles (resp. squares). The weights are indicated
only if they are different from 1 (e.g., the edge (v0, v6) has a weight of 1). The initial vertex
is v0. The target of Player 0 is T0 = {v3, v9} and is represented by doubled vertices. Player 1
has three targets: T1 = {v1, v8}, T2 = {v9} and T3 = {v2, v4}, that are represented using
colors (green for T1, red for T2, blue for T3). Let us exhibit a solution σ0 in SPS(G, 5).

We define σ0 as the strategy that always moves from v3 to v4, and that loops once on
v6 and then moves to v7. The plays consistent with σ0 are v0v1vω

2 , v0v1(v3v4)ω, v0v6v6v7vω
8 ,

and v0v6v6v7vω
9 . The Pareto-optimal plays are v0v1(v3v4)ω and v0v6v6v7vω

9 with respective
costs (4, ∞, 7) and (∞, 4, ∞), and they both yield a value less than or equal to 5. Notice that
σ0 has to loop once on v6, i.e., it is not memoryless4, otherwise the consistent play v0v6v7vω

8

4 One can prove that there exists no memoryless solution.

CVIT 2016
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has a Pareto-optimal cost of (3, ∞, ∞) and an infinite value.
Interestingly, the Boolean version of this game does not admit any solution. In this case,

given a target, the player’s goal is simply to visit it (and not to minimize the cost to reach
it). That is, the Boolean version is equivalent to the quantitative one with all weights and
the bound B put to zero. In the example, the play v0v1vω

2 is Pareto-optimal (with visits to
T1 and T3), whatever the strategy of Player 0, and this play does not visit Player 0’s target.

Witnesses. An important tool for solving the SPS problem is the concept of witness [14].
Given a solution σ0, for all c ∈ Cσ0 , we can choose arbitrarily a play ρ called witness of the cost
c such that cost(ρ) = c. The set of all chosen witnesses is denoted by Witσ0 , whose size is the
size of Cσ0 . Since σ0 is a solution, the value of each witness is below B. We define the length
of a witness ρ as the length length(ρ) = min{|h| | h ⊑ ρ ∧ cost(h) = cost(ρ) ∧ val(h) = val(ρ)}.

It is useful to see the set Witσ0 as a tree composed of |Witσ0 | branches. Moreover, given
h ∈ Histσ0 , we write Witσ0(h) the set of witnesses for which h is a prefix, i.e., Witσ0(h) =
{ρ ∈ Witσ0 | h ⊑ ρ}. Notice that Witσ0(h) = Witσ0 when h = v0, and that the size of
Witσ0(h) decreases as the size of h increases, until it contains a single play or becomes empty.

The following notions about the tree Witσ0 will be useful. We say that a history h

is a branching point if there are two witnesses whose greatest common prefix is h, that
is, there exists v ∈ V such that 0 < |Witσ0(hv)| < |Witσ0(h)|. We define the following
equivalence relations ∼ on histories that are prefixes of a witness: h ∼ h′ if and only if
(val(h), cost(h), Witσ0(h)) = (val(h′), cost(h′), Witσ0(h′)). Notice that if h ∼ h′, then either
h ⊑ h′ or h′ ⊑ h and no new target is visited and no branching point is crossed from the
shortest history to the longest one. We call region of h its equivalence class. This leads to a
region decomposition of each witness, such that the first region is the region of the initial
state v0 and the last region is the region of h ⊑ ρ such that |h| = length(ρ). A deviation is a
history hv with h ∈ Hist1 and v ∈ V , such that h is prefix of some witness, but hv is prefix
of no witness.

We illustrate these notions on the previous example and its solution σ0. A set of witnesses is
Witσ0 = {v0v1(v3v4)ω, v0v6v6v7vω

9 } depicted on Figure 1. We have that length(v0v6v6v7vω
9 ) =

|v0v6v6v7v9| = 4, v0 is a branching point, v0v1v2 is a deviation, and the region decomposition
of the witness v0v6v6v7vω

9 is {v0}, {v0v6, v0v6v6, v0v6v6v7}, {v0v6v6v7vk
9 | k ≥ 1}.

Reduction to binary arenas. Working with general arenas requires to deal with the
parameter W in most of the proofs. To simplify the arguments, we reduce the SPS problem
to binary arenas, by replacing each edge with a weight w ≥ 2 by a path of w edges of weight
1. This (standard) reduction is exponential, but only in the size of the binary encoding of W .

▶ Lemma 3. Let G = (A, T0, . . . , Tt) be an SP game and B ∈ N. Then one can construct in
exponential time an SP game G′ = (A′, T0, . . . , Tt) with a binary arena A′ such that

the set of vertices V ′ of A′ contains V and has size |V ′| ≤ |V | · W ,
there exists a solution in SPS(G, B) if and only if there exists a solution in SPS(G′, B).

Proof. Let X = {e ∈ E | w(e) ≥ 2} be the set of edges of A with weight at least 2. For each
e ∈ X, we replace e by a succession of w(e) − 1 new vertices linked by w(e) new edges of
weight 1, and for each e ∈ E \ X, we keep e unmodified. In this way, we get a directed graph
(V ′, E′) with a weight function w′ : E′ → {0, 1} and with a size |V ′| ≤ |V | · W . Notice that if
X = ∅, the arena is already binary. The new arena A′ = (V ′, V ′

0 , V ′
1 , E′, v0, w′) has the same

initial vertex v0 as A, and a partition V ′
0 ∪ V ′

1 of V ′ such that each new vertex is added5 to

5 Each new vertex could be added to V1 as it has a unique successor.
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V0, hence V0 ⊆ V ′
0 , V1 = V ′

1 . The new SP game G′ = (A′, T0, . . . , Tt) keeps the same targets
as in G.

Clearly, there is a trivial bijection f from PlayA to PlayA′ . Indeed, it suffices to replace
all edges e of a play with weight w(e) ≥ 2 by the corresponding new path composed
of w(e) edges of weight 1. This bijection preserves the cost and the value of the plays.
Moreover, there also exists a bijection g from the set of strategies on A to the set of strategies
on A′ as each new vertex has a unique successor. Notice that g is coherent with f , i.e.,
out(g(σ0), g(σ1)) = f(out(σ0, σ1)) for all σ0 ∈ Σ0 and all σ1 ∈ Σ1. Therefore, for all σ0 ∈ Σ0,
we get that σ0 ∈ SPS(G, B) if and only if g(σ0) ∈ SPS(G′, B). ◀

The transformation of the arena A into a binary arena A′ has consequences on the size of
the SPS problem instance. Since the weights are encoded in binary, the size |V ′| could be
exponential in the size |V | of the original instance. However, this will have no impact on
our main result because |V | never appears in the exponent in our calculations (this will be
detailed in the proof of Theorem 2).

3 Bounding Pareto-Optimal Payoffs

In this section, we show that if there exists a solution to the SPS problem, then there exists
one whose Pareto-optimal costs are exponential in the size of the instance (see Theorem 6
below). It is a crucial step to prove that the SPS problem is in NEXPTIME. This is the main
contribution of this paper.

3.1 Improving a Solution
We begin by presenting some techniques that allow to modify a solution to the SPS problem
into a solution with smaller Pareto-optimal costs.

Order on strategies and subgames. Given two strategies σ0, σ′
0 for Player 0, we say

that σ′
0 ≤ σ0 if for all c ∈ Cσ0 , there exists c′ ∈ Cσ′

0
such that c′ ≤ c. This relation ≤ on

strategies is a preorder (it is reflexive and transitive). We also define σ′
0 < σ0 when σ′

0 ≤ σ0
and Cσ′

0
̸= Cσ0 , and we say that σ′

0 is better than σ0 whenever σ′
0 ≤ σ0. In the sequel, we

modify solutions σ0 to the SPS problem to get better solutions σ′
0 ≤ σ0, and we say that σ′

0
improves the given solution σ0.

A subgame of an SP game G is a couple (G, h), denoted G|h, where h ∈ Hist. In the same
way that G can be seen as the set of its plays, G|h is seen as the restriction of G to plays
with prefix h. In particular, we have G|v0 = G where v0 is the initial vertex of G. The value
and cost of a play ρ in G|h are the same as those of ρ as a play in G. The dimension of G|h
is the dimension of G minus the number of targets visited7 by h′ such that h′last(h) = h.

A strategy for Player 0 on G|h is a strategy τ0 that is only defined for the histories
h′ ∈ Hist such that h ⊑ h′. We denote Σ0|h the set of those strategies. Given a strategy σ0
for Player 0 in G and h ∈ Histσ0 , we denote the restriction of σ0 to G|h by the strategy σ0|h.
Moreover, given τ0 ∈ Σ0|h, we can define a new strategy σ0[h → τ0] from σ0 as the strategy on
G which consists in playing the strategy σ0 everywhere, except in the subgame G|h where τ0
is played. That is, σ0[h → τ0](h′) = σ0(h′) if h ̸⊑ h′, and σ0[h → τ0](h′) = τ0(h′) otherwise.

As done with SPS(G, B), we denote by SPS(G|h, B) the set of all solutions τ0 ∈ Σ0|h to
the SPS problem for the subgame G|h and the bound B.

7 Notice that we do not include last(h) in h′, as it can be seen as the initial vertex of G|h.

CVIT 2016



23:8 Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-Complete9

Improving a solution. A natural way to improve a strategy is to improve it on a subgame.
Moreover, if it is a solution to the SPS problem, it is also the case for the improved strategy.

▶ Lemma 4. Let G be a binary SP game, B ∈ N, and σ0 ∈ SPS(G, B) be a solution.
Consider a history h ∈ Histσ0 and a strategy τ0 ∈ Σ0|h in the subgame G|h such that τ0 < σ0|h
and τ0 ∈ SPS(G|h, B). Then the strategy σ′

0 = σ0[h → τ0] is a solution in SPS(G, B) and
σ′

0 < σ0.

Proof. Let us first prove that σ′
0 ≤ σ0, that is, for all c ∈ Cσ0 , there exists c′ ∈ Cσ′

0
such

that c′ ≤ c. Let c ∈ Cσ0 and ρ ∈ PlayG,σ0 be such that cost(ρ) = c. If h ̸⊑ ρ, then ρ is also
consistent with σ′

0, thus there exists c′ ∈ Cσ′
0

such that c′ ≤ c = cost(ρ) by definition of
Cσ′

0
. Otherwise, h ⊑ ρ. Hence ρ is a play in the subgame G|h with a Pareto-optimal cost

c ∈ Cσ0|h
. By hypothesis, we have τ0 ≤ σ0|h, therefore there exists c′ ∈ Cτ0 such that c′ ≤ c.

As c′ ∈ Cτ0 , there exists ρ′ ∈ PlayG|h,τ0 such that h ⊑ ρ′ and cost(ρ′) = c′. By definition
of σ′

0, we also have that ρ′ ∈ PlayG,σ′
0
. Hence, by definition of Cσ′

0
, there exists c′′ ∈ Cσ′

0

such that c′′ ≤ c′, and thus c′′ ≤ c. We have thus proved that σ′
0 ≤ σ0. Notice that by the

previous arguments, we have σ′
0 < σ0 as τ0 < σ0|h.

Let us now show that σ′
0 ∈ SPS(G, B). Let ρ′ ∈ Playσ′

0
be such that c′ = cost(ρ′) ∈ Cσ′

0
.

We have to prove that val(ρ′) ≤ B. If h ̸⊑ ρ′, then ρ′ ∈ Playσ0 , thus there exists c ∈ Cσ0

such that c ≤ c′ by definition of Cσ0 . Since σ′
0 ≤ σ0 by the first part of the proof, it follows

that c = c′ = cost(ρ′) ∈ Cσ0 . Now, recall that σ0 is a solution in SPS(G,B), implying that
val(ρ′) ≤ B. If h ⊑ ρ′, then ρ′ ∈ PlayG|h,τ0 . As c′ ∈ Cσ′

0
, we have c′ ∈ Cτ0 (it is not possible

to have c′′ ∈ Cτ0 such that c′′ < c′ by definition of σ′
0). As τ0 ∈ SPS(G|h, B), it follows that

val(ρ′) ≤ B. In any case, val(ρ′) ≤ B showing that σ′
0 is a solution to the SPS problem. ◀

Another way to improve solutions to the SPS problem is to delete some particular cycles
occurring in witnesses as explained in the next lemma.

▶ Lemma 5. Let G be a binary SP game, B ∈ N, and σ0 ∈ SPS(G, B) be a solution. Suppose
that in a witness ρ = ρ0ρ1 . . . ∈ Witσ0 , there exist m, n ∈ N such that

m < n < length(ρ) and ρm = ρn,
ρ≤m and ρ≤n belong to the same region, and
if val(ρ≤m) = ∞, then the weight w(ρ[m,n]) is null.

Then the strategy σ′
0 = σ0[ρ≤m → σ0|ρ≤n

] is a solution in SPS(G, B) such that σ′
0 ≤ σ0.

The first condition means that ρ[m,n] is a cycle and that it appears before the last visit
of a target by ρ. The second one says that ρ≤m ∼ ρ≤n, i.e., no new target is visited and
no branching point is crossed from history ρ≤m to history ρ≤n. The third one says that if
ρ≤m does not visit Player 0’s target, then the cycle ρ[m,n] must have a null weight. The new
strategy σ′

0 is obtained from σ0 by playing after ρ≤m as playing after ρ≤n (thus deleting the
cycle ρ[m,n]).

From now on, we say that we can eliminate cycles according to this lemma8 without
explicitly building the new strategy. We also say that a solution σ0 is without cycles if it
does not satisfy the hypotheses of Lemma 5, i.e., if it is impossible to eliminate cycles to get
a better solution.

Proof of Lemma 5. Let g = ρ≤m and h = ρ≤n. We first prove that σ′
0 ≤ σ0. For this

purpose, we introduce the following notation: for each play π = π0π1 . . . ∈ PlayG such

8 These are the cycles satisfying the lemma, and not just any cycle.
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that h ⊑ π, we denote by π̄ the play gπ≥n+1, that is, we delete the cycle ρ[m,n] in π.
Let c ∈ Cσ0 and π ∈ Witσ0 be a witness with cost(π) = c. Let us prove that there
exists c′ ∈ Cσ′

0
such that c′ ≤ c. If g ̸⊑ π, then π ∈ Playσ′

0
by definition of σ′

0, and
thus there exists c′ ∈ Cσ′

0
such that c′ ≤ c by definition of Cσ′

0
. If g ⊑ π, as g ∼ h

by hypothesis (in particular, Witσ0(g) = Witσ0(h)), then h ⊑ π. Then, π̄ ∈ Playσ′
0

with
cost(π̄) = cost(π) − w(ρ[m,n]) ≤ cost(π). By definition of Cσ′

0
, there exists c′ ∈ Cσ′

0
such that

c′ ≤ cost(π̄), and therefore c′ ≤ cost(π) = c. Hence σ′
0 ≤ σ0.

We then prove that σ′
0 is a solution to the SPS problem. We have to show that each

play π′ ∈ Playσ′
0

with a cost c′ ∈ Cσ′
0

has a value val(π′) ≤ B. If g ̸⊑ π′, then π′ ∈ Playσ0 .
Notice that c′ = cost(π′) ∈ Cσ0 because σ′

0 ≤ σ0. Therefore, as σ0 ∈ SPS(G, B), we get
that val(π′) ≤ B. If g ⊑ π′, then either val(g) < ∞, or val(g) = ∞ in which case the
weight of ρ[m,n] is null by hypothesis. In the first case, val(g) ≤ B because g is prefix of the
witness ρ ∈ Witσ0 and σ0 ∈ SPS(G, B). This shows that val(π′) ≤ B. In the second case, we
consider π ∈ Playσ0 such that π̄ = π′. Notice that cost(π) = c′ because g ∼ h (in particular,
cost(g) = cost(h)) and ρ[m,n] has a null weight. We get that c′ = cost(π) ∈ Cσ0 since σ′

0 ≤ σ0.
It follows that val(π) ≤ B as σ0 ∈ SPS(G, B). As g ∼ h (in particular, val(g) = val(h)), π′

visits Player 0’s target outside ρ[m+1,n−1], hence val(π′) ≤ B. Therefore σ′
0 ∈ SPS(G, B). ◀

Crucial step. We can now state the theorem announced at the beginning of Section 3.

▶ Theorem 6. Let G ∈ BinGamest be a binary SP game with dimension t, B ∈ N, and
σ0 ∈ SPS(G, B) be a solution. Then there exists a solution σ′

0 ∈ SPS(G, B) without cycles
such that σ′

0 ≤ σ0, and

∀c′ ∈ Cσ′
0
, ∀i ∈ {1, . . . , t} : c′

i ≤ 2Θ(t2) · |V |Θ(t) · (B + 3) ∨ c′
i = ∞ (2)

In case of any general SP game G ∈ Gamest, the same result holds with |V | replaced by
|V | · W in the inequality.

In view of this result, a solution to the SPS problem is said to be bounded when its
Pareto-optimal costs are bounded as stated in the theorem.

The theorem is proved by induction on the dimension t, with the calculation of a function
f(B, t) depending on both B and t, that bounds the components c′

i ̸= ∞. This function
is defined by induction on t through the proofs, and afterwards made explicit and upper
bounded by the bound given in Theorem 6. Notice that the function f can be considered
as increasing in t.10 The proof of Theorem 6 is detailed in the next sections for binary SP
games; it is then easily adapted to any SP games by Lemma 3.

3.2 Dimension One
We begin the proof of Theorem 6 with the case t = 1. In this case, the order on costs is total.

▶ Lemma 7. Let G ∈ BinGames1 be a binary SP game with dimension 1, B ∈ N, and
σ0 ∈ SPS(G, B) be a solution. Then there exists a solution σ′

0 ∈ SPS(G, B) without cycles
such that σ′

0 ≤ σ0 and

∀c′ ∈ Cσ′
0

: c′ ≤ f(B, 1) = B + |V | ∨ c′ = ∞. (3)

Notice that f(B, 1) respects the bound given in Theorem 6 when t = 1.

10 We could artificially duplicate some targets in a way to increase the dimension.

CVIT 2016



23:10 Quantitative Reachability Stackelberg-Pareto Synthesis is NEXPTIME-Complete11

Proof. Player 1 has only one target, thus Cσ0 is a singleton, say Cσ0 = {c}. If c ≤ B + |V |
or c = ∞, it is trivial (we eliminate cycles if necessary). Therefore, let us suppose that
B + |V | < c < ∞. Let ρ ∈ Witσ0 be such that cost(ρ) = c. Let h be the history of maximal
length such that h ⊑ ρ and w(h) = B. Notice that h exists as the arena is binary and
B + |V | < c < ∞. Since σ0 ∈ SPS(G, B) and ρ ∈ Witσ0 , Player 0’s target is visited by h and
Player 1’s target is visited by ρ at least |V | + 1 vertices after h. Hence, ρ performs a cycle
between the two visits, that satisfies the hypotheses of Lemma 5. We can thus eliminate
this cycle and create a better solution. We repeat this process until c ≤ B + |V | and the
termination is guaranteed by the strict reduction of length(ρ). ◀

3.3 Bounding the Pareto-Optimal Costs
We now proceed to the case of dimension t + 1, with t ≥ 1. The next lemma is proved by
using the induction hypothesis. Recall that cmin is the minimum component of the cost c.

▶ Lemma 8. Let G ∈ BinGamest+1 be a binary SP game with dimension t + 1, B ∈ N, and
σ0 ∈ SPS(G, B) be a solution. Then there exists a solution σ′

0 ∈ SPS(G, B) without cycles
such that σ′

0 ≤ σ0, and

∀c′ ∈ Cσ′
0
, ∀i ∈ {1, . . . , t + 1} : c′

i ≤ max{c′
min, B} + 1 + f(0, t) ∨ c′

i = ∞. (4)

Proof. In this proof, we assume that Theorem 6 is true for all dimensions ≤ t, by induction
hypothesis. Let us suppose that there exists c ∈ Cσ0 such that for some i ∈ {1, . . . , t + 1}:

max{cmin, B} + 1 + f(0, t) < ci < ∞ (5)

(if such a cost c does not exist, the proof is trivial by eliminating cycles if necessary). Let
ρ ∈ Witσ0 be a witness with cost(ρ) = c. We define the history h of minimal length such that

h ⊑ ρ and w(h) = max{cmin, B} + 1. (6)

Notice that h exists by definition of ci and as the arena is binary. As σ0 ∈ SPS(G, B), by
definition of h, Player 0’s target and at least one target of Player 1 are visited by h̄ such
that h = h̄last(h). Therefore the subgame G|h has dimension k ≤ t. Notice that k > 0 by
definition of ci, see (5).

Let us consider the SP game Ḡ with the same arena as G but with the initial vertex
last(h) (instead of v0) and with the targets visited by h̄ removed from Player 1’s set of targets
and with no target for Player 0 (since h̄ has visited this target). It has dimension k. We also
consider the strategy σ̄0 for Player 0 in Ḡ constructed from the strategy σ0|h in G|h as follows:
σ̄0(g) = σ0|h(h̄g) for all histories g ∈ HistḠ (Player 0 plays in Ḡ from last(h) as he plays in
G|h from h). We have that σ̄0 ∈ SPS(Ḡ, 0) (the bound is equal to 0 as Player 0 has no target).
We can thus apply the induction hypothesis: by Theorem 6, there exists τ̄0 ∈ SPS(Ḡ, 0)
without cycles such that τ̄0 ≤ σ̄0 and for all c̄ ∈ Cτ̄0 and all j ∈ {1, . . . , k}, c̄j ≤ f(0, k) or
c̄j = ∞. Notice that one can choose for σ̄0 a set of witnesses derived from those of σ0 having
h as prefix: Witσ̄0 = {π̄ ∈ PlayḠ | h̄π̄ ∈ Witσ0}. In particular, there exists ρ̄ ∈ Witσ̄0 such
that ρ = h̄ρ̄. By (5) and (6), we have that costTi(ρ̄) > f(0, t) (costTi(ρ̄) and costTi(ρ) differ
by w(h)). As c̄i ≤ f(0, k) ≤ f(0, t), it follows that τ̄0 < σ̄0.

We now want to transfer the previous solution τ̄0 in Ḡ to the subgame G|h in a way to
apply Lemma 4 and thus obtain the desired strategy σ′

0 in G. Recall that σ̄0 was constructed
from σ0|h ∈ Σ0|h. Let us conversely define the strategy τ0 ∈ Σ0|h from τ̄0: τ0(h̄g) = τ̄0(g) for
all histories h̄g ∈ HistG. Moreover, we can choose the following sets of witnesses for σ0|h and
τ0: Witσ0|h

= {h̄π̄ | π̄ ∈ Witσ̄0} and Witτ0 = {h̄π̄ | π̄ ∈ Witτ̄0}. It follows from τ̄0 < σ̄0 that
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τ0 < σ0|h (again, the Pareto-optimal costs of τ̄ and τ differ by w(h), and so do the ones of
σ̄0 and σ0). Moreover τ0 ∈ SPS(G, B) since h visits Player 0’s target. Hence, by Lemma 4,
the strategy σ′

0 = σ0[h → τ0] is a solution in SPS(G, B) and σ′
0 < σ0.

We repeat the process described above as long as there remain costs c ∈ Cσ0 that are
too large. The process terminates as we are always building strictly better strategies. If the
resulting strategy is not without cycles, we can eliminate them, one by one, to get a better
strategy by applying Lemma 5. This second process also terminates by the strict reduction
of the length of the witnesses of the intermediate solutions. ◀

3.4 Bounding the Minimum Component of Pareto-Optimal Costs
To prove Theorem 6, in view of Lemma 8, our last step is to provide a bound on cmin, the
minimum component of each Pareto-optimal cost c ∈ Cσ0 . Notice that if cmin = ∞, then all
the components of c are equal to ∞. In this case, Cσ0 = {(∞, . . . , ∞)}, i.e., there is no play
in Playσ0 visiting Player 1’s targets. The bound on cmin is provided in Lemma 10, when
Cσ0 ̸= {(∞, . . . , ∞)}. It depends on |Cσ0 |, a bound of which is first given in the next lemma.

▶ Lemma 9. Let G ∈ BinGamest+1 be a binary SP game with dimension t + 1, B ∈ N, and
σ0 ∈ SPS(G, B) be a solution satisfying (4). Suppose that Cσ0 ̸= {(∞, . . . , ∞)}. Then

|Cσ0 | ≤
(
f(0, t) + B + 3

)t+1
. (7)

Proof. let σ0 be a solution such that for all c ∈ Cσ0 , for all i ∈ {1, . . . , t + 1}, ci ≤
max{cmin, B} + 1 + f(0, t) or ci = ∞. Therefore, we can write each c ∈ Cσ0 as c =
cmin(1, . . . , 1) + d with di ∈ {0, . . . , B + 1 + f(0, t)} ∪ {∞} for all i. If two costs c, c′ ∈ Cσ0

are such that c = cmin(1, . . . , 1) + d and c′ = c′
min(1, . . . , 1) + d, with the same vector d, then

they are comparable. Hence, as Cσ0 is an antichain, its size is bounded by the number of
vectors d, that is, by

(
f(0, t) + B + 3

)t+1. ◀

In the next lemma, we give the announced bound on the minimum component of Pareto-
optimal costs.

▶ Lemma 10. Let G ∈ BinGamest+1 be a binary SP game with dimension t + 1, B ∈ N,
and σ0 ∈ SPS(G, B) be a solution without cycles and satisfying (4). Suppose that Cσ0 ̸=
{(∞, . . . , ∞)}. Then,

∀c ∈ Cσ0 : cmin ≤ B + 2t+1(
|V | · log2(|Cσ0 |) + 1 + f(0, t)

)
(8)

The proof of this lemma requires the next property about trees that is easily established.
We recall the notion of depth of a node in a tree: the root has depth 0, and if a node has
depth d, then its sons have depth d + 1.

▶ Lemma 11. Let n, ℓ ∈ N be such that ℓ ≥ 1. Consider a finite tree with at most n leaves
such that there are at most ℓ − 1 consecutive nodes with degree one along any branch of the
tree. Then the leaves with the smallest depth have a depth bounded by ℓ · log2(n). ◀

Proof of Lemma 10. Let σ0 ∈ SPS(G, B) be a solution without cycles and satisfying (4).
Suppose that Cσ0 ≠ {(∞, . . . , ∞)} and let Witσ0 be a set of witnesses for Cσ0 . Assume by
contradiction that there exists d ∈ Cσ0 such that

B + 2t+1(
δ + 1 + f(0, t)

)
< dmin < ∞. (9)
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with δ = |V | · log2(|Cσ0 |). Let ρ ∈ Witσ0 be a witness such that cost(ρ) = d. We are
going to build a finite sequence of Pareto-optimal costs (c(k))k∈{0,...,2t+1} such that, for all
k ∈ {0, . . . , 2t+1 − 1},

max{c
(k)
i | c

(k)
i ̸= ∞} < c

(k+1)
min (10)

By the pigeonhole principle, there exist k, k′ ∈ {0, . . . , 2t+1} such that k < k′ and {i ∈
{1, . . . , t + 1} | c

(k)
i = ∞} = {i ∈ {1, . . . , t + 1} | c

(k′)
i = ∞} (a cost component is either finite

or infinite). It follows from (10) that c(k) < c(k′). This is impossible as Cσ0 is an antichain.
To build the sequence (c(k))k∈{0,...,2t+1}, we consider the tree T of witnesses of Witσ0

truncated at the first visit of a target of Player 1. This truncated tree is finite: its leaves
correspond to the histories g such that w(g) = cmin, with c ∈ Cσ0 , the first visit of g of
some target of Player 1 is in its last vertex last(g), and g visits Player 0’s target such that
val(h) ≤ B. (Notice that one leaf of T corresponds to some g such that w(g) = dmin.) By
recalling the region decomposition of the witnesses, T has at most |Cσ0 | leaves, its internal
nodes with degree ≥ 2 correspond to histories that are branching points, and any two internal
nodes between two consecutive branching points (with respect to the order ⊑) are in the
same region.

Let us construct the first Pareto-optimal cost c(0). Let h0 be the history of maximal
length such that h0 ⊑ ρ and w(h0) = B. This history h0 exists because the arena is binary
and cost(ρ) = d with dmin satisfying (9). We consider the subtree T0 of T rooted in the last
vertex of h0. By the region decomposition of Witσ0 and as σ0 is without cycle in the sense of
Lemma 5, we can apply Lemma 11 to the subtree T0 with parameters n = |Cσ0 | and ℓ = |V |.
It follows that any leaf of T0 with the smallest depth has a depth ≤ δ = |V | · log2(|Cσ0 |).
We set c(0) as the cost of the witness associated with one of these leaves. We get that
c

(0)
min ≤ B + δ because T0 is the subtree rooted at h0 with w(h0) = B. As σ0 satisfies (4) by

hypothesis, we get that max{c
(0)
i | c

(0)
i ̸= ∞} ≤ max{c

(0)
min, B} + 1 + f(0, t), that is,

max{c
(0)
i | c

(0)
i ̸= ∞} ≤ B +

(
δ + 1 + f(0, t)

)
. (11)

Let us construct the second Pareto-optimal cost c(1) as we did for c(0). Let h1 be the
history of maximal length such that h1 ⊑ ρ and w(h1) = B + δ + 1 + f(0, t) (notice that we
use the bound of (11)). This history h1 exists for the same reasons as for h0. Let T1 be the
subtree rooted in the last vertex of h1 (it is a subtree of T0). We can apply Lemma 11 as for
T0: any leaf of T1 with the smallest depth has a depth ≤ δ . Thus, we set c(1) as the cost of
the witness associated with one of these leaves. We get that c

(1)
min ≤ B + δ + 1 + f(0, t) + δ

by definition of w(h1). By (4), we get

max{c
(1)
i | c

(1)
i ̸= ∞} ≤ B + 2

(
δ + 1 + f(0, t)

)
. (12)

We also have that max{c
(0)
i | c

(0)
i ̸= ∞} < c

(1)
min as required in (10). Indeed c(1) and d

correspond to two different leaves of T1, and thus c(1) does not correspond to the root
of T1. By definition of h1, we get that c

(1)
min > w(h1) = B + δ + 1 + f(0, t), and thus

c
(1)
min > max{c

(0)
i | c

(0)
i ̸= ∞} by (11).

As dmin satisfies (9), we can repeat this process to construct the next costs c(2), c(3), . . . ,

until the last cost c(2t+1). This concludes the proof. ◀
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3.5 Proof of Theorem 6
Finally, we gather all our results and combine them, in a way to complete the proof of
Theorem 6. Thanks to Lemmas 7-10, calculations can be done in a way to have an explicit
formula for f(B, t) and a bound on its value.

Proof of Theorem 6. Let G be a binary SP game with dimension t, B ∈ N, and σ0 ∈
SPS(G, B) be a solution. We assume that Cσ0 ≠ {(∞, . . . , ∞)}, as Theorem 6 is trivially
true in case Cσ0 = {(∞, . . . , ∞)}. By Lemmas 7-10, there exists σ′

0 ∈ SPS(G, B) without
cycles such that σ′

0 ≤ σ0 and

∀c′ ∈ Cσ′
0
, ∀i ∈ {1, . . . , t} : c′

i ≤ f(B, t) ∨ c′
i = ∞,

where
in dimension t = 1: f(B, 1) ≤ B + |V |,
in dimension t + 1 (under the induction hypothesis for t):
(a) f(B, t + 1) ≤ max{c′

min, B} + 1 + f(0, t),
(b) c′

min ≤ B + 2t+1(
|V | · log2(|C ′

σ0
|) + 1 + f(0, t)

)
,

(c) |C ′
σ0

| ≤
(
f(0, t) + B + 3

)t+1.
We have to prove that f(B, t) ≤ 2Θ(t2)|V |Θ(t)(B + 3) for all t ≥ 1. This is true when t = 1.
Let us suppose that it is true for t, and let us prove that it remains true for t + 1. Let us
begin with the factor |V | · log2(|C ′

σ0
|) + 1 + f(0, t) appearing in the bound on c′

min:

|V | · log2(|C ′
σ0

|) + 1 + f(0, t) ≤
≤ |V | · (t + 1) · log2(f(0, t) + B + 3) + 1 + f(0, t) by (c)
≤ |V | · (t + 1) · (f(0, t) + B + 3) + 1 + f(0, t) as log2(x) ≤ x

≤ (f(0, t) + B + 3) · |V | · (t + 2) (d).

Let us now compute a bound on f(B, t + 1):

f(B, t + 1) ≤ max{c′
min, B} + 1 + f(0, t) by (a)

≤ B + 2t+1
(

(f(0, t) + B + 3) · |V | · (t + 2) + 1 + f(0, t)
)

by (b) and (d)
≤ 2t+1(

f(0, t) + B + 3
)

· |V | · (t + 3) (e).

It follows that f(B, t + 1) can be computed thanks to f(0, t) bounded by induction:

f(B, t + 1) ≤
≤ 2t+1(

3 · 2Θ(t2) · |V |Θ(t) + B + 3
)

· |V | · (t + 3) by (e) and (2)
≤ 2Θ((t+1)2) · |V |Θ(t+1) · (B + 3) as t + 3 ≤ 2t+3.

This completes the proof of Theorem 6 by induction on t. ◀

Thanks to Lemmas 3, 9 and Theorem 6, we easily get a bound for |Cσ0 | depending on G

and B, as stated in the next proposition.

▶ Proposition 12. For all games G ∈ Gamest and for all bounded13 solutions σ0 ∈ SPS(G, B),
the size |Cσ0 | is either equal to 1 or bounded exponentially by 2Θ(t3) ·(|V | ·W )Θ(t2) ·(B +3)Θ(t).

In the sequel, we use the same notation f(B, t) for any SP games, having in mind that
|V | has to be multiplied by W when the game arena is not binary.

13 The notion of bounded solution has been defined below Theorem 6.
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4 Complexity of the SPS Problem

In this section, we prove our main result (Theorem 2). It follows the same pattern as for
Boolean reachability [14], however it requires the results of Section 3 (which is meaningless
in the Boolean case) and some modifications to handle quantitative reachability. For this
purpose, we first show that if there exists a solution to the SPS problem, then there is one
that is finite-memory and whose memory size is bounded exponentially.

▶ Proposition 13. Let G be an SP game, B ∈ N, and σ0 ∈ SPS(G, B) be a solution. Then
there exists a bounded solution σ′

0 ∈ SPS(G, B) such that σ′
0 is finite-memory and its memory

size is bounded exponentially.

When Cσ0 ̸= {(∞, . . . , ∞)}, the proof of this proposition is based on the following
principles, that are detailed below (the case Cσ0 = {(∞, . . . , ∞)} is treated separately).

We first transform the arena of G into a binary arena and adapt the given solution
σ0 ∈ SPS(G, B) to the new game. We keep the same notations G and σ0. We can suppose
that σ0 is bounded by Theorem 6. We consider a set of witnesses Witσ0 .
We show that at any deviation14, Player 0 can switch to a punishing strategy that imposes
that the consistent plays π either satisfy val(π) ≤ B or cost(π) is not Pareto-optimal.
Moreover, this punishing strategy is finite-memory with an exponential memory.
We then show how to transform the witnesses into lassos, and how they can be produced
by a finite-memory strategy with exponential memory. We also show that we need at
most exponentially many different punishing strategies.

In this way, we get a strategy solution to the SPS problem whose memory size is exponential.

Punishing strategies. Let σ0 be a bounded solution to the SPS Problem. By Theorem 6,
we get that ci ≤ f(B, t) or ci = ∞ for all c ∈ Cσ0 and all i ∈ {1, . . . , t}. Moreover, if a play ρ

is Pareto-optimal, then val(ρ) ≤ B. We define for each history g ∈ Histσ0 its record rec(h) =
(w(h), val(h), cost(h)) whose values are truncated to ⊤ if they are greater than f(B, t).

We define for each deviation hv a punishing strategy τPun
v,rec(hv) as stated in the next lemma.

▶ Lemma 14. Let G be an SP game, B ∈ N, and σ0 ∈ SPS(G, B) be a bounded solution.
Suppose Cσ0 ̸= {(∞, . . . , ∞)}. Let hv be a deviation such that val(h) = ∞ (resp. val(h) < ∞).
Then there exists a finite-memory strategy τPun

v,rec(hv) with an exponential memory size (resp.
with size 1) such that σ′

0 = σ0[hv → τPun
v,rec(hv)] is also a solution in SPS(G, B).

Proof. Let hv be a deviation such that val(h) = ∞, that is, h does not visit Player 0’s
target. As σ0 is a solution, notice that σ0|hv imposes to each consistent play π in G|hv

to satisfy val(π) ≤ B or cost(π) > c for some c ∈ Cσ0 . We are going to replace σ0|hv

by a winning strategy in a zero-sum game H with an exponential arena and an omega-
regular objective that is equivalent to what σ0|hv imposes to plays. The arena of H is
the arena of G extended with the record rec(g) of the current history g. More precisely,
vertices are of the form (v, (m1, m2, m3)) with v ∈ V , m1, m2 ∈ {0, . . . , f(B, t)} ∪ {⊤}, and
m3 ∈

(
{0, . . . , f(B, t)} ∪ {⊤}

)t, such that, whenever v belongs to some target, the weight
component m1 allows to update the (truncated) val component m2 and the (truncated) cost
component m3. The initial vertex of H is equal to (v, rec(hv)). This arena is finite and of
exponential size by the way the values of (m1, m2, m3) are truncated and by Theorem 6.

14 We recall that a deviation is a history hv with h ∈ Hist1, v ∈ V , such that h is prefix of some witness,
but hv is prefix of no witness.
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The omega regular objective of H is the disjunction between (1) the reachability objective
{(v, (m1, m2, m3)) | m2 ≤ B}, and (2) the safety objective {(v, (m1, m2, m3)) | m3 > c for
some c ∈ Cσ0}. It is known, see e.g. [13], that if there exists a winning strategy for zero-sum
games with an objective which is the disjunction of a reachability objective and a safety
objective, then there exists one that is memoryless. This is the case here for the extended
game H: as σ0|hv is winning in H, there exists a winning memoryless strategy in H, and
thus a winning finite-memory strategy τPun

v,rec(hv) with exponential size in the original game.
Therefore, the strategy σ0[hv → τPun

v,rec(hv)] is again a solution in SPS(G, B).
Suppose now that hv is a deviation with val(h) < ∞. As h already visits Player 0’s target,

we can use, in place of σ0|hv, any memoryless strategy τPun
v,rec(hv) as deviating strategy. ◀

Lasso witnesses. To get Proposition 13, we show one can play with an exponential finite-
memory strategy over the witness tree and an exponential number of deviating strategies.

Proof of Proposition 13. (1) We first suppose that Cσ0 ̸= {(∞, . . . , ∞)}. According to
Theorem 6, from σ0 ∈ SPS(G, B), one can construct a solution σ′

0 ∈ SPS(G, B) that is
bounded, thus without cycles. Consider a set of witnesses Witσ′

0
for this strategy, and the

region decomposition of its witnesses. Along any witness ρ, according to Lemma 5, it is thus
impossible to eliminate cycles. Recall that Lemma 5 only considers cycles implying histories
in the same region, those cycles with a null weight before visiting Player 0’s target; moreover,
the last region of ρ is excluded. Let us study the memory used by σ′

0. Along a witness ρ:
As val(ρ) ≤ B and there is no cycle with a null weight before visiting Player 0’s target, it
follows that the smallest h such that val(h) = val(ρ) has a length |h| ≤ |V | · B · W (the
presence of W comes from the fact that the arena has been made binary).
Once Player 0’s target is visited and before the last region, σ′

0 is “locally” memoryless
inside each region, as there is no cycle.
In the last region, as soon as a vertex is repeated, we replace σ′

0 by a memoryless strategy
that repeats this cycle forever. We then get a lasso replacing ρ that has the same value
and cost. We keep the same notation ρ for this lasso. We also keep the notation Witσ′

0
for

the set of lasso witnesses. Notice that for deviations hv such that h belongs to the last
region of a witness, the strategy τPun

v,rec(hv) is memoryless (as val(h) < ∞, see Lemma 14).
Hence the modification of the witnesses has no impact on the deviating strategies.

Let us study the memory necessary for σ′
0 in order to produce the new set Witσ′

0
: (a) The

number of regions traversed by a witness ρ is bounded by (t+2) · |Witσ′
0
|. Indeed, the number

of visited targets increases from 0 to t + 1 and the set Witσ′
0
(h) decreases until being equal

to {ρ}. As there are |Cσ′
0
| witnesses, the total number of traversed regions is bounded by

(t + 2) · |Cσ′
0
|2 which is exponential by Proposition 12. (b) On the first regions traversed by a

witness ρ, σ′
0 has to memorize the current history h ⊑ ρ until |h| = |V | · B · W , which needs

an exponential memory. Then, on each other region traversed by ρ, σ′
0 is locally memoryless.

Therefore, the memory necessary for σ′
0 to produce the lasso witnesses is exponential, as

there is an exponential number of regions on which σ′
0 needs an exponential memory.

It remains to explain how to play with a finite-memory strategy in case of deviations from
the witnesses. With each history g, we associate its record rec(g) whose second component
indicates whether val(g) < ∞ or val(g) = ∞. Let hv be a deviation. We apply Lemma 14 to
replace σ′

0|hv by the punishing strategy τPun
v,rec(hv). According to val(h), this punishing strategy

is either finite-memory with an exponential size or it is memoryless. Notice that given a
deviation hv, a punishing strategy only depends on the last vertex v of hv and its record
rec(hv). Therefore, we have an exponential number of punishing strategies by Theorem 6.
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All in all, when Cσ0 ̸= {(∞, . . . , ∞)}, we get from σ0 a solution to the SPS problem that
uses a memory of exponential size.

(2) Suppose that Cσ0 = {(∞, . . . , ∞)}. This means that each play ρ ∈ Playσ0 visits no
target of Player 1 and that σ0 can impose to each such ρ to have a value val(ρ) ≤ B. As
done in Lemma 14, we can replace σ0 by a strategy corresponding to a winning strategy
in a zero-sum game H with an exponential arena and a reachability objective. The arena
of H has vertices of the form (v, (m1, m2)) with v ∈ V , m1, m2 ∈ {0, . . . , B} ∪ {⊤}, such
that, whenever v belongs to Player 0’s target, the weight component m1 allows to update
the val component m2. The initial vertex of H is equal to (v0, 0, val(v0)). This arena has
an exponential size and its reachability objective is {(v, (m1, m2)) | m2 ≤ B}. It is known
that when there is a winning strategy in a zero-sum game with a reachability objective, then
there is one that is memoryless [23]. Hence, coming back to G, σ0 can be replaced by a
finite-memory strategy with exponential memory. ◀

NEXPTIME-completeness. We now prove that the SPS problem is NEXPTIME-complete.

Proof of Theorem 2. (1) NEXPTIME-membership. Let G be an SP game and B ∈ N.
Proposition 13 states the existence of a solution σ0 ∈ SPS(G, B) that uses a finite memory
bounded exponentially. We can guess such a strategy σ0 as a Mealy machine M with a set
M of memory states at most exponential in the size of the instance. This can be done in
exponential time. Let us explain how to verify in exponential time that the guessed strategy
σ0 is a solution to the SPS problem.

We make the following important observation: it is enough to consider Pareto-optimal
costs c whose components ci < ∞ belong to {0, . . . , |V | · |M | · t · W}. Let us explain why:

Consider the cartesian product G×M whose infinite paths are exactly the plays consistent
with σ0. This product has an arena of size |V | · |M | where Player 1 is the only player to
play. The Pareto-optimal costs are among the costs of plays ρ in G × M that have no
cycle with positive weight between two consecutive visits of Player 1’s targets16.
Consider now a Pareto-optimal play ρ with a cycle of null weight between two consecutive
visits of Player 1’s targets. Then there exists another play ρ′, with the same cost as ρ,
that is obtained by removing this cycle. Moreover, if val(ρ) = ∞, then val(ρ′) = ∞.
Therefore, it is enough to consider plays ρ such that for h ⊑ ρ with length |h| = |V | · |M | ·t,
we have cost(ρ) = cost(h) (the worst case happens when ρ visit all Player 1’s targets each
of them separated by a longest path without cycle). It follows that cost(ρ) ≤ |V |·|M |·t·W .

From the previous observation, let us explain how to compute the set Cσ0 of Pareto-optimal
costs, and then how to check that σ0 is a solution.

First, we further extend the vertices of G×M to keep track of the weight, value and cost of
the current history, truncated to ⊤ when they are greater than α = max{B, |V |·|M |·t·W}).
That is, we consider an arena H whose vertices are of the form (v, s, (m1, m2, m3)) with
v ∈ V , s ∈ M , m1, m2 ∈ {0, . . . , α} ∪ {⊤}, and m3 ∈ ({0, . . . , α} ∪ {⊤})t. As in the
proof of Lemma 14, whenever v belongs to some target, the weight component m1 allows
to update the value component m2 and the cost component m3. The initial vertex is
(v0, s0, (0, val(v0), cost(v0))) where s0 is the initial memory state of M.
Then, to compute Cσ0 , we test for the existence of a play ρ ∈ Playσ0 with a given cost
c = cost(ρ), beginning with the smallest possible cost c = (0, . . . , 0), and finishing with
the largest possible one c = (⊤, . . . , ⊤). Deciding the existence of such a play ρ for cost c

16 or between the initial vertex and the first visit to some Player 1’s target.
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corresponds to deciding the existence of a play in the extended arena H that visits some
vertex (v, s, (m1, m2, m3)) with m3 = c. This corresponds to a reachability objective that
can be checked in polynomial time in the size of H, thus in exponential time in the size
of the given instance. Therefore, as there is at most an exponential number of costs c to
consider, the set Cσ0 can be computed in exponential time.
Finally, we check whether σ0 is not a solution, i.e., there exists a play ρ in H with a cost
c ∈ Cσ0 such that val(ρ) > B. We remove from H all vertices (v, s, (m1, m2, m3)) such
that m2 ≤ B, and we then check the existence of a play with a cost c ∈ Cσ0 as done in
the previous item. Checking that σ0 is a solution can thus be done in exponential time.

(2) NEXPTIME-hardness. In [14], the Boolean variant of the SPS problem is proved to
be NEXPTIME-complete. It can be reduced to its quantitative variant by labeling each edge
with a weight equal to 0 and by considering a bound B equal to 0. Hence the value and cost
components are either equal to 0 or ∞. It follows that the (quantitative) SPS problem is
NEXPTIME-hard. ◀

5 Conclusion and Future Work

In [14], the SPS problem is proved to be NEXPTIME-complete for Boolean reachability. In this
paper, we proved that the same result holds for quantitative reachability (with non-negative
weights). The difficult part was to show that when there exists a solution to the SPS problem,
there is one whose Pareto-optimal costs are exponentially bounded.

Considering negative weights is a non-trivial work that is deferred to future work. It will
require to study how cycles with a negative cost are useful to improve a solution. Considering
multiple objectives for Player 0 (instead of one) is also a non-trivial problem. The order on
the tuples of values becomes partial and we could consider several weight functions.

It is well-known that quantitative objectives make it possible to model richer properties
than with Boolean objectives. This paper studied quantitative reachability. It would be very
interesting to investigate the SPS problem for other quantitative payoffs, like mean-payoff or
discounted sum.
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