
Verification of computer systems thanks to state machines

Gaëtan Staquet

Theoretical computer science Formal Techniques in Software Engineering
Computer Science Department Computer Science Department

Science Faculty Science Faculty
University of Mons University of Antwerp

May 24, 2023

Coffee Machine – Correct execution

Client Machine

Insert 2€

Money updated

Selected coffee

Give change

Pour the coffee

How can we detect the fault as soon as possible?

G. Staquet Motivation Verification by state machines 2 / 14

Coffee Machine – Correct execution

Client Machine

Insert 2€

Money updated

Selected coffee

Give change

Pour the coffee

How can we detect the fault as soon as possible?

G. Staquet Motivation Verification by state machines 2 / 14

Coffee Machine – Correct execution

Client Machine

Insert 2€

Money updated

Selected coffee

Give change

Pour the coffee

How can we detect the fault as soon as possible?

G. Staquet Motivation Verification by state machines 2 / 14

Coffee Machine – Correct execution

Client Machine

Insert 2€

Money updated

Selected coffee

Give change

Pour the coffee

How can we detect the fault as soon as possible?

G. Staquet Motivation Verification by state machines 2 / 14

Coffee Machine – Correct execution

Client Machine

Insert 2€

Money updated

Selected coffee

Give change

Pour the coffee

How can we detect the fault as soon as possible?

G. Staquet Motivation Verification by state machines 2 / 14

Coffee Machine – Error

Client Machine

Insert 2€

Money updated

Selected coffee

Give change

Pour the coffee

How can we detect the fault as soon as possible?

G. Staquet Motivation Verification by state machines 2 / 14

Coffee Machine – Error

Client Machine

Insert 2€

Money updated

Selected coffee

Give change

Pour the coffee

How can we detect the fault as soon as possible?

G. Staquet Motivation Verification by state machines 2 / 14

Detecting faults

Unit tests?

I Needs to implement the tests “manually”.
I Risk of forgetting important cases.
I Impossible to test everything.

↪→ Does not prove the system is correct.

We will rely on formal methods.

Idea:
I Construct a model M of the system.
I Verify if M satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

G. Staquet Motivation Verification by state machines 3 / 14

Detecting faults

Unit tests?
I Needs to implement the tests “manually”.

I Risk of forgetting important cases.
I Impossible to test everything.

↪→ Does not prove the system is correct.

We will rely on formal methods.

Idea:
I Construct a model M of the system.
I Verify if M satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

G. Staquet Motivation Verification by state machines 3 / 14

Detecting faults

Unit tests?
I Needs to implement the tests “manually”.
I Risk of forgetting important cases.

I Impossible to test everything.
↪→ Does not prove the system is correct.

We will rely on formal methods.

Idea:
I Construct a model M of the system.
I Verify if M satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

G. Staquet Motivation Verification by state machines 3 / 14

Detecting faults

Unit tests?
I Needs to implement the tests “manually”.
I Risk of forgetting important cases.
I Impossible to test everything.

↪→ Does not prove the system is correct.

We will rely on formal methods.

Idea:
I Construct a model M of the system.
I Verify if M satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

G. Staquet Motivation Verification by state machines 3 / 14

Detecting faults

Unit tests?
I Needs to implement the tests “manually”.
I Risk of forgetting important cases.
I Impossible to test everything.

↪→ Does not prove the system is correct.

We will rely on formal methods.

Idea:
I Construct a model M of the system.
I Verify if M satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

G. Staquet Motivation Verification by state machines 3 / 14

Detecting faults

Unit tests?
I Needs to implement the tests “manually”.
I Risk of forgetting important cases.
I Impossible to test everything.

↪→ Does not prove the system is correct.

We will rely on formal methods.

Idea:
I Construct a model M of the system.
I Verify if M satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

G. Staquet Motivation Verification by state machines 3 / 14

Detecting faults

Unit tests?
I Needs to implement the tests “manually”.
I Risk of forgetting important cases.
I Impossible to test everything.

↪→ Does not prove the system is correct.

We will rely on formal methods.

Idea:
I Construct a model M of the system.
I Verify if M satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

G. Staquet Motivation Verification by state machines 3 / 14

Detecting faults

Unit tests?
I Needs to implement the tests “manually”.
I Risk of forgetting important cases.
I Impossible to test everything.

↪→ Does not prove the system is correct.

We will rely on formal methods.

Idea:
I Construct a model M of the system.
I Verify if M satisfies the desired properties, over all possible executions.

Here, we focus on the construction of the model.

G. Staquet Motivation Verification by state machines 3 / 14

A model for the coffee machine

Waiting Coins inserted Give change

Finish Pour the coffee

pieces

pieces

coffee
selected

coffee poured
change given

coffee poured

G. Staquet Motivation Verification by state machines 4 / 14

A model for the coffee machine

Waiting Coins inserted Give change

Finish Pour the coffee

pieces

pieces

coffee
selected

coffee poured
change given

coffee poured

G. Staquet Motivation Verification by state machines 4 / 14

Which model?

An alphabet, noted Σ, is a finite and non-empty set of symbols.

A word w = a1a2 . . . an (n ∈ N) over an alphabet Σ is a finite sequence of symbols,
ai ∈ Σ. The empty word is denoted by ε.
A language L over an alphabet Σ is a set of words.

Example 1
Σ = {a, b} is an alphabet.

w = ababb is a word over Σ.
L′ = {ε, a, b} and L = {w | w has an even number of a and an odd number of b} are
two languages over Σ.

G. Staquet Model Verification by state machines 5 / 14

Which model?

An alphabet, noted Σ, is a finite and non-empty set of symbols.
A word w = a1a2 . . . an (n ∈ N) over an alphabet Σ is a finite sequence of symbols,
ai ∈ Σ. The empty word is denoted by ε.

A language L over an alphabet Σ is a set of words.

Example 1
Σ = {a, b} is an alphabet.
w = ababb is a word over Σ.

L′ = {ε, a, b} and L = {w | w has an even number of a and an odd number of b} are
two languages over Σ.

G. Staquet Model Verification by state machines 5 / 14

Which model?

An alphabet, noted Σ, is a finite and non-empty set of symbols.
A word w = a1a2 . . . an (n ∈ N) over an alphabet Σ is a finite sequence of symbols,
ai ∈ Σ. The empty word is denoted by ε.
A language L over an alphabet Σ is a set of words.

Example 1
Σ = {a, b} is an alphabet.
w = ababb is a word over Σ.
L′ = {ε, a, b} and L = {w | w has an even number of a and an odd number of b} are
two languages over Σ.

G. Staquet Model Verification by state machines 5 / 14

Which model?

A deterministic finite automaton (DFA) is a tuple A =
(Q,Σ, δ, q0, F) where
I Σ an alphabet;

I Q a finite set of states;
I δ : (Q× Σ) → Q a transition function;
I q0 ∈ Q the initial state;
I F ⊆ Q the set of final states.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.

G. Staquet Model Verification by state machines 6 / 14

Which model?

A deterministic finite automaton (DFA) is a tuple A =
(Q,Σ, δ, q0, F) where
I Σ an alphabet;
I Q a finite set of states;

I δ : (Q× Σ) → Q a transition function;
I q0 ∈ Q the initial state;
I F ⊆ Q the set of final states.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.

G. Staquet Model Verification by state machines 6 / 14

Which model?

A deterministic finite automaton (DFA) is a tuple A =
(Q,Σ, δ, q0, F) where
I Σ an alphabet;
I Q a finite set of states;
I δ : (Q× Σ) → Q a transition function;

I q0 ∈ Q the initial state;
I F ⊆ Q the set of final states.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.

G. Staquet Model Verification by state machines 6 / 14

Which model?

A deterministic finite automaton (DFA) is a tuple A =
(Q,Σ, δ, q0, F) where
I Σ an alphabet;
I Q a finite set of states;
I δ : (Q× Σ) → Q a transition function;
I q0 ∈ Q the initial state;

I F ⊆ Q the set of final states.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.

G. Staquet Model Verification by state machines 6 / 14

Which model?

A deterministic finite automaton (DFA) is a tuple A =
(Q,Σ, δ, q0, F) where
I Σ an alphabet;
I Q a finite set of states;
I δ : (Q× Σ) → Q a transition function;
I q0 ∈ Q the initial state;
I F ⊆ Q the set of final states.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.

G. Staquet Model Verification by state machines 6 / 14

Which model?

Let w = a1a2 . . . , an ∈ Σ∗. The run of A over w is the
sequence of states

p1
a1−→ p2

a2−→ p3
a3−→ . . .

an−→ pn+1

such that p1 = q0 and ∀i, δ(pi, ai) = pi+1.

If pn+1 ∈ F , then w is accepted by A.

Example 2
Let w = ababb. The corresponding run is

q0
a−→ q1

b−→ q3
a−→ q2

b−→ q0
b−→ q2.

and w is accepted by A.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.

G. Staquet Model Verification by state machines 7 / 14

Which model?

Let w = a1a2 . . . , an ∈ Σ∗. The run of A over w is the
sequence of states

p1
a1−→ p2

a2−→ p3
a3−→ . . .

an−→ pn+1

such that p1 = q0 and ∀i, δ(pi, ai) = pi+1.
If pn+1 ∈ F , then w is accepted by A.

Example 2
Let w = ababb. The corresponding run is

q0
a−→ q1

b−→ q3
a−→ q2

b−→ q0
b−→ q2,

and w is accepted by A.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.

G. Staquet Model Verification by state machines 7 / 14

Which model?

The language of A is the set of all accepted words, i.e.,

L(A) = {w | ∃p ∈ F, q0
w−→ p}.

Example 3
The language of A is

L(A) = {w | w has an even number of a and
an odd number of b}.

q0 q1

q2 q3

a

b

a

b

a

b

a

b

Figure 1: A DFA A.

G. Staquet Model Verification by state machines 8 / 14

Infinite table
Let L = {w | w has an even number of a and an odd number of b}.

Let u ∈ Σ∗. For all w ∈ Σ∗, we check whether uw ∈ L.
We construct a table where the rows are the u and the columns the w.

qε qa

qb qab

a

b

a

b

a

b

a

b

The table contains in fact four different rows.
↪→ A finite table is enough.

G. Staquet Constructing a model Verification by state machines 9 / 14

Infinite table

Let L = {w | w has an even number of a and an odd number of b}.

ε a b aa ab ba bb . . .

ε 0 0 1 0 0 0 0 . . .
a 0 0 0 0 1 1 0 . . .
b 1 0 0 1 0 0 1 . . .
aa 0 0 1 0 0 0 0 . . .
ab 0 1 0 0 0 0 0 . . .
ba 0 1 0 0 0 0 0 . . .
...

...
...

...
...

...
...

... . . .

qε qa

qb qab

a

b

a

b

a

b

a

b

The table contains in fact four different rows.
↪→ A finite table is enough.

G. Staquet Constructing a model Verification by state machines 9 / 14

Infinite table

Let L = {w | w has an even number of a and an odd number of b}.

ε a b aa ab ba bb . . .

ε 0 0 1 0 0 0 0 . . .
a 0 0 0 0 1 1 0 . . .
b 1 0 0 1 0 0 1 . . .
aa 0 0 1 0 0 0 0 . . .
ab 0 1 0 0 0 0 0 . . .
ba 0 1 0 0 0 0 0 . . .
...

...
...

...
...

...
...

... . . .

qε qa

qb qab

a

b

a

b

a

b

a

b

The table contains in fact four different rows.

↪→ A finite table is enough.

G. Staquet Constructing a model Verification by state machines 9 / 14

Infinite table

Let L = {w | w has an even number of a and an odd number of b}.

ε a b aa ab ba bb . . .

ε 0 0 1 0 0 0 0 . . .
a 0 0 0 0 1 1 0 . . .
b 1 0 0 1 0 0 1 . . .
aa 0 0 1 0 0 0 0 . . .
ab 0 1 0 0 0 0 0 . . .
ba 0 1 0 0 0 0 0 . . .
...

...
...

...
...

...
...

... . . .

qε qa

qb qab

a

b

a

b

a

b

a

b

The table contains in fact four different rows.

↪→ A finite table is enough.

G. Staquet Constructing a model Verification by state machines 9 / 14

Infinite table

Let L = {w | w has an even number of a and an odd number of b}.

ε a b aa ab ba bb . . .

ε 0 0 1 0 0 0 0 . . .
a 0 0 0 0 1 1 0 . . .
b 1 0 0 1 0 0 1 . . .
aa 0 0 1 0 0 0 0 . . .
ab 0 1 0 0 0 0 0 . . .
ba 0 1 0 0 0 0 0 . . .
...

...
...

...
...

...
...

... . . .

qε qa

qb qab

a

b

a

b

a

b

a

b

The table contains in fact four different rows.
↪→ A finite table is enough.

G. Staquet Constructing a model Verification by state machines 9 / 14

How to learn a table?

Learner Teacher
Knows L

Membership queries w ∈ L?

True or false

Equivalence queries L(A) = L?

True or a witness of the error

Figure 2: Angluin’s framework.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
G. Staquet Constructing a model Verification by state machines 10 / 14

How to learn a table?

Learner Teacher
Knows L

Membership queries w ∈ L?

True or false

Equivalence queries L(A) = L?

True or a witness of the error

Figure 2: Angluin’s framework.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
G. Staquet Constructing a model Verification by state machines 10 / 14

How to learn a table?

Learner Teacher
Knows L

Membership queries w ∈ L?

True or false

Equivalence queries L(A) = L?

True or a witness of the error

Figure 2: Angluin’s framework.1

1Angluin, “Learning Regular Sets from Queries and Counterexamples”, 1987.
G. Staquet Constructing a model Verification by state machines 10 / 14

Back to the coffe

How does the teacher work, in practical cases?
I Membership queries: execute the system on w and provide the answer.

I Equivalence queries:

I If we can manipulate the system as a black box, then we can approximate the
equivalence queries.

I If we know how the system behaves (white box), then the equivalence queries can be
more precise.

I We can mix both approaches (grey box).

↪→ It depends on the exact problem.

G. Staquet Back to the coffee Verification by state machines 11 / 14

Back to the coffe

How does the teacher work, in practical cases?
I Membership queries: execute the system on w and provide the answer.
I Equivalence queries:

I If we can manipulate the system as a black box, then we can approximate the
equivalence queries.

I If we know how the system behaves (white box), then the equivalence queries can be
more precise.

I We can mix both approaches (grey box).
↪→ It depends on the exact problem.

G. Staquet Back to the coffee Verification by state machines 11 / 14

Back to the coffe

How does the teacher work, in practical cases?
I Membership queries: execute the system on w and provide the answer.
I Equivalence queries:

I If we can manipulate the system as a black box, then we can approximate the
equivalence queries.

I If we know how the system behaves (white box), then the equivalence queries can be
more precise.

I We can mix both approaches (grey box).
↪→ It depends on the exact problem.

G. Staquet Back to the coffee Verification by state machines 11 / 14

Back to the coffe

How does the teacher work, in practical cases?
I Membership queries: execute the system on w and provide the answer.
I Equivalence queries:

I If we can manipulate the system as a black box, then we can approximate the
equivalence queries.

I If we know how the system behaves (white box), then the equivalence queries can be
more precise.

I We can mix both approaches (grey box).

↪→ It depends on the exact problem.

G. Staquet Back to the coffee Verification by state machines 11 / 14

Back to the coffe

How does the teacher work, in practical cases?
I Membership queries: execute the system on w and provide the answer.
I Equivalence queries:

I If we can manipulate the system as a black box, then we can approximate the
equivalence queries.

I If we know how the system behaves (white box), then the equivalence queries can be
more precise.

I We can mix both approaches (grey box).
↪→ It depends on the exact problem.

G. Staquet Back to the coffee Verification by state machines 11 / 14

JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers

G. Staquet JSON Documents Verification by state machines 12 / 14

JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers

We want to verify that the document satisfies some constraints.

q0 q1 q2 q3 q4 q5
{ "town": str , "country": str }

Figure 3: An automaton for the value of "place".

G. Staquet JSON Documents Verification by state machines 12 / 14

JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers
We want to verify that the document satisfies some constraints.

q0 q1 q2 q3 q4 q5
{ "town": str , "country": str }

Figure 3: An automaton for the value of "place".

G. Staquet JSON Documents Verification by state machines 12 / 14

JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers
We want to verify that the document satisfies some constraints.

q0 q1 q2 q3 q4 q5
{ "town": str , "country": str }

Figure 3: An automaton for the value of "place".

G. Staquet JSON Documents Verification by state machines 12 / 14

JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers

I An object is a non-ordered collection of key-value paires.

I An array is an ordered collection of values.

Our approacha:
I We learn an automaton A with a fixed order on the keys.
I We abstract A to allow any order.

aBruyère, Pérez, and Staquet, “Validating Streaming JSON Documents with Learned VPAs”, 2023.
G. Staquet JSON Documents Verification by state machines 12 / 14

JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers

I An object is a non-ordered collection of key-value paires.
I An array is an ordered collection of values.

Our approacha:
I We learn an automaton A with a fixed order on the keys.
I We abstract A to allow any order.

aBruyère, Pérez, and Staquet, “Validating Streaming JSON Documents with Learned VPAs”, 2023.
G. Staquet JSON Documents Verification by state machines 12 / 14

JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers

I An object is a non-ordered collection of key-value paires.
I An array is an ordered collection of values.

Our approacha:

I We learn an automaton A with a fixed order on the keys.
I We abstract A to allow any order.

aBruyère, Pérez, and Staquet, “Validating Streaming JSON Documents with Learned VPAs”, 2023.
G. Staquet JSON Documents Verification by state machines 12 / 14

JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers

I An object is a non-ordered collection of key-value paires.
I An array is an ordered collection of values.

Our approacha:
I We learn an automaton A with a fixed order on the keys.

I We abstract A to allow any order.

aBruyère, Pérez, and Staquet, “Validating Streaming JSON Documents with Learned VPAs”, 2023.
G. Staquet JSON Documents Verification by state machines 12 / 14

JSON Documents

{
"title": "Verification by state machines",
"place": {

"town": "Mons",
"country": "Belgium"

},
"date": [24, 05, 2023]

}

"title" 7→ string of characters
"place" 7→ object such that

"town" 7→ string of characters
"country" 7→ string of characters

"date" 7→ array of integers

I An object is a non-ordered collection of key-value paires.
I An array is an ordered collection of values.

Our approacha:
I We learn an automaton A with a fixed order on the keys.
I We abstract A to allow any order.

aBruyère, Pérez, and Staquet, “Validating Streaming JSON Documents with Learned VPAs”, 2023.
G. Staquet JSON Documents Verification by state machines 12 / 14

0 50K 100K
0

20

40

60

80

Document size

Ti
m

e
(m

s)

0 50K 100K
0

2K

4K

6K

Document size

M
em

or
y

(k
B)

Figure 4: Experimental results for our JSON documents validation algorithm. Blue crosses give
the values for our algorithm, and the red circles for the “classical” algorithm.

G. Staquet JSON Documents Verification by state machines 13 / 14

Thank you!

G. Staquet JSON Documents Verification by state machines 14 / 14

References I

Angluin, Dana. “Learning Regular Sets from Queries and Counterexamples”. In: Inf.
Comput. 75.2 (1987), pp. 87–106. doi: 10.1016/0890-5401(87)90052-6. url:
https://doi.org/10.1016/0890-5401(87)90052-6.
Bruyère, Véronique, Guillermo A. Pérez, and Gaëtan Staquet. “Validating Streaming
JSON Documents with Learned VPAs”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Ed. by Sriram Sankaranarayanan and Natasha Sharygina.
Cham: Springer Nature Switzerland, 2023, pp. 271–289. isbn: 978-3-031-30823-9.

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6

	Motivation
	Model
	Constructing a model
	Back to the coffee
	JSON Documents
	References

