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Coffee Machine – Correct execution

Client Machine

Insert 2€

Money updated

Selected coffee

Give change

Pour the coffee

How can we detect the fault as soon as possible?
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Coffee Machine – Error

Client Machine

Insert 2€

Money updated

Selected coffee

Give change

Pour the coffee

How can we detect the fault as soon as possible?
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Detecting faults

Unit tests?

I Needs to implement the tests “manually”.
I Risk of forgetting important cases.
I Impossible to test everything.

↪→ Does not prove the system is correct.

We will rely on formal methods.

Idea:
I Construct a model M of the system.
I Verify if M satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.
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A model for the coffee machine

Waiting Coins inserted Give change

Finish Pour the coffee

pieces

pieces

coffee
selected

coffee poured
change given

coffee poured
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Which model?

An alphabet, noted Σ, is a finite and non-empty set of symbols.

A word w = a1a2 . . . an (n ∈ N) over an alphabet Σ is a finite sequence of symbols,
ai ∈ Σ. The empty word is denoted by ε.
A language L over an alphabet Σ is a set of words.

Example 1
Σ = {a, b} is an alphabet.

w = ababb is a word over Σ.
L′ = {ε, a, b} and L = {w | w has an even number of a and an odd number of b} are
two languages over Σ.
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Which model?

A deterministic finite automaton (DFA) is a tuple A =
(Q,Σ, δ, q0, F ) where
I Σ an alphabet;

I Q a finite set of states;
I δ : (Q× Σ) → Q a transition function;
I q0 ∈ Q the initial state;
I F ⊆ Q the set of final states.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.
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Which model?

Let w = a1a2 . . . , an ∈ Σ∗. The run of A over w is the
sequence of states

p1
a1−→ p2

a2−→ p3
a3−→ . . .

an−→ pn+1

such that p1 = q0 and ∀i, δ(pi, ai) = pi+1.

If pn+1 ∈ F , then w is accepted by A.

Example 2
Let w = ababb. The corresponding run is

q0
a−→ q1

b−→ q3
a−→ q2

b−→ q0
b−→ q2.

and w is accepted by A.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.
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Which model?

The language of A is the set of all accepted words, i.e.,

L(A) = {w | ∃p ∈ F, q0
w−→ p}.

Example 3
The language of A is

L(A) = {w | w has an even number of a and
an odd number of b}.

q0 q1

q2 q3

a

b
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Infinite table
Let L = {w | w has an even number of a and an odd number of b}.

Let u ∈ Σ∗. For all w ∈ Σ∗, we check whether uw ∈ L.
We construct a table where the rows are the u and the columns the w.

qε qa

qb qab

a

b

a

b

a

b

a

b

The table contains in fact four different rows.
↪→ A finite table is enough.
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How to learn a table?

Learner Teacher
Knows L

Membership queries w ∈ L?

True or false

Equivalence queries L(A) = L?

True or a witness of the error

Figure 2: Angluin’s framework.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
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Back to the coffe

How does the teacher work, in practical cases?
I Membership queries: execute the system on w and provide the answer.

I Equivalence queries:

I If we can manipulate the system as a black box, then we can approximate the
equivalence queries.

I If we know how the system behaves (white box), then the equivalence queries can be
more precise.

I We can mix both approaches (grey box).

↪→ It depends on the exact problem.
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JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers

G. Staquet JSON Documents Verification by state machines 12 / 14
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q0 q1 q2 q3 q4 q5
{ "town": str , "country": str }

Figure 3: An automaton for the value of "place".
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JSON Documents
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"title": "Verification by state machines",
"place": {

"town": "Mons",
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"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers

I An object is a non-ordered collection of key-value paires.

I An array is an ordered collection of values.

Our approacha:
I We learn an automaton A with a fixed order on the keys.
I We abstract A to allow any order.

aBruyère, Pérez, and Staquet, “Validating Streaming JSON Documents with Learned VPAs”, 2023.
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Figure 4: Experimental results for our JSON documents validation algorithm. Blue crosses give
the values for our algorithm, and the red circles for the “classical” algorithm.
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Thank you!
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