

Effect of photothermal therapy on nuclear magnetic resonance imaging during concurrent use

C. Rousseau¹, Q.L. Vuong², Y. Gossuin², B. Maes¹ and G. Rosolen¹

1 Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons

2 Biomedical Physics Unit, University of Mons

Introduction

Diagnostic phase: Magnetic Resonance Imaging (MRI)

Treatment phase: Phototermal therapy (PTT)

Introduction

Underlying question:

"How will the use of phototherapy modify MRI images?"

Introduction

Theranostic approach: MRI + PTT Contrast/Photothermal agents

Underlying question:

"How will the use of phototherapy modify MRI images?"

More precise question:

"How does laser illumination of a solution modify its transverse relaxation rate (R2)?"

Contrast/Photothermal study

Hybrid nanoshell platforms:

Magnetite core (Fe_3O_4) allow MRI

Plasmonic hybridization between nanosphere/nanocavity

Temperature rise around nanoshell vs laser irradiance

Steady-state heat transfer differential equation

$$T_{ext}(r) = \frac{Q_{core} + Q_{shell}}{4 \pi r \kappa_{env}} + T_{\infty}$$

Temperature rise around nanoshell vs laser irradiance

gold shell thickness: 10 nm

Contradiction with the experience?

Macroscopic T° rise ≈ 18°C

[1] G. S. Terentyuk et al., J. Biomed. Opt., vol. 14, n° 2, 2009.

Contradiction with the experience?

Macroscopic T° rise ≈ 18°C

"How can nanosimulation be linked to macro experiments?"

Université de Mons

Solution: collective thermal interactions of nanoparticles

Sum contribution of all NPs in the sample:

$$T_{collective}(\vec{r}) = \sum_{k=1}^{N} \frac{q_k\left(\vec{r'}\right)}{4\pi\kappa_{env}|\vec{r_k} - \vec{r}|} + T_{amb}$$

Solution: collective thermal interactions of nanoparticles

Sum contribution of all NPs in the sample: continuous approximation

$$T_{collective}(\vec{r}) = \iiint_{\text{Laser beam}} \frac{q(\vec{r'})}{4\pi\kappa_{env}|\vec{r'}-\vec{r}|} dr' + T_{amb}$$

Extinction cross section
$$q(\vec{r'}) = I_0 N \sigma_{abs} \underbrace{e^{(-\sigma_{ext} N z)}}_{\text{Distance in sample}}$$

Intensity of the beam

ത U

U S ത

Beer-Lambert law

Good agreement between simulations and experiments

Elevation of solvant temperature $\approx 6^{\circ}$ C

Presentation IEEE Friday, November 24th 2023, Rousseau Cédric

Nuclear Magnetic Resonance: R2, a parameter related to the signal in MRI

Nuclear Magnetic Resonance: R2, a parameter related to the signal in MRI

Transverse relaxation: return to equilibrium of the transverse component of \dot{M}

 \rightarrow progressive dephasing of magnetic dipoles

 \rightarrow describe by the transverse relaxation rate R₂[s⁻¹]

Relaxation caused by the magnetic fluctuations experienced by each proton

Relaxation caused by the magnetic fluctuations experienced by each proton

• Néel relaxation

Relaxation caused by the magnetic fluctuations experienced by each proton

Temperature influences both processes ↓ Relaxation depends on temperature

- Néel relaxation
- Brownian relaxation

Relaxation caused by the magnetic fluctuations experienced by each proton

- Néel relaxation
- Brownian relaxation

The relaxation also depends on the size of the nanoparticles

Calculation procedure

1) COMSOL Multiphysics simulations $\rightarrow \sigma_{abs}$ and σ_{ext}

Calculation procedure

1) COMSOL Multiphyscis simulations $\rightarrow \sigma_{abs}$ and σ_{ext}

- 2) Calculate the map of the temperature rise with the collective model
- 3) Discretize the map in voxel + compute the mean value

Calculation procedure

1) COMSOL Multiphyscis simulations $\rightarrow \sigma_{abs}$ and σ_{ext}

- 2) Calculate the map of the temperature rise with the collective model
- 3) Discretize the map in voxel + compute the mean value

4) Choose of the relaxation model for each voxel

5) Plot the map of the modification of R₂ in the sample

Particle geometry strongly influences R₂ response

Université de Mons

Conclusion

- A procedure to evaluate the modification of R₂ in a solution subjected to laser illumination has been developed
 - → based on the collective thermal effects between nanoparticles and relaxation theory
 - \rightarrow laser illumination can either increase or decrease the effect of the contrast agent on relaxation, depending on the nanoparticle size

Outlook:

- \rightarrow Optimisation of the nanoshell parameters to attain desired effect on R₂
- \rightarrow Consider the biological environment in modelisation

