Automata with Timers

Véronique Bruyère, Guillermo A. Pérez, Gaëtan Staquet, Frits W. Vaandrager

Theoretical computer science University of Mons

Formal Techniques in Software Engineering University of Antwerp

September 20, 2023

- ► Network protocols;
- Schedulers;
- ► Embedded systems;
- ► In general, real-time systems.

1

- Network protocols;
- Schedulers;
- Embedded systems;
- ► In general, real-time systems.

Well-known model for these systems: timed automata.1

¹Baier and Katoen, *Principles of model checking*, 2008; Clarke et al., *Handbook of Model Checking*, 2018

- Network protocols;
- Schedulers;
- Embedded systems;
- ► In general, real-time systems.

Well-known model for these systems: timed automata.1

In short: finite automata augmented with clocks that can be reset or used in guards along transitions and states.

¹Baier and Katoen, *Principles of model checking*, 2008; Clarke et al., *Handbook of Model Checking*, 2018

- Network protocols;
- Schedulers;
- Embedded systems;
- ► In general, real-time systems.

Well-known model for these systems: timed automata.1

In short: finite automata augmented with clocks that can be reset or used in guards along transitions and states.

BUT timed automata are hard to construct and understand.

¹Baier and Katoen, *Principles of model checking*, 2008; Clarke et al., *Handbook of Model Checking*, 2018

Timed automata Automata with timers

Timed automata

- ► Clocks go from 0 to infinity;
- •
- •

Automata with timers

- ► Timers go from a value set by the transition to 0;

Timed automata

- ► Clocks go from 0 to infinity;
- ▶ We know the current value of the clocks;

- **>**
- •

Automata with timers

- ► Timers go from a value set by the transition to 0;
- ► We do not know the current value of the timers;

Timed automata

- ► Clocks go from 0 to infinity;
- ▶ We know the current value of the clocks;
- ► Timed automata are more expressive;

>

Automata with timers

- ► Timers go from a value set by the transition to 0;
- ► We do not know the current value of the timers;
- ► Automata with timers are more restrictive;

Timed automata

► Timers go from a value set by the transi-

Automata with timers

- ► Clocks go from 0 to infinity;
- ► We know the current value of the clocks;
 ► We do not know the current value of the timers:

tion to 0:

- Timed automata are more expressive;
- ► Automata with timers are more restrictive;
- ► Learning (à la Angluin²) timed automata is challenging;
- ► Future work: learning algorithm;

²Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987

Timed automata

Automata with timers

► Clocks go from 0 to infinity;

- ► Timers go from a value set by the transition to 0;
- ▶ We know the current value of the clocks;
- ► We do not know the current value of the timers;

- ▶ Timed automata are more expressive;
- ► Automata with timers are more restrictive;
- ► Learning (à la Angluin²) timed automata is challenging;
- ► Future work: learning algorithm;

Well-known model.

► This work studies some properties of automata with timers

²Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987

- ► *X* is the set of timers,
- ► *I* is the set of actions.

- ► *X* is the set of timers,
- ► *I* is the set of actions.
- Q is the finite set of states,
- ▶ $q_0 \in Q$ is the initial state,

Figure 1: An AT.

- ► *X* is the set of timers,
- ► *I* is the set of actions.
- Q is the finite set of states,
- ▶ $q_0 \in Q$ is the initial state,
- $\lambda: Q \to \mathcal{P}(X)$ gives the active timers of each state,



Figure 1: An AT.

- ► *X* is the set of timers,
- ► *I* is the set of actions.
- ightharpoonup Q is the finite set of states,
- $ightharpoonup q_0 \in Q$ is the initial state,
- $\lambda: Q \to \mathcal{P}(X)$ gives the active timers of each state,
- \triangleright δ is the transition function.

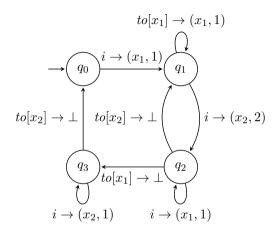


Figure 1: An AT.

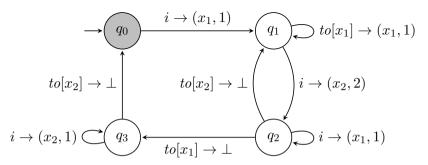


Figure 2: The same AT.

 (q_0,\emptyset)

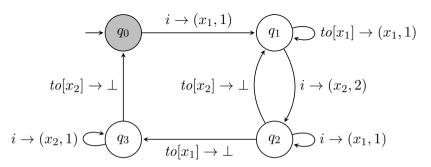


Figure 2: The same AT.

$$(q_0,\emptyset) \xrightarrow{1} (q_0,\emptyset)$$

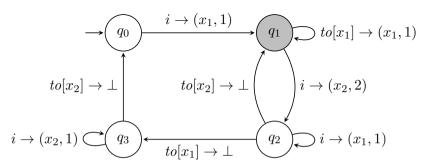


Figure 2: The same AT.

$$(q_0,\emptyset) \xrightarrow{1} (q_0,\emptyset) \xrightarrow[x_1,1]{i} (q_1,x_1=1)$$

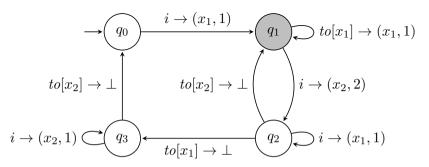


Figure 2: The same AT.

$$(q_0,\emptyset) \xrightarrow{1} (q_0,\emptyset) \xrightarrow[x_1,1]{i} (q_1,x_1=1) \xrightarrow{1} (q_1,x_1=0)$$

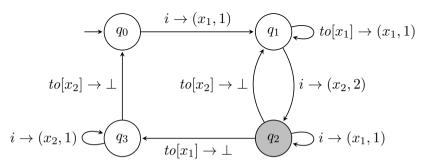


Figure 2: The same AT.

$$(q_0,\emptyset) \xrightarrow{1} (q_0,\emptyset) \xrightarrow[x_1,1]{i} (q_1,x_1=1) \xrightarrow{1} (q_1,x_1=0) \xrightarrow[x_2,2]{i} (q_2,x_1=0,x_2=2)$$

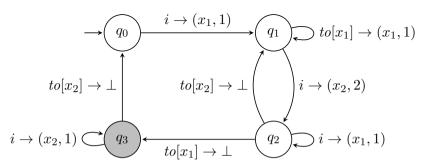


Figure 2: The same AT.

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i} (q_1, x_1 = 1) \xrightarrow{1} (q_1, x_1 = 0) \xrightarrow{i} (q_2, x_1 = 0, x_2 = 2)$$

$$\xrightarrow{0} (q_2, x_1 = 0, x_2 = 2) \xrightarrow{to[x_1]} (q_3, x_2 = 2)$$

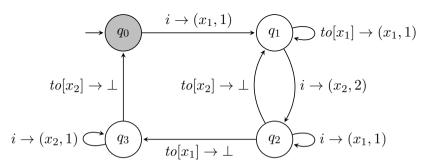


Figure 2: The same AT.

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i} (q_1, x_1 = 1) \xrightarrow{1} (q_1, x_1 = 0) \xrightarrow{i} (q_2, x_1 = 0, x_2 = 2)$$

$$\xrightarrow{0} (q_2, x_1 = 0, x_2 = 2) \xrightarrow{to[x_1]} (q_3, x_2 = 2) \xrightarrow{2} (q_3, x_2 = 0) \xrightarrow{to[x_2]} (q_0, \emptyset) \xrightarrow{0.5} (q_0, \emptyset).$$

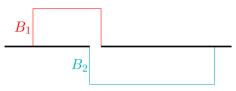


Figure 3: Block representation of the execution.

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i} (q_1, x_1 = 1) \xrightarrow{1} (q_1, x_1 = 0) \xrightarrow{i} (q_2, x_1 = 0, x_2 = 2)$$

$$\xrightarrow{0} (q_2, x_1 = 0, x_2 = 2) \xrightarrow{to[x_1]} (q_3, x_2 = 2) \xrightarrow{2} (q_3, x_2 = 0) \xrightarrow{to[x_2]} (q_0, \emptyset) \xrightarrow{0.5} (q_0, \emptyset).$$

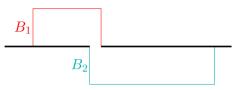


Figure 3: Block representation of the execution.

$$(q_{0},\emptyset) \xrightarrow{1} (q_{0},\emptyset) \xrightarrow{i} (q_{1},x_{1}=1) \xrightarrow{1} (q_{1},x_{1}=0) \xrightarrow{i} (q_{2},x_{1}=0,x_{2}=2)$$

$$\xrightarrow{0} (q_{2},x_{1}=0,x_{2}=2) \xrightarrow{to[x_{1}]} (q_{3},x_{2}=2) \xrightarrow{2} (q_{3},x_{2}=0) \xrightarrow{to[x_{2}]} (q_{0},\emptyset) \xrightarrow{0.5} (q_{0},\emptyset).$$

We have concurrent actions.

We can avoid this concurrency and still see the same sequence of actions.

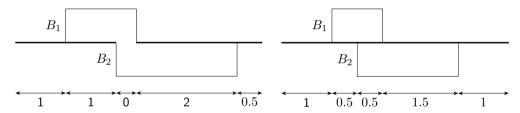


Figure 4: Idea: wiggle delays between actions.

We can avoid this concurrency and still see the same sequence of actions.

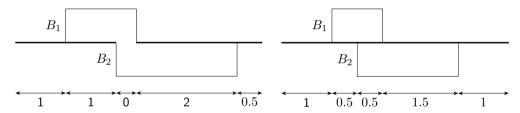


Figure 4: Idea: wiggle delays between actions.

Is it always possible?

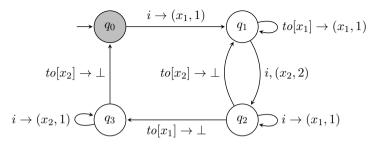


Figure 5: The same AT.

$$(q_0,\emptyset)$$

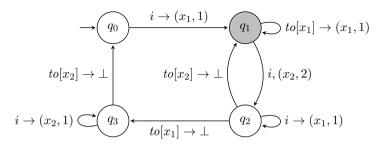


Figure 5: The same AT.

$$(q_0,\emptyset) \xrightarrow{1} (q_0,\emptyset) \xrightarrow{i} (q_1,x_1=1)$$

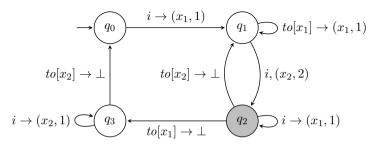


Figure 5: The same AT.

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i} (q_1, x_1 = 1) \xrightarrow{0} (q_1, x_1 = 1) \xrightarrow{i} (q_2, x_1 = 1, x_2 = 2)$$

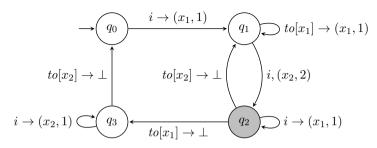


Figure 5: The same AT.

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i} (q_1, x_1 = 1) \xrightarrow{0} (q_1, x_1 = 1) \xrightarrow{i} (q_2, x_1 = 1, x_2 = 2)$$

$$\xrightarrow{1} (q_2, x_1 = 0, x_2 = 1) \xrightarrow{i} (q_2, x_1 = 1, x_2 = 1)$$

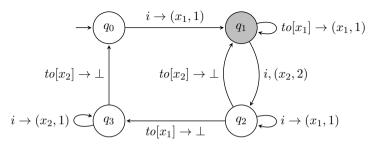


Figure 5: The same AT.

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i} (q_1, x_1 = 1) \xrightarrow{0} (q_1, x_1 = 1) \xrightarrow{i} (q_2, x_1 = 1, x_2 = 2)$$

$$\xrightarrow{1} (q_2, x_1 = 0, x_2 = 1) \xrightarrow{i} (q_2, x_1 = 1, x_2 = 1) \xrightarrow{1} (q_2, x_1 = 0, x_2 = 0)$$

$$\xrightarrow{to[x_2]} (q_1, x_1 = 0)$$

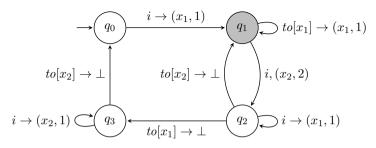


Figure 5: The same AT.

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i} (q_1, x_1 = 1) \xrightarrow{0} (q_1, x_1 = 1) \xrightarrow{i} (q_2, x_1 = 1, x_2 = 2)$$

$$\xrightarrow{1} (q_2, x_1 = 0, x_2 = 1) \xrightarrow{i} (q_2, x_1 = 1, x_2 = 1) \xrightarrow{1} (q_2, x_1 = 0, x_2 = 0)$$

$$\xrightarrow{to[x_2]} (q_1, x_1 = 0) \xrightarrow{0} (q_1, x_1 = 0) \xrightarrow{to[x_1]} (q_1, x_1 = 1) \xrightarrow{0.5} (q_1, x_1 = 0.5).$$

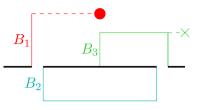


Figure 6: Block representation of the timed run.

$$(q_{0},\emptyset) \xrightarrow{1} (q_{0},\emptyset) \xrightarrow{i} (q_{1},x_{1}=1) \xrightarrow{0} (q_{1},x_{1}=1) \xrightarrow{i} (q_{2},x_{1}=1,x_{2}=2)$$

$$\xrightarrow{1} (q_{2},x_{1}=0,x_{2}=1) \xrightarrow{i} (q_{2},x_{1}=1,x_{2}=1) \xrightarrow{1} (q_{2},x_{1}=0,x_{2}=0)$$

$$\xrightarrow{to[x_{2}]} (q_{1},x_{1}=0) \xrightarrow{0} (q_{1},x_{1}=0) \xrightarrow{to[x_{1}]} (q_{1},x_{1}=1) \xrightarrow{0.5} (q_{1},x_{1}=0.5).$$

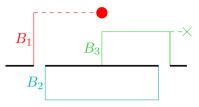


Figure 6: Block representation of the timed run.

$$(q_0, \emptyset) \xrightarrow{i} (q_0, \emptyset) \xrightarrow{i} (q_1, x_1 = 1) \xrightarrow{0} (q_1, x_1 = 1) \xrightarrow{i} (q_2, x_1 = 1, x_2 = 2)$$

$$\xrightarrow{1} (q_2, x_1 = 0, x_2 = 1) \xrightarrow{i} (q_2, x_1 = 1, x_2 = 1) \xrightarrow{1} (q_2, x_1 = 0, x_2 = 0)$$

$$\xrightarrow{to[x_2]} (q_1, x_1 = 0) \xrightarrow{0} (q_1, x_1 = 0) \xrightarrow{to[x_1]} (q_1, x_1 = 1) \xrightarrow{0.5} (q_1, x_1 = 0.5).$$

We cannot avoid this concurrency and still see the same sequence of actions.

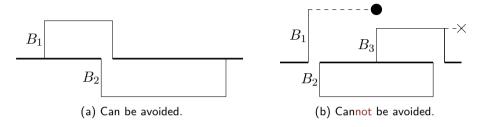


Figure 7: Some concurrency can be avoided, some not.

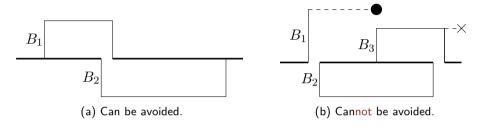


Figure 7: Some concurrency can be avoided, some not.

Can we characterize when it is possible to remove the concurrency?

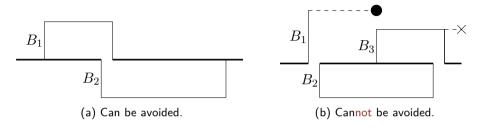


Figure 7: Some concurrency can be avoided, some not.

Can we characterize when it is possible to remove the concurrency?

Yes!

Theorem 1 (Contribution)

Fix an automaton and a state q. Deciding whether there exists an execution of the automaton that reaches q is PSPACE-complete.

Theorem 1 (Contribution)

Fix an automaton and a state q. Deciding whether there exists an execution of the automaton that reaches q is PSPACE-complete.

- ► Hardness: reduction from Linear Bounded Turing Machine.
- ► Membership: region automaton.

Theorem 1 (Contribution)

Fix an automaton and a state q. Deciding whether there exists an execution of the automaton that reaches q is PSPACE-complete.

- ► Hardness: reduction from Linear Bounded Turing Machine.
- ► Membership: region automaton.

Theorem 2 (Contribution)

Deciding whether an AT contains an execution in which some concurrency cannot be avoided is PSPACE-hard and in 3EXP.

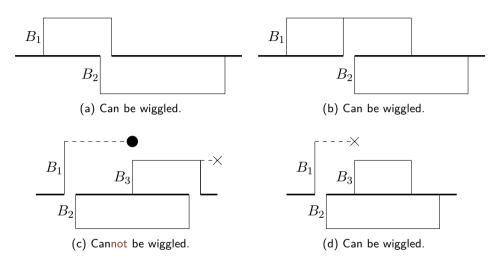


Figure 8: Not all runs can be wiggled.

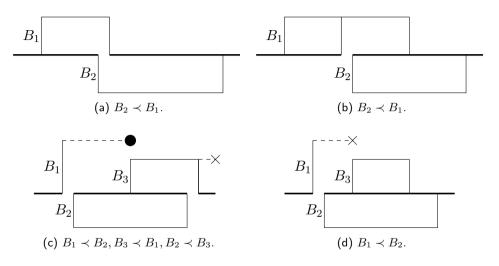


Figure 9: Define an order \prec over the blocks, based on races.

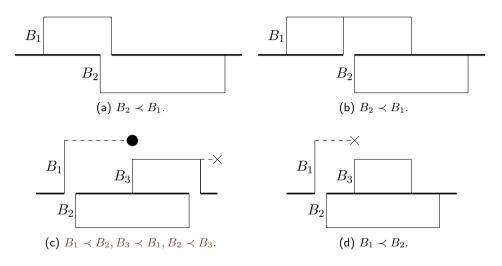


Figure 9: Define an order \prec over the blocks, based on races.

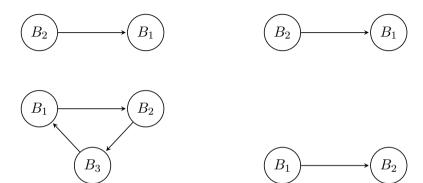


Figure 10: Block graphs defined from the blocks and \prec .

Proposition 3 (Contribution)

A timed run ρ can be wiggled if and only if its block graph is acyclic.

- \Rightarrow By contraposition, we have a cycle. If a block has...
 - ► A predecessor? It cannot move left.
 - ► A successor? It cannot move right.
 - ▶ Both? It cannot move at all.

Thus, ρ cannot be wiggled since we have a cycle.

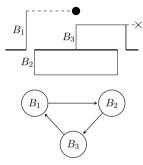


Figure 11: We have a cycle.

Proposition 3 (Contribution)

A timed run ρ can be wiggled if and only if its block graph is acyclic.

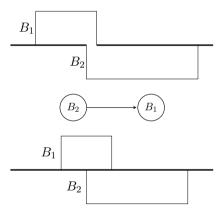


Figure 12: We change delays.

- ← The graph is acyclic. Compute its topological sort and move the "last" block to the right.
- \hookrightarrow obtain ρ' with the same sequence of actions as ρ but ρ' contains strictly less races.

Repeat until all races are removed.

An AT contains a run that cannot be wiggled if and only if the block graph of that run is cyclic.

An AT contains a run that cannot be wiggled if and only if the block graph of that run is cyclic.

This can be encoded in an MSO formula that is satisfied if

An AT contains a run that cannot be wiggled if and only if the block graph of that run is cyclic.

This can be encoded in an MSO formula that is satisfied if

▶ there exists a run of the region automaton

An AT contains a run that cannot be wiggled if and only if the block graph of that run is cyclic.

This can be encoded in an MSO formula that is satisfied if

there exists a run of the region automaton that cannot be wiggled,

An AT contains a run that cannot be wiggled if and only if the block graph of that run is cyclic.

This can be encoded in an MSO formula that is satisfied if

- there exists a run of the region automaton that cannot be wiggled,
- ▶ i.e., there are concurrent actions

An AT contains a run that cannot be wiggled if and only if the block graph of that run is cyclic.

This can be encoded in an MSO formula that is satisfied if

- there exists a run of the region automaton that cannot be wiggled,
- ▶ i.e., there are concurrent actions inducing a cyclic block graph.

An AT contains a run that cannot be wiggled if and only if the block graph of that run is cyclic.

This can be encoded in an MSO formula that is satisfied if

- there exists a run of the region automaton that cannot be wiggled,
- ▶ i.e., there are concurrent actions inducing a cyclic block graph.

Can be written with three quantifiers alternations \sim 3EXP.

Fix an automaton and a state q. Deciding whether there exists an execution of the automaton that reaches q is PSPACE-complete.

Theorem 6 (Contribution)

Deciding whether an AT contains an execution in which some concurrency cannot be avoided is PSPACE-hard and in 3EXP.

Thank you!

For all details, see Bruyère et al., "Automata with Timers", 2023.

References I

- Angluin, Dana. "Learning Regular Sets from Queries and Counterexamples". In: *Inf. Comput.* 75.2 (1987), pp. 87–106. DOI: 10.1016/0890-5401(87)90052-6.
- Baier, Christel and Joost-Pieter Katoen. *Principles of model checking*. MIT Press, 2008. ISBN: 978-0-262-02649-9.
- Bruyère, Véronique et al. "Automata with Timers". In: CoRR abs/2305.07451 (2023). DOI: 10.48550/arXiv.2305.07451. arXiv: 2305.07451. URL: https://doi.org/10.48550/arXiv.2305.07451.
- Clarke, Edmund M. et al., eds. *Handbook of Model Checking*. Springer, 2018. ISBN: 978-3-319-10574-1. DOI: 10.1007/978-3-319-10575-8.

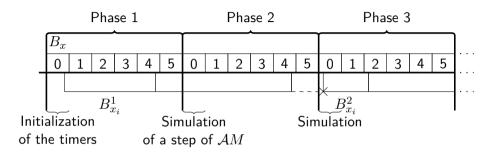


Figure 14: The beginning of a run for the reachability PSPACE-hardness proof.

Let $\mathcal{A}=(X,I,Q,q_0,\chi,\delta)$ be an automaton with timers. For a timer $x\in X$, c_x denotes the largest constant to which x is updated in \mathcal{A} . Let $C=\max_{x\in X}c_x$.

Two valuations κ and κ' are said *timer-equivalent*, noted $\kappa \cong \kappa'$, iff $dom(\kappa) = dom(\kappa')$ and the following hold for all $x_1, x_2 \in dom(\kappa)$:

- $|\kappa(x_1)| = |\kappa'(x_1)|,$
- $frac(\kappa(x_1)) = 0 \text{ iff } frac(\kappa'(x_1)) = 0,$
- $\operatorname{frac}(\kappa(x_1)) \leq \operatorname{frac}(\kappa(x_2))$ iff $\operatorname{frac}(\kappa'(x_1)) \leq \operatorname{frac}(\kappa'(x_2))$.

A timer region for $\mathcal A$ is an equivalence class of timer valuations induced by \cong . We lift the relation to configurations: $(q,\kappa)\cong (q',\kappa')$ iff $\kappa\cong\kappa'$ and q=q'. Finally, $[\![(q,\kappa)]\!]\cong$ denotes the equivalence class of (q,κ) .

We are now able to define a finite automaton called the *region automaton* of $\mathcal A$ and denoted $\mathcal R$. The alphabet of $\mathcal R$ is $\Sigma=\{\tau\}\cup\hat I$ where τ is a special symbol used in non-zero delay transitions. Formally, $\mathcal R$ is the finite automaton (Σ,S,s_0,Δ) where:

- ► $S = \{(q, \kappa) \mid q \in Q, \kappa \in \mathsf{Val}(\chi(q))\}_{/\cong}$, i.e., the quotient of the configurations by \cong , is the set of states,
- $ightharpoonup s_0 = (q_0, [\![\kappa_0]\!]_{\cong})$ with κ_0 the empty valuation, is the initial state,
- ▶ the set of transitions $\Delta \subseteq S \times \Sigma \times S$ includes $(\llbracket (q,\kappa) \rrbracket_{\cong}, \tau, \llbracket (q,\kappa') \rrbracket_{\cong})$ if $(q,\kappa) \xrightarrow{d} (q,\kappa')$ in \mathcal{A} whenever d>0, and $(\llbracket (q,\kappa) \rrbracket_{\cong}, i, \llbracket (q',\kappa') \rrbracket_{\cong})$ if $(q,\kappa) \xrightarrow{i} (q',\kappa')$ in \mathcal{A} .

Lemma 7

Let $A = (X, I, Q, q_0, \chi, \delta)$ be an automaton with timers and R be its region automaton.

- 1. The size of $\mathcal R$ is linear in |Q| and exponential in |X|. That is, |S| is smaller than or equal to $|Q| \cdot |X|! \cdot 2^{|X|} \cdot (C+1)^{|X|}$.
- 2. There is a timed run ρ of $\mathcal A$ that begins in (q,κ) and ends in (q',κ') iff there is a run ρ' of $\mathcal R$ that begins in $[\![(q,\kappa)]\!]_{\cong}$ and ends in $[\![(q',\kappa')]\!]_{\cong}$.

Corollary 8

Let A be an automaton with timers and $\rho \in ptruns(A)$ be a padded timed run with races. Suppose that G_{ϱ} is cyclic. Then there exists a cycle \mathcal{C} in G_{ϱ} such that

- ▶ any block of C participates in exactly two races described by this cycle,
- ▶ for any race described by C, exactly two blocks of C participate in the race,
- lacktriangledown the blocks $B=(k_1\dots k_m,\gamma)$ of $\mathcal C$ satisfy either $m\geq 2$, or m=1 and $\gamma=lacktriangledown$.