

## Homogeneity of lubricant layer on rough metallic substrates - A multivariate analysis of spectroscopic ellipsometry data

Lamia Abdessemed and Michel Voué University of Mons - Materials Physics and Optics Group

## Introduction

- Tinplate steel (TPS) obtained by electroplating a tin layer over a mild steel substrate having low carbon content
- Roughness : Ra = 153 ± 24 nm ; Rq = 193 ± 28 nm
- Protective lubricant film by electro-spraying. Film thickness : 10 nm

**Challenge :** detecting the lack of uniformity of the lubricant layer on a rough industrial metallic substrate without optical model for the substrate

Constraints : 'standard' optical techniques not applicable (roughness >> film thickness)

Suggested solution : spectroscopic ellipsometry combined with statistical analysis for multivariate outlier detection

Fig. 1 : Complex structure and roughness of the TPS substrate (a) scheme (b) Optical profilometry (c) Scan

## Spectroscopic ellipsometry mappings

**Spectroscopic ellipsometry :** Non-destructive optical analysis technique based on the relative change of polarization of the p and s components of light at the interface between two media characterized by different optical properties



- Imaging of the surface at 1.49 eV
- Increase of the cos  $\Delta\,$  value with the lubricant film thickness (From letft to right : 0 mg/m², 4 mg/m² and 13 mg/m²)



Validity of the Drude approximation for dielectric films after correction for potential outliers





## Conclusion

 Faculté des Sciences
Solution does not require an optical model as usually requested in spectroscopic ellipsometry
Identification of potential outliers in a multivariate problem : importance of the spectral range (IR better than UV-vis due to roughness)
Validity of the Drude approximation (linearity of ∆) for (very) thin dielectric films on rough metallic substrates
Applicable to other imaging techniques (e.g. Imaging ellipsometry) and other complex surfaces



L. Abdessemed & M. Voué | Materials Physics and Optics Group