Original Heteroaryl Azobenzene derivatives As Solar Thermal Fuel Candidates : a Mass Spectrometry and UV-vis Spectrophotometry Investigation

Gwendal Henrard^{1,2}, Thomas Robert¹, Benjamin Tassignon^{1,2}, Ari Serez², Julien De Winter¹, Jérôme Cornil², Pascal Gerbaux¹

Organic Synthesis and Mass Spectrometry laboratory¹ (S^2MOs) & Laboratory for Chemistry of Novel Materials² (CMN) University of Mons, 23 Place du Parc, B-7000 Mons – Belgium

Figure 2. Working principle of a MOST system: the azobenzene case [3].

different strategies to enhance those properties.

Improving azobenzene MOST properties: two strategies

Two important properties are targeted in the present study; (i) matching the absorption and (ii) extending the half-life time of the Z-isomer. These two properties are among the most important. (i) the transition π-π* which is the principal transition of the E-isomer must be in the visible range. Ideally the Z-isomer should not absorb in this wavelength range. (ii) The half-life time is also important, but it is much more dependent on the intended application. In each case, the MOST properties are all determined to identify the molecule with the best compromise in all the properties.

Spectroscopic property improvement

The first strategy consists to induce a bathochromic shift of the π - π * transition to the visible wavelength. To do so, heteroatoms need to be incorporated into the molecules, they are known for inducing a π - π * shift to higher wavelengths. We decide to substitute one phenyl group by a thiazolyl moiety to red shift the absorption of the chromophore in the visible region [4]. The photoisomerization of this heteroaryl azobenzene is shown in **Figure 3**.

Half-life time improvement

The second strategy consists of the use of a five-membered aromatic rings with an hydrogen atom in the ortho position relative to the N=N bond. The Z-isomer configuration is characterized by a stabilizing C-H $\cdots\pi$ interaction inducing longer half-life time [5]. In this case we decide to synthesize azobenzene from 3-amino-5-methylisoxazole. The photoisomerization of this five-membered azobenzene is shown in Figure 4.

Spectroscopic analyses : UV-Visible

UV-Vis spectra were recorded on a Perkin Elmer Lambda 35 UV/Vis spectrophotometer. Solutions (C = 5.10⁻⁵ M) were prepared in the dark in MeOH HPLC grade.

Photoisomerization : LC-MS analyses

Azobenzene solutions were irradiated with a lightningcure LC8 L9588-02A UV lamp (ca. 220 - 400 nm) to induce azobenzene isomerization. After different irradiation times, solutions were analyzed by liquid chromatography (Waters Alliance 2695) coupled to mass spectrometry (Waters QToF Premier, ESI (+)) in order to discriminate stereoisomers and to quantify the photostationnary state distribution (PSD).

Conclusions

With this work combining synthesis and photochemical characterization, we successfully prepared two different molecules and analysed their principal MOST properties. For the spectroscopic properties, both molecules undergo a bathochromic shift but not enough to reach visible wavelengths. For the photoisomerization process, the conclusion is completely different, since, for the thiazolyl moiety, no photoisomerization was observed. On the order hand, for the isoxazole moiety, the photoisomerization was detected. In perspective of this work, we can imagine associating both these azo-derivatives within a single macromolecule to maybe trigger cooperative effects inducing therefore better properties.

Acknowledgments

The S²MOs lab thanks the FRS-FNRS for the financial support in the frame of the PDR project T.0095.22. G.H. thanks the FRS-FNRS for his PhD grant.

References

[1] T.J. Kucharski, Y. Tian, S. Akbulatov, R. Boulatov, *Energy Environ. Sci.* **2011**, *4*, 4449–4472. [2] A. Lennartson, A. Roffey, K. Moth-Poulsen, *Tetrahedron Lett.* **2015**, *56*, 1457–1465. [3] L. Dong, Y. Feng, L. Wang, W. Feng, Chem. Soc. Rev. 2018, 47, 7339–7368. [4] Abdallah Abomelha H. Text. Res. J. 2020, 90 (11-12), 1396-1403 [5] Claire E. Weston, Robert D. Richardson, J. Am. Chem. Soc. 2014, 136, 11878–11881

