
ar
X

iv
:2

30
5.

07
45

1v
1

 [
cs

.F
L

]
 1

2
M

ay
 2

02
3

Automata with Timers⋆

Véronique Bruyère1 , Guillermo A. Pérez2 , Gaëtan Staquet1,2 , and Frits
W. Vaandrager3

1 University of Mons, Belgium
{veronique.bruyere,gaetan.staquet}@umons.ac.be
2 University of Antwerp – Flanders Make, Belgium

guillermo.perez@uantwerpen.be
3 Radboud University, The Netherlands

f.vaandrager@cs.ru.nl

Abstract. In this work, we study properties of deterministic finite-state
automata with timers, a subclass of timed automata proposed by Vaan-
drager et al. as a candidate for an efficiently learnable timed model. We
first study the complexity of the configuration reachability problem for
such automata and establish that it is PSPACE-complete. Then, as si-
multaneous timeouts (we call these, races) can occur in timed runs of
such automata, we study the problem of determining whether it is possi-
ble to modify the delays between the actions in a run, in a way to avoid
such races. The absence of races is important for modelling purposes and
to streamline learning of automata with timers. We provide an effective
characterization of when an automaton is race-avoiding and establish
that the related decision problem is in 3EXP and PSPACE-hard.

Keywords: Timed systems · model checking · reachability

1 Introduction

Timed automata were introduced by Alur & Dill [4] as finite-state automata
equipped with real-valued clock variables for measuring the time between state
transitions. These clock variables all increase at the same rate when time elapses,
they can be reset along transitions, and be used in guards along transitions and
in invariant predicates for states. Timed automata have become a framework
of choice for modeling and analysis of real-time systems, equipped with a rich
theory, supported by powerful tools, and with numerous applications [8].

Interestingly, whereas the values of clocks in a timed automaton increase
over time, designers of real-time systems (e.g. embedded controllers and network
protocols) typically use timers to enforce timing constraints, and the values of
these timers decrease over time. If an application starts a timer with a certain

⋆ This work was supported by the Belgian FWO “SAILor” project (G030020N).
Gaëtan Staquet is a research fellow (Aspirant) of the Belgian F.R.S.-FNRS. The re-
search of Frits Vaandrager was supported by NWO TOP project 612.001.852 “Grey-
box learning of Interfaces for Refactoring Legacy Software (GIRLS)”.

http://arxiv.org/abs/2305.07451v1
http://orcid.org/0000-0002-9680-9140
http://orcid.org/0000-0002-1200-4952
http://orcid.org/0000-0001-5795-3265
http://orcid.org/0000-0003-3955-1910

2 V. Bruyère et al.

value t, then this value decreases over time and after t time units — when the
value has become 0 — a timeout event occurs. It is straightforward to encode
the behavior of timers using a timed automaton. Timed automata allow one to
express a richer class of behaviors than what can be described using timers, and
can for instance express that the time between two events is contained in an
interval [t− d, t+ d]. Moreover, timed automata can express constraints on the
timing between arbitrary events, not just between start and timeout of timers.

However, the expressive power of timed automata entails certain problems.
For instance, one can easily define timed automata models in which time stops
at some point (timelocks) or an infinite number of discrete transitions occurs
in a finite time (Zeno behavior). Thus timed automata may describe behavior
that cannot be realized by any physical system. Also, learning [6, 14] of timed
automata models in a black-box setting turns out to be challenging [5, 11, 12].
For a learner who can only observe the external events of a system and their
timing, it may be really difficult to infer the logical predicates (invariants and
guards) that label the states and transitions of a timed automaton model of this
system. As a result, all known learning algorithms for timed automata suffer
from combinatorial explosions, which severely limits their practical usefulness.

For these reasons, it is interesting to consider variations of timed automata
whose expressivity is restricted by using timers instead of clocks. Vaandrager
et al. [17] study deterministic Mealy machines with a single timer (MM1T). In
an MM1T, a transition may start a timer by setting it to a certain constant.
Whenever a timer reaches zero, it produces an observable timeout symbol that
triggers a transition in the automaton. Vaandrager et al. provide a black-box
active learning algorithm for MM1Ts, and evaluate it on a number of realistic
applications, showing that it outperforms the timed automata based approaches
of Aichernig et al. [2] and An et al. [5]. However, whereas MM1Ts only support
a single timer, the genetic programming approach of [2] is able to learn models
with multiple clocks/timers.

If we want to extend the learning algorithm of [17] to a setting with multiple
timers, we need to deal with the issue of races, i.e., situations where multiple
timers reach zero (and thus timeout) simultaneously. If a race occurs, then (de-
spite the automaton being deterministic!) the automaton can process the simul-
taneous timeouts in various orders, leading to nondeterministic behavior. This
means that during learning of an automaton with multiple timers, a learner needs
to offer the inputs at specific times in order to avoid the occurrence of races. As
long as there are no races, the behavior of the automaton will be deterministic,
and a learner may determine, for each timeout, by which preceding input it was
caused by slightly wiggling the timing of inputs and check whether the timing
timeout changes in a corresponding manner.

Contribution In this work, we take the one-timer definition from [17] and extend
it to multiple timers while — to avoid overcomplicating the model — keeping the
restriction that every transition can start or restart at most one timer. We first
study the complexity of the configuration reachability problem for this model
and establish that it is PSPACE-complete. Then, we turn our attention to the

Automata with Timers 3

problem of determining whether it is possible to wiggle the delays between the
inputs in a run, in a way to avoid races. The importance of the latter is twofold.
First, automata with timers may not be an attractive modelling formalism in
the presence of behaviors that do not align with those of the real-world systems
they are meant to abstract. Second, the absence of races is a key property used
in the learning algorithm for automata with a single timer. In this direction, we
provide an effective characterization of when an automaton is race-avoiding and
establish that the related decision problem is in 3EXP and PSPACE-hard. In a
more pragmatic direction, while again leveraging our characterization, we show
that with fixed input and timer sets, the problem is in PSPACE. Finally, we also
give some simple yet sufficient conditions for an automaton to be race-avoiding.

2 Preliminaries

An automaton with timers uses a finite set X of timers. Intuitively, a timer
can be started to any integer value to become active. Subsequently, its value is
decremented as time elapses (i.e., at the same fixed rate for all timers). When
the value of a timer reaches 0, it times out and it is no longer active. Active
timers can also be stopped, rendering them inactive, too. Such an automaton,
along any transition, can stop a number of timers and update a single timer.

Some definitions are in order. We write TO [X] to denote the set {to[x] |
x ∈ X} of timeouts of X . We denote by I a finite set of inputs. We write
Î to denote the set I ∪ TO [X] of actions : either reading an input (an input-
action), or processing a timeout (a timeout-action). Finally, we denote by U =
(X × N

>0) ∪ {⊥} the set of updates, where (x, c) means that timer x is started
with value c, and ⊥ stands for no timer update.

Definition 1 (Automaton with timers). An automaton with timers (AT,
for short) is a tuple A = (X, I,Q, q0, χ, δ) where:

– X is a finite set of timers, I a finite set of inputs,
– Q is a finite set of states, with q0 ∈ Q the initial state,
– χ : Q → P(X), with χ(q0) = ∅, is a total function that assigns a finite set of

active timers to each state,
– δ : Q × Î → Q × U is a partial transition function that assigns a state and

an update to each state-action pair, such that
• δ(q, i) is defined iff either i ∈ I or there is a timer x ∈ χ(q) with i = to[x],
• if δ(q, i) = (q′, u) with i = to[x] and u = (y, c), then x = y (when
processing a timeout to[x], only the timer x can be restarted).

Moreover, any transition t of the form δ(q, i) = (q′, u) must be such that

– if u = ⊥, then χ(q′) ⊆ χ(q) (all timers active in q′ were already active in q
in case of no timer update); moreover, if i = to[x], then x 6∈ χ(q′) (when the
timer x times out and is not restarted, then x becomes inactive in q′);

– if u = (x, c), then x ∈ χ(q′) and χ(q′) \ {x} ⊆ χ(q) ((re)starting the timer x
makes it active in q′).

4 V. Bruyère et al.

q0 q1

q2q3

i, (x1, 1)

i, (x2, 2)

to[x1], (x1, 1)

i, (x1, 1)
to[x1],⊥

to[x2],⊥

i, (x2, 1)

to[x2],⊥

Fig. 1: An automaton with two timers x1, x2, such that χ(q0) = ∅, χ(q1) = {x1},
χ(q2) = {x1, x2}, and χ(q3) = {x2}.

When a timer x is active in q and i 6= to[x], we say that the transition t stops x
if x is inactive in q′, and that t discards x if t stops x or restarts x. We write

q
i
−→
u

q′ if δ(q, i) = (q′, u).

Example 1. An AT A is shown in Figure 1 with set X = {x1, x2} of timers and
with set I = {i} of inputs. In the initial state q0, no timer is active, while x1 is
active in q1 and q2, and x2 is active in q2 and q3. That is, χ(q0) = ∅, χ(q1) =
{x1}, χ(q2) = {x1, x2}, and χ(q3) = {x2}. Timer updates are shown in the
transitions. For instance, x1 is started with value 1 when going from q0 to q1.
The transition looping on q2 discards x1 and restarts it with value 1.

2.1 Timed semantics

The semantics of an AT A is defined via an infinite-state labeled transition
system that describes all possible configurations and transitions between them.

A valuation is a partial function κ : X → R
≥0 that assigns nonnegative real

numbers to timers. For Y ⊆ X , we write Val(Y) for the set of all valuations κ
such that dom(κ) = Y .4 A configuration of A is a pair (q, κ) where q ∈ Q and
κ ∈ Val(χ(q)). The initial configuration is the pair (q0, κ0) where κ0 is the empty
valuation since χ(q0) = ∅. If κ ∈ Val(Y) is a valuation in which all timers from
Y have a value of at least d ∈ R

≥0, then d units of time may elapse. We write
κ−d ∈ Val(Y) for the valuation that satisfies (κ−d)(x) = κ(x)−d, for all x ∈ Y .
The following rules specify the transitions between configurations (q, κ), (q′, κ′).

∀x : κ(x) ≥ d

(q, κ)
d
−→ (q, κ− d) (1)

q
i
−→
⊥

q′, i = to[x] ⇒ κ(x) = 0, ∀y ∈ χ(q′) : κ′(y) = κ(y)

(q, κ)
i
−→
⊥

(q′, κ′) (2)

4 Notation dom(f) means the domain of the partial function f .

Automata with Timers 5

q
i

−−−→
(x,c)

q′, i = to[x] ⇒ κ(x) = 0, ∀y ∈ χ(q′) : κ′(y) =

{

c if y = x

κ(y) otherwise

(q, κ)
i

−−−→
(x,c)

(q′, κ′) (3)

Transitions of type (1) are called delay transitions (delay zero is allowed); those
of type (2) and (3) are called discrete transitions (timeout transitions when
i = to[x] and input transitions otherwise). A timed run of A is a sequence of con-
figurations such that delay and discrete transitions alternate. The set truns(A)
of timed runs is defined inductively as follows.

– The sequence (q0, κ0)
d
−→ (q0, κ0 − d) is in truns(A).

– Suppose ρ(q, κ) is a timed run ending with configuration (q, κ), then ρ′ =

ρ(q, κ)
i
−→
u

(q′, κ′)
d
−→ (q′, κ′ − d) is in truns(A).

A timed run is also written as ρ = (q0, κ0) d1 i1/u1 . . . dn in/un dn+1 (q, κ) such
that only the initial configuration (q0, κ0) and the last configurations (q, κ) of ρ
are given. The untimed trace of a timed run ρ, denoted untime(ρ), is the alter-
nating sequence of states and actions from ρ, that is, untime(ρ) = q0 i1 . . . in q
(we omit the valuations, the delays, and the updates).

Example 2. A sample timed run ρ of the AT of Example 1 is given below. Notice
the transition with delay zero, indicating that two actions occur at the same time.

ρ = (q0, ∅)
1
−→(q0, ∅)

i
−−−−→
(x1,1)

(q1, x1 = 1)
1
−→(q1, x1 = 0)

i
−−−−→
(x2,2)

(q2, x1 = 0, x2 = 2)

0
−→(q2, x1 = 0, x2 = 2)

to[x1]
−−−−→

⊥
(q3, x2 = 2)

2
−→(q3, x2 = 0)

to[x2]
−−−−→

⊥
(q0, ∅)

0.5
−−→(q0, ∅).

The untimed trace of ρ is untime(ρ) = q0 i q1 i q2 to[x1] q3 to[x2] q0.

2.2 Blocks and races

In this section, given an ATA, we focus on its timed runs ρ = (q0, κ0) d1 i1/u1 · · ·
dn in/un dn+1 (q, κ) such that their first and last delays are non-zero and no
timer times out in their last configuration, i.e., d1 > 0, dn+1 > 0 and κ(x) 6= 0 for
all x ∈ χ(q).5 Such runs are called padded, and we denote by ptruns(A) the set of
all padded timed runs of A. To have a good intuition about padded timed runs,
their decomposition into blocks is helpful and will be often used in the proofs. A
block is composed of an input i that starts a timer x and of the succession of time-
outs and restarts of x, that i induces inside a timed run. Let us formalize this no-
tion. Consider a padded timed run ρ = (q0, κ0) d1 i1/u1 . . . dn in/un dn+1 (q, κ)
of an AT. Let k, k′ be such that 1 ≤ k < k′ ≤ n. We say that ik triggers ik′ if
there is a timer x such that:

5 The reason for this choice will be clarified at the end of this section.

6 V. Bruyère et al.

– ik (re)starts x, that is, uk = (x, c),
– ik′ is the action to[x], and
– there is no ℓ with k < ℓ < k′ such that iℓ = to[x] or iℓ discards x.

Note that ik′ may restart x or not, and if it does, x later times out or is discarded.

Definition 2 (Block). Let ρ = (q0, κ0) d1 i1/u1 . . . dn in/un dn+1 (q, κ) be
a padded timed run of an AT. A block of ρ is a pair B = (k1k2 . . . km, γ) such
that ik1

, ik2
, . . . , ikm

is a maximal subsequence of actions of ρ such that ik1
∈ I,

ikℓ
triggers ikℓ+1

for all 1 ≤ ℓ < m, and γ is the timer fate of B defined as:

γ =



















⊥ if ikm
does not restart x,

 if ikm
restarts x which is discarded by some iℓ, with km < ℓ ≤ n,

when its value is zero,

× otherwise.

In the timer fate definition, consider the case where ikm
restarts x. For the

purposes of Section 4.1, it is convenient to know whether x is later discarded
or not, and in case it is discarded, whether this occurs when its value is zero
(γ =). Hence, γ = × covers both situations where x is discarded with non-
zero value, and x is still active in the last configuration (q, κ) of ρ. Notice that
in the latter case, x has also non-zero value in (q, κ) as ρ is padded. When no
confusion is possible, we denote a block by a sequence of inputs rather than the
corresponding sequence of indices, that is, B = (ik1

ik2
. . . ikm

, γ). In the sequel,
we use notation i ∈ B to denote an action i belonging to the sequence of B.

By definition of an AT, recall that the same timer x is restarted along a block
B. Hence we also say that B is an x-block. Note also that the sequence of a block
can be composed of a single input i ∈ I.

As this notion of blocks is not trivial but plays a great role in this paper, let
us give several examples illustrating multiple situations.

Example 3. Consider the timed run ρ of Example 2 from the AT A depicted
in Figure 1. It has two blocks: an x1-block B1 = (i to[x1],⊥) and an x2-block
B2 = (i to[x2],⊥), both represented in Figure 2a.6 In this visual representation
of the blocks, time flows left to right and is represented by the thick horizontal
line. A “gap” in that line indicates that the time is stopped, i.e., the delay
between two consecutive actions is zero. We draw a vertical line for each input,
and join together inputs belonging to a block by a horizontal (non-thick) line.

Consider another timed run σ from A:

σ = (q0, ∅)
1
−→(q0, ∅)

i
−−−−→
(x1,1)

(q1, x1 = 1)
1
−→(q1, x1 = 0)

to[x1]
−−−−→
(x1,1)

(q1, x1 = 1)

0
−→(q1, x1 = 1)

i
−−−−→
(x2,2)

(q2, x1 = 1, x2 = 2)
1
−→(q2, x1 = 0, x2 = 1)

to[x1]
−−−−→

⊥
(q3, x2 = 1)

1
−→ (q3, x2 = 0)

to[x2]
−−−−→

⊥
(q0, ∅)

0.5
−−→(q0, ∅).

6 When using the action indices in the blocks, we have B1 = (1 3,⊥) and B2 = (2 4,⊥).

Automata with Timers 7

B1

B2

(a) Timed run ρ.

B1

B2

(b) Timed run σ.

B2

B3
B1

(c) Timed run π.

B2

B3
B1

(d) Timed run τ .

Fig. 2: Block representations of four timed runs.

This timed run has also two blocks represented in Figure 2b, such that B1 =
(i to[x1] to[x1],⊥) with x1 timing out twice.

We conclude this example with two other timed runs, π and τ , such that
some of their blocks have a timer fate γ 6= ⊥. Let π and τ be the timed runs:

π = (q0, ∅)
1
−→(q0, ∅)

i
−−−−→
(x1,1)

(q1, x1 = 1)
0
−→(q1, x1 = 1)

i
−−−−→
(x2,2)

(q2, x1 = 1, x2 = 2)

1
−→(q2, x1 = 0, x2 = 1)

i
−−−−→
(x1,1)

(q2, x1 = 1, x2 = 1)
1
−→ (q2, x1 = 0, x2 = 0)

to[x2]
−−−−→

⊥
(q1, x1 = 0)

0
−→(q1, x1 = 0)

to[x1]
−−−−→
(x1,1)

(q1, x1 = 1)
0.5
−−→(q1, x1 = 0.5)

τ = (q0, ∅)
1
−→(q0, ∅)

i
−−−−→
(x1,1)

(q1, x1 = 1)
0
−→ (q1, x1 = 1)

i
−−−−→
(x2,2)

(q2, x1 = 1, x2 = 2)

0.5
−−→ (q2, x1=0.5, x2=1.5)

i
−−−−→
(x1,1)

(q2, x1=1, x2=1.5)
1
−→(q2, x1=0, x2=0.5)

to[x1]
−−−−→

⊥
(q3, x2 = 0.5)

0.5
−−→ (q3, x2 = 0)

to[x2]
−−−−→

⊥
(q0, ∅)

0.5
−−→(q0, ∅).

The run π has three blocks B1 = (i,) (x1 is started by i and then discarded
while its value is zero), B2 = (i to[x2],⊥), and B3 = (i to[x1],×) (x1 is again
started in B3 but π ends before x1 reaches value zero). Those blocks are repre-
sented in Figure 2c, where we visually represent the timer fate of B1 (resp. B3)
by a dotted line finished by (resp. ×). Finally, the run τ has its blocks depicted
in Figure 2d. This time, x1 is discarded before reaching zero, i.e., B1 = (i,×).

As illustrated by the previous example, blocks satisfy the following property.

Lemma 1. Let ρ = (q0, κ0) d1 i1/u1 . . . dn in/un dn+1 (q, κ) be a padded timed
run of an AT. Then, the sequences of the blocks of ρ form a partition of the set
of indices {1, . . . , n} of the actions of ρ.

Along a timed run of an AT A, it can happen that a timer times out at
the same time that another action takes place. This leads to a sort of nondeter-
minism, as A can process those concurrent actions in any order. This situation
appears in Example 3 each time a gap appears in the time lines of Figure 2. We
call these situations races that we formally define as follows.

Definition 3 (Race). Let B,B′ be two blocks of a padded timed run ρ with
timer fates γ and γ′. We say that B and B′ participate in a race if:

8 V. Bruyère et al.

ρ
B1

B2

1 1 0 2 0.5

ρ′
B1

B2

1 0.5 0.5 1.5 1

Fig. 3: Modifying the delays in order to remove a race.

– either there exist actions i ∈ B and i′ ∈ B′ such that the sum of the delays
between i and i′ in ρ is equal to zero, i.e., no time elapses between them,

– or there exists an action i ∈ B that is the first action along ρ to discard the
timer started by the last action i′ ∈ B′ and γ′ = , i.e., the timer of B′

(re)started by i′ reaches value zero when i discards it.

We also say that the actions i and i′ participate in this race.

The first case of the race definition appears in Figure 2a, while the second
case appears in Figure 2c (see the race in which blocks B1 and B3 participate).
The nondeterminism is highlighted in Figures 2a and 2b where two actions (i
and to[x]) occur at the same time but are processed in a different order in
each figure. Unfortunately, imposing a particular way of resolving races (i.e.
imposing a particular action order) may seem arbitrary when modelling real-
world systems. It is therefore desirable for the set of sequences of actions along
timed runs to be independent to the resolution of races.

Definition 4 (Race-avoiding). An AT A is race-avoiding iff for all padded
timed runs ρ ∈ ptruns(A) with races, there exists some ρ′ ∈ ptruns(A) with no
races such that untime(ρ′) = untime(ρ).

Example 4. Let us come back to the timed run ρ of Example 2 that contains a
race (see Figure 2a). By moving the second occurrence of action i slightly earlier
in ρ, we obtain the timed run ρ′:

ρ′=(q0, ∅)
1
−→(q0, ∅)

i
−−−−→
(x1,1)

(q1, x1=1)
0.5
−−→ (q1, x1=0.5)

i
−−−−→
(x2,2)

(q2, x1=0.5, x2=2)

0.5
−−→(q2, x1=0, x2=1.5)

to[x1]
−−−−→

⊥
(q3, x2=1.5)

1.5
−−→(q3, x2=0)

to[x2]
−−−−→

⊥
(q0, ∅)

1
−→(q0, ∅).

Notice that untime(ρ′) = q0 i q1 i q2 to[x1] q3 to[x2] q0 = untime(ρ′). Moreover,
ρ′ contains no races as indicated in Figure 3.

Notice that several blocks could participate in the same race. The notion
of block has been defined for padded timed runs only, as we do not want to
consider runs that end abruptly during a race (some pending timeouts may not
be processed at the end of the run, for instance). Moreover, it is always possible
for the first delay to be positive as no timer is active in the initial state. Finally,
non-zero delays at the start and the end of the runs allow to move blocks as
introduced in Example 4 and further detailed in Section 4.1.

In Section 4, we study whether it is decidable that an AT is race-avoiding,
and how to eliminate races in a race-avoiding AT while keeping the same traces.
Before, we study the (classical) reachability problem in Section 3.

Automata with Timers 9

3 Reachability

The reachability problem asks, given an AT A and a state q, whether there exists
a timed run ρ ∈ truns(A) from the initial configuration to some configuration
(q, κ). In this section, we argue that this problem is PSPACE-complete.

Theorem 1. The reachability problem for ATs is PSPACE-complete.

For hardness, we reduce from the acceptance problem for linear-bounded
Turing machines (LBTM, for short), as done for timed automata, see e.g. [1]. In
short, given an LBTM M and a word w of length n, we construct an AT that
uses n timers xi, 1 ≤ i ≤ n, such that the timer xi encodes the value of the
i-th cell of the tape of M. We also rely on a timer x that is always (re)started
at one, and is used to synchronize the xi timers and the simulation of M. The
simulation is split into phases : The AT first seeks the symbol on the current cell
i of the tape (which can be derived from the moment at which the timer xi times
out, using the number of times x timed out since the beginning of the phase).
Then, the AT simulates a transition of M by restarting xi, reflecting the new
value of the i-th cell. Finally, the AT can reach a designated state iff M is in an
accepting state. Therefore, the reachability problem is PSPACE-hard.

For membership, we follow the classical argument used to establish that the
reachability problem for timed automata is in PSPACE: We first define region
automata for ATs (which are a simplification of region automata for timed au-
tomata) and observe that reachability in an AT reduces to reachability in the
corresponding region automaton. The region automaton is of size exponential in
the number of timers and polynomial in the number of states of the AT. Hence,
the reachability problem for ATs is in PSPACE via standard arguments.

We define region automata for ATs much like they are defined for timed
automata [3, 4, 7]. Let A = (X, I,Q, q0, χ, δ) be an AT. For a timer x ∈ X , cx
denotes the largest constant to which x is updated in A. Let C = maxx∈X cx.
Two valuations κ and κ′ are said timer-equivalent, noted κ ∼= κ′, iff dom(κ) =
dom(κ′) and the following hold for all x1, x2 ∈ dom(κ):

– ⌊κ(x1)⌋ = ⌊κ′(x1)⌋,
– frac(κ(x1)) = 0 iff frac(κ′(x1)) = 0,
– frac(κ(x1)) ≤ frac(κ(x2)) iff frac(κ′(x1)) ≤ frac(κ′(x2)).

A timer region for A is an equivalence class of timer valuations induced by ∼=.
We lift the relation to configurations: (q, κ) ∼= (q′, κ′) iff κ ∼= κ′ and q = q′.
Finally, J(q, κ)K∼= denotes the equivalence class of (q, κ).

We are now able to define a finite automaton called the region automaton
of A and denoted R. The alphabet of R is Σ = {τ} ∪ Î where τ is a special
symbol used in non-zero delay transitions. Formally, R is the finite automaton
(Σ,S, s0, ∆) where:

– S = {(q, κ) | q ∈ Q, κ ∈ Val(χ(q))}/∼=, i.e., the quotient of the configurations
by ∼=, is the set of states,

10 V. Bruyère et al.

– s0 = (q0, Jκ0K∼=) with κ0 the empty valuation, is the initial state,
– the set of transitions ∆ ⊆ S × Σ × S includes (J(q, κ)K∼=, τ, J(q, κ

′)K∼=) if

(q, κ)
d
−→ (q, κ′) in A whenever d > 0, and (J(q, κ)K∼=, i, J(q

′, κ′)K∼=) if (q, κ)
i
−→
u

(q′, κ′) in A.

It is easy to check that the timer-equivalence relation on configurations is a
(strong) time-abstracting bisimulation [9, 16]. That is, for all (q1, κ1) ∼= (q2, κ2)
the following holds:

– if (q1, κ1)
i
−→
u

(q′1, κ
′
1), then there is (q2, κ2)

i
−→
u

(q′2, κ
′
2) with (q′1, κ

′
1)

∼= (q′2, κ
′
2),

– if (q1, κ1)
d1−→ (q1, κ

′
1), then there exists (q2, κ2)

d2−→ (q2, κ
′
2) where d1, d2 > 0

may differ such that (q1, κ
′
1)

∼= (q2, κ
′
2), and

– the above also holds if (q1, κ1) and (q2, κ2) are swapped.

Using this property, we can prove the following about R.

Lemma 2. Let A = (X, I,Q, q0, χ, δ) be an AT and R be its region automaton.

1. The size of R is linear in |Q| and exponential in |X |. That is, |S| is smaller

than or equal to |Q| · |X |! · 2|X| · (C + 1)|X|.
2. There is a timed run ρ of A that begins in (q, κ) and ends in (q′, κ′) iff there

is a run ρ′ of R that begins in J(q, κ)K∼= and ends in J(q′, κ′)K∼=.

Example 5. Let us consider the AT A of Figure 1 and the timed run π given in
Example 3. The corresponding run π′ in the region automaton R is

(q0, J∅K∼=)
τ
−→(q0, J∅K∼=)

i
−→ (q1, Jx1 = 1K∼=)

i
−→ (q2, Jx1 = 1, x2 = 2K∼=)

τ
−→(q2, Jx1 = 0, x2 = 1K∼=)

i
−→ (q2, Jx1 = 1, x2 = 1K∼=)

τ
−→(q2, Jx1 = 0, x2 = 0K∼=)

to[x2]
−−−−→(q1, Jx1 = 0K∼=)

to[x1]
−−−−→(q1, Jx1 = 1K∼=)

τ
−→ (q1, J0 < x1 < 1K∼=).

Notice that the transitions with delay zero of π do not appear in π′.

4 Race-avoiding ATs

In this section, we study whether an AT A is race-avoiding, i.e., whether for any
padded timed run ρ of A with races, there exists another run ρ′ with no races
such that untime(ρ) = untime(ρ′). We are able to prove the next theorem.

Theorem 2. Deciding whether an AT is race-avoiding is PSPACE-hard and in
3EXP. It is in PSPACE if the sets of actions I and of timers X are fixed.

Our approach is, given ρ ∈ ptruns(A), to study how to slightly move blocks
along the time line of ρ in a way to get another ρ′ ∈ ptruns(A) where the races
are eliminated while keeping the actions in the same order as in ρ. We call this
action wiggling. Let us first give an example and then formalize this notion.

Automata with Timers 11

Example 6. We consider again the AT of Figure 1. We have seen in Example 4
and Figure 3 that the block B2 of ρ can be slightly moved to the left to obtain the
timed run ρ′ with no race such that untime(ρ) = untime(ρ′). Figure 3 illustrates
how to move B2 by changing some of the delays.

In contrast, this is not possible for the timed run π of Example 3. Indeed
looking at Figure 2c, we see that it is impossible to move block B2 to the left
due to its race with B1 (remember that we need to keep the same action order).
It is also not possible to move it to the right due to its race with B3. Similarly,
it is impossible to move B1 neither to the right (due to its race with B2), nor
to the left (otherwise its timer will time out instead of being discarded by B3).
Finally, one can also check that block B3 cannot be moved.

Given a padded timed run ρ = (q0, κ0) d1 i1/u1 . . . dn in/un dn+1(q, κ) ∈
ptruns(A) and a block B = (k1 . . . km, γ) of ρ participating in a race, we say
that we can wiggle B if for some ǫ, we can move B to the left (by ǫ < 0) or to
the right (by ǫ > 0), and obtain a run ρ′ ∈ ptruns(A) such that untime(ρ) =
untime(ρ′) and B no longer participates in any race. More precisely, we have
ρ′ = (q0, κ0) d

′
1 i1/u1 . . . d′n in/un d′n+1 (q, κ′) such that

– for all ikℓ
∈ B with kℓ > 1, if ikℓ−1 6∈ B (the action before ikℓ

in ρ does not
belong to B), then d′kℓ

= dkℓ
+ ǫ,

– if there exists ikℓ
∈ B with kℓ = 1 (the first action of B is the first action of

ρ), then d′1 = d1 + ǫ,
– for all ikℓ

∈ B with kℓ < n, if ikℓ+1 6∈ B (the action after ikℓ
in ρ does not

belong to B), then d′kℓ+1 = dkℓ+1 − ǫ,
– if there exists ikℓ

∈ B with kℓ = n (the last action of B is the last action of
ρ), then d′n+1 = dn+1 − ǫ,

– for all other d′k, we have d′k = dk.

As ρ′ ∈ ptruns(A) and untime(ρ) = untime(ρ′), we must have d′k ≥ 0 for all k
and d′1, d

′
n+1 > 0.

We say that we can wiggle ρ, or that ρ is wigglable, if it is possible to wiggle
its blocks, one block at a time, to obtain ρ′ ∈ ptruns(A) with no races such
untime(ρ) = untime(ρ′). Hence if all padded timed runs with races of an AT A
are wigglable, then A is race-avoiding.

In the next sections, we first associate a graph with any ρ ∈ ptruns(A) in a
way to characterize when ρ is wigglable thanks to this graph. We then state the
equivalence between the race-avoiding characteristic of an AT and the property
that all ρ ∈ ptruns(A) can be wiggled (Theorem 3). This allows us to provide
logic formulas to determine whether an AT has an unwigglable run, and then to
prove the upper bound of Theorem 2. We also discuss its lower bound. Finally,
we discuss some sufficient hypotheses for a race-avoiding AT.

4.1 Wiggling a run

In this section, given an AT A and a padded timed run ρ ∈ ptruns(A), we study
the conditions required to be able to wiggle ρ. For this purpose, we define the

12 V. Bruyère et al.

B2 B1

(a) Graph Gρ.

B1 B2 B3

(b) Graph Gπ.

Fig. 4: Block graphs of the timed runs ρ and π of Example 3.

following graphGρ associated with ρ. When two blocks B and B′ of ρ participate
in a race, we write B ≺ B′ if there exist actions i ∈ B and i′ ∈ B′ such that i, i′

participate in this race and, according to Definition 3:

– either i occurs before i′ along ρ and the total delay between i and i′ is zero.
– or the timer of B′ (re)started by i′ reaches value zero when i discards it.

We define the block graph Gρ = (V,E) of ρ where V is the set of blocks of ρ and
E has an edge (B,B′) iff B ≺ B′.

Example 7. Let A be the AT from Figure 1, and ρ and π be the timed runs
from Example 3, whose block decomposition is represented in Figures 2a and 2c.
For the run ρ, it holds that B2 ≺ B1 leading to the block graph Gρ depicted in
Figure 4a. For the run π, we get the block graph Gπ depicted in Figure 4b.

Notice that Gρ is acyclic while Gπ is cyclic. By the following proposition,
this difference is enough to characterize that ρ can be wiggled and π cannot.

Proposition 1. Let A be an AT and ρ ∈ ptruns(A) be a padded timed run with
races. Then, ρ can be wiggled iff Gρ is acyclic.

Intuitively, a block cannot be moved to the left (resp. right) if it has a pre-
decessor (resp. successor) in the block graph, due to the races in which it par-
ticipates. Hence, if a block has both a predecessor and a successor, it cannot be
wiggled (see Figures 2c and 4b for instance). Then, the blocks appearing in a
cycle of the block graph cannot be wiggled. The other direction holds by observ-
ing that we can do a topological sort of the blocks if the graph is acyclic. We
then wiggle the blocks, one by one, according to that sort.

The next corollary will be useful in the following sections. It is illustrated by
Figure 5 with the simple cycle (B0, B1, B2, B3, B4, B0).

Corollary 1. Let A be an AT and ρ ∈ ptruns(A) be a padded timed run with
races. Suppose that Gρ is cyclic. Then there exists a cycle C in Gρ such that

– any block of C participate in exactly two races described by this cycle,
– for any race described by C, exactly two blocks participate in the race,
– the blocks B = (k1 . . . km, γ) of C satisfy either m ≥ 2, or m = 1 and γ = .

From the definition of wiggling, we know that if all padded timed runs with
races of an AT A are wigglable, then A is race-avoiding. The converse also
holds as stated in the next theorem. By Proposition 1, this means that an AT
is race-avoiding iff the block graph of all its padded timed run is acyclic.

Automata with Timers 13

B0

B1

B2B4

B3

Fig. 5: Races of a padded timed run ρ with Bℓ ≺ Bℓ+1 mod 5, 0 ≤ ℓ ≤ 4.

Theorem 3. An AT A is race-avoiding

– iff any padded timed run ρ ∈ ptruns(A) with races can be wiggled,
– iff for any padded timed run ρ ∈ ptruns(A), its graph Gρ is acyclic.

Let us sketch the missing proof. By modifying ρ ∈ ptruns(A) to explicitly
encode when a timer is discarded, one can show the races of ρ cannot be avoided
if the block graph of ρ is cyclic as follows. Given two actions i, i′ of this modified
run, it is possible to define the relative elapsed time between i and i′, noted
reltime(i, i′), from the sum d of all delays between i and i′: if i occurs before i′,
then reltime(i, i′) = d, otherwise reltime(i, i′) = −d. Lifting this to a sequence
of actions from ρ is defined naturally. Then, one can observe that the relative
elapsed time of a cyclic sequence of actions is zero, i.e., reltime(i1, i2, . . . , ik, i1) =
0. Finally, from a cycle of Gρ as described in Corollary 1, we extract a cyclic
sequence of actions and prove, thanks to the concept of relative elapsed time,
that any run ρ′ such that untime(ρ) = untime(ρ′) must contain some races.

4.2 Existence of an unwigglable run

In this section, we give the intuition for the announced complexity bounds for
the problem of deciding whether an AT A is race-avoiding (Theorem 2).

Let us begin with the 3EXP-membership. The crux of our approach is to use
the characterization of the race-avoiding property given in Theorem 3, to work
with a slight modification of the region automaton R of A, and to construct a
finite-state automaton whose language is the set of runs of R whose block graph
is cyclic. Hence deciding whether A is race-avoiding amounts to deciding whether
the language accepted by the latter automaton is empty. To do so, we construct
a monadic second-order (MSO, for short; see [10,15] for an introduction) formula
that is satisfied by words w labeling a run ρ of R iff the block graph of ρ is cyclic.

Our modification of R is best seen as additional annotations on the states
and transitions of R. We extend the alphabet Σ as follows: (i) we add a timer
to each action i ∈ Î to remember the updated timers; (ii) we also use new
symbols di [x], x ∈ X , with the intent of explicitly encoding in R when the
timer x is discarded while its value is zero. Therefore, the modified alphabet is
Σ = {τ}∪(Î×X̂)∪{di [x] | x ∈ X} where X̂ = X∪{⊥}. As a transition in A can
discard more than one timer, we store the set D of discarded timers in the states
of R, as well as outgoing transitions labeled by di [x], for all discarded timers x.
For this, the states of R become S = {(q, JκK∼=, D) | q ∈ Q, κ ∈ Val(χ(q)), D ⊆
X} and ∆ is modified in the natural way so that D is updated as required. Note

14 V. Bruyère et al.

that the size of this modified R is only larger than what is stated in Lemma 2
by a factor of 2|X|.

Note that any x-block (ik1
, . . . , ikm

, γ) of a timed run ρ in A is translated
into the sequence of symbols (i′k1

, . . . , i′km
, γ′) in the corresponding run ρ′ of the

modified R with an optional symbol γ′ such that:

– i′kℓ
= (ikℓ

, x), for 1 ≤ ℓ < m,
– i′km

= (ikm
,⊥) if γ = ⊥, and (ikm

, x) otherwise,
– γ′ = di [x] if γ = , and γ′ does not exist otherwise.

It follows that, instead of considering padded timed runs ρ ∈ ptruns(A) and
their block graph Gρ, we work with their corresponding (padded) runs, blocks,
and block graphs in the modified region automaton R of A.

Example 8. The run π′ of Example 5 becomes

(q0, J∅K∼=, ∅)
τ
−→(q0, J∅K∼=, ∅)

(i,x1)
−−−→(q1, Jx1=1K∼=, ∅)

(i,x2)
−−−→(q2, Jx1=1, x2=2K∼=, ∅)

τ
−→(q2, Jx1=0, x2=1K∼=, ∅)

(i,x1)
−−−→(q2, Jx1=1, x2=1K∼=, {x1})

di[x1]
−−−−→(q2, Jx1=1, x2=1K∼=, ∅)

τ
−→(q2, Jx1=0, x2=0K∼=, ∅)

(to[x2],⊥)
−−−−−−→ (q1, Jx1=0K∼=, ∅)

(to[x1],x1)
−−−−−−−→(q1, Jx1=1K∼=, ∅)

τ
−→(q1, J0<x1<1K∼=, ∅).

The transition with label di [x1] indicates that the timer x1 is discarded in the
original timed run while its value equals zero (see the race in which blocks B1 and
B3 participate in Figure 2c). The three blocks of π become B′

1 = ((i, x1), di [x1]),
B′

2 = ((i, x2), (to[x2],⊥)), and B′
3 = ((i, x1), (to[x1], x1)) in π′. The fact that in

π, B1 and B2 participate in a race (with a zero-delay between their respective
actions i and i), is translated in π′ with the non existence of the τ -symbol
between the symbols (i, x1) and (i, x2) in B′

1 and B′
2 respectively.

Lemma 3. Let A be an AT and R be its modified region automaton. We can
construct an MSO formula Φ of size linear in I and X such that a word labeling
a run ρ of R satisfies Φ iff ρ is a padded run that cannot be wiggled. Moreover,
the formula Φ, in prenex normal form, has three quantifier alternations.

The formula Φ of this lemma describes the existence of a cycle C of blocks
B0, B1, . . . , Bk−1 such that Bℓ ≺ Bℓ+1 mod k for any 0 ≤ ℓ ≤ k − 1, as described
in Corollary 1 (see Figure 5). To do so, we consider the actions (i.e., symbols
of the alphabet Σ of R) participating in the races of C: i0, i1, . . . , ik−1 and
i′0, i

′
1, . . . , i

′
k−1 such that for all ℓ, iℓ, i

′
ℓ belong to the same block, and i′ℓ, iℓ+1 mod k

participate in a race. One can write MSO formulas expressing that two actions
participate in a race (there is no τ transition between them), that two actions
belong to the same block, and, finally, the existence of these two action sequences.

From the formula Φ of Lemma 3, by the Büchi-Elgot-Trakhtenbrot theorem,
we can construct a finite-state automaton whose language is the set of all words
satisfying Φ. Its size is triple-exponential. We then compute the intersection N

Automata with Timers 15

of this automaton with R — itself exponential in size. Finally, the language of N
is empty iff each padded timed run of A can be wiggled, and this can be checked
in polynomial time with respect to the triple-exponential size of N , thus showing
the 3EXP-membership of Theorem 2. Notice that when we fix the sets of inputs
I and of timers X , as the formula Φ becomes of constant size, the automaton
N has now exponential size. Checking its emptiness can be done “on the fly”,
yielding a nondeterministic decision procedure which requires a polynomial space
only. We thus obtain that, under fixed inputs and timers, deciding whether an
AT is race-avoiding is in PSPACE.

The complexity lower bound of Theorem 2 follows from the PSPACE-hardness
of the reachability problem for ATs (see the intuition given in Section 3). We can
show that any run in the AT constructed from the given LBTM and word w can
be wiggled. Once the designated state for the reachability reduction is reached,
we add a widget that forces a run that cannot be wiggled. Therefore, as the
only way of obtaining a run that cannot be wiggled is to reach a specific state
(from the widget), the problem whether an AT is race-avoiding is PSPACE-hard.
Notice that this hardness proof is no longer valid if we fix the sets I and X .

4.3 Sufficient hypotheses

Let us discuss some sufficient hypotheses for an AT A to be race-avoiding.

1. If every state in A has at most one active timer, then A is race-avoiding. Up
to renaming the timers, we actually have a single-timer AT in this case.

2. If we modify the notion of timed run by imposing non-zero delays everywhere
in the run, then A is race-avoiding. Indeed, the only races that can appear
are when a zero-valued timer is discarded, and it is impossible to form a
cycle in the block graph with only this kind of races. Imposing a non-zero
delay before a timeout is debateable. Nevertheless, imposing a non-zero delay
before inputs only is not a sufficient hypothesis (we have counter-examples).

3. Let us fix a total order < over the timers, and modify the semantics of an
AT to enforce that, in a race, any action of an x-block is processed before an
action of a y-block, if x < y (x is preemptive over y). Then the AT is race-
avoiding. Towards a contradiction, assume there are blocks B0, B1, . . . , Bk−1

forming a cycle as described in Corollary 1, where each Bi is an xi-block.
By the order and the races, we get x0 ≤ x1 ≤ . . . ≤ xk−1 ≤ x0, i.e., we
have a single timer (as in the first hypothesis). Hence, it is always possible
to wiggle, which is a contradiction.

5 Conclusion and future work

In this paper, we studied automata with timers. We proved that the reachability
problem for ATs is PSPACE-complete. Moreover, given a padded timed run in an
AT, we defined a decomposition of its actions into blocks, and provided a way to
remove races (concurrent actions) inside the run by wiggling blocks one by one.

16 V. Bruyère et al.

We also proved that this notion of wiggling is necessary and sufficient to decide
whether an AT is race-avoiding. Finally, we showed that deciding whether an
AT is race-avoiding is in 3EXP and PSPACE-hard.

For future work, it may be interesting to tighten the complexity bounds for
the latter decision problem, both when fixing the sets I and X and when not. A
second important direction, which we plan to pursue, is to work on a learning
algorithm for ATs, as initiated in [17] with Mealy machines with one timer.
This would allow us to construct ATs from real-world systems, such as network
protocols, in order to verify that these systems behave as expected.

References

1. Aceto, L., Laroussinie, F.: Is your model checker on time? on the complexity of
model checking for timed modal logics. J. Log. Algebraic Methods Program. 52-53,
7–51 (2002). https://doi.org/10.1016/S1567-8326(02)00022-X

2. Aichernig, B.K., Pferscher, A., Tappler, M.: From Passive to Active: Learning
Timed Automata Efficiently. In: Lee, R., Jha, S., Mavridou, A. (eds.) NFM’20.
LNCS, vol. 12229, pp. 1–19. Springer (2020)

3. Alur, R.: Timed automata. In: Computer Aided Verification: 11th International
Conference, CAV’99 Trento, Italy, July 6–10, 1999 Proceedings 11. pp. 8–22.
Springer (1999)

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

5. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning one-clock timed
automata. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems - 26th International Conference, TACAS 2020,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 12078, pp. 444–462. Springer (2020).
https://doi.org/10.1007/978-3-030-45190-5_25

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

7. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
8. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Ouaknine, J., Worrell, J.:

Model checking real-time systems. In: Clarke, E.M., Henzinger, T.A., Veith, H.,
Bloem, R. (eds.) Handbook of Model Checking, pp. 1001–1046. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_29

9. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

10. Grädel, E., Thomas, W., Wilke, T.: Automata, logics, and infinite games: a guide
to current research, vol. 2500. Springer (2003)

11. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-
recording automata. Theor. Comput. Sci. 411(47), 4029–4054 (2010).
https://doi.org/10.1016/j.tcs.2010.07.008

12. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata
using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006 - Con-
currency Theory, 17th International Conference, CONCUR 2006, Bonn, Germany,
August 27-30, 2006, Proceedings. Lecture Notes in Computer Science, vol. 4137,
pp. 435–449. Springer (2006). https://doi.org/10.1007/11817949_29

https://doi.org/10.1016/S1567-8326(02)00022-X
https://doi.org/10.1016/S1567-8326(02)00022-X
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-319-10575-8_29
https://doi.org/10.1007/978-3-319-10575-8_29
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1016/j.tcs.2010.07.008
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/11817949_29

Automata with Timers 17

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

14. Howar, F., Steffen, B.: Active automata learning in practice - an annotated bib-
liography of the years 2011 to 2016. In: Bennaceur, A., Hähnle, R., Meinke, K.
(eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits
- International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27,
2016, Revised Papers. Lecture Notes in Computer Science, vol. 11026, pp. 123–148.
Springer (2018). https://doi.org/10.1007/978-3-319-96562-8_5

15. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, Volume 3: Beyond Words, pp. 389–455.
Springer (1997). https://doi.org/10.1007/978-3-642-59126-6_7

16. Tripakis, S., Yovine, S.: Analysis of timed systems using time-
abstracting bisimulations. Formal Methods Syst. Des. 18(1), 25–68 (2001).
https://doi.org/10.1023/A:1008734703554

17. Vaandrager, F., Ebrahimi, M., Bloem, R.: Learning Mealy machines
with one timer. Information and Computation p. 105013 (2023).
https://doi.org/https://doi.org/10.1016/j.ic.2023.105013

https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1023/A:1008734703554
https://doi.org/10.1023/A:1008734703554
https://doi.org/https://doi.org/10.1016/j.ic.2023.105013
https://doi.org/https://doi.org/10.1016/j.ic.2023.105013

18 V. Bruyère et al.

A Proof of PSPACE lower bound of Theorem 1

Theorem 1. The reachability problem for ATs is PSPACE-complete.

A linear-bounded Turing machine (LBTM, for short) M = (Σ,Q, q0, qF , T)
is a nondeterministic Turing machine which can only use |w| cells of the tape to
determine whether an input w is accepted. Formally, Σ is a finite alphabet, Q is
a finite set of states, q0 and qF are the initial and final states respectively, and
T ⊆ Q × Σ × Σ × {L,R} × Q is the set of transitions. A configuration of M
is a triple (q, w, i) ∈ Q × Σ∗ × N

>0 where q denotes the current control state,
w = w1 . . . wn is the content of the tape, and i is the position of the tape head.
We say a transition (q, α, α′, D, q′) ∈ T is enabled in a configuration (q, w, i) if
wi = α. In that case, taking the transition results in the machine reaching the
new configuration (q′, w′, i′) with w′

i = α′, w′
j = wj for all j 6= i, and i′ = i+ 1

if D = R or i′ = i − 1 otherwise. A given word w is said to be accepted by M
if there is a sequence of transitions from (q0, w, 1) to a configuration of the form
(qF , w

′, i). Deciding whether a given LBTM accepts a given word is PSPACE-
complete [13].

Proof (of Theorem 1 (lower bound)). We show that the acceptance problem for
LBTMs can be reduced in polynomial time to the reachability problem for ATs.
The proof is inspired by the one presented by Aceto and Laroussinie for the fact
that reachability is PSPACE-hard for timed automata [1, Section 3.1].

Let M = (Σ,Q, q0, qF , T) be an LBTM and let w ∈ Σ∗ be an input word
with |w| = n. From M and w we are going to build, in polynomial time, an AT
AM,w such that w is accepted by M iff there exists a timed run that ends in a
specific state rdone of AM,w.

7

Let Σ = {a1, . . . , ak}. Then, every 2k + 2 time units the AT will simulate a
single step of the LBTM. This is what we call a phase.

Let T = {t1, . . . , tm} be the set of transitions of M. Then, AM,w has in-
puts I = {go} ∪ T and timers X = {x, x1, . . . , xn}. Now, a state of AM,w

is an element of {r0, . . . , rn, rdone , rsink} (with r0 the initial state) or a tuple
〈q, i, symbol , clock 〉, where:

– q ∈ Q records the current state of the LBTM,
– i ∈ {1, . . . , n} records the current position of the tape head,
– symbol ∈ {0, . . . , k} records the index of the last symbol read from the tape

(0 when no symbol has been read or the last read symbol has been processed),
– clock ∈ {0, 1, . . . , 2k + 1}.

The AT starts with an initialization phase in which it goes through states r0
to rn to start all the timers via a sequence of go-inputs. Execution begins with

a go-input that starts timer x: r0
go

−−−→
(x,1)

r1. In order to reach state rdone , all the

7 In the following, we rely on the notion of blocks to pass on the intuition. While
blocks are only defined on padded timed runs, it is easy to check that any timed run
reaching rdone can be turned into a padded run.

Automata with Timers 19

Bx

0

Bx1
Bx2

Bx3
. . . Bxn

Fig. 6: Starting blocks.

other timers need to be started before timer x times out. We use timer xi, for
1 ≤ i ≤ n, to record the value of the i-th tape cell: if this value is symbol aj ∈ Σ,
then timer xi will time out when ⌊clock/2⌋ = j (it will become clear later how
this is possible). Timer xi is started in state ri and set to its appropriate value:

– if i < n, we have the transition ri
go

−−−−→
(xi,2j)

ri+1 that initializes timer xi with

value 2j,

– if i = n, we have the transition rn
go

−−−−→
(xn,2j)

〈q0, 1, 0, 0〉 that initializes timer

xn with the same value 2j and starts the computation of the LBTM.

All timeout transitions from ri, 1 ≤ i ≤ n, go to rsink . This ensures that — in
order to reach state rdone— all timers xi are initialized. Hence, all timed runs in
AM,w that reach rdone have the same starting blocks, as depicted in Figure 6:
an x-block Bx and n xi-blocks Bxi

.8

We use timer x to advance the value of clock that runs cyclically from 0 to
2k + 1:

clock > 0 ∨ symbol = 0 ⇒

〈q, i, symbol , clock 〉
to[x]
−−−→
(x,1)

〈q, i, symbol , (clock + 1) mod 2k + 2〉.
(4)

(It will become clear later why the condition on this transition is required.)
When timer xℓ times out, for some ℓ 6= i, then we just restart it so that it will
times out at exactly the same point in the next phase:

〈q, i, symbol , clock 〉
to[xℓ]

−−−−−−→
(xℓ,2k+2)

〈q, i, symbol , clock 〉.

When timer xi times out, then we restart it in the same way, but in addition we
store the index of the symbol that it encodes in the state of the AT:

〈q, i, symbol , clock 〉
to[xi]

−−−−−−→
(xi,2k+2)

〈q, i, ⌊clock/2⌋, clock〉.

In order to see why this is true, suppose timer xi has been started at time d with
value 2j. Then, d ∈ [0, 1] (see Figure 6) and xi will expire at time d′ = d + 2j,

8 Notice that some of these blocks participate in a race if their timers are initialized
at the same time. For instance, all timers can be started at the same time d = 0.

20 V. Bruyère et al.

Bx

0 1 2 3 4 5

Phase 1

0 1 2 3 4 5

Phase 2

0 1 2 3 4 5

Phase 3

Initialization
of the timers

Simulation
of a step of M

Simulation

B1

xi
B2

xi

Fig. 7: The beginning of a timed run that reaches rdone with k = 2.

so d′ ∈ [2j, 2j + 1]. At this time, the value of clock will be either 2j or 2j + 1,
and thus j = ⌊clock/2⌋.

When the value of clock becomes 0 again (a next phase begins), the LBTM
M has read a symbol from the tape, so symbol > 0, and M may (nondetermin-
istically) take a transition. For each transition t = (q, α, α′, q′, L) of M, with
α = asymbol and α′ = aj , the AT has a transition:

〈q, i, symbol , 0〉
t

−−−−→
(xi,2j)

〈q′, i− 1, 0, 0〉.

The AT also has transitions, mutatis mutandis, for each t = (q, α, α′, q′, R) of
the LBTM. In order to ensure that these transitions are taken before timer x
times out, we add transitions:

symbol > 0 ⇒ 〈q, i, symbol , 0〉
to[x]
−−−→ rsink . (5)

The condition clock > 0 ∨ symbol = 0 from (4) and the condition symbol > 0
from (5) both ensure that we see first action t and then action to[x] in a timed
run that reaches rdone .

In Figure 7, we fix k = 2, and, for a timed run ρ that reaches rdone , we
indicate the sequence of phases, with the cyclic value of clock from 0 to 2k + 1.
We also indicate the block Bx such that timer x is restarted each time it times
out along ρ. Finally, we indicate two xi-blocks, B

1
xi

and B2
xi
, such that in B1

xi
,

timer xi is started in phase 1, restarted during this phase, and restarted again
during phase 2, until it is discarded when clock = 0 in phase 3; and in B2

xi
, timer

xi is started with a new value dictated by the processed transition of the LBTM.
Note that there may be other blocks (for timers xj , with j 6= i) which are not
represented in the figure.

As soon as the LBTM reaches qF , the AT may proceed to its final state rdone :

〈qF , i, symbol , clock 〉
go
−→ rdone .

For all states of the AT, outgoing transitions for actions that have not been
specified lead to rsink .

Automata with Timers 21

Finally, we define the active timers in each state of the AT as follows: χ(r0) =
χ(rsink) = χ(rdone) = ∅, χ(ri) = {x, x1, x2, . . . , xi−1} for 1 ≤ i ≤ n, and χ(r) =
{x, x1, x2, . . . , xn} for all the other states r.

It is clear that AM,w can be constructed from M and w in polynomial time
and that rdone is reachable in the AT iff the LBTM accepts w. ⊓⊔

B Proof of Lemma 2

Lemma 2. Let A = (X, I,Q, q0, χ, δ) be an AT and R be its region automaton.

1. The size of R is linear in |Q| and exponential in |X |. That is, |S| is smaller

than or equal to |Q| · |X |! · 2|X| · (C + 1)
|X|

.
2. There is a timed run ρ of A that begins in (q, κ) and ends in (q′, κ′) iff there

is a run ρ′ of R that begins in J(q, κ)K∼= and ends in J(q′, κ′)K∼=.

Proof (of Lemma 2). For the first statement of the lemma, recall that each state
of the region automaton is of the form (q, JκK∼=). The number of states q is equal

to |Q|. Concerning the number of region classes JκK∼=, (C + 1)
|X|

is related to
the integer parts of the timers between 0 and C, 2|X| to which timers have a
zero fractional part, and |X |! to the order of these fractional parts.

The second statement of the lemma follows from the definition of the region
automaton R. Notice that delay transitions with delay 0 in A disappear in R.

⊓⊔

C Proof of PSPACE upper bound of Theorem 1

Theorem 1. The reachability problem for ATs is PSPACE-complete.

Proof (upper bound of Theorem 1). To decide the reachability problem for ATs,
by Lemma 2, we can simulate a run of the corresponding region automaton.
Instead of constructing the region automaton in full, we can do so “on the fly”.
This yields a nondeterministic decision procedure for the reachability problem
which, due to the form (q, JκK∼=) of the states of R, requires polynomial space
only. Since NPSPACE = PSPACE, we obtain the upper bound stated in Theo-
rem 1. ⊓⊔

D Proof of Proposition 1

Proposition 1. Let A be an AT and ρ ∈ ptruns(A) be a padded timed run with
races. Then, ρ can be wiggled iff Gρ is acyclic.

Before establishing this result, we prove the following intermediate result.

Lemma 4. Let Gρ be the block graph of ρ ∈ ptruns(A) and B be a block in this
graph. It is impossible to wiggle B iff B has at least one predecessor and at least
one successor in Gρ.

22 V. Bruyère et al.

Proof. We prove the lemma by showing both directions.

⇐ Suppose that B has a block B′ as predecessor and B′′ as successor, that
is, B′ ≺ B and B ≺ B′′. Notice that it may be that B′ = B′′. However, B 6= B′

and B 6= B′′ by the definition of races. Let us prove that it is impossible to
wiggle B by arguing that it is not feasible to move B to the right nor to the left.
Given B′ ≺ B, let us prove that we cannot move B to the left. We have two
cases for the actions i ∈ B and i′ ∈ B′ that participate in the race:

– Action i′ occurs before action i along ρ and the sum of the delays between
these two actions is zero. Thus the delay d before i in ρ is equal to zero and it
is impossible to have d+ ǫ ≥ 0 for any ǫ < 0. This implies that no movement
of B to the left is possible.

– The timer x of B (re)started by i reaches value zero when i′ discards it. By
moving B to the left by some ǫ < 0, x times out and therefore an action
to[x] occurs, while it does not occur in ρ (as i′ discards x). As we want to
keep the same untimed trace as for ρ, it is impossible to move B to the left.

With symmetrical arguments, we obtain that we cannot move B to the right, as
B ≺ B′′. We conclude that we cannot wiggle B.

⇒ We prove this direction by contraposition. We first assume that B has
no predecessor (however it may have successors C). We argue that B can be
wiggled by moving it to the left. From the definition of a race, we obtain that:

– Since ρ is a padded timed run, the first delay d1 of ρ is non-zero.
– For each action i′ before some action i ∈ B such that i′ 6∈ B, the delay di′

between i′ and i must be non-zero (as B has no predecessor).
– The timer fate γB of B is either ⊥ or ×. Indeed, assume by contradiction

that γB = . Recall that, by definition of a padded run, timers cannot have
a zero value at the end of a run. Therefore, there must exist a block B′′

that discards the timer of B while its valuation is zero. Thus, we have that
B′′ ≺ B which is not possible.

From these observations, we conclude that there is enough room to move B to
the left. Indeed, it is possible to choose some ǫ < 0 with |ǫ| small enough, such
that d1 + ǫ > 0, di′ + ǫ > 0 for all the delays di′ mentioned above, and in a way
that if γB = × then the new timer fate of B is still equal to ×. In this way we
produce a timed run ρ′ such that untime(ρ) = untime(ρ′).

It remains to explain that the blocks C participating in a race with B in ρ
no longer participate in such a race in ρ′. Let C be one of these blocks, hence
B ≺ C. We have again two cases:

– There exist i ∈ B and i′ ∈ C such that i occurs before i′ in ρ and the total
delay between them is zero. In the timed run ρ′, this delay becomes equal
to −ǫ > 0 and B,C no longer participate in a race.

– The timer fate γC of C is equal to and the timer of C is discarded by B
along ρ. In ρ′, we get that γC = × and B,C no longer participate in a race.

Automata with Timers 23

It follows that if B has no predecessor, we can wiggle it. With symmetrical
arguments, if B has no successor, we can also wiggle it. Hence, the lemma holds.

⊓⊔

Now, we proceed to proving Proposition 1.

Proof (of Proposition 1). We prove the equivalence by showing both directions.

⇒ We prove this direction by contraposition. Suppose that Gρ has a cycle
that we can assume to be simple, i.e., there are k > 1 distinct blocks Bℓ, 0 ≤
ℓ ≤ k − 1 such that Bℓ ≺ Bℓ+1 mod k. As every block Bℓ has a predecessor and
a successor in this cycle, we cannot wiggle Bℓ by Lemma 4. Thus, ρ cannot be
wiggled as it is impossible to resolve the races in which the blocks Bℓ participate.

⇐ Assume Gρ is acyclic. Hence, we can compute a topological sort of Gρ

restricted to the blocks participating in the races of ρ. LetB be the greatest block
with respect to this sort, that is, B has no successor and it has predecessors.
By Lemma 4, we can wiggle B by moving it slightly to the right, thus eliminating
the races between B and all the other blocks. We thus obtain a new timed run
ρ′ such that untime(ρ) = untime(ρ′) and Gρ′ has the same vertices as Gρ and
strictly less edges (B becomes an isolated vertex). We repeat this process until
the blocks of the graph are all isolated, meaning that the resulting timed run
has no races and the same untimed trace as ρ. ⊓⊔

E Proof of Corollary 1

Corollary 1. Let A be an AT and ρ ∈ ptruns(A) be a padded timed run with
races. Suppose that Gρ is cyclic. Then there exists a cycle C in Gρ such that

– any block of C participate in exactly two races described by this cycle,
– for any race described by C, exactly two blocks participate in the race,
– the blocks B = (k1 . . . km, γ) of C satisfy either m ≥ 2, or m = 1 and γ = .

Proof. As Gρ is cyclic, we consider a cycle of minimal length. First notice that
a block B of this cycle can only appear once per race. Indeed, the value at
which a timer is (re)started in the block is positive, thus imposing non-zero
delays between two actions of B (i.e., two actions of B can not participate in a
common race). Second, by minimality of its length, the cycle is simple, implying
that each of its blocks participates in exactly two races, one with its unique
successor (in the cycle) and another one with its unique predecessor. Third,
assume that three blocks B1, B2 and B3 participate in a common race, in that
order. By the previous remark, they are pairwise distinct, and it must be that
B1 ≺ B2, B2 ≺ B3 and B1 ≺ B3. It follows that we get a smaller cycle by
eliminating B2, which is a contradiction. Finally, assume that the cycle contains
some block B = (k1, γ) with γ 6= . Let B1 ≺ B (resp. B ≺ B2) be the
predecessor (resp. successor) of B in the cycle. Due to the form of B, the three
blocks B1, B2 and B participate in the same race, which is impossible. ⊓⊔

24 V. Bruyère et al.

B2

B3

B1

i1

i2

i3

i4

i5

i6

Fig. 8: The extended run of π and its block decomposition.

F Proof of Theorem 3

Theorem 3. An AT A is race-avoiding

– iff any padded timed run ρ ∈ ptruns(A) with races can be wiggled,
– iff for any padded timed run ρ ∈ ptruns(A), its graph Gρ is acyclic.

For the first equivalence, we only need to prove one implication of this result,
as by definition of wiggling, an AT A is race-avoiding if all its padded timed
runs with races are wigglable. The second equivalence is then a consequence of
Proposition 1.

For this purpose, we need to introduce some new notions. Given a padded
timed run ρ = (q0, κ0) d1 i1/u1 . . . dn in/un dn+1 (q, κ), we extend it with
additional transitions indicating when a timer has been discarded in the following
way.9 Let (qℓ−1, κℓ−1) dℓ iℓ/uℓ (qℓ, κℓ) be any transition of ρ such that the set
D = {y1, . . . , ym} of timers discarded by iℓ is not empty. Then we replace (qℓ, κℓ)
by the sequence of transitions

(qℓ, κℓ) 0 j1/⊥ (qℓ, κℓ) 0 j2/⊥ (qℓ, κℓ) · · · (qℓ, κℓ) 0 jm/⊥ (qℓ, κℓ)

such that

– for all k, 1 ≤ k ≤ m, if yk was discarded by iℓ when its value was zero, then
jk = , otherwise jk = ×,

– each delay is zero, and
– each update is ⊥.

We denote by ext(ρ) the resulting extended run, such that symbols and × are
also called actions.

Example 9. Let us come back to the timed run π of Example 3 (see also Fig-
ure 2c). Its transition (q2, x1 = 1, x2 = 2) 1 i/(x1, 1) (q2, x1 = 1, x2 = 1) discards
timer x1 when its value is zero. Therefore in ext(π), we have (q2, x1 = 1, x2 = 1)
being replaced by (q2, x1 = 1, x2 = 1) 0 /⊥ (q2, x1 = 1, x2 = 1). This extended
run and its block decomposition are depicted in Figure 8, such that i1, i2, . . . , i7
is the sequence of actions along ext(π) with i4 = .

9 In Section 4.2, this was done in the modified region automaton R of A with the new
symbols di [x] indicating that the timer x was discarded when its value was zero. We
here also consider the case when x is discarded with a non-zero value. To get more
intuition about the proof of Theorem 3, we recommend reading Appendix G.

Automata with Timers 25

Let ρ be a padded timed run and ext(ρ) be its extended run. Given two
actions i and i′ of ext(ρ), the relative elapsed time between i and i′, denoted
by reltimeρ(i, i

′), is defined as follows from the sum d of all delays between
i and i′ in ext(ρ): if i occurs before i′, then reltimeρ(i, i

′) = d, otherwise
reltimeρ(i, i

′) = −d. Notice that the relative elapsed time is sensitive to the
order of the actions along ext(ρ), and if i and i′ participate in a race, then
reltimeρ(i, i

′) = reltimeρ(i
′, i) = 0. We naturally lift this definition to a sequence

of actions i1, i2, . . . , ik as

reltimeρ(i1, i2, . . . , ik) =
k−1
∑

ℓ=1

reltimeρ(iℓ, iℓ+1).

The following lemma is trivial, as the relative elapsed time between two actions
has a sign that depends on the relative position of the actions. It is illustrated
by Example 10 below.

Lemma 5. If the sequence i1, i2, . . . , ik is a cycle (that is, k ≥ 3 and ik = i1),
then reltimeρ(i1, i2, . . . , ik) = 0.

Example 10. We consider again the timed run π and its extended run ext(π).
Recall that π cannot be wiggled as Gπ is cyclic (see Figure 4b). From this cycle
and the block decomposition of ext(π) (see Figure 8), we extract the following
sequence of actions: i1, i2, i5, i6, i3, i4, i1. Notice that it is a cycle such that any
two consecutive actions are either in the same block, or participate in a race,
and are enumerated in a way to “follow” the cycle B1 ≺ B2 ≺ B3 ≺ B1 of
Gπ. For instance, the first two actions i1, i2 describes the race B1 ≺ B2, then
i2, i5 both belong to B2, then i5, i6 describes the race B2 ≺ B3, etc. We have
reltimeπ(i1, i2, i5, i6, i3, i4, i1) = 0 + 2 + 0− 1 + 0− 1 = 0.

We now proceed to the proof of Theorem 3.

Proof (of Theorem 3). The second equivalence holds by Proposition 1. Let us
focus on proving that A is race-avoiding iff any padded timed run ρ ∈ ptruns(A)
is wigglable. As, by definition, it is obvious that A is race-avoiding if any padded
timed run is wigglable, we show the other direction.

Towards a contradiction, assume A is race-avoiding and there exists ρ1 ∈
ptruns(A) with races that is not wigglable. Since A is race-avoiding, there ex-
ists another padded timed run ρ2 without races and such that untime(ρ1) =
untime(ρ2). We consider the two extended runs ext(ρ1) and ext(ρ2).

By Proposition 1, there must exist a cycle C in the block graph of ρ1. We
assume that C is as described in Corollary 1 and we study it on ext(ρ1) (instead
of ρ1). That is, C is composed of k > 1 distinct blocks Bℓ, 0 ≤ ℓ ≤ k − 1, such
that Bℓ ≺ Bℓ+1 mod k, and

– any block Bℓ participates in exactly two races described by C,
– for any race described by C, exactly two blocks participate in the race,
– the blocks of the cycle have at least two actions (of which one can be).

26 V. Bruyère et al.

We thus have the following sequence of actions from ext(ρ1)

S1 = i′0, i1, i
′
1, . . . , ik−1, i

′
k−1, i0, i

′
0

that is a cycle and such that for all ℓ, 0 ≤ ℓ < k (see also Example 10):

– iℓ and i′ℓ are the two symbols of Bℓ that participate in (different) races of C,
– i′ℓ ∈ Bℓ and iℓ+1 mod k ∈ Bℓ+1 mod k participate in a race of C, that is,

reltimeρ1
(i′ℓ, iℓ+1 mod k) = 0,

– i′ℓ occurs before iℓ+1 mod k in ext(ρ1) (since Bℓ ≺ Bℓ+1 mod k).

By Lemma 5, we have reltimeρ1
(S1) = 0. Therefore,

reltimeρ1
(S1) =

k−1
∑

ℓ=0

reltimeρ1
(iℓ, i

′
ℓ) = 0. (6)

Let us now study ext(ρ2) knowing that untime(ρ1) = untime(ρ2). Both
padded timed runs ρ1 and ρ2 (and thus ext(ρ1) and ext(ρ2)) must have the
same block decomposition. Indeed recall that A is deterministic and we see the
same actions. Hence, it must be that ρ1 and ρ2 follow the same transitions,
with the same updates alongside both runs. We then have the same sequences
of triggered actions, and therefore the same block decomposition in both runs.

We can thus consider the blocks of C seen as blocks in ext(ρ2), and the
sequence S2 = j′0, j1, j

′
1 . . . , jk−1, j

′
k−1, j0, j

′
0 from ext(ρ2) that corresponds to the

sequence S1 from ext(ρ1). We have the following properties for all ℓ, 0 ≤ ℓ < k:

– if iℓ ∈ Î (resp. i′ℓ ∈ Î), then jℓ = iℓ (j
′
ℓ = i′ℓ),

– if iℓ = (resp. i′ℓ =), then jℓ = × (j′ℓ = ×), as ρ2 has no races and
untime(ρ1) = untime(ρ2),

– if iℓ, i
′
ℓ ∈ Î, then reltimeρ1

(iℓ, i
′
ℓ) = reltimeρ2

(jℓ, j
′
ℓ), as iℓ = jℓ, i

′
ℓ = j′ℓ are in

the same block in both ext(ρ1) and ext(ρ2),
– if one among iℓ, i

′
ℓ is equal to , then |reltimeρ1

(iℓ, i
′
ℓ)| > |reltimeρ2

(jℓ, j
′
ℓ)|

as the corresponding action in ext(ρ2) is equal to × (the timer has been
discarded earlier in ρ2 than in ρ1),

– we have reltimeρ2
(j′ℓ, jℓ+1 mod k) 6= 0, as ρ2 has no races,

– moreover, reltimeρ2
(j′ℓ, jℓ+1 mod k) > 0 because i′ℓ occurs before iℓ+1 mod k in

ext(ρ1) and untime(ρ1) = untime(ρ2).

Let us first assume that no action ever appears in S1. Hence, there is no
action × in S2. As S2 is a cycle, by Lemma 5, we have that reltimeρ2

(S2) = 0.
It follows by (6) that

0 = reltimeρ2
(S2) =

k−1
∑

ℓ=0

reltimeρ2
(j′ℓ, jℓ+1 mod k) +

k−1
∑

ℓ=0

reltimeρ2
(jℓ, j

′
ℓ)

> 0 +

k−1
∑

ℓ=0

reltimeρ1
(iℓ, i

′
ℓ) (7)

Automata with Timers 27

= reltimeρ1
(S1) = 0.

This leads to a contradiction.
Let us now assume that there exists at least one action in S1. Consider

any ℓ, 0 ≤ ℓ < k, such that one action among iℓ, i
′
ℓ is equal to . Necessarily,

iℓ = and i′ℓ occurs before iℓ in ρ1, that is as reltimeρ1
(iℓ, i

′
ℓ) < 0. Indeed, given

the two races Bℓ−1 mod k ≺ Bℓ ≺ Bℓ+1 mod k, participates in the first race and
appears at the end of Bℓ. It follows that

reltimeρ1
(iℓ, i

′
ℓ) < reltimeρ2

(jℓ, j
′
ℓ) < 0.

Therefore, we get the same inequalities as in (7), leading again to a contradiction.
This completes the proof. ⊓⊔

G Proof of Lemma 3

Lemma 3. Let A be an AT and R be its modified region automaton. We can
construct an MSO formula Φ of size linear in I and X such that a word labeling
a run ρ of R satisfies Φ iff ρ is a padded run that cannot be wiggled. Moreover,
the formula Φ, in prenex normal form, has three quantifier alternations.

Before giving the proof, some definitions are in order: Sets of finite words
(word structures, to be precise) over an alphabet Σ can be defined by sentences
in MSO with the signature (<, {Qa}a∈Σ). Intuitively, we interpret the formula
over the word w ∈ Σ∗ with variables being positions that take values in N, that
can be ordered with <, and the predicates Qa(p) indicating whether the p-th
symbol of the word (structure) is a. The formulas also use variables P being sets
of positions, and P (p) meaning that p is a position belonging to P . We recall that
a formula is in prenex normal form if it can be written as Q1v1Q2v2 . . . QnvnF
with F a formula without quantifiers, Qi a quantifier and vi a variable for all
1 ≤ i ≤ n. We suppose the reader is familiar with the rules to put a formula into
a prenex normal form. By quantifier alternations, we mean alternating blocks of
existential or universal quantifiers, respectively denoted by ∃∗ and ∀∗.

Moreover, recall that the modifications applied on the region automaton
imply the following property (see Section 4.2). Given a timed run ρ of an AT,
by Lemma 2, there exists an equivalent run ρ′ in the region automaton such
that any x-block (ik1

. . . ikm
, γ) of ρ is translated into the sequence of symbols

(i′k1
, . . . , i′km

, γ′) in ρ′ with an optional symbol γ′ such that:

– i′kℓ
= (ikℓ

, x), for 1 ≤ ℓ < m,
– i′km

= (ikm
,⊥) if γ = ⊥, and (ikm

, x) otherwise,
– γ′ = di [x] if γ = , and γ′ does not exist otherwise.

In the sequel, we again call R the modified region automaton.
We are going to describe a formula Φ such that a word labeling a run ρ

of R satisfies Φ iff ρ is a padded run that cannot be wiggled. To define Φ,
we use Proposition 1. Recall that it characterizes an unwigglable run ρ by a

28 V. Bruyère et al.

cyclic block graph Gρ. We also focus on the particular cycle of Gρ as described
in Corollary 1. Step by step, we create MSO formulas expressing the following
statements about a run ρ of R:

1. Two symbols belong to the same block (see the above property about the
translation of x-blocks in R and the particular case of zero-valued timers
that are discarded).

2. Two blocks participate in a race. Rather, we express that two symbols, one
in each block, participate in a race.

3. The run is a padded run that cannot be wiggled. Rather, we express that
there exists a cycle in Gρ whose form is as in Corollary 1.

Some useful predicates. We define four predicates to help us write the MSO
formulas. The formula First(p, P) expresses that a position p is the first element
of a set P , while Last(p, P) states that p is the last element of P . Finally,
Next(p, P, q) expresses that q is the successor of p in P with regards to <. More
formally,

First(p, P) := P (p) ∧ ∀q : q < p → ¬P (q) (8)

Last(p, P) := P (p) ∧ ∀q : q > p → ¬P (q) (9)

Next(p, P, q) := p < q ∧ P (p) ∧ P (q) ∧ ∀r : p < r < q → ¬P (r). (10)

The last useful predicate, Partition(P, P1, P2), states that there exist sets of
positions P, P1, P2 such that P = P1 ⊎ P2, the first position of P is in P1, the
last one is in P2, and the positions of P alternate between P1 and P2:

Partition(P, P1, P2) := ∀r : P (r) ↔ (P1(r) ∨ P2(r))

∧ ∃p, q : First(p, P) ∧ Last(q, P) ∧ P1(p) ∧ P2(q)

∧ ∀r : P1(r) ↔ ¬P2(r)

∧ ∀r, s : Next(r, P, s) → (P1(r) ↔ P2(s)).

(11)

Two symbols belong to the same block. We give here an MSO formula
expressing that two positions p < q are labeled by symbols belonging to the same
x-block. Thus, the formula Blockx(p, q, P), with P a set of positions labeled by
consecutive symbols of an x-block, states that P must respect the following
constraints:

– We have p < q, with p, q ∈ P .
– The position p is labeled by either (i, x) ∈ Σ (meaning we start an x-

block B), or (to[x], x) ∈ Σ (meaning we are in the block B),
– The input at position q is either (to[x], x) (we are in the block B), or

(to[x],⊥) (we are at the end of B and we do not restart x), or di [x] (we
finish B by discarding its timer while its value is zero),

– Every other position r ∈ P such that p < r < q is labeled by (to[x], x) (we
restart x to keep the block active),

Automata with Timers 29

– There is no position r /∈ P between p and q such that r is labeled by some
symbol of Σ among (to[x], ·), (·, x), or di [x] (the · indicates “any value”).
That is, any intermediate position cannot affect x.

Formally, we have:

Affectsx(r) := Q(to[x],x)(r) ∨Q(to[x],⊥)(r) ∨
∨

i∈I

Q(i,x)(r) ∨Qdi[x](r) (12)

Blockx(p, q, P) := p < q ∧ P (p) ∧ P (q)

∧
(

∨

i∈I

Q(i,x)(p) ∨Q(to[x],x)(p)
)

∧
(

Q(to[x],x)(q) ∨Q(to[x],⊥)(q) ∨Qdi[x](q)
)

∧ ∀r :
(

p < r < q ∧ P (r)
)

→ Q(to[x],x)(r)

∧ ∀r :
(

p < r < q ∧ ¬P (r)
)

→ ¬Affectsx(r).

(13)

Two symbols participate in a race. The formula Race(p, q) states that two
positions p < q are labeled by symbols that participate in a race, that is, there
is no position labeled by τ between p and q.

Race(p, q) := p < q ∧ ¬
(

∃r : p < r < q ∧Qτ (r)
)

. (14)

The run is unwigglable. Finally, we give a formula Φ that expresses that a
word is the label of a padded run ρ that cannot be wiggled, i.e., that highlights
a cycle (as in Corollary 1) in the block graph of ρ. The idea of that formula is as
follows. There are positions p1 < q1 < p2 < q2 < · · · < pm < qm such that each
pair pk, qk participate in a race. Moreover, for any qk belonging to a block Bk,
there must exist a pℓ that also belongs to Bk. Notice that pℓ is not necessarily
after qk. See Figure 5 for an illustration of that scenario with m = 5.

The formula Φ states that there exist sets of positions P, P1, P2 such that:

– We have P1 ⊎ P2 forming a partition of P as described previously,
– For any p ∈ P1 and q ∈ P2 such that q is the next element after p in P , we

have Race(p, q).
– For any q ∈ P2, there must exist a p in P1 such that p and q belong to

the same block. That is, there must exist a timer x and a set P ′ such that
Blockx(p, q, P

′) if p < q or Blockx(q, p, P
′) if p > q.

Finally, in order to describe a padded run ρ, the first and last positions of the
word must be labeled with τ (i.e., a non-zero delay). These positions do not
belong to P .

InBlock(p, q, P ′) :=
(

p < q ∧
∨

x

Blockx(p, q, P
′)
)

∨
(

p > q ∧
∨

x

Blockx(q, p, P
′)
)

(15)

30 V. Bruyère et al.

Φ := ∃P, P1, P2 :
(

Partition(P, P1, P2)

∧ ∀p, q :
(

P1(p) ∧Next(p, P, q)
)

→ Race(p, q)

∧ ∀q : P2(q) →
(

∃p, P ′ : P1(p) ∧ InBlock(p, q, P ′)
)

)

∧Qτ (1) ∧
(

∃r : Qτ (r) ∧ (∀r′ : r′ < r)
)

.

(16)

Correctness. Now that we have constructed the formula Φ, let us show that it
correctly encodes that the word labeling a run ρ in R satisfies Φ iff ρ is a padded
run that is not wigglable.

⇐ Assume ρ in R is a padded run that is not wigglable. Let w ∈ Σ∗ be its
labeling. By Proposition 1, we know that the block graph Gρ is cyclic. Moreover,
by Corollary 1, there exists a cycle whose blocks satisfy the following properties:
exactly two blocks participate in any race of the cycle, any block participates in
exactly two races, and any block has a size at least equal to two10. We consider
this particular cycle (B0, . . . , Bm−1, B0).

From the races in which the blocks Bk participate, we define the sets P1, P2

of positions, and, thus, P = P1 ⊎ P2 as follows. For every Bk ≺ Bk+1 mod m in
the cycle, consider a ∈ Bk and b ∈ Bk+1 mod m that are the two symbols of w
participating in a race. We add the position of a in P1 and the position of b in
P2 (see Figure 5 to get intuition). Thus, the positions in P alternate between P1

and P2, the first element of P is in P1, and the last is in P2. Moreover, for any
p ∈ P1 and q ∈ P2 such that q is the successor of p in P , it holds that Race(p, q).
That is, the second line of formula (16) about races is satisfied by w.

We have to show that the third line of (16) is also satisfied by w, that is, for
any position q in P2, there exists a position p in P1 such that p and q belong
to the same block. Let q ∈ P2. By construction, q belongs to some block Bk of
the cycle. By Corollary 1, Bk participate in exactly two races of the cycle, one
as described above with Race(p, q), and another one with Race(p′, q′) for some
other positions p′ ∈ P1 and q′ ∈ P2. Necessarily, p

′ is a position of a symbol in
Bk (and not q′ by choice of the cycle), such that either p′ < q or p′ > q. Thus,
the third line of (16) is satisfied by w.

Finally, since ρ is padded, it must be that its first and last delays are positive,
i.e., the corresponding positions are labeled by τ . Hence the last line of (16) is
satisfied by w. We conclude that w satisfies all conjuncts of (16) and then also
the formula Φ.

⇒ Assume now that the label w of a run ρ in R satisfies formula Φ. Since
the last line of (16) forces the first and last symbols of w to be τ , the formula
describes a padded run of R.

Let P, P1, and P2 be the sets that satisfy the formula Φ. Let P1 = {p1, . . . , pm}
and P2 = {q1, . . . , qm} be such that Next(pk, P, qk) is satisfied for all k. Then,
by (14), it holds that Race(pk, qk) is also satisfied, i.e., the symbols of w labeling
the positions pk, qk participate in a race. The third line of (16) implies that there
are at most m blocks involved in these races. Notice that there can be less than

10 Recall the way blocks in A are translated into blocks in R.

Automata with Timers 31

m blocks, as for q, q′ in P2 with q 6= q′, we could have the same p ∈ P1 that
makes sub-formula InBlock satisfied in (16).

From formula Φ, we are going to construct a part of the block graph Gρ of ρ
that is cyclic. We proceed inductively as follows:

– Take an arbitrary position qk0
∈ P2. There exists pk1

∈ P1 such that
Blockx1

(qk0
, pk1

, P ′
1) or Blockx1

(pk1
, qk0

, P ′
1) is satisfied. Call B1 the related

x1-block.
– Let qk1

∈ P2. Then, there exists pk2
∈ P1 such that Blockx2

(qk1
, pk2

, P ′
2)

or Blockx2
(pk2

, qk1
, P ′

2) is satisfied. For the related x2-block B2, we have
B1 ≺ B2 as pk1

, qk1
participate in a race, and pk1

∈ B1, qk1
∈ B2.

– Let qk2
∈ P2. Then, there exists pk3

∈ P1 such that Blockx3
(qk2

, pk3
, P ′

3)
or Blockx3

(pk3
, qk2

, P ′
3) is satisfied. For the related x3-block B3, we have

B2 ≺ B3.
– We repeat this process until we obtain a cycle. This situation necessarily

arises as the number of blocks is bounded by m.

This shows that Gρ is cyclic.

Prenex form of Φ. Formula Blockx(p, q, B), see (13), can be easily rewritten
in prenex normal form that starts with a block ∀∗ of universal quantifiers. Sim-
ilarly Race(p, q), see (14), requires a single universal quantifier. Let us consider
the formula Φ putting aside the quantifiers ∃P, P1, P2, see (16). Notice that for-
mulas (8), (9), and (10) all use a single universal quantifier. The first conjunct
of (16) uses Partition(P, P1, P2), see (11), that can be rewritten with three blocks
∀∗∃∗∀∗. The second (resp. last) conjunct can be rewritten with two blocks ∀∗∃∗

(resp. ∃∗∀∗), and the third one with three blocks ∀∗∃∗∀∗. Hence, we obtain that
the quantifiers of the prenex normal form of Φ are ∃∗∀∗∃∗∀∗, that is, with three
quantifier alternations, as expected.

Finally, by carefully examining the formulas, we notice that most of them
have constant size except Affectsx(r) and Blockx(p, q, P) whose sizes are linear
in |I|, and InBlock(p, q, P ′) and Φ whose sizes are linear in |I| and |X |.

H Proof of Theorem 2

Theorem 2. Deciding whether an AT is race-avoiding is PSPACE-hard and in
3EXP. It is in PSPACE if the sets of actions I and of timers X are fixed.

We begin by proving the upper bound.

H.1 Upper bound

We make use of the Büchi-Elgot-Trakhtenbrot theorem: A language is regu-
lar iff it can be defined as the set of all words satisfied by an MSO formula
(with effective translations, see [10,15]). First, from the formula Φ of Lemma 3,
we can construct a finite-state automaton N whose language is the set of all

32 V. Bruyère et al.

Bx

B1

y B2

y

Fig. 9: Visualization of the forced buffer using timer y.

words satisfying Φ. Due to the reduction from non-deterministic to determin-
istic automaton, each quantifier alternation induces an exponential blowup in
the automaton construction. Hence, the size of N is triple-exponential as Φ has
three quantifier alternations. Second, we compute the intersection of N with R
— itself exponential in size. This can be done in polynomial time in the sizes of
both automata, i.e., in 3EXP. Finally, the language of the resulting automaton
is empty iff there is no padded run of A that cannot be wiggled, and this can be
checked in polynomial time with respect to the size of the (triple-exponential)
automaton.

H.2 Lower bound

In this section, we prove that deciding whether all padded timed runs of a given
AT are wigglable is a PSPACE-hard problem. The idea of the proof is to leverage
the PSPACE-hardness proof for the reachability problem, see Theorem 1. We use
the same notations as in the proof provided for the latter result in Appendix A.

Let M be an LBTM and w be an input word. Let AM,w be the AT con-
structed from M and w in the proof of Theorem 1, such that the state rdone is
reachable in the AT iff the LBTM accepts w. We are going to slightly modify
the LBTM and the constructed AT such that any padded timed run ρ of AM,w

has an acyclic block graph Gρ. Thanks to Proposition 1, this is equivalent to
stating that ρ can be wiggled. Then, we give a widget that extends any padded
timed run ρ reaching rdone into one that is unwigglable. Hence, the given LBTM
accepts w if the constructed AT has some unwigglable padded timed run.

First, we modify the LBTM M and word w = w1 . . . wn to obtain a new
LBTM M′ that accepts w iff it does so while maintaining the invariant that no
two cells of the tape of M′ hold the same symbol. Let Σ be the alphabet of
M. We create a new word w′ = (w1, 1)(w2, 2) . . . (wn, n), and a new LBTM M′

over the alphabet Σ′ = Σ×{1, . . . , n} such that M′ simulates M by discarding
the second component of each symbol of Σ′, except that whenever M writes the
symbol a at the position i on the tape, M′ writes the symbol (a, i). This requires
to store the current i in the state of M′, inducing a polynomial blowup in n for
the number of states of M′. Thanks to the second component, we indeed have
that every cell contains a symbol that is different from any other cell.

Second, we modify the construction of the AT AM′,w′ as follows. We add
a new timer y which we use to force a block acting as a buffer before and
after each action implying the timer x when the value of clock is equal to zero,
as illustrated in Figure 9. Therefore, any input-action must take place between
these two buffers. In order to have enough room for these buffers, we multiply by

Automata with Timers 33

three all the values at which the timers x, x1, . . . , xn are updated (in particular
x is always (re)started with value 3 instead of 1). For the initialization of the
timers x, x1, . . . , xn (at the start of phase 1), we add new states 〈r1, yk〉 and
〈q0, 1, 0, 0, yk〉, for k = 1, 2, and modify the transitions to force y to start and
time out, then we force the initialization part and, finally, force y to start and
time out again:

r0
go

−−−→
(x,3)

〈r1, y1〉
go

−−−→
(y,1)

〈r1, y2〉
to[y]
−−−→

⊥
r1 . . .

. . . rn
go

−−−−→
(xn,6j)

〈q0, 1, 0, 0, y1〉
go

−−−→
(y,1)

〈q0, 1, 0, 0, y2〉
to[y]
−−−→

⊥
〈q0, 1, 0, 0〉

with 6j the value at which xn must be set (see the proof of Theorem 1). We
define χ(〈r1, y1〉) = χ(r1) = {x}, χ(〈r1, y2〉) = {x, y}, χ(〈q0, 1, 0, 0, y1〉) =
χ(〈q0, 1, 0, 0〉) = {x, x1, . . . , xn}, and χ(〈q0, 1, 0, 0, y2〉) = {x, x1, . . . , xn, y}. In
states where clock = 0 in the other phases, we do likewise in the following way.
For each state 〈q, i, symbol , 0〉 of the AT with symbol > 0, we add new states
〈q, i, symbol , 0, yk〉 and 〈q′, j, 0, 0, yk〉, for k = 1, 2, and modify the transitions to
force y to start and time out, then allow a t-transition11, and, finally, force y to
start and time out again:

〈q, i, symbol , 0, y1〉
go

−−−→
(y,1)

〈q, i, symbol , 0, y2〉
to[y]
−−−→

⊥
〈q, i, symbol , 0〉

t
−−−−→
(xi,6j)

〈q′, j, 0, 0, y1〉
go

−−−→
(y,1)

〈q′, j, 0, 0, y2〉
to[y]
−−−→

⊥
〈q′, j, 0, 0〉.

Any to[x]-transition leading to 〈q, i, symbol , 0〉 instead goes to 〈q, i, symbol , 0, y1〉.
We then define χ(〈q, i, symbol , 0, y1〉) = χ(〈q′, j, 0, 0, y1〉) = {x, x1, . . . , xn} and
χ(〈q, i, symbol , 0, y2〉) = χ(〈q′, j, 0, 0, y2〉) = {x, x1, . . . , xn, y}. Any other transi-
tion leads to rsink .

Third, let A′ be the AT obtained with this modified construction. We now
argue that any padded timed run ρ ∈ ptruns(A′) can be wiggled. We do so by
proving that the block graph of ρ is acyclic. In the sequel, we say that two block
B,B′ are incomparable if neither B ≺ B′ nor B′ ≺ B.

1. Suppose first that ρ does not contain the state rsink .
– Recall that x is never discarded and every to[x]-transition restarts it.

Thus, there exists a single x-block; we call it Bx. By construction, none of
the to[y]-transitions update y. Therefore, we have strictly more than one
y-block. Call them B1

y , B
2
y , . . . , B

my
y in the order they are seen alongside

ρ. For any odd i, it may be that Bx ≺ Bi
y (if the input-action starting

y occurs at the same time x times out), Bi
y ≺ Bi+1

y (if the sum of the

delays between the timeout of y in Bi
y and the go-transition starting

Bi+1
y is zero), and Bi+1

y ≺ Bx. However, it is impossible to have Bx ≺

Bi
y ≺ Bi+1

y ≺ Bx, as x is (re)started with value 3 and there are exactly

11 We use the notations of the proof of Theorem 1.

34 V. Bruyère et al.

two units of time if Bi
y ≺ Bi+1

y (since y is always started with value 1).
That is, we do not have a cycle. Moreover, since the y-blocks only appear
when the clock component of the current state is zero, Bj

y and Bj+1
y are

incomparable for every even j.

– Let us now focus on the timers xi. Since a t-action can discard xi, we
may have multiple xi-blocks, say B1

xi
, . . . , B

mxi
xi (again, in the order they

are seen in ρ). Since xi is updated such that it cannot time out while
the clock component of the current state is zero (i.e., the timer fate of
the corresponding block is ×) and only one t-transition can occur per
phase of M′, all of the xi-blocks are pairwise incomparable. Moreover,
thanks to the y-buffers, Bx and any block Bj

xi
are incomparable. As

stated before, it may happen that a t-transition of some block Bj
xi

occurs
concurrently with an action of a block Bℓ

y (resp. Bℓ+1
y) with ℓ an odd

number. By construction, Bℓ
y ≺ Bj

xi
(resp. Bj

xi
≺ Bℓ+1

y). Note that it is

possible that Bℓ
y ≺ Bj

xi
≺ Bℓ+1

y if all blocks participate in the same race.

– We now consider two different timers xi and xk. Since the LBTM M′

is such that no two cells contain the same value, it must be that xi and
xk are always updated to time out in states containing different clock
component in A′ (as, otherwise, this would imply that the two cells of
M′ contain identical symbols). That is, it is not possible for two timers
to time out concurrently. However, during the initialization, it may be
that the actions starting B1

x1
, B1

x2
, . . . , B1

xn
occur at the same time. We

thus have B1
x1

≺ B1
x2

≺ · · · ≺ B1
xn

and the blocks Bj
xi

and Bℓ
xk

are
incomparable with j, ℓ > 1.

Using all these facts over the races and ≺, we deduce that Gρ is acyclic, i.e.,
ρ can be wiggled.

2. Suppose now that ρ contains the state rsink . Recall that χ(rsink) = ∅, mean-
ing that the update of every transition ending in rsink is ⊥, every timer is
stopped, and every new block started after reaching rsink contains exactly
one action. We thus focus on the prefix of the run up to the transition lead-
ing to rsink . Call this last transition t∗ with action i∗. By construction, it
must be this prefix is a run that satisfies the constraints explained above
(i.e., there is no cycle in the block graph induced by the prefix of the run).
Let us show that adding t∗ after the prefix does not induce a cycle in the
block graph.

Suppose first that i∗ is an input. As the update of t∗ is ⊥, it must be that
i∗ is the only action of its block, and this block cannot appear in a cycle.
Suppose now that i∗ is a timeout-action.

– Let us study the initialization or a simulation step (i.e., the start of a
phase). Recall that no timer xi can time out, i.e., we only have to consider
the timers x and y. In this case, we must have i∗ = to[x]. Indeed, this
happens when a block Bℓ

y is started too late, in a way that to[x] occurs
before y times out, or when such a block is not started at all. The only
hope to have a cycle is to adapt to the current situation the discussion
we made above about Bx ≺ Bℓ

y ≺ Bℓ+1
y ≺ Bx with ℓ odd. Here, as

Automata with Timers 35

i∗ = to[x] stops the timer y and x (resp. y) is (re)started with value 3
(resp. value 1), we get Bx ≺ Bℓ

y and Bx ≺ Bℓ+1
y . We thus have no cycle.

– Otherwise, we consider a state in which the clock value is not zero (i.e.,
this is not the start of a phase). By construction, a to[x]-, or any to[xi]-
transition cannot lead to rsink , and y is never started. Thus, i∗ cannot
be a timeout-action in this case.

Hence, we covered every case and never obtained a cycle, i.e., ρ is wigglable.

We have thus proved that each timed run ρ ∈ ptruns(A′) can be wiggled.
Finally, we add a widget that forces an unwigglable run after rdone . To do so,

we add new timers z, z′ and states s1 to s4, and define the following transitions

rdone
go

−−−→
(z,1)

s1
go

−−−→
(z′,1)

s2
to[z′]
−−−→

⊥
s3

to[z]
−−−→

⊥
s4.

We define χ(s1) = χ(s3) = {z}, χ(s2) = {z, z′}, and χ(s4) = ∅. Given a padded
timed run ending in rdone , the only ways to extend it into a padded timed run
reaching s4 are by adding the following sequence of transitions, with any d > 0:

(rdone , ∅)
go

−−−→
(z,1)

(s1, z = 1)
0
−→ (s1, z = 1)

go
−−−→
(z′,1)

(s2, z = 1, z′ = 1)

1
−→ (s2, z = 0, z′ = 0)

to[z′]
−−−→

⊥
(s3, z = 0)

0
−→ (s3, z = 0)

to[z]
−−−→

⊥
(s4, ∅)

d
−→ (s4, ∅).

(17)

The resulting padded timed run is not wigglable, as two blocks Bz and Bz′ have
been added such that Bz ≺ Bz′ ≺ Bz.

To conclude, it remains to prove that the given M′ accepts the given w′ iff
there exists an unwigglable padded timed run in the AT A′ extended with the
widget. First, suppose that M′ accepts w′. Then by the proof of Theorem 1,
we know that there exists a timed run ρ ∈ truns(A′) reaching rdone . As both
r0 and rdone do not have any active timer, the first and last delays of ρ can be
made positive, thus making ρ padded. We then extend ρ with (17) and obtain an
unwigglable run that is still padded. Second, suppose that there exists a padded
timed run ρ that cannot be wiggled. We proved above that if ρ ends in some
state of A′, then ρ is wigglable. Therefore, by construction of the widget, ρ has
to end with s4, meaning that a prefix of ρ reaches rdone . It follows that w′ is
accepted by M′. Thus, deciding whether all padded timed runs of an AT can be
wiggled is a PSPACE-hard problem.

	Automata with Timers
	1 Introduction
	2 Preliminaries
	2.1 Timed semantics
	2.2 Blocks and races

	3 Reachability
	4 Race-avoiding ATs
	4.1 Wiggling a run
	4.2 Existence of an unwigglable run
	4.3 Sufficient hypotheses

	5 Conclusion and future work
	A Proof of PSPACE lower bound of Theorem 1
	B Proof of Lemma 2
	C Proof of PSPACE upper bound of Theorem 1
	D Proof of Proposition 1
	E Proof of Corollary 1
	F Proof of Theorem 3
	G Proof of Lemma 3
	Some useful predicates.
	Two symbols belong to the same block.
	Two symbols participate in a race.
	The run is unwigglable.
	Correctness.
	Prenex form of .

	H Proof of Theorem 2
	H.1 Upper bound
	H.2 Lower bound

