

Original Heteroaryl Azobenzene derivatives As Solar Thermal Fuel Candidates : a Mass Spectrometry and UV-vis Spectrophotometry Investigation

<u>Gwendal Henrard</u>, Thomas Robert, Benjamin Tassignon, Ari Serez, Julien De Winter, Jérôme Cornil, Pascal Gerbaux gwendal.henrard@umons.ac.be

> SRC Young Chemists' Day 2023 Monday 22nd May 2023

Energy issue

Energy Consumption and Population

Energy consumption Increase

Université de Mons

e-education.psu.edu/earth104/node/1347 les.cahiers-developpement-durable.be/vivre/03-energie-definitions/ https://www.iea.org/reports/co2-emissions-in-2022

Energy issue

Sun energy potential / years > 1000 X World consumption

Energy issue OL MIL **Global Energy Potential** 二月 Solar 23,000 TW ۰ Tide 0.3 TW Coal World 0 Wave 0.2-2 TW consumption Oil Coal Gas nuclear Hydro-Biomass Other 900 TWy 16 TW electric renewable Geothermal 0.3-2 TW 0 energy Uranium Hydro 3-4 TW **Fossil fuels** 90-300 TWy Biomass 2-6 TW Oil Wind Natural 240 TWy 25-75 TW Gas 215 TWv CO₂ Emissions **Every Year Total Reserve**

Sun energy potential / years > 1000 X World consumption

MOlecular Solar Thermal systems (MOST)

What is a MOlecular Solar Thermal systems ?

- Storage energy ⇔ ΔH
- Half-life time $(t_{1/2}) \Leftrightarrow E_a$
- Absorbance > 400 nm

What is a MOlecular Solar Thermal systems ?

What is a MOlecular Solar Thermal systems ?

Half-life time improvement

Spectroscopic properties Improvement

Structural Characterization

MeOH HPLC, C ≈ 5.10 ⁻⁵ M		
	π-π* (nm)	n-π* (nm)
Azo	315	440

700

Photoisomerization materials and methods

Photoisomerization LC-MS analyses

Photoisomerization LC-MS analyses

Grafting on macromolecules

Grafting on macromolecules

Structural Characterization

MeOH HPLC, C ≈ 5.10 ⁻⁵ M			
	π-π* (nm)	n-π* (nm)	
Azo	315	440	
Azo-	394	na	
	370	480	
	370	480	
Azo- 📒	350	430	

Université de Mons

80

Photoisomerization LC-MS analyses

Photoisomerization LC-MS analyses

Conclusions

Perspectives

- Understand the stabilization of cis isomer in peptoid by theoretical modelling
- Determination of the other MOST properties : $t_{1/2}$, ΔH , etc.
- Associating both azo-derivatives within a single peptoid
- Synthesize the desired molecule :

Thank you for your attention

Synthesized Products

Structural Characterization

