Verification of computer systems thanks to state machines

Gaëtan Staquet

Theoretical computer science Computer Science Department Science Faculty University of Mons Formal Techniques in Software Engineering Computer Science Department Science Faculty University of Antwerp

May 24, 2023

Coffee Machine – Error

Coffee Machine – Error

How can we detect the fault as soon as possible?

Unit tests?

Needs to implement the tests "manually".

- Needs to implement the tests "manually".
- Risk of forgetting important cases.

- Needs to implement the tests "manually".
- Risk of forgetting important cases.
- Impossible to test everything.

- Needs to implement the tests "manually".
- Risk of forgetting important cases.
- Impossible to test everything.
- \hookrightarrow Does not prove the system is correct.

Unit tests?

- Needs to implement the tests "manually".
- Risk of forgetting important cases.
- Impossible to test everything.
- \hookrightarrow Does not prove the system is correct.

We will rely on formal methods.

Unit tests?

- Needs to implement the tests "manually".
- Risk of forgetting important cases.
- Impossible to test everything.
- \hookrightarrow Does not prove the system is correct.

We will rely on formal methods.

Idea:

- Construct a model \mathcal{M} of the system.
- \blacktriangleright Verify if \mathcal{M} satisfies the desired properties, over all possible executions.

Unit tests?

- Needs to implement the tests "manually".
- Risk of forgetting important cases.
- Impossible to test everything.
- \hookrightarrow Does not prove the system is correct.

We will rely on formal methods.

Idea:

- Construct a model \mathcal{M} of the system.
- \blacktriangleright Verify if \mathcal{M} satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

A model for the coffee machine

A model for the coffee machine

An alphabet, noted $\boldsymbol{\Sigma},$ is a finite and non-empty set of symbols.

Example 1

 $\Sigma = \{a, b\}$ is an alphabet.

An alphabet, noted Σ , is a finite and non-empty set of symbols. A word $w = a_1 a_2 \dots a_n$ $(n \in \mathbb{N})$ over an alphabet Σ is a finite sequence of symbols, $a_i \in \Sigma$. The empty word is denoted by ε .

Example 1

 $\Sigma = \{a, b\}$ is an alphabet. w = ababb is a word over Σ .

An alphabet, noted Σ , is a finite and non-empty set of symbols. A word $w = a_1 a_2 \dots a_n$ $(n \in \mathbb{N})$ over an alphabet Σ is a finite sequence of symbols, $a_i \in \Sigma$. The empty word is denoted by ε . A language L over an alphabet Σ is a set of words.

Example 1

$$\begin{split} \Sigma &= \{a,b\} \text{ is an alphabet.} \\ w &= ababb \text{ is a word over } \Sigma. \\ L' &= \{\varepsilon,a,b\} \text{ and } L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\} \text{ are two languages over } \Sigma. \end{split}$$

A deterministic finite automaton (DFA) is a tuple $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ where

 \blacktriangleright Σ an alphabet;

A deterministic finite automaton (DFA) is a tuple $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ where

- \blacktriangleright Σ an alphabet;
- Q a finite set of states;

A deterministic finite automaton (DFA) is a tuple $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ where

- \blacktriangleright Σ an alphabet;
- Q a finite set of states;
- $\blacktriangleright \ \delta: (Q \times \Sigma) \to Q \text{ a transition function};$

A deterministic finite automaton (DFA) is a tuple $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ where

- \blacktriangleright Σ an alphabet;
- ▶ Q a finite set of states;
- $\blacktriangleright \ \delta: (Q \times \Sigma) \to Q \text{ a transition function};$
- ▶ $q_0 \in Q$ the initial state;

A deterministic finite automaton (DFA) is a tuple $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ where

- \blacktriangleright Σ an alphabet;
- ▶ Q a finite set of states;
- $\blacktriangleright \ \delta: (Q \times \Sigma) \to Q \text{ a transition function};$
- ▶ $q_0 \in Q$ the initial state;
- ▶ $F \subseteq Q$ the set of final states.

Let $w = a_1 a_2 \dots, a_n \in \Sigma^*$. The run of \mathcal{A} over w is the sequence of states

$$p_1 \xrightarrow{a_1} p_2 \xrightarrow{a_2} p_3 \xrightarrow{a_3} \dots \xrightarrow{a_n} p_{n+1}$$

such that $p_1 = q_0$ and $\forall i, \delta(p_i, a_i) = p_{i+1}$.

Example 2

Let w = ababb. The corresponding run is

$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_3 \xrightarrow{a} q_2 \xrightarrow{b} q_0 \xrightarrow{b} q_2.$$

Figure 1: A DFA \mathcal{A} .

Let $w = a_1 a_2 \dots, a_n \in \Sigma^*$. The run of \mathcal{A} over w is the sequence of states

$$p_1 \xrightarrow{a_1} p_2 \xrightarrow{a_2} p_3 \xrightarrow{a_3} \dots \xrightarrow{a_n} p_{n+1}$$

such that $p_1 = q_0$ and $\forall i, \delta(p_i, a_i) = p_{i+1}$. If $p_{n+1} \in F$, then w is accepted by \mathcal{A} .

Example 2

Let w = ababb. The corresponding run is

$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_3 \xrightarrow{a} q_2 \xrightarrow{b} q_0 \xrightarrow{b} q_2,$$

and w is accepted by \mathcal{A} .

Figure 1: A DFA \mathcal{A} .

The language of ${\mathcal A}$ is the set of all accepted words, i.e.,

$$\mathcal{L}(\mathcal{A}) = \{ w \mid \exists p \in F, q_0 \xrightarrow{w} p \}.$$

Example 3

The language of ${\cal A}$ is

$$\mathcal{L}(\mathcal{A}) = \{w \mid w \text{ has an even number of } a \text{ and} \\ an odd number of } b\}.$$

Figure 1: A DFA \mathcal{A} .

Let $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}.$

Let $u \in \Sigma^*$. For all $w \in \Sigma^*$, we check whether $uw \in L$. We construct a table where the rows are the u and the columns the w.

Let $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}.$

	ε	a	b	aa	ab	ba	bb	
ε	0	0	1	0	0	0	0	
a	0	0	0	0	1	1	0	
b	1	0	0	1	0	0	1	
aa	0	0	1	0	0	0	0	
ab	0	1	0	0	0	0	0	
ba	0	1	0	0	0	0	0	
÷	÷	÷	÷	÷	÷	÷	÷	·

Let $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}.$

The table contains in fact four different rows.

Let $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}.$

The table contains in fact four different rows.

Let $L = \{w \mid w \text{ has an even number of } a \text{ and an odd number of } b\}.$

The table contains in fact four different rows. \hookrightarrow A finite table is enough.

Figure 2: Angluin's framework.¹

¹Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987.

G. Staquet

Constructing a model

Figure 2: Angluin's framework.¹

¹Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987.

G. Staquet

Constructing a model

Figure 2: Angluin's framework.¹

¹Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987.

• Membership queries: execute the system on w and provide the answer.

- Membership queries: execute the system on w and provide the answer.
- Equivalence queries:
 - If we can manipulate the system as a black box, then we can approximate the equivalence queries.

- Membership queries: execute the system on w and provide the answer.
- Equivalence queries:
 - If we can manipulate the system as a black box, then we can approximate the equivalence queries.
 - If we know how the system behaves (white box), then the equivalence queries can be more precise.

- Membership queries: execute the system on w and provide the answer.
- Equivalence queries:
 - If we can manipulate the system as a black box, then we can approximate the equivalence queries.
 - If we know how the system behaves (white box), then the equivalence queries can be more precise.
 - ▶ We can mix both approaches (grey box).

- Membership queries: execute the system on w and provide the answer.
- Equivalence queries:
 - If we can manipulate the system as a black box, then we can approximate the equivalence queries.
 - If we know how the system behaves (white box), then the equivalence queries can be more precise.
 - We can mix both approaches (grey box).
- \hookrightarrow It depends on the exact problem.

```
{
   "title": "Verification by state machines",
   "place": {
      "town": "Mons",
      "country": "Belgium"
   },
   "date": [24, 05, 2023]
}
```

```
{
   "title": "Verification by state machines",
   "place": {
      "town": "Mons",
      "country": "Belgium"
   },
   "date": [24, 05, 2023]
}
We want to verify that the document satisfies some constraints.
```

```
{
  "title": "Verification by state machines",
  "place": {
    "town": "Mons",
    "country": "Belgium"
  },
  "date": [24, 05, 2023]
}
  "title" → string of characters
  "place" → object such that
    "town" → string of characters
    "country" → string of characters
    "date" → array of integers
```

We want to verify that the document satisfies some constraints.

```
{
  "title": "Verification by state machines",
  "place": {
    "town": "Mons",
    "country": "Belgium"
  },
    "date": [24, 05, 2023]
}
  "title" → string of characters
  "place" → object such that
    "town" → string of characters
    "country" → string of characters
    "date" → array of integers
```

We want to verify that the document satisfies some constraints.

$$\rightarrow \begin{array}{c} q_0 \\ \hline q_1 \\ \hline \end{array} \begin{array}{c} \text{"town": str} \\ \hline q_2 \\ \hline \end{array} \begin{array}{c} q_3 \\ \hline \end{array} \begin{array}{c} \text{"country": str} \\ \hline q_4 \\ \hline \end{array} \begin{array}{c} q_5 \\ \hline \end{array} \end{array}$$

Figure 3: An automaton for the value of "place".

```
{
  "title": "Verification by state machines",
  "place": {
  "town": "Mons",
  "country": "Belgium"
  },
  "date": [24, 05, 2023]
}
  "title" → string of characters
  "town" → string of characters
  "date" → array of integers
```

An object is a non-ordered collection of key-value paires.

```
{
  "title": "Verification by state machines",
  "place": {
    "town": "Mons",
    "country": "Belgium"
    },
    "date": [24, 05, 2023]
}
  "title" → string of characters
    "town" → string of characters
    "date" → array of integers
```

- An object is a non-ordered collection of key-value paires.
- An array is an ordered collection of values.

```
{
  "title": "Verification by state machines",
  "place": {
    "town": "Mons",
    "country": "Belgium"
    },
    "date": [24, 05, 2023]
}
  "title" → string of characters
    "place" → object such that
    "town" → string of characters
    "country" → string of characters
    "date" → array of integers
```

- An object is a non-ordered collection of key-value paires.
- An array is an ordered collection of values.

Our approach^a:

```
{
  "title": "Verification by state machines",
  "place": {
    "town": "Mons",
    "country": "Belgium"
    },
    "date": [24, 05, 2023]
}
  "title" → string of characters
    "place" → object such that
    "town" → string of characters
    "country" → string of characters
    "date" → array of integers
```

- An object is a non-ordered collection of key-value paires.
- An array is an ordered collection of values.

Our approach^a:

 \blacktriangleright We learn an automaton ${\cal A}$ with a fixed order on the keys.

```
{
  "title": "Verification by state machines",
  "place": {
    "town": "Mons",
    "country": "Belgium"
    },
    "date": [24, 05, 2023]
}
  "title" → string of characters
    "place" → object such that
    "town" → string of characters
    "country" → string of characters
    "date" → array of integers
```

- An object is a non-ordered collection of key-value paires.
- An array is an ordered collection of values.

Our approach^a:

- We learn an automaton \mathcal{A} with a fixed order on the keys.
- We abstract \mathcal{A} to allow any order.

Figure 4: Experimental results for our JSON documents validation algorithm. Blue crosses give the values for our algorithm, and the red circles for the "classical" algorithm.

Thank you!

- Angluin, Dana. "Learning Regular Sets from Queries and Counterexamples". In: Inf. Comput. 75.2 (1987), pp. 87–106. DOI: 10.1016/0890-5401(87)90052-6. URL: https://doi.org/10.1016/0890-5401(87)90052-6.
- Bruyère, Véronique, Guillermo A. Pérez, and Gaëtan Staquet. "Validating Streaming JSON Documents with Learned VPAs". In: *Tools and Algorithms for the Construction and Analysis of Systems*. Ed. by Sriram Sankaranarayanan and Natasha Sharygina. Cham: Springer Nature Switzerland, 2023, pp. 271–289. ISBN: 978-3-031-30823-9.