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Summary

Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice, has
spread tremendous interest since its discovery. At first, graphene was highly attrac-
tive for its strong conductivity and high carrier mobility, but it also proved inter-
esting with respect to the optical properties. Indeed, graphene exhibits a strong
light-matter interaction and provides highly confined plasmons in the mid-infrared
range, where it behaves as a metal. Furthermore, by adjusting the Fermi level by
chemical doping or by a gate voltage one can significantly shift the properties of these
plasmons. Our goal is to explore graphene plasmons and investigate their tunability
in various configurations, which may lead to efficient and compact photodetectors,
sensors and integrated optoelectronic components.

In this thesis we study the reflection and transmission of plasmons along a dop-
ing change with various profiles, and we derive simple laws to describe these effects.
Doing so, we demonstrate that a graphene plasmon can be assimilated to two-
dimensional plane wave propagation, where a wide range of refractive indices (the
effective indices of the plasmons) are available, paving the way to numerous appli-
cations currently explored in the photonics discipline. Furthermore, we investigate
plasmons encountering graphene edge structuration, such as designed defects on the
sheet. Next, plasmons coupling with graphene ribbon cavities show total absorp-
tion with a high tunability thanks to graphene doping. Finally, we consider beams
coupling with graphene nano-disk dimers of asymmetric doping and we demonstrate
strong resonances and tunability.
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1
Introduction

1.1 Introduction

In a world of constant change, innovation has never been so relevant. In the last
decades optical fibers have replaced the old copper cables for communication, en-
abling the development of a giant and fast data network. From there, we have
witnessed an impressive deployment of new technologies: smartphones have become
the norm and their development still requests a growing need for more connected,
faster and smaller integrated devices.

Although long-distance data transfers are currently handled by photonics, data
processing is still mostly achieved by silicon micro-electronics. This sixties based
technology was expected to grow exponentially according to Moore’s law but it is
actually reaching its physical limits. Therefore, although silicon micro-electronics
still reigns supreme, it is clear that new technological developments are strongly
desired and that the next technological generation will be optoelectronic, combining
electrons and photons.

Over the past decades, with the increased control of materials down to the
nanoscale, photonics has been widely investigated, tailoring the flow of light over
an increased path length for diverse functionalities. Apart from telecommunications
and information processing, photonics applications are numerous: lighting, displays,
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solar cells, detectors, microscopy, lasers and spectroscopy. A major problem is how-
ever due to the diffraction limit, restricting the compactness of photonic devices
[1].

In this context, plasmonics has emerged [2]. It is a subfield of photonics dealing
with the excitation, manipulation and utilization of the coupling between light and
collective electron oscillations. These so-called plasmons demonstrate a high con-
finement and a strong field enhancement. Plasmonics research has mainly focused
on noble metals such as gold and silver. It showed its benefit in nanophotonic in-
tegrated systems for its ability to control light at scales considerably smaller than
the wavelength [1, 3, 4] and in metamaterials, where metals are a crucial ingredient
for their implementation [5, 6, 7]. This led to unusual electromagnetic phenomena
including negative refraction [8], superlensing [9], and cloaking [10]. However, these
great progresses are substantially held up by the losses encountered in noble metals.
Recently, a new, exciting and promising material arrived, offering less-damped light
propagation and tunability of its optical properties: graphene.

Graphene is a two-dimensional (2D) one-atom-thick carbon sheet, thought for a
long time to be unstable at finite temperature. In 1930 it was shown that thermal
fluctuations would destroy and melt the 2D lattice at finite temperature [11, 12].
Therefore, Geim and Novoselov created a surprise in 2004 with their discovery of the
first 2D crystal, with an astonishingly simple fabrication technique [13]. Graphene
was purely and solely extracted by scotch tape exfoliation of graphite, which is a
stack of weakly bound graphene planes. Nowadays, a myriad of fabrication tech-
niques has been developed and are further discussed in Chapter 2. Graphene is
flexible, strong and ecological (carbon is the basic ingredient of life and all organic
chemistry). Furthermore, its expected low-cost production comes together with its
alluring electronic and optical properties, which are still a subject of intense research
and will lead to plenty of practical applications [14, 15, 16].

In the visible wavelength range, graphene is considered transparent since it ab-
sorbs only 2.3% of the normal incident light, but at the same time it demonstrates a
strong light-matter interaction for a simple carbon sheet [17]. Moreover, its strong
carrier mobility (theoretically it can reach µ > 107 cm2V−1s−1) makes it suitable as
a transparent electrode in solar cells [18], in OLED or in LEDs, the latter reaching
the market this year.

Nowadays the mid-infrared range is under strong investigation with the devel-
opment of novel sources [19]. In this range, going from 2 µm to 15 µm, graphene
supports low-loss and confined plasmons. Graphene plasmons are very suitable for
practical applications for three reasons: they are less damped, more confined and
tunable in comparison to noble metal plasmons. These three properties are exten-
sively studied and described in this thesis: Chapter 3 compares the damping and the
confinement of graphene plasmons to noble metal plasmons, and the graphene tun-
ability is explored in the following chapters. A complete understanding of graphene
plasmons will play an important role in a wide variety of applications in information
and communication technologies, medical sciences, chemical and biological sensing,
and spectroscopy, among many others [20].

One of the most exciting applications stands in “flatland optics”. This concept
was introduced by Vakil and Engheta in [21] and exploits the tunability of the
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optical properties of graphene. They start from the fact that graphene can be locally
doped, so that a single sheet of graphene will offer different patches of conductivity,
and therefore various propagation properties of plasmons. In this way graphene is
transformed in an optical platform for integrated circuitry or transformation optics.
For example, this allows for the design of a completely planar beam splitter and a
Luneberg lens.

This concept of flatland optics remains timely. After the discovery of the semi-
metal graphene, new two-dimensional materials have emerged with different proper-
ties, such as transition-metal dichalcogenides (mostly acting as semiconductors) and
hexagonal boron nitride (acting as dielectric in visible or polaritonic in mid-infrared).
The combination of these two-dimensional materials are required to realize flat all-
gated optoelectronic devices [22].

This thesis draws its inspiration from the work of Vakil and Engheta in order to
study the electromagnetic behavior in pure graphene structures and to take advan-
tage of the tunability of graphene. The problem is approached by rigorous finite-
element method calculations and is further described by more intuitive semi-analytic
approaches. In the following section we describe the different subjects addressed in
this work.

1.2 Outline

This thesis is structured as follows. Chapter 2 is devoted to the basic description of
graphene. We first explain the hexagonal carbon lattice and we derive its electronic
properties leading to the famous Dirac cones. Subsequently, the optical parameters
are presented and rigorously investigated, since it is the basis of this work. Graphene
is characterized by an optical conductivity, which is a sum of two contributions. The
interband optical conductivity is responsible for the constant 2.3% absorption of the
visible light, while the intraband part has a Drude form similar to noble metals.
The latter is characterized by a small real part responsible for the small damping
of graphene plasmons. The analytical expression of the conductivity depends on
the scattering lifetime of electrons, the frequency, the doping (leading to graphene
tunability) and the temperature. Finally, we discuss the production techniques of
graphene sheets, depending on their size.

Chapter 3 addresses the background theoretical concepts relevant for the thesis.
Starting from Maxwell’s equations, we derive the Helmholtz equation useful to ex-
tract the modes of light, we define the Poynting vector, we present the boundary
conditions and we determine the Fresnel coefficients. Then, an important part is
devoted to graphene plasmons: they are characterized and compared to standard
surface plasmons polaritons of noble metals, demonstrating their superiority in terms
of propagation length and confinement. Finally, cavities and their resonances are
considered together with the mathematical tools to describe them: localized surface
plasmon resonances, Fabry-Pérot cavities and coupled mode theory.

Chapter 4 is devoted to nanoribbon resonances and exposes the work we have
published in [23]. In recent works plasmons in graphene nanoribbons were studied
fundamentally in single elements [24] or in gratings for a tunable optical response
[20, 25, 26]. Other potential nanophotonic components were discussed such as bends
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and splitters [27], and directional couplers [28, 29]. It was therefore legitimate to
investigate the coupling of graphene sheet plasmons with nanoribbons to provide
the building blocks of plasmonic circuitry. It is known that the graphene plasmon
reflectance at the edge is total [30]. In Chapter 4 we show how the reflectance can
be modulated by a graphene nanoribbon. First, it is placed at the end of the sheet,
leading to reflectance dips in the spectrum strongly depending on graphene doping,
the distance to the sheet, and the scattering lifetime of electrons. The results are
further described by coupled mode theory and an electrostatic scaling law is derived,
allowing for a straightforward prediction of the resonant wavelength. Second, the
reflectance is modulated by a nanoribbon on top of the graphene sheet and the results
are supported by a scattering matrix formalism. A complex reflectance pattern
depending on the position of the ribbon emerges, with particular zones of zero
reflectance.

Chapter 5 provides a more detailed study of the nonuniform doping feature pro-
posed in [21], examining the reflectance and transmittance of graphene plasmons
impinging upon doping interfaces of different profiles. That work was published in
[31]. This chapter also describes the behavior of graphene plasmons encountering
local doping changes i.e. graphene defects that are common in manufactured sheets
and can arise from local distortions in the lattice. Defects were addressed in [32, 33]
where they demonstrated experimentally and theoretically the plasmon scattering
caused by cracks in graphene, while doping inhomogeneities have been approached
numerically in [34] neglecting losses. In Chapter 5, we provide a complete study,
including losses, of abrupt or smooth doping variations along the propagation direc-
tion in order to create plasmonic tapers or couplers. We show that the transmittance
and reflectance of the plasmon can be described by a Fresnel approach, including
the effective index of the plasmon in the Fresnel coefficients. Finally, local inho-
mogeneities are designed, leading to small cavities that can reach total absorption
under certain conditions.

After local doping defects, Chapter 6 considers structural defects at the end
of a graphene sheet and extends results we have published in [35]. If graphene
plasmons encountering the straight edge of a graphene sheet are totally reflected,
in this chapter we reveal that the reflection is strongly determined by the edge
structure. The examined ribbon grating case offers longitudinal and lateral edge
mode Fabry-Pérot resonances that drastically decrease the reflection for particular
ribbon length and width combinations, where it would have been nearly 100% for
a non-structured edge. The edge mode coupling is associated with phase changes,
influencing the positions of the longitudinal cavity modes. Furthermore, the rapidly
changing transmittance beyond such a resonance leads to particular points of critical
and near-zero reflection.

Finally, Chapter 7 investigates the behavior of graphene nanodisk dimers ex-
cited via an incident beam, following the results available in [36]. This chapter,
therefore, introduces another excitation type of plasmonics: the localized surface
plasmon resonance, already known for a long time in the visible range. At present,
metallic nanoparticles with various shapes from spheres to triangles and nanorods
are widely investigated [37, 38, 39, 40]. They demonstrate a strong interaction with
incident light, with for example hot spots on tips or on adjacent edges [41], enabling
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them for a wide range of applications such as biosensing [42], nonlinear optics [43],
nanocircuits [3], optoelectronics [44] and metamaterials [45]. The combination of
more metallic particles can also reveal higher order modes that are not excitable
at normal incidence for a single particle [46]. However, in metallic dimers the only
effective way to access these so-called dark modes is to change the physical config-
uration (size [40], metal [47],...). With graphene those modes are simply accessible
with doping. Incidentally, in Chapter 7 we consider two graphene disks under nor-
mal incident plane wave and discuss their interaction when the disks are differently
doped. The plasmonic modes hybridize and new resonances appear, converting dark
higher order modes into visible, relatively narrow resonances. Two polarizations are
considered and their slightly different response is analyzed by a Hamiltonian model.
A final section discusses graphene dimers connected by a graphene ribbon. The
tunable, conductive junction allows charge to oscillate in between the two disks,
creating a new narrower and enhanced resonance, the charge transfer plasmon. The
former non-bridged resonance is blue-shifted in the presence of a conductive bridge
and weaker because it is screened by the charge transfer (screen bonding dipolar
plasmon).

1.3 Publications

1.3.1 Publications in international journals

Here follow the contributions published in international journals during the PhD
work:

• G. Rosolen and B. Maes, Graphene ribbons for tunable coupling with plas-
monic subwavelength cavities, Journal of Optical Society of America B, vol. 31,
pp. 1096-1102, 2014

• G. Rosolen and B. Maes, Nonuniform doping of graphene for plasmonic
tapers, Journal of Optics, vol. 17, p. 015002, 2015

• F. Vaianella, G. Rosolen and B. Maes, Graphene as a transparent electrode
for amorphous silicon-based solar cells, Journal of Applied Physics, vol. 117,
p. 243102, 2015

• M.A. van der Veen, G. Rosolen, T. Verbiest, M.K. Vanbel, B. Maes and
B. Kolaric, Nonlinear optical enhancement caused by a higher order multipole
mode of metallic triangles, Journal of Materials Chemistry C, vol. 3, pp. 1576-
1581, 2015

• G. Rosolen and B. Maes, Patterned graphene edges for tailored reflection of
plasmonic modes, Optics Letters, vol. 40, pp. 2727-2730, 2015

• G. Rosolen and B. Maes, Asymmetric and connected graphene dimers for a
tunable plasmonic response, Physical Review B, vol. 92, p. 205405, 2015
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1.3.2 Contributions in international conferences

A list of our conference talks / proceedings contributions:

• G. Rosolen and B. Maes, Graphene Nanophotonics: controlling ultra-confined
light, 7th Optoelectronics and Photonics Winter School, Trento, Italy, 2013

• G. Rosolen and B. Maes, Graphene plasmonics: tunable coupling with nanocav-
ities, Annual symposium of the IEEE Photonics Society Benelux Chapter,
Eindhoven, Netherlands, 2013

• G. Rosolen and B. Maes, Graphene plasmonics: tunable coupling with nanocav-
ities, Nanolight 2014, Benasque, Spain, 2014

• G. Rosolen and B. Maes, Graphene doping inhomogeneities: plasmonic ta-
per applications, Annual symposium of the IEEE Photonics Society Benelux
Chapter, Twente, Netherlands, 2014

• G. Rosolen and B. Maes, Graphene Plasmonics: Propagation control for op-
toelectronic applications, Frontiers in Nanophotonics, Monte Verita, Ascona,
Suisse, 2015

• G. Rosolen and B. Maes, Patterned graphene edges for tailored reflection of
plasmonic modes, Metamaterials, Oxford, UK, 2015

• G. Rosolen and B. Maes, Absorption tunability of asymmetric ad bridged
graphene dimers, Annual symposium of the IEEE Photonics Society Benelux
Chapter, Brussels, 2016



2
Graphene

What was old is new again! This adage perfectly fits carbon, known since antiquity
as graphite or diamond. It was recently brought up to date with the discovery
of graphene in 2004 by Konstantin Novoselov and Andre Geim. The outstanding
properties of graphene led them to the 2010 Nobel Prize: it is about 207 times
stronger than steel by weight, is flexible, conducts heat and electricity efficiently, is
nearly transparent and supports relatively low-loss propagative plasmons.

This chapter demonstrates the electronic dispersion of a graphene sheet and
describes the Dirac cones in Sec. 2.1. Afterwards, the optical conductivity and
permittivity of graphene are investigated in Sec. 2.2 under judicious conditions.
Finally, a brief review on graphene production and doping is proposed in Sec. 2.3.

2.1 Dirac cones

This section is devoted to the derivation of the band diagram of graphene. First,
Sec. 2.1.1 describes the honeycomb lattice. Then, the electronic dispersion of graphene
is derived in Sec. 2.1.2, leading to the Dirac cones in Sec. 2.1.3.
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(a) (b)

Figure 2.1: (a) Hexagonal lattice of the graphene sheet. The unit cell constitutes of
2 atoms A and B (red and blue, respectively). ai are the primitive unit vectors and
Rj are the Bravais lattice vectors. The unit cell is the dashed parallelogram. (b)
Reciprocal lattice and first Brillouin zone in k-space.

2.1.1 Graphene lattice

In its elemental form, the carbon atom has two core electrons (1s orbital) and four
valence electrons (in 2s and 2p orbitals) in its ground state [48]. When carbon atoms
form graphene, the 2s orbitals interact with the 2px and 2py orbitals to form three
sp2 hybrid orbitals. The sp2 hybridization then creates three in-plane bonds that are
called σ-bonds and are the strongest type of covalent bond. The 2pz orbitals overlap
and creates π-bonds that are normal to the plane of the σ bonds and weakly bound
to the nuclei. These electrons are relatively delocalized and thus enable electron
transport.

Such hybridization leads to a hexagonal lattice of carbon atoms. The primitive
unit cell of the lattice is constituted of two atoms and can be considered an equi-
lateral parallelogram with side a =

√
3aC−C = 2.46 Å, where aC−C ≈ 1.42 Å is

the carbon-carbon atom distance. Each carbon atom is bonded to its three nearest
neighbours and the vectors describing the separation between type A atom and the
nearest neighbour type B atom are subscripted Ri on Fig. 2.1a. The primitive unit
vectors are

a1 =
a

2

(√
3, 1
)
, a2 =

a

2

(√
3,−1

)
(2.1)

The reciprocal lattice vectors are given by

b1 =
2π

a

(√
3

3
, 1

)
, b2 =

2π

a

(√
3

3
,−1

)
(2.2)

The first Brillouin zone (BZ) is represented in Fig. 2.1b, with the particular K points
at the corners of the BZ, where the Dirac cones will appear. The six corners form
two groups of k points, labelled K and K′.
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2.1.2 Electronic dispersion

In order to derive the analytical electronic band structure of graphene E(k), we
need to solve the Schrödinger equation HΨ(k, r) = E(k)Ψ(k, r). A general solution
satisfying the Bloch theorem adapted to a periodic basis of two atoms (A and B,
Fig. 2.1a) gives

Ψ(k, r) = CAΦA(k, r) + CBΦB(k, r) (2.3)

where the Φm expresses the Bloch function as the linear combination of the atomic
orbitals φ in a periodical environment (known as Wannier functions)

Φm(k, r) =
1√
N

N∑
j=1

eik·Rmjφ(r−Rmj
) (2.4)

where N is the number of unit cells in the lattice and Rmj
are the Bravais lattice

vectors identifying the location of all type m atoms in the unit cell j of the graphene
lattice. Inserting solution 2.4 in the Schrödinger equation, and integrating over the
lattice (called Ω in Eq. 2.7), one finds

CA(HAA − ESAA) = CB(ESAB −HAB) (2.5)

CA(H∗AB − ES∗AB) = CB(ESAA −HAA) (2.6)

with the definitions of Hmn the Hamiltonian or transfer integral of the electrons and
Smn the overlap matrix elements between Bloch functions

Hmn =

∫
Ω

Φ∗mHΦndr, Smn =

∫
Ω

Φ∗mΦndr (2.7)

Within the tight-binding approximation that the wavefunction of an electron in any
primitive unit cell only overlaps with the wavefunctions of its nearest-neighbours
(3 of them), one finds that HAA(k) = E2p, close to the energy of the 2p orbital
in isolated carbon (close because the Hamiltonian has a periodic potential) and
SAA = 1 because the Wannier functions are normalized. A step further assumes
an electron-hole symmetry and leads to SAB(k) = 0. Finally, we get the energy
dispersion proposed by Wallace in 1947 [49]

E(k)± = E2p ±
√
HAB(k)H∗AB(k) (2.8)

with HAB the Hamiltonian of the interaction of one atom with its three neighbors

HAB(k) = γ
(
e−ik·R1 + e−ik·R2 + e−ik·R3

)
(2.9)

where γ ≈ 2.8 eV is the nearest-neighbor hopping energy [50]. Hence the analytical
π bands of graphene are given by

E(k)± = ±γ

√
1 + 4 cos

√
3a

2
kx cos

a

2
ky + 4 cos2

a

2
ky (2.10)

where we set E2p = 0 eV, as the energy is defined up to an arbitrary reference
potential.

The next paragraph provides an interpretation of the band diagram derived in
Eq. 2.10.
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(a) (b)

Figure 2.2: (a) Dispersion of the electronic π-bands of graphene following analytical
Eq. 2.10. (b) Zoom on a Dirac cone, for pristine graphene, n-doped graphene and
p-doped graphene (from left to right).

2.1.3 Band diagram

In Eq. 2.10, the upper band (+) is called the π∗ or conduction band, while the lower
(-) one is called the π or valence band. The two bands meet in the six corners of
the BZ in the K and K′-points. This particular point is the Fermi energy level of
charge neutral graphene. Indeed, since there are two atoms per unit cell, there are
two electrons per unit cell (the electrons from 2pz orbitals, see Sec. 2.1.1). Owing to
Pauli’s exclusion principle, the valence band is then filled with these two electrons,
leaving the conduction band empty.

Fig. 2.2a represents the band diagram of Eq. 2.10 with the valence band in red
and the conduction band in cyan. The Fermi energy (EF ), defined as the highest
occupied k-state when the solid is in its ground state, is then at the 6 K and K′

points, called the Dirac points. Owing to the absence of a band gap and to the
position of EF , graphene is called a semi-metal. A zoom around these peculiar
points is depicted in Fig. 2.2b, showing the Dirac cones.

In fact, in the vicinity of the Dirac points, the energy dispersion is linear. A
Taylor expansion of Eq. 2.10 near K yields

E(k)± = ±
√

3

2
γa|k|= ±vF~|k| (2.11)

where vF =
√

3γa/2~ ≈ 106 ms−1 is the Fermi velocity. This linear dispersion
is different from the usual parabolic dispersions and confers outstanding transport
properties to graphene. The linearity implies a constant velocity vF , independent
on the energy or the momentum. It is similar to massless particles, which can be
described by Einstein’s special relativity in the form of Dirac’s relativistic quantum
mechanical wave equation, but this parallel is beyond the scope of this thesis.
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2.2 Optical parameters

Within the energy bands derived from the tight-binding approximation (Eq. 2.11),
we can obtain the optical conductivity of graphene. Indeed, the linear response
of a collection of electrons to an external applied electromagnetic field can be de-
scribed by the Kubo-Greenwood formula [51]. In this formulation, the Hamiltonian
is modified through the application of a potential vector. Then, the random-phase-
approximation (RPA) is used to take into account the electron-electron interactions
[52]. RPA is an extension of the tight-binding approximation from the previous sec-
tion to include the dynamical response of the system. Neglecting spatial dispersion,
the developments can be found in [53, 54] and give (with convention ejωt)

σ(ω,EF ) = σintra(ω,EF ) + σinter(ω,EF ) (2.12)

with

σintra(ω,EF ) =
−2je2kBT

~2π(ω − jτ−1)
ln

[
2 cosh

(
EF

2kBT

)]
(2.13)

and

σinter =
e2

4~

[
1

2
+

1

π
arctan

(
~ω − 2EF

2kBT

)]
+
e2

4~

[
j

2π
ln

(~ω + 2EF )2

(~ω − 2EF )2 + (2kBT )2

] (2.14)

with kB the Boltzmann constant, T the temperature, e the elementary charge and
τ the scattering lifetime of electrons.

The σintra term corresponds to the intraband electron-photon scattering process
(see Fig.2.3b), with the τ−1 term in order to take the electron-disorder scattering
processes into account. It corresponds to the Drude model of classical metals, except
for the EF factor conferring to graphene its tunability. Indeed, assuming EF �
kBT ≈ 0.026 eV at room temperature gives

σintra =
−je2|EF |

~2π(ω − jτ−1)
(2.15)

The σinter term originates from the direct interband electron transitions: charge
carriers are excited from the valence band to the conduction band (see Fig.2.3a).
They only occur for ~ω ≥ 2EF owing to Pauli’s exclusion principle. That threshold
distinctly appears at T = 0 K with the step function θ:

σinter(ω,EF ) =
e2

4~

[
θ(~ω − 2EF ) +

j

2π
ln

(~ω + 2EF )2

(~ω − 2EF )2

]
(2.16)

In the next paragraph, we provide a deeper explanation for the different param-
eters in these equations.
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(a) (b)

Figure 2.3: (a) Interband transitions occur when ~ω > 2EF owing to Pauli’s exclu-
sion principle. (b) Intraband transitions occur at smaller energies.

2.2.1 Parameter discussion

Three essential parameters play a role in the optical conductivity of graphene: the
scattering lifetime of electrons τ , the doping level of graphene EF and the temper-
ature T .

Scattering lifetime of electrons

The scattering lifetime of electrons τ is a fitting parameter depending on the quality
of the graphene sheet. From Boltzmann transport theory [55], it is related to the
electron mobility µ following

τ =
µEF
ev2

F

(2.17)

with vF the Fermi velocity.

The mobility is a difficult parameter to evaluate. It depends on the carrier density
(and thus doping EF ), the graphene sheet quality and the temperature. Theoreti-
cally, high electron mobilities are expected from simulations (µ > 107 cm2V−1s−1),
these theoretical results are 2 orders of magnitude higher in comparison to mea-
surements in suspended graphene [56]. High graphene sheet quality is obtained on
hexagonal boron nitride [57] thanks to their good lattice matching, demonstrating
a mobility of µ = 0.5× 106 cm2V−1s−1. In contrast, graphene on silicon carbide [57]
gives rise to a smaller mobility µ = 4.5× 104 cm2V−1s−1.

For our model of suspended graphene, we choose the very conservative value of
µ = 104 cm2V−1s−1 measured at room temperature and induced by a gate voltage
[13]. This leads to a scattering lifetime of τ = 10−13 s for a doping of EF =0.1 eV.

Furthermore, the choice of a conservative value is justified since losses could
appear from other channels such as many-body interactions [58] or deviations from
perfect Dirac-cone band structures [59]. Another known loss channel is the electron-
optical phonon interaction [60], appearing when ~ω > 0.2 eV or λ < 6 µm. These
losses are not accounted for in our model.
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Doping

One of the greatest interests in graphene is that adjusting its Fermi level EF changes
its optical conductivity. There are two main ways to achieve doping in graphene:
chemical modification and electric field gating. The literature mainly reports on
adjusting the charge density n. It is related to the doping level EF by [48]

EF = ~vF
√
πn (2.18)

Electrostatic doping is achieved with a bias voltage. This technique reaches high
carrier densities: n > 1014 cm−2 i.e. EF > 1.2 eV with ionic glass mobility [61], or
with ion gel [62, 63, 64]. Tuning the bias voltage results in a tuning of the doping
level of graphene (more details on experimental setups in Sec. 2.3.3).

Chemical doping [65] is distinguished in two categories: surface transfer doping
and substitutional doping. Surface charge transfer is achieved by electron transfer
with a doped semiconductor or gas dopants that adsorb on the surface. This tech-
nique does not disrupt the structure of graphene and leads to a reversible doping.
To the best of our knowledge, the maximal doping achieved yet is EF = 0.45 eV
[66]. Substitutional doping however is based on the replacement of a carbon atom
by a dopant atom such as nitrogen or boron for example. That technique can lead
to high doping levels close to EF =1 eV but may disrupt the band structure of
graphene and create a bandgap [67, 68].

Hence, we can suppose a conservative tunable value of the doping level between
0 and 1 eV.

Temperature

Temperature is also an important parameter for graphene, since it plays a role on the
real part of the conductivity: the thermal agitation reduces the electron mobility.
For realistic purpose, we only consider room temperature i.e. T = 300 K.

2.2.2 Optical conductivity

The real and imaginary parts of the conductivity are represented in Fig. 2.4 for
different doping levels, where we defined σ0 = e2/4~. For small frequencies (~ω �
EF ), the intraband term dominates and the Drude model appears, following the σintra

term (compare Eqs. 2.15 and 2.14). Indeed, with the assumption EF � kBT and
~ω � 2EF , σinter goes to 0 (see Eq. 2.14). That is called the Drude approximation
throughout this thesis.

On the other hand, for higher frequencies, the real part of the conductivity
shows a step from around 0.1σ0 to σ0, and the imaginary part demonstrates a local
maximum. It occurs at the frequency ~ω = 2EF where interband transitions appear.
In visible frequencies the real part reaches a maximum. It is the well-known value of
σ0 = e2/4~ that leads to a constant absorption of 2.3 % for normal incident visible
light on a graphene sheet [17]. The convergence can be checked in Eq. 2.14, the
intraband transitions σintra in Eq. 2.15 being negligible at high frequencies.
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Figure 2.4: Graphene optical conductivity normalized by σ0 = e2/4~ for three dop-
ing levels : EF =0.2, 0.6 and 1 eV. The solid lines represent the real part of the
conductivity and the dashed lines show the imaginary part. Increasing graphene
doping drives the conductivity to higher frequencies.

The amazing properties of graphene doping are well illustrated in Fig. 2.4. In-
creasing doping shifts the threshold frequency of interband transitions, conferring
metallic properties to graphene at higher frequencies.

This thesis focuses on the region in between, where the real part of the conduc-
tivity reaches a local minimum. In this regime, graphene supports low-losses surface
plasmons as discussed in Sec. 3.2.2.

2.2.3 Permittivity

In simulations the conductivity can often be modelled as a boundary condition.
However, some mode solvers require bulk materials, described by a permittivity.
Therefore, an effective thickness d must be considered, resulting in an effective
graphene volume. The latter can be described by an effective volume conductivity:
σeff = σ/d.

Supposing a harmonic dependence of the fields, the permittivity of this bulk
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graphene is found as follows [2]

ε0εrE = D = ε0E + P (2.19)

= ε0E +
J

jω
(2.20)

= ε0E +
σeffE

jω
(2.21)

= ε0E +
σE

jωd
(2.22)

where ε0 is the vacuum permittivity and P is the polarization and is related to the
internal charge density (together with the charge conservation one gets J = ∂P/∂t,
see Eq. 3.8). The relative permittivity of a graphene sheet is then

εr = 1− jσ

ε0ωd
(2.23)

An equivalent plot of the conductivity in Fig. 2.4 is represented in Fig. 2.5 for
5 nm thick graphene permittivity. The three regimes explained in Sec. 2.2 become
clearer. For low frequencies (~ω � 2EF ), the Drude model applies. For higher
frequencies (ω ≈ 0.1 to 3×1015 rad/s for a 1 eV doped graphene sheet for example),
the imaginary part of the permittivity reaches a steady value close to zero. The
restricted regime ω ≈ 0.1 to 1.5×1015 rad/s (1 eV doped) is perfect for plasmons
because graphene is metallic (<{ε} < 0) and losses are really small (={ε} close
to zero). For even higher frequencies, the real part of the permittivity tends to 1,
explaining the non-reflectivity (R < 1.5×10−4) of graphene in the visible range [17].

Note that graphene’s optical parameters are defined as a surface conductivity
that we recast here as a bulk permittivity. Supposing an anisotropic component
along the effective thickness or perpendicular direction of the graphene sheet should
be legitimate. The transverse component of the permittivity was measured with
ellipsometry in [69]: ε⊥ = 1.98−0.18j. However, considering anisotropic or isotropic
permittivity gives similar results in the visible range [70]. Up to now, no careful
analysis has been made in the infrared range, but we can suppose a negligible effect
of this component in our models regarding experimental observations of graphene
plasmons [71].

2.2.4 Limitations

The optical conductivity of graphene defined in Eqs. 2.15 and 2.14 is established in
the approximation of high frequencies (ω � τ−1). With τ varying between 10−13

to 10−12 s for doping between 0.1 and 1 eV (see Eq. 2.17), the conductivity is valid
for ω � 1013 rad/s or λ � 190 µm. In this thesis, we will limit ourselves the
mid-infrared range 1 < λ < 15 µm where graphene plasmons appear.

We also assume EF � kBT ≈ 0.026 eV at room temperature. Hence, working
with doping in between 0.1 and 1 eV, we are in the validity domain of the analytic
conductivity established previously.

Finally, it is worth discussing the finite-size quantum effects. For small ribbons
or nanodisks, edges constitute a new damping pathway. There are two types of
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Figure 2.5: Graphene permittivity of 5 nm effective thickness for three doping levels:
EF = 0.2, 0.6 and 1 eV. The solid lines represent the real part of the permittivity
and the dashed lines show the imaginary part. Increasing graphene doping drives
the conductivity to higher frequencies.

graphene edges: armchair (AC) or zigzag (ZZ) depending on the shape of the edge.
The small width of graphene flakes can lead to quantum confinement of electrons,
which restricts their motion along the edge. These are called edge states. It was
demonstrated [72] that for ~ω > EF , new transitions from ZZ edge to bulk appear,
increasing the losses in graphene. For 0.4 eV doped graphene flakes smaller than 20
nm, ZZ edge damping broadens the plasmon resonances enormously [73]. The edge
damping for both ZZ and AC edges is particularly active when the plasmon energy
Ep = ~βc is above EF , allowing the decay through excitation of those states [74]
(with β the propagation constant of plasmons, see Sec. 3.2.2).

2.3 Production

Graphite is a stack of two-dimensional sheets of a hexagonal carbon atom lattice.
These sheets are known as graphene and were first extracted quite simply by exfo-
liation by Geim and Novoselov [13]. To do so, they used adhesive tape on graphite,
cleaving the stack of sheets. They repeated this step, producing a slice with fewer
layers, until only one remained. Finally the graphene flakes larger than 1 mm and
visible to the naked eye were deposited on a silicon wafer. Since then, progress to
achieve mass production of graphene has been realized.

Graphene production is out of the scope of this thesis, but we provide a concise
summary of the fabrication techniques. The methods of fabrication depend on the



2.3 Production 17

size of the graphene sheets needed for the application [75] and are revised in Sec. 2.3.1
for small sheets and in Sec. 2.3.2 for large sheets. Finally, we briefly review doping
possibilities in Sec. 2.3.3.

2.3.1 Small graphene sheets

Small graphene sheets are used in functional coatings, conductive inks, batteries and
supercapacitors. Their fabrication rests on exfoliation of bulk graphite (top-down
method). It is mainly done in three ways.

• In liquid by sonication [76], shearing [77] or ball milling [78], with or without
the use of a surfactant. Although it is easy to realize, the technique shows a
low yield, a non-uniformity of the sheet sizes (0.5 to 2 µm) and thicknesses
(down to 5-7 layers minimum) and it suffers from surfactant or organic solvent
impurities [75].

• By solid exfoliation, where graphene is produced by a simple ball milling of
graphite in the presence of dry ice (solid phase of carbon dioxide) [79]. This
functionalizes the edges that tend to repel each other to effectively exfoliate
graphene sheets. The edges are defunctionalized by thermal annealing to end
up with nearly pristine graphene sheets. These small graphene sheets are easy
to realize and the technique demonstrates a high yield. However the sheet sizes
and thicknesses are not uniform (one to five layers) and they agglomerate.

• By chemical species in between graphene layers in graphite to weaken the van
der Waals interactions. This can be realized by oxidation-exfoliation-reduction
[80] or by intercalation-exfoliation [81]. The first oxidises graphene: oxygen
covalently bounds to graphene and this weakens the interlayer interaction.
This technique, however, leads to severe damage of the graphene sheets due
to the distribution of graphite oxide. Stirred in water, oxidized graphite is
soluble and then useful for many applications. The second technique avoids the
oxidation to produce high-quality pristine graphene: it intercalates chemical
species that will expand graphite with microwave heating or chemical reaction.
The final pristine graphene sheets are obtained by sonication. This process is
easier to scale up, is more efficient and causes less pollution than the oxidation
route. However, the thickness varies from one to ten layers.

This shows that mass producing one-layer graphene sheets with high yield and purity
is a challenge for all the techniques.

2.3.2 Large graphene sheets

Large graphene sheets are more expensive to manufacture but are required in up-
coming applications such as transparent electrodes in touch panels, displays and
photovoltaic devices and for next-generation electronics and optoelectronics for flex-
ible and wearable devices. They are based on a bottom-up approach:

• Chemical assembly [82], which is simply assembling small graphene sheets on
various substrates, like a puzzle, but the film quality is really poor.
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• Chemical vapour deposition (CVD) [83] : high temperatures decompose the
hydrocarbons onto metal surfaces. The films are then transferred to trans-
parent substrates either by etching away the metal, or by non-destructive
electrochemical bubbling. However, CVD-graphene is more expensive than
indium-tin oxide (ITO) films and the graphene sheets are less efficient (higher
absorption and smaller conductivity). The poor quality comes from the inef-
ficient transfer of graphene from metallic to other substrates, which remains
the biggest challenge for CVD.

These techniques are much more expensive than the previous ones and a long way
remains in order to produce large, high-performance and low-cost graphene sheets.

2.3.3 Doping graphene

As briefly described in Sec. 2.2.1, there are two main ways to achieve graphene
doping: by electrostatic field gating or by chemical doping.

Electrostatic field gating

This doping technique consists in applying a gate voltage between a graphene sheet
and a metal plate separated by a material. This material will bring electrons/ions
to the graphene sheet when a bias voltage is applied (see Fig. 2.6a). In [62], a
polymer matrix (poly(ethylene)oxide, PEO) containing mobile ions (Li+ and ClO−4 )
is used. Those materials are simply called ion gel. Ion gels are widely used in optical
components to achieve a transparent device. Another device from [64] is represented
in Fig. 2.6b. Graphene is sandwiched between gold and an ITO gate, and rests upon
glass.

Finally, one can realize an uneven doping on a graphene sheet following the
proposal in [21]. Biasing the graphene sheet with an uneven metallic ground plane,
separated by a dielectric spacer will result in a nonuniform static biasing electric
field along the graphene (see Fig. 2.6c). This results in a nonuniform distribution of
local carrier densities i.e. doping. In the same vein, biasing the graphene sheet with
an even metallic ground plane, but separated by a non-uniform dielectric spacer will
also induce an nonuniform doping level of the graphene sheet (see Fig. 2.6d).

Chemical doping

There are mainly two chemical doping techniques [65]: surface transfer doping and
substitutional doping.

Surface transfer doping occurs through charge transfer from the adsorbed dopant
to graphene. The dopant can be a substrate semiconductor such as SiO2, silicon
carbide (SiC) or hexagonal boron nitride (hBN) [84]. Note that the doping effect may
be dependent on the interaction with the substrate [65]. Furthermore, the dopant
may also be a gas such as NO2 [66] and it reveals graphene as a very sensitive gas
sensor [85].

On the other hand, substitutional doping disrupts the graphene structure, re-
placing carbon atoms by dopant atoms. An illustration from [67] shows the process
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(a) (b)

(c) (d)

Figure 2.6: Electrostatic field gating structure. (a) Graphene and the gate electrode
are separated by a polymer matrix containing ions (POE), commonly named ion gel.
When a bias voltage is applied, the ions reach their corresponding electrodes and
dope graphene. (b) Transparent device achieved by ion gel and ITO. (c-d) Proposal
of Vakil and Engheta in [21] to achieve nonuniform doping on a graphene sheet with
(c) an uneven ground plane or (d) a nonuniform dielectric spacer.

(a) (b)

(c)

Figure 2.7: The atomic configuration and corresponding Dirac cone of the graphene
sheet. (a) The atomic and band structures of the pristine graphene. (b) The rep-
resentative vacancy defects of the irradiated graphene. (c) The atomic and band
structures of the graphene annealed in NH3 after irradiation. The doped graphene
is formed by substituting some C atoms with N atoms.
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in Fig. 2.3.3. The pristine graphene has a honeycomb lattice and is described by
two Dirac cones shown in Fig. 2.7a. Then, N+ irradiation induces defects in the
graphene sheets (Fig. 2.7b). Finally, the damaged graphene sheet is annealed in
NH3 and the carbon vacancies are replaced by N atoms, leaving a doped graphene
sheet represented in Fig. 2.7c.



3
Optical concepts

This chapter introduces the basic theoretical concepts we will employ throughout
this thesis. Sec. 3.1 prepares the field with Maxwell’s equations leading to the
Helmoltz equation and related concepts such as the Poynting vector, boundary con-
ditions, and Fresnel coefficients. Afterwards, graphene plasmons are characterized
and compared to standard surface plasmon polaritons in Sec. 3.2. Finally, cavities
and their resonances are described in Sec. 3.3 together with the mathematical tools
to describe them.

3.1 Photonics

Controlling the flow of light is an important goal of photonic applications. A sig-
nificant group of photons carrying the information has to be modulated and travel
from point A to point B without significant losses. The latter can be achieved with
a typical dielectric optical fiber using photonic modes, but also with a metal us-
ing plasmonic modes. The classical behavior of light is described by the Maxwell
equations (Sec. 3.1.1). These equations together with Ohm’s law lead to an equiva-
lence between the permittivity and the conductivity of a metal derived in Sec. 3.1.2.
Sec. 3.1.3 describes the Helmoltz equation and defines the Poynting vector, which
will be useful to derive the Fresnel coefficients in Sec. 3.1.5. Note that transverse
magnetic and transverse electric polarizations are defined in Sec. 3.1.4.
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3.1.1 Maxwell equations

The macroscopic interaction of light with material is described by the Maxwell
equations. Assuming harmonically varying fields with ejωt [2] the equations are

∇ ·D = ρext (3.1)

∇ ·B = 0 (3.2)

∇× E = −jωB (3.3)

∇×H = Jext + jωD (3.4)

These equations link the four macroscopic fields D (the dielectric displacement), E
(the electric field), H (the magnetic field), and B (the magnetic induction) with the
external charge and current densities ρext and Jext. Here, we distinguish between
the external (ρext,Jext) and internal (ρ,J) charge and current densities, so that in
total ρtot = ρext + ρ and Jtot = Jext + J.

Since we only consider a linear optical response of the material, we can define
the relations

D = ε0εE (3.5)

B = µ0µH (3.6)

where ε0 and µ0 are the electric permittivity and magnetic permeability of vacuum,
respectively, and are related to the speed of light c with the relation c = 1√

ε0µ0
. The

dielectric permittivity ε characterizes the electric field response in a bulk material
and it is intrinsically related to the conductivity of the material. Similarly, the
permeability µ is related to its magnetic field response. All throughout this work,
we consider non-magnetic (µ = 1) and isotropic media (ε and µ are scalar).

3.1.2 Conductivity-permittivity discussion

The electric and displacement fields can be linked via the polarization P as follows

D = ε0E + P (3.7)

P describes the orientation of the dipole with the electric field in the material and is
linked to the internal charge density via ∇ ·P = −ρ. With the charge conservation
∇ · J = −jωρ we get

J = jωP (3.8)

Combining the latter two equations with Ohm’s law, which supposes that current
is a linear function of the field (J = σE), lead in Sec. 2.2.3 to Eq. 2.23. In the
latter, we dropped the (r, t) dependence for the sake of simplicity, but the rigorous
development should be carried on in the Fourier domain, leading to [2]

ε(k, ω) = 1− jσ(k, ω)

ωε0

(3.9)
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where we can simplify this general equation of the dielectric response ε(k, ω) to the
limit of a spatially local response (k = 0) as ε(k, ω) = ε(ω). That simplification is
valid when the wavelength in the material is larger than the size of the unit cell and
the mean free path of the electrons.

Eq. 3.9 is extremely useful. Indeed, it is usual in theory to calculate currents
and therefore σ, since it is easier to study the response of the charges to electrical
fields, as for graphene in Chapter 2. However, measuring the motion of electrons
at optical frequencies is difficult for experimentalists: the optical permittivity ε is
easier to access via ellipsometry. Eq. 3.9 is thus interesting to validate theory with
experiments.

For graphene simulations Eq. 3.9 is used to model graphene as a bulk permit-
tivity. In general in COMSOL Multiphysics, graphene can be modeled as a surface
current, with the conductivity of graphene. This is the case for the Mode Analy-
sis module to compute the dispersion, and for the scattering field formulation for
incident plane wave on a structured graphene sheet. However the Boundary Mode
Analysis module, which considers propagating modes does not handle surface cur-
rents and requires the effective bulk permittivity.

3.1.3 Helmholtz equation

In the absence of external stimuli (Jext = 0 and ρext = 0) and using the bulk
permittivity of materials, Maxwell’s equations lead to a propagating wave solution.
One can find the wave equation

∇×∇× E = µ0ω
2D (3.10)

equivalent to

∇ (∇ · E)−∇2E = εε0µ0ω
2E = k2

0εE (3.11)

where we used ω/c = k0. In media where ε is piecewise constant, Eq. 3.1 reduces to
∇ ·E = 0, and the previous equation becomes the Helmholtz equation, identical for
the H field under these approximations:

∇2E + k2
0εE = 0 (3.12)

∇2H + k2
0εH = 0 (3.13)

where the electric (magnetic) field profile solution depends on the boundary condi-
tions at the considered interfaces (see Sec. 3.1.5).

In homogeneous media, the solutions (or modes) are plane waves:

E = E0e
−jk·r (3.14)

with the condition E0 · k = 0 (from ∇ ·E = 0) meaning that the field is transverse.
k is called the wavevector and indicates the direction of propagation. Its amplitude
is defined by

k =
ω

c

√
εeff =

ω

c
neff (3.15)
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where neff is the effective refractive index and is the connection between ω and
k, generally called the dispersion relation. In homogeneous media the effective
refractive index is equal to the refractive index of the material neff = n =

√
ε.

The energy flow of a plane wave is represented by the Poynting vector. Since we
work with harmonic fields, the time average of the Poynting vector is given by [86]

〈S〉 =
1

2
<
{
E×H>} (3.16)

with > denoting complex conjugate and < the real part. It can be shown that the
energy flow of a plane wave (Eq. 3.14) is given by

|〈S〉| = <{n}
2µ0c

|E|2 (3.17)

Note finally that the work rate done by the external electromagnetic fields B
and E on a charge q is qv · E, where v is the charge velocity. The magnetic field
does not do work, since its force is perpendicular to the velocity. Therefore, for a
continuous distribution of charge in a surface S, the total work is [86]

W =

∫
S

J · E d2x. (3.18)

This power represents a conversion of electromagnetic energy into mechanical or
thermal energy. The time average of this quantity is

〈W 〉 =
1

2

∫
S

<
{
J> · E

}
d2x. (3.19)

Throughout this thesis this formulation of the absorption of the electromagnetic field
is used to compute the absorption of graphene in COMSOL, when it is represented
by a surface current. Note that with the ε formulation, there is a COMSOL variable
to extract directly the dissipative losses.

3.1.4 Polarization

In Sec. 3.2 we consider the dispersion relation of guided modes. Such a guidance is
realized with a particular symmetry of the materials and the fields. In this section
we suppose a dielectric profile invariant in y and z directions i.e. n(r) = n(x) (see
Fig. 3.1) and we choose the propagation along z. The field should then have the
following form

E(x, y, z) = E(x)e−jβz (3.20)

H(x, y, z) = H(x)e−jβz (3.21)

where β = k0neff is the propagation constant.
It turns out that in these conditions the Maxwell equations accept two sets of

solutions: the transverse electric (TE) polarization contains only Ey together with
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Figure 3.1: Schematic of the slab structure, with the orange arrow depicting the
propagation direction. The non-zero components of the field are represented on the
right for TE and TM polarizations.

Hx and Hz and the transverse magnetic (TM) polarization contains only Hy together
with Ex and Ez (see Fig. 3.1). The Helmholtz equations therefore become

d2Ey(x)

dx2
+ k2

0εEy(x) = β2Ey(x) for TE (3.22)

d2Hy(x)

dx2
+ k2

0εHy(x) = β2Hy(x) for TM (3.23)

It can be shown that plasmon propagation is only possible for TM polarization [2].
Therefore, Sec. 3.2 will use Eq. 3.23 to derive the dispersion of a plasmonic mode
along a metallic interface.

3.1.5 Fresnel coefficients

Before describing plasmonic modes we briefly define the Fresnel coefficients for an
incident plane wave (Eq. 3.14), which are useful for Chapter 5. They are established
considering the boundary conditions of the electric and magnetic fields at the straight
interface of two media labelled 1 and 2:

n̂ · {D1 −D2} = 0 n̂ · {B1 −B2} = 0 (3.24)

n̂× {E1 − E2} = 0 n̂× {H1 −H2} = 0 (3.25)

where n̂ is a unit vector normal to the interface. Note that those boundary conditions
are valid without external current and charge (Jext = 0 and ρext = 0).

Suppose a plane wave propagating in medium 1 and impinging the interface
with medium 2. Using the superposition principle the transmitted electric field in
medium 2 (ET ) should match with the superposition of the incident (EI) and the
reflected (ER) electric fields in medium 1. At normal incidence the transmission t
and reflection r coefficients are identical for both polarizations (TE and TM) and
are [87]

r ≡ ER
EI

=
n1 − n2

n1 + n2

, t ≡ ET
EI

=
2n1

n1 + n2

(3.26)
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with n1 (n2) the complex refractive index of medium 1 (2).
The reflectance is defined as the reflected energy |〈SR〉| with respect to the

incident energy |〈SI〉|:

|〈SR〉|
|〈SI〉|

=

∣∣∣∣EREI
∣∣∣∣2 = |r|2 (3.27)

where we used Eq. 3.17 to find the reflection coefficient in Eq. 3.26. Similarly, the
transmittance is defined as the transmitted energy |〈ST 〉| divided by the incident
energy:

|〈ST 〉|
|〈SI〉|

=
<{n2}
< {n1}

∣∣∣∣ETEI
∣∣∣∣2 =

<{n2}
< {n1}

|t|2 (3.28)

The transmittance is therefore normalized by the permittivity of the two media.
These two Eqs. 3.27 and 3.28 will be useful to describe the reflectance and trans-
mittance of graphene plasmons in Chapter 5.

3.2 Plasmonics

Plasmonics takes advantage of the coupling of light with electrons in metals, and
allows for localization of light into subwavelength dimensions enabling strong field
enhancements. A metallic permittivity is often described by the Drude model, which
considers a harmonic oscillation response of the free electrons of the metal with an
electric field excitation. The permittivity of the metal is then [2]

εm(ω) = 1−
ω2
p

ω (ω − jτ−1)
(3.29)

with ωp the plasma frequency, which depends on the metal considered and defines the
range of frequencies where the material behaves as a metal (ω < ωp) or a dielectric
(ω > ωp). The losses are caused by the limited scattering lifetime of electrons τ .

The Drude model is useful in the next sections in order to compare the dispersion
of plasmons in classical noble metals and graphene.

3.2.1 Surface plasmon polaritons

An interface between a dielectric and a metal can support surface plasmon polaritons
(SPPs): the electric field of the light excitation can couple with the longitudinal
oscillations of the electrons at the interface. Metals are characterized by a negative
permittivity (εm < 0), while dielectrics have a positive permittivity (εd > 0).

Suppose the metal-dielectric interface represented in Fig. 3.2a with εm for x < 0
and εd for x > 0. Solving for TM polarization (Eq. 3.23) leads to the following
profile of the magnetic field

Hy(x, z) = Ae−jβze−δx for x > 0 (3.30)

Hy(x, z) = Ae−jβze+γx for x < 0 (3.31)
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(a) (b)

Figure 3.2: (a) Simple metal (εm) - dielectric (εd) interface configuration. (b)
Insulator-metal-insulator configuration with a metal layer of thickness d in the center
(zone 1).

with

δ =
√
β2 − εdk2

0 (3.32)

γ =
√
β2 − εmk2

0 (3.33)

where A is a constant.
Eq. 3.30 shows that we have a mode when δ is real i.e. β2 > εdk

2
0. In this

condition, the field is exponentially confined in the x direction (see Eqs. 3.30 and
3.31), with an even stronger confinement in the metal since γ > δ. The other
components Ex and Ez also decay exponentially and their analytical profile can be
determined with Eqs. 3.3 and Eqs. 3.4.

Examining the Ex component of the field and requiring continuity, one can show

δ

γ
= − εd

εm
. (3.34)

Since δ and γ should be positive for exponential confinement, this relation implies
that εd and εm should have opposite sign. In other words, these confined modes only
exist at metal/dielectric interfaces. Finally, one can show that these SPP modes
are only supported for TM polarization. Mathematically, the continuity conditions
do not allow exponential confinement of the electromagnetic wave for TE at the
metal/dielectric interface. Physically, the longitudinal oscillation of the electrons
cannot couple with a TE electromagnetic wave since there is no electric field in the
propagation direction for that polarization (see Sec. 3.1.4).

Combining Eqs. 3.32, 3.33 and 3.34, we derive the dispersion relation of SPPs:

β = k0

√
εdεm
εd + εm

. (3.35)

This dispersion describes the SPP at a simple metal/dielectric interface. How-
ever, for a sheet of graphene with effective permittivity εeff and thickness d, the
dispersion is different. In that case, we consider the insulator-metal-insulator (IMI)
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system represented in Fig. 3.2b. Writing the fields with an exponential profile sim-
ilar to Eq. 3.30 and introducing the boundary conditions, one can show for the
dispersion [88]

(ε2k1 + ε1k2) (ε3k1 + ε1k3)

(ε2k1 − ε1k2) (ε3k1 − ε1k3)
= e−2k1d (3.36)

with

ki =
√
β2 − εik2

0 (3.37)

where i depicts the number of the medium.
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Figure 3.3: (a) Dispersion of the SPP at a simple metallic interface (green solid
line) and the asymmetric (solid blue) and symmetric (solid red) SPPs of the IMI in
vacuum (εd = 1). The black dashed line represents the light line in the dielectric εd.
The metal of the IMI is a 70 nm thick silver layer, modelled by the Drude model
(ωp = 7.2× 1015 rad/s). Corresponding Hy field at ω = 0.65ωp of the (b) symmetric
mode, (c) simple interface mode and (d) asymmetric mode. z is the propagation
direction.
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The dispersion of a simple metal-vacuum interface (Eq. 3.35) and the dispersion
of a 70 nm thick silver IMI (Eq. 3.36) in vacuum are represented in Fig 3.3a, consid-
ering a non-lossy Drude model of silver (ωp = 7.2×1015 rad/s, τ−1 = 0). The dashed
straight line represents the light line in vacuum. All the modes are represented on
the right of that light line, indicating that they are guided modes (modes on the left
of the light line would be radiative modes). There is only one mode for a simple
interface and two modes for the IMI, one symmetric and one antisymmetric, defined
following the profile of the transversal Hy field.

The corresponding magnetic fields are represented in Fig. 3.3b for the symmet-
ric mode of the IMI, in Fig. 3.3c for the simple interface mode and in Fig. 3.3d for
the asymmetric mode of the IMI. From the Hy field plots one can observe that the
asymmetric mode is more strongly confined than the symmetric mode. That cor-
roborates with the dispersions in Fig 3.3a: a stronger β implies that the exponential
decays more rapidly (for IMI and simple interface, see Eqs. 3.32 and 3.37). Note
that in the limit of d→ 0, only the asymmetric mode survives, as we will see in the
next section with graphene.

3.2.2 Graphene plasmons

In this subsection, we derive the graphene plasmon (GP) dispersion when graphene
is modeled as a line current boundary condition. Afterwards, we analyze the field
profile and the GP dispersion. Finally, we conclude with a comparison between gold
SPPs and GPs.

Derivation

The graphene plasmon dispersion can be derived considering the current J = σE,
with σ the surface conductivity discussed in the previous chapter. The derivation
developed here closely follows the treatment in [89]. The field profile of a graphene
plasmon in TM polarization should have the form

Ei = (Ei,x; 0;Ei,z) e
−jβze−δi|x| (3.38)

Hi = (0;Hi,y; 0) e−jβze−δi|x| (3.39)

where i depicts the media number as showed in Fig. 3.4a and δi =
√
β2 − εik2

0.
That set of solutions can be injected in the Maxwell equations 3.3 and 3.4 to

find six equations of the fields for the two dielectrics surrounding graphene. The
subsequent system of equation can be reduced with the boundary conditions, which
need to be adjusted to take into account the presence of graphene at x = 0 [90]:

n̂ · {D1 −D2} = ρ (3.40)

n̂ · {B1 −B2} = 0 (3.41)

n̂× {E1 − E2} = 0 (3.42)

n̂× {H1 −H2} = J (3.43)

where n̂ is a unit vector normal to the graphene sheet.



30 3 • Optical concepts

(a) (b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

E
x
(a
.u
.)

x (µm)
(c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

H
y
(a
.u
.)

x (µm)

(d)

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

E
z
(a
.u
.)

x (µm)

Figure 3.4: (a) Cross-section of the considered graphene sheet modeled as a bound-
ary current line J = σE and surrounded by two dielectrics indicated with 1 and 2.
Corresponding field components of a GP for a 0.6 eV doped free-standing graphene
sheet (ε1 = ε2 = 1) and operating wavelength of 5 µm : (a) Ex, (b) Ey and (c) Hz

in arbitrary units.

Therefore, Eq. 3.42 leads to the continuity of Ez (E1,z = E2,z) and Eq. 3.43
introduces the graphene conductivity with the H field (H1,y − H2,y = Jz = σEz).
Finally, the dispersion of the graphene plasmon is the transcendental equation

jσ

ωε0

=
ε1

δ1

+
ε2

δ2

(3.44)

=
ε1√

β2 − ε1k2
0

+
ε2√

β2 − ε2k2
0

(3.45)

Throughout this thesis, we consider the nonretarded regime since we work in the
near infrared range where plasmons are strongly confined (β � k0). That leads to
[60]

β = −ε1 + ε2

2

2jωε0

σ (ω,EF )
(3.46)

Eq. 3.46 can be further simplified in the Drude approximation (EF � ~ω, see
Sec. 2.2) of the graphene conductivity

β = −ε1 + ε2

2

2jωε0

σintra (ω,EF )
(3.47)

=
ε1 + ε2

2

π~2ε0

e2EF
ω
(
ω − jτ−1

)
(3.48)
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Figure 3.5: (a) Dispersion of a GP at room temperature propagating along 0.2 eV,
0.4 eV and 0.6 eV doped free-standing graphene sheet. Scattering lifetime τ from
Eq. 2.17. Dashed blue line for the Drude model approximation of the graphene
conductivity. The light line (solid green line) covers the ordinate indicating that
GPs are strongly confined. (b) Normalized dispersion (kF = EF/~vF ) [50].

Here, a small wavelength (large β) leads to a high x confinement of the GP
mode (see Eq. 3.39), accompanied by a collective surface charge oscillation, similar
to SPPs. However the differences in electronic dispersion (linear Dirac cones instead
of parabolic bands) lead to qualitatively different dispersions of SPPs and GPs.
Therefore, throughout this thesis, we will distinguish GPs from SPPs.

Dispersion

The three field component profiles of the GP are represented in Figs. 3.4b, 3.4c
and 3.4d for a current line at x = 0. Graphene is 0.6 eV doped and the operating
wavelength is λ = 5 µm. The continuity of the Ez component is verified, as for the
discontinuity of the Hy field and the Ex field (see Eq. 3.40) at the surface current.
The Hy field component is asymmetric, and similar to the IMI (see Fig. 3.3d).
Indeed, taking carefully the limit d→ 0 in Eq. 3.36 when replacing the permittivity
by the graphene conductivity (see Eq. 3.9) leads to the same dispersion obtained
with the surface conductivity (Eq. 3.46). The mathematical details are provided in
Appendix A. Therefore, modelling graphene with the effective permittivity or the
line current is equivalent if the effective thickness is sufficiently small.

The GP dispersion is represented in Fig. 3.5a. We consider a free-standing
graphene sheet at room temperature (T = 300 K) and with a scattering lifetime
of electrons depending on the doping (see Eq. 2.17). The light line (green solid
line) covers the ordinate indicating that the propagation constant of GPs is very
large (β � k0). Incidentally the lateral confinement is stronger and the effective
wavelength of GP is smaller than for the conventional SPPs (compare with Fig. 3.3a).

The frequency shift induced by graphene doping appears when examining the
solid lines representing GPs for different doping (Fig. 3.5a). Indeed, a larger doping
implies that GPs exist at higher frequencies (the region where graphene permittivity
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Figure 3.6: Comparison of the plasmonic properties of graphene (modelised with
the full dispersion relation 3.46) and gold plotting the lateral decay length (C) as
a function of the normalized propagation length (L/λeff). The best properties are
reached in the bottom right of the figure, for an important propagation length and
a small decay length. The results are plotted for a 10 nm thick gold film and a
0.5 and 1 eV doped free-standing graphene sheet at room temperature. The color
represents the wavelength (µm). Gold refractive index values are from Johnson and
Christy [91].

is negative is shifted via doping, see Fig. 2.5).

The blue dashed line in Fig. 3.5a represents the dispersion of a GP on a 0.4 eV
doped sheet following the Drude approximation and behaves as a square root (see
Eq. 3.48). The validity of the Drude approximation is verified with the normalized
dispersion in Fig. 3.5b. The Drude approximated dispersion is close to the GP
dispersion (solid lines) for energies ~ω � EF . Note that the dispersion in the Drude
approximation (dashed line in Fig. 3.5b) stands for all doping.

Losses

The comparison between the dispersion of GPs (Fig. 3.5a) and SPPs (Fig. 3.3a) gives
a hint on the possible superiority of GPs for potential plasmonics circuitry applica-
tions. Therefore, we propose a comparison with two parameters: the confinement
(in order to judge the compactness of the integrated circuits) and the propagation
length (comparing the damping strength). Note that it is important to avoid the
comparison in the same frequency range since GPs operate in the mid-infrared range
while SPPs operate in the visible range.

The losses are determined by the imaginary part of the propagation constant
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(={β}). The propagation length L is therefore defined as [2]

L =
1

2={β}
(3.49)

Normalizing L by the effective wavelength of the SPP (or GP) [92] leads to the
unitless value

L

λeff

=

1
2={β}

2π
<{β}

=
<{β}

4π={β}
(3.50)

In order to judge the lateral confinement of the mode, we introduce the lateral decay
length (from the field profile in Eq. 3.39)

C =
1

2
√
β2 − εdk2

0

(3.51)

where εd is the dielectric surrounding the metal. The lateral decay length (C) as
a function of the normalized propagation length (L/λeff) is represented in Fig. 3.6.
The ideal plasmon should be strongly confined (small lateral decay length) and
should have a large propagation length.

The 10 nm thick gold SPP is weakly confined: the best lateral decay length is
20 nm for a poor propagation length (0.3λeff). On the other hand, the GP propaga-
tion length is two orders of magnitude better than gold for the same lateral decay
length: 6λeff for 0.5 eV and 20λeff for 1 eV doped graphene sheet. Gold SPPs can
achieve those values of high propagation length, but that is at the price of a poor
confinement. Note that the operating wavelength of GPs is around 8 µm, while gold
SPPs operate mainly in the visible range (λ0 < 1 µm, dark blue in Fig. 3.6).

Therefore, there is a trade-off between high confinement and small propagation
length, which needs to be chosen judiciously for the concerned application. However,
we can conclude that graphene plasmons are better than gold plasmons for the high
confinement and the large propagation length they offer.

3.3 Circuits and cavities

In this section, we further introduce the concept of flatland photonics, which was
the starting point of this PhD thesis. Next, we review the methods developed to
describe the cavity resonances and the coupling with those resonances: Sec. 3.3.2
discusses localized surface plasmon resonances, Sec. 3.3.3 Fabry-Pérot cavities, and
Sec. 3.3.4 coupled mode theory.

3.3.1 Flatland photonics

SPPs enjoyed a huge development since their discovery in the early 1960s. The
phenomenon has mainly been applied in sensors, detector and Raman spectroscopy,
but also in printed metal circuits [93]. With the high confinement of GPs, it was
suggested to replace integrated photonics circuitry [1]. However, even if the losses
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(a) (b)

Figure 3.7: (a) E-field for a GP wave at f = 30 THz along the ribbon like section of
graphene with different doping, which splits into two paths (L1 = 1077 nm, L2 = 560
nm, w = w1 +w2 +w3 = 600 + 200 + 600 nm) [21]. (b) Luneburg lens: phase of the
Ey field of the GP at f = 30 THz (D=1.5 µm, w = 75 nm, L = 1.6 µm) [21].

in graphene are far smaller than in noble metals as discussed in Sec. 3.2.2, GPs still
suffer from larger damping than their photonics counterparts [94] and its application
in circuits has been restricted.

Nonetheless, graphene’s optical properties are strongly tunable with doping,
which is easily achieved by electrostatic field gating or chemical doping (Sec. 2.3.3).
That amazing property implies that we can implement different conductivity zones
on a single flake of graphene, enabling graphene to become a flatland platform for
metamaterials and transformation optical devices [21].

In [21] Vakil and Engheta propose various applications where graphene plays the
role of an optical platform: an infrared splitter or a Luneburg lens (Figs. 3.7a and
3.7b, respectively). This thesis is mainly based on that idea of flatland optics, where
the GP propagation along a two-dimensional graphene sheet with various doping is
considered.

Flatland photonics is not restricted to graphene and suggests a bright future for
optoelectronics. Indeed, since the discovery of graphene, other interesting 2D mate-
rials have been uncovered: transition-metal dichacolgenides (TMDs), often playing
the role of semiconductor, and hexagonal boron nitride (h-BN), often in the role of
insulator [22]. These three materials thus offer the triad required to realize all 2D
gated optoelectronic devices.

3.3.2 Localized surface plasmon resonances

In the previous sections we only considered propagating plasmons. However, metallic
nanoparticles and graphene flakes can also sustain localized surface plasmon reso-
nances (LSPR) [2]: an electromagnetic wave induces an oscillation of the electrons of
the particle, which will be optimal at a certain frequency depending on the material
and the geometry of the particle. These LSPRs are characterized by a high near
field intensity.

LSPR modes can be excited by direct light illumination. Suppose that a particle
is placed in a beam of electromagnetic radiation. The presence of the particle there-
fore results in an extinction of the incident beam, which is a sum of the absorption
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and the scattering by the particle [95, 96]. It is convenient to define the efficiencies
of the extinction Qext, absorption Qabs and scattering Qsca:

Qext = Qabs +Qsca (3.52)

defined as the extinct, absorbed or scattered energy normalized by the incident
energy Einc (Eq. 3.17 for a plane wave) and G the particle cross-sectional area
projected onto a plane perpendicular to the incident beam (e.g. G = πr2 for a
normal incident wave impinging a graphene disk of radius r):

Qext =
Eext

EincG
, Qabs =

Eabs

EincG
, Qsca =

Esca

EincG
. (3.53)

The scattered energy Esca is obtained integrating the norm of the scattered field
Poynting vector (see Sec. 3.1.3), and the absorbed energy Eabs is the energy absorbed
by the particle, established in Eq. 3.19. Note that in the case of a small particle
(d � λ), the quasi-static approximation applies, and the scattering efficiency is
negligible (Qsca ≈ 0) [2].

The LSPR resonance frequency depends on the shape of the particle and its
constitutive metal. Considering a graphene flake, a given geometrical shape will
result in plenty of modes numbered by l, each one characterized by a constant value
ηl with respect to graphene conductivity σ(ω,EF ), frequency ω and the diameter of
the flake D

ηl =
−jσ (ω,EF )

4πε0ωD
(3.54)

A more detailed mathematical description is provided in Appendix B, and graphene
nanodisk modes are described in Chapter 7.

3.3.3 Fabry-Pérot cavity

In the case of a 1D graphene cavity (e.g. a graphene ribbon) the characterization of
the resonances can be even more straightforward. In conventional photonics a basic
Fabry-Pérot (FP) cavity is defined by two parallel partially transmitting mirrors
[97]. When they are illuminated by a monochromatic wave, resonances appear
inside the cavity and the transmittance spectra is characterized by local maxima.
That interference phenomenon was discovered by Charles Fabry and Alfred Pérot
in 1897: they examined the transmittance of a thin film, and they realized that this
interference-induced contrast could be exploited in interferometry [87].

A FP resonance is achieved with constructive interference of the wave after a
round-trip. If β is the wave vector of the light in the cavity medium, and l the
length of the cavity, then the phase condition for a constructive interference is

e−jβle−jϕr1e−jβle−jϕr2 = e−j2mπ (3.55)

Or equivalently

2βl + ϕr1 + ϕr2 = 2mπ (3.56)
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where m is an integer defining the order of the resonance, and ϕr1 and ϕr2 the phases
induced by the reflection of the mirrors. As β = ωn/c with n the refractive index
in the cavity, the frequency separation ∆ω of the peaks is given by

|∆ω| = c

2nl
(3.57)

This model agrees well with graphene ribbon resonances. A GP with propaga-
tion constant β resonates along the ribbon and is totally reflected at the edge of
the graphene sheet, with a reflection phase of ϕr = 0.85 rad, independent of the
frequency and the doping of the graphene ribbon [30]. This formalism is applied in
Chapters 4, 5 and 6.

Note that the reflectance and transmittance of a wave incident to a FP cavity can
be computed assuming the partial reflections and transmissions at each interface.
This is implemented in Chapter 5 for a non-uniformly doped graphene sheet.

3.3.4 Coupled Mode Theory

In this section we introduce Coupled Mode Theory (CMT), which will be useful
for the description of the sub-wavelength cavity resonances in Chapter 4. CMT is
strictly valid when the width of the resonance is far smaller than the resonance fre-
quency [98]. Therefore, it is well-suited for various problems, and amongst them for
the description of plasmonic [99] and photonic Fano resonances [64] or for aperture
antennas [100].

The theory is based on the coupling of modes in a time-dependent formalism of
optical resonators [97]. We suppose a system (see Fig. 3.8) composed of a single-
mode optical resonator coupled with m ports, which are single-mode waveguides in
our case. The temporal equation of CMT is [98]

da

dt
=

(
jω0 −

1

τ

)
a+

(
〈κ|>

)
|s+〉 (3.58)

|s−〉 = C|s+〉+ a|d〉 (3.59)

where a is the complex amplitude of the mode in the cavity with ω0 its resonance
frequency and τ the lifetime of the resonance. s+ and s− correspond to the input
and output waves in the ports, respectively. The different couplings are embodied
by 〈κ| for the resonator input and by |d〉 for the resonator output. In addition, the
incoming and outgoing waves in the ports can also couple through a direct pathway,
accounted for with a scattering matrix C.

Here we use the bracket Dirac’s notation: the ket |d〉 is a column vector

|d〉 =

d1
...
dn

 (3.60)

and the bra 〈d| a row vector

〈d| =
[
d>1 · · · d>n

]
(3.61)
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Figure 3.8: Schematic of an optical resonator system coupled with multiple ports.
The arrows indicate the incoming and outgoing waves. The dashed lines stand for
the reference planes of the ports.

with > indicating complex conjugate.
If τ expresses the lifetime of the cavity resonance, τ−1 represents the total decay

rate. In the system we consider in Chapter 4 this rate is decomposed in a sum
of different decay channels, such as the coupling τ−1

c , the absorption τ−1
a or the

radiative τ−1
r decay rates. The total decay rate is then given by

τ−1 = τ−1
c + τ−1

a + τ−1
r (3.62)

Note that the amplitude a is normalized such that |a|2 corresponds to the en-
ergy in the resonator. Since |si+|2 (|si−|2) corresponds to the input (output) power
propagating in port i, the conservation energy in the lossless case (τ−1

a = τ−1
r = 0)

means

da

dt
= 〈s+|s+〉 − 〈s−|s−〉 (3.63)

The other quantities (τ and κ) are supposed to be independent of the frequency:
that assumption is valid as far as the waveguide dispersion around the resonant
frequency is weak (i.e. the width of the resonance is smaller than the resonance
frequency). Going to the frequency domain, which means that quantities oscillates
with ejωt, we can rewrite Eq. 3.58

a =
(〈κ|>) |s+〉

j (ω − ω0) + 1/τ
(3.64)

The parameters 〈d| and 〈κ| can be determined using time-reversal transformation
and energy conservation as described in [97] and one can find

〈κ| = 〈d| (3.65)

〈d|d〉 = 2/τc (3.66)

C|d〉> = −|d〉 (3.67)



38 3 • Optical concepts

Eq. 3.65 shows a symmetry between input (〈κ|) and output (〈d|) coupling. Eq. 3.66
shows that output coupling is related to the coupling lifetime (in the lossless case,
it is linked to the resonance lifetime since τc = τ). The last equation shows that
the coupling constants in general cannot be arbitrary but are instead related to the
direct scattering matrix C.

These conditions lead to the scattering matrix S

|s−〉 = S|s+〉 = C

[
1− |d〉>〈d|>

j(ω − ω0) + 1/τ

]
(3.68)

using Eqs. 3.65 and 3.67 in Eqs. 3.58 and 3.59. In the special case of only one input
waveguide, Eq. 3.68 can be rewritten

|s−〉 = S|s+〉 = C

[
1 +

−2/τc
j(ω − ω0) + 1/τ

]
(3.69)

using Eq. 3.66. This equation will be useful to describe the resonance in a graphene
ribbon, as we will see in Chapter 4.

From the general Eq. 3.64 the resonance of our cavity is characterized by a
Lorentzian shape and the quality or narrowness of the resonance is quantified by
the quality factor Q

Q =
ω0

∆ωFWHM

=
ω0τ

2
(3.70)

with ωFWHM = 2/τ the full width at half maximum of the Lorentzian peak.
Finally, the decay rate of the cavity resonance may be easily evaluated for a

given Fabry-Pérot resonator. One can find that the coupling quality factor Qc and
absorption quality factor Qa are [97]

1

Qc

=
2

ω0τc
=
Tvg
2ω0l

(3.71)

1

Qa

=
2

ω0τa
=

2αvg
ω0

=
2={β} vg

ω0

(3.72)

where T is the transmittance from the port to the cavity, vg the group velocity of
the mode, l the length of the cavity, and where we replace the spatial decay rate of
the field α with the imaginary part of the propagation constant of the mode ={β}.

3.4 Optical modeling with COMSOL

Along this thesis we propose the study of complex structures that are difficult or im-
possible to solve with the previously mentioned analytical models. In order to solve
the optical response of such structures we rely on a computational method called
the Finite Element Method (FEM) [101, 102, 103], implemented in the commercial
package COMSOL [104]. The Radio Frequency (RF) module in COMSOL provides
a wide range of modeling tools to solve time-harmonic electromagnetic field distribu-
tions. The Eigenfrequency node is used to find eigen-frequencies and their associated
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Figure 3.9: (a) Triangular mesh (in white) of a structure composed of two materials
represented in blue and red. (b) Effective refractive index of the graphene plasmon
(EF = 0.4 eV and λ = 5 µm) as a function of the effective thickness of the graphene
sheet. neff converges for small graphene thickness to the accurate value computed
using the graphene conductivity (blue dashed line).

eigen-modes in resonant cavities and the Scattered Field Formulation is employed
to compute the optical response of various devices (both employed in Chapter 7).
The Mode Analysis node is applicable for 2D and 2D cross-section of waveguides
where it is used to find the mode dispersion, while the Boundary Mode Analysis is
used to excite the propagating modes from a port boundary (both mainly applied
in Chapters 4, 5 and 6).

Solving the differential Maxwell equations directly dealing with continuous vari-
ation of the electric field is impossible for digital computers because they handle
discrete numbers. A way to get around that problem is the FEM, which relies on
dividing the space into a large number of volume elements. In that limit the field
relationship transforms to a large set of linear equations solvable by matrix inver-
sion techniques. In FEM, triangular or tetrahedral meshes are mainly used: they
can better approximate curved boundaries compared to cubic or squared meshes
required by other techniques. A representation of a white meshed curved geometry
is represented in Fig. 3.9a.

Defining the mesh correctly is primordial since an extremely thin mesh will un-
necessarily lead to an interminable computational time, while a coarser mesh may
not converge to a physical result. In general, fixing the maximum element size in
a medium to λ/6 (where λ is the wavelength of the wave in the medium) provides
accurate solutions. However SPs and GPs are characterized by a strong field decay
and they need thinner meshes. Therefore its size should be adapted to the confine-
ment of the plasmon along the interface. To determine a proper mesh, a convergence
investigation can be performed.

Note that modeling graphene with an effective permittivity implies choosing an
effective thickness. Fig. 3.9b shows the dependence of the effective refractive index
on the thickness of a 0.4 eV doped graphene sheet at λ = 5 µm. The solid red line
converges for small thickness to the accurate value computed through the optical
conductivity of graphene. In this case, we can assume that 0.5 nm is a sufficiently
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converged value.
The structure modeled should have the smallest size to reduce the number of

finite elements and therefore the computation time. The RF module of COMSOL
provides a set of boundary conditions to achieve this goal. First, perfect mirrors
can be implemented by the Perfect Electric Conductor and the Perfect Magnetic
Conductor boundaries, which force the perpendicular electric field or magnetic field
to zero, respectively. Second, it is possible to set up a periodicity between se-
lected boundaries with Floquet periodicity for oblique incidence. Finally, the Per-
fectly Matched Layers apply a complex coordinate scaling to a layer surrounding the
physical region of interest, which will absorb all the outgoing wave energy.

In our thesis we will use two kinds of light source in order to excite the modes
in our designed structures. The most used is the port boundary, which can launch
and absorb specific modes. The port boundary together with the Boundary Mode
Analysis allows for the excitation of GPs when graphene is modeled by an effective
permittivity, as used in Chapters 4, 5 and 6. The second technique is the Scattered
Field Formulation: a background field (usually a plane wave) is set up by the
user and COMSOL computes the scattered field. That formulation reduces the
computation time since it does not require a solution for the incident field, as it is
the case when the incident plane wave is excited by a port boundary. Moreover if
the incident field is much larger in magnitude than the scattered field, the accuracy
of the simulation improves. The Scattered Field Formulation is implemented in
Chapter 7.



4
Ribbon cavities

4.1 Introduction

Graphene is a promising material for optoelectronic applications, with functional
graphene circuits using plasmonic modes as an interesting developing field, as we
discussed in Sec. 3.3.1. In this chapter we describe the coupling of graphene plasmons
between a semi-infinite sheet and a nanoribbon, which gives deep reflectance dips
at certain resonant wavelengths. In these circuits the useful phenomenon of critical
coupling leading to zero reflectance can be engineered. Furthermore, the resonant
wavelength is adjustable by tuning the gate voltage on graphene. The width of the
ribbon (only 75 nm or smaller) and the confinement of the graphene plasmon mode
(< 50 nm, depending on the operating wavelength and doping) lead to ultra-small,
tunable optoelectronic circuits.

Indeed, the promise of photonic integrated circuits is jeopardized by limiting
problems with downscaling and integration [1, 105]. Consequently, graphene circuits
create great interest for their tiny size (one atom thick material and very small
plasmon wavelength, see Sec. 3.2) and their tunability via electrostatic gating (see
Sec. 2.3.3).

In recent works plasmons in graphene nanoribbons were studied fundamentally
in single elements [24] or in gratings for a tunable optical response [25, 20, 26].
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Bends and splitters were discussed in [27], and directional couplers were demon-
strated in [28], with a switching behaviour in [29]. Additionally, it was shown that
curved graphene sheets support plasmons with low radiation losses leading to flexi-
ble graphene circuits [106]. Lately, carbon nanotubes coupled to graphene nanodisks
show an efficient way of launching and phase controlling the propagation of graphene
plasmons [4]. These and our results provide the building blocks to develop graphene
plasmon circuits for future compact plasmon devices with potential application to
optical signal processing and infrared sensing.

In Sec. 4.2, we consider a graphene ribbon close to the end of a semi-infinite
graphene sheet. Without ribbons, the graphene plasmon reflectance at the edge is
total. That phenomenon is discussed in Sec. 3.3.3, and is exploited in Chapters 5
and 6. Here however, the evanescent exponential field can couple with the ribbon
cavity. This leads to reflectance dips in the spectra, depending on the distance to the
cavity and the graphene doping. A theoretical model is introduced via the coupled
mode theory defined in Sec. 3.3.4, and its constitutive parameters are analysed and
compared to the physical parameters. Finally, an electrostatic scaling law is derived,
allowing for a straightforward prediction of the resonant wavelength.

Sec. 4.3 describes the plasmon reflectance for a ribbon placed on the top of a
semi-inifinite sheet. Here, the theoretical development is based on parallel waveguide
coupling, adapted to our structure through the scattering matrix formalism. The
theoretical results fit well with simulations, and we observe a rich behaviour of the
graphene plasmon reflectance as a function of the position of the cavity and the
wavelength. The results are shown for two different lengths of the ribbon cavity
and the reflectance dip behavior is explained via the anti-symmetric and symmetric
supermodes of the waveguide coupler. Finally, the tunability of the graphene ribbon
cavity is considered, and is qualitatively explained with a Fabry-Pérot resonance
model.

Throughout this chapter, graphene is modelled as a thin layer of 0.5 nm thickness
and its optical parameters are defined via the relative permittivity (see Sec. 2.2).
The scattering lifetime of electrons in graphene is fixed to τg = 0.16 ps. We operate
in the range ω = 2 to 3 × 1014 rad/s and EF = 0.2 to 1 eV. We perform two
dimensional simulations, and graphene plasmons are propagating in the horizontal
direction. The excitation is performed by a port handled by Boundary Mode Analysis
in COMSOL, and the other boundaries are modelled by Perfectly Matched Layers
in order to account for the radiation losses (which are very weak in these devices).

Most of the work in this chapter was presented in [23].

4.2 Ribbon at the end of a sheet

In this section we study a two-dimensional system composed of a semi-infinite sheet
of graphene (the access waveguide) and a small ribbon (serving as cavity) of width
L at distance d from the sheet (Fig. 4.1). The background medium is air (εair = 1).

Without the cavity the injected graphene plasmon propagates along the graphene
sheet and is nearly totally reflected at the edge: the plasmon is so confined that very
little light is radiated [30]. When a cavity ribbon is placed near the end of the sheet,
the evanescent field can couple into and light can resonate in the cavity. An example
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Figure 4.1: Side view of the ribbon cavity with a semi-infinite sheet of graphene (the
access waveguide) and a small ribbon (serving as cavity) of width L at distance d
from the sheet. The graphene plasmon (GP) is excited by a port along positive x
direction (s+), and the reflection is measured (s−).

of the magnetic field profile of a resonance (0.3 eV doped graphene at λ = 7.95 µm) is
represented in Fig. 4.2a. For a specific wavelength we observe a reflection minimum
(Fig. 4.2b). Note that the presented reflections are ‘normalized’: the losses in the
access waveguide are neglected, but the losses in the cavity are accounted for.

4.2.1 Coupled Mode Theory

The properties of the cavity modes are modeled very adequately by the Coupled
Mode Theory (CMT). CMT describes the coupling of ports with resonators as dis-
cussed in Sec. 3.3.4. In our case a single mode port couples with a cavity, with
coupling strength characterized by τ−1

c . The dissipative and radiative losses occur-
ring in the resonator are represented by τ−1

a and τ−1
r , respectively. From Sec. 3.3.4,

the equations of temporal CMT are

da

dt
=

(
jω0 −

1

τ

)
a+

√
2

τc
s+ (4.1)

s− = r0s+ +

√
2

τc
a (4.2)

with

τ−1 = τ−1
c + τ−1

a + τ−1
r (4.3)

and where s+ and s− are the input and output amplitudes of the (plasmon) mode
transmitted through the port (Fig. 4.1), a is the amplitude of the cavity mode, r0

is the reflection at the edge of the graphene sheet without the resonator, and ω0 is
the resonant frequency.

Going to the frequency domain, which means that quantities oscillate with ejωt,
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and isolating s−/s+, we find

s−
s+

= r0

(
1−

2
τc

j(ω − ω0) + 1
τ

)
(4.4)

leading finally to the reflectance

R =

∣∣∣∣s−s+

∣∣∣∣2 = |r0|2
(ω − ω0)2 +

(
− 1
τc

+ 1
τa

+ 1
τr

)2

(ω − ω0)2 +
(

1
τc

+ 1
τa
− 1

τr

)2 (4.5)

As previously mentioned, because of the remarkable impedance mismatch between
the plasmon and free space, radiative losses at the edge of a sheet can be neglected,
so |r0|2 ≈ 1 and τ−1

r ≈ 0. That last assumption is verified in simulations, since we
simulate a system delimited with Perfect Matched Layers in order to account for
possible radiative losses.

The Lorentzian shaped resonance of Eq. 4.5 has its minimum at ω = ω0. In
addition, one obtains a useful critical coupling when τa = τc: all the energy coupled
to the cavity is dissipated, and the reflection goes to zero.

As a reminder from Sec. 3.3.4, the absorption lifetime τa can be modeled as
follows

τa =
1

vg=(β)
(4.6)

where vg is the group velocity of the considered mode and =(β) is the imaginary
part of its propagation constant.

4.2.2 Results and discussion

We consider a cavity of width L = 75 nm and the doping of graphene (access waveg-
uide and cavity) is shifted from EF = 0.2 eV to EF = 0.5 eV. The results are
represented in Fig. 4.2b and we observe a shift of the fundamental resonance wave-
length from λ = 10 to 6 µm. Such doping tunability can be achieved by introducing
a gate voltage on graphene, as discussed in Sec. 2.3.3. The realization is feasible
since both the sheet and the ribbon are doped in the simulations: a gate voltage tun-
able graphene disk grating has already been realized in [64]. Although the graphene
plasmon is not influenced by the ground plane because of its high confinement [21],
the ion gel needed for doping (see Sec. 2.3.3) has a permittivity of ε = 1.82 and can
slightly shift our results. Table 4.2c shows different fitted parameters from the first
order minima of these spectra using Eq. 4.5 and the corresponding fit is shown in
Fig. 4.2b for EF = 0.3 eV (dots).

First of all one observes that the theoretical absorption lifetime τa (Eq. 4.6)
matches the fitted value, and it increases with the graphene doping (compare third
and sixth column of Table 4.2c). This is understood from the interband transitions
in graphene, occurring above a threshold related to the Fermi energy (~ω > 2EF ),
which can be shifted to higher frequencies by larger doping (see Sec. 2.2 for more
details). Subsequently, increasing doping decreases interband transitions, and thus
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Figure 4.2: (a) Normalized |Hz| field for EF = 0.3 eV at λ = 7.95 µm. The size of the
cavity is L = 75 nm and the distance from the sheet is d = 10 nm. (b) Simulated
reflection spectrum for different doping (EF ). Theoretical points are shown for
EF = 0.3 eV. Three orders of resonances are shown for each EF . (c) Table with
fitted lifetimes and resonant frequency ω0, and the calculated absorption lifetime.
The quality factors are computed from the fitted parameters as Q = ω0/∆ωFWHM .
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decreases losses. This impacts the imaginary part of the graphene plasmon propa-
gation constant: doping graphene decreases its value and from Eq. 4.6 one finds an
increase of τa.

Note that the absorption lifetime is correlated to the scattering lifetime τg of elec-
trons in the graphene sheet. As discussed in Sec. 2.2, the latter is linearly dependent
to the graphene doping EF (see Eq. 2.17). For the sake of clarity we arbitrarily fix
τg = 0.16 ps in the permittivity model but the minima are also observed for lower
values of this parameter (which can happen for low quality graphene sheets). This
is illustrated in Fig. 4.3a for EF = 0.4 eV (theoretically τg ≈ 0.4 ps). Varying
τg keeps the resonant frequency (ω0 = 2.8 × 1014 rad/s) and the coupling lifetime
(τc = 1.7 × 10−13 s) constant while τa changes. A limiting problem is that the
Lorentzian becomes wider with the losses.

Next, from Table 4.2c we note that τc decreases when increasing the doping
level. This is explained by the confinement of the plasmon. As we will demonstrate
in Sec. 4.2.3, the resonances always occur for the same value of the real part of
the propagation constant < (β) = neffω/c (where c is the speed of light, and <
depicts the real part). This implies that neff decreases when ω increases, leading to
a less confined plasmon for larger angular frequencies. Since τ−1

c theoretically stems
from an overlap integral of the evanescent fields, this gives stronger coupling (τc
smaller) when ω increases as shown in Table 4.2c. Because of the integration model
of τ−1

c , the coupling lifetime is also tunable via the distance d, increasing with this
parameter. This is shown in Fig. 4.3b for EF = 0.3 eV, with all other parameters
constant (ω0 = 2.4× 1014 rad/s, τa = 2.0× 10−13 s).

Because of these evolutions of τa and τc, for the configuration of Fig. 4.2b, critical
coupling (R = 0) is reached when τa = τc = 2.0 × 10−13 s and ω = ω0 = 2.4 × 1014

rad/s (see Eq. 4.5). Note that for a fixed doping of the access waveguide, only
doping the cavity will give similar results. The absorption lifetime will be equal
to the results of Table 4.2c since τa is only related to the absorption in the cavity.
However, the coupling lifetime will be different than the former results, but will
follow the same trends (smaller doping, longer τc). The equality τa = τc will then be
reached for another doping configuration. For instance, when the access waveguide
is EF = 0.4 eV doped and the cavity EF = 0.25 eV, a critical coupling R = 0 is
reached when ω0 = 2.1× 1014 rad/s (or λ = 9 µm).

When examining the second order minima (Fig. 4.3a) we do not reach critical
coupling. Indeed, losses are too important at these wavelengths (τa too small in
comparison to τc to reach τa = τc). Consequently, the minimum of reflection is only
about 0.5. Note that for 0.4 eV doping, the second order dip has a quality factor
Q = 15. This value is higher than the one obtained for the first order dip (Q = 13),
but this is mainly due to the larger resonance frequency ω0.

4.2.3 Dispersion

The particular resonance frequency is strongly determined by the plasmon prop-
erties. Indeed, in order to get a resonance in the cavity one needs constructive
interference during a round-trip (see Sec. 3.3.3):

2<{β(ω)}L+ 2ϕr = 2mπ (4.7)
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Figure 4.3: Simulated reflection in function of the wavelength. (a) The resonances
are modified with the scattering lifetime of the electrons in graphene. For the first
order minimum, critical coupling is obtained for τg = 0.12 ps. EF = 0.4 eV, L = 75
nm and d = 10 nm. (b) The resonances depend on the cavity-waveguide distance
d. A critical coupling (R = 0) is observed for d = 10 nm. EF = 0.3 eV and L = 75
nm.
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Figure 4.4: Dispersion of the plasmon propagating along a graphene sheet for differ-
ent doping levels. The black vertical solid line represents the required real part of β
for a resonance in a 75 nm long cavity. The horizontal lines indicate the resonance
frequencies. The vertical grey solid line stands for the expected resonances in a 30
nm cavity.

where β is the propagation constant of the plasmon mode, ϕr is the phase induced
by the reflection at the end of the ribbon and m is an integer.

It turns out that ϕr is relatively constant (≈ 0.85 rad, see Sec. 3.3.3) in the
typical mid-infrared range of frequencies, so for a particular L the resonance always
occurs at the same value of the propagation constant <{β} ≈ 30 rad/µm. In
Fig. 4.4 the graphene dispersion is plotted for different doping levels. The crossing
between this value of <{β} (vertical solid black line) with the different dispersion
curves corresponds with the resonance frequencies fitted in the Table 4.2c from our
simulations. This is a consequence of the specific properties of graphene: applying
a gate voltage shifts the optical properties of the plasmon and thus the resonance
frequency (see Sec. 2.2).

In fact, that property is a consequence of the scaling law of the modes of the
graphene flakes, extensively discussed in Chapter 7 for nanodisks. We can show that
the resonance in a graphene ribbon can be characterized by a scalar η, characterizing
the considered resonance. A more detailed mathematical demonstration is available
in Appendix B. Once determined for a given geometry, η is fixed and is equal to a
function of the frequency ω, doping level EF and the length L of the ribbon via the
transcendental equation

η =
−jσ (ω,EF )

4πε0ωL
(4.8)

where σ (ω,EF ) is the optical conductivity of graphene. Using the non-retarded
regime (<{β} � k0, see Sec. 3.2.2) of the graphene plasmon dispersion, the propa-
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gation constant of the graphene plasmon is (see Eq. 3.46)

β = − 2jωε0

σ (ω,EF )
(4.9)

Combining Eqs. 4.8 and 4.9, we conclude

η = − 1

2πβL
= − λp

4π2L
(4.10)

This means that the product βL is a constant for the considered cavity mode,
corroborating with the phase ϕr being constant in Eq. 4.7 as a function of doping
and wavelength.

Thanks to these properties, one can easily predict the resonance frequency for
a given cavity length. In the previous section, the resonance of a cavity of L = 75
nm occurs with a propagation constant <{β} = 30 rad/µm. In order to keep the
βL product constant, a L = 30 nm length cavity requires <{β} = 75 rad/µm. This
value is the grey straight vertical line in Fig. 4.4. Therefore, the first-order resonance
frequency for 1 eV doping will occur at ω0 = 6.8× 1014 rad/s.

In order to improve the quality factor, one would need smaller cavities, i.e.
larger resonance frequencies. However, going in this direction increases the losses
(interband transitions occur when ~ω > 2EF ). To counter that effect, a high doping
of graphene is required, so when EF = 1 eV a quality factor of Q = 42 is reached
with a cavity of L = 30 nm, at λ0 = 2.8 µm. This is of the same order of magnitude
as the quality factor of localized surface plasmon resonances of metals like silver
(Q ≈ 30) or gold (Q ≈ 10) [107].

4.3 Directional coupler cavity

In this section we study a graphene ribbon (cavity) on top of a free-standing semi-
infinite graphene sheet (Fig. 4.5b). Without the cavity, the plasmon propagates
along the semi-infinite graphene sheet, is reflected at the edge, and creates a sta-
tionary wave. If we put a ribbon on top of the sheet the plasmon can couple with
this cavity, leading to more complex interference effects and resonances.

We introduce a simple model in the following subsection, we discuss the behavior
and we compare with simulations in the next subsection.

4.3.1 Theory

The coupling between two parallel graphene sheets separated by a distance d can be
described by directional coupler theory. We suppose the two plasmonic waveguides
are identically doped, so they support a plasmon with the same propagation constant
β. The coupling between the plasmon modes is characterized by κ. The solution for
the lossless case is in [108]. One can take the phase and the losses into account via
the exponential factor e−jβx:

s1(x) = A(x)s1(0) +B(x)s2(0) = [cos(κx)s1(0)− j sin(κx)s2(0)] e−jβx (4.11)

s2(x) = B(x)s1(0) + A(x)s2(0) = [−j sin(κx)s1(0) + cos(κx)s2(0)] e−jβx (4.12)
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(a)

(b)

Figure 4.5: Transversal view of the considered structures. (a) In a first step, we
consider a simple directional coupler between two graphene sheets, in a 4-port sys-
tem. (b) The final structure we study. The graphene ribbon (cavity) of length L is
placed at a distance d from the semi-infinite graphene sheet, and at a distance x2

from the end of the sheet.

where si(x) are the amplitudes of the plasmonic mode in the ith waveguide and x is
the propagation direction.

As a first step, we write the general Eqs. 4.11 and 4.12 as a 4-port system, see
Fig. 4.5a. The input mode amplitude si for the ith port is subscripted + and the
output is subscripted −. That leads to the 4× 4 scattering matrix

s1−
s2−
s3−
s4−

 =


0 0 B(x) A(x)
0 0 A(x) B(x)

B(x) A(x) 0 0
A(x) B(x) 0 0



s1+

s2+

s3+

s4+

 (4.13)

The zero elements in the scattering matrix express the absence of reflection in the
simple case of Fig. 4.5a, while its symmetry comes from the reciprocity of the two
equivalently doped graphene sheets.

From the scattering matrix of Eq. 4.13, the reflection of the considered system of
Fig. 4.5b can be more easily derived. Firstly, the waveguide 1 is reduced to a ribbon
of length L. That means that the ports 2 and 3 are replaced by a reflection r0 :
s2+ = r0s2− and s3+ = r0s3−. In the same vein, all the matrix coefficients drops their
x dependence for an L dependence, because the waveguide coupler only operates on
the length of the ribbon. Secondly, the 4th port is also replaced by the reflection,
but is defined at a distance x2 from the graphene ribbon. Thus, accounting for the
propagation, we get s4+ = r0s4−e

−2jβx2 . Finally, the 1st port is at a distance x1 from
the ribbon, so the resulting input amplitude becomes s1+ = s1−e

−2jβx1 . Therefore,
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the Eq. 4.13 adapts for the problem of Fig. 4.5b in
s1−
s2−
s3−
s4−

 =


0 0 B(L) A(L)
0 0 A(L) B(L)

B(L) A(L) 0 0
A(L) B(L) 0 0




s1−e
−2jβx1

r0s2−
r0s3−

r0s4−e
−2jβx2

 (4.14)

Since we are interested in the port 1 reflection, we need to solve the problem for
s1−/s1+. The scattering matrix problem of Eq. 4.14 can be rewritten as follows

0
0

Be−2jβx1

Ae−2jβx1

 =


1 0 −Br0 −Ar0e

−2jβx2

0 1 −Ar0 −Br0e
−2jβx2

0 A 1 0
0 −B 0 1



s1−/s1+

s2−/s2+

s3−/s3+

s4−/s4+

 (4.15)

Eq. 4.15 is a linear system of four equations in four unknowns. The solution is

R =

∣∣∣∣s1−

s1+

∣∣∣∣2 =

∣∣∣∣∣
(
A2r0 − r3

0e
−4jβL

)
e−2jβ(x1+x2) +B2r0e

−2jβx1

1− A2r2
0 −B2r2

0e
−2jβx2

∣∣∣∣∣
2

(4.16)

The reflectance is thus determined by the parameters L and x2, which we discuss
in the next section, but also by β, κ and r0. The latter one (r0) was mentioned
in the previous section, and was relatively constant as a function of the frequency
and the doping. The coupling constant κ is fitted from simulations of a directional
coupler composed of two sheets of graphene separated by a distance d using Eqs. 4.11
and 4.12 (Fig. 4.5a). Finally, the plasmon dispersion is known from simulations. We
already discussed the real part of the propagation constant <(β) in Sec. 4.2.3.

4.3.2 Results and discussion

First we examine the effect of x2, the distance between the side ribbon and the end
of the semi-infinite sheet (see Fig. 4.5b). The total size of the system x1 +L+ x2 =
200 nm is kept constant. By fitting simulations of a basic 1 eV doped graphene
waveguide coupler separated by a distance d = 30 nm (Fig. 4.5a), we obtain that κ
monotonously increases with the wavelength from about 5 to 11 rad/µm. Note that
varying the distance d changes κ (for example κ varies from about 14 to 18 rad/m
for d = 20 nm) and one can tune resonance frequencies with this parameter (not
shown here, see Eq. 4.16). Note also that we fairly arbitrarily chose to work with
high doping (EF = 1 eV), but the same effect could be shown for smaller doping
levels at higher wavelengths.

Fig. 4.6a and 4.6b show, respectively, the simulated and theoretical reflectance
in color as a function of the wavelength λ and the position of the cavity x2 for a
cavity length L = 30 nm. First, one observes a good agreement of simulations with
theory. Second, we observe a general augmentation of the reflectance with increasing
wavelength. Indeed, because of the interband transition threshold, losses are less
important at larger wavelengths: the propagation length of the plasmon is greater
(see Sec. 3.2.2) and the reflected plasmon is, therefore, less damped.
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Figure 4.6: Map of the simulated (a) and theoretical (b) reflectance of the system
with a L = 30 nm length cavity varying the wavelength and its position (x2). The
blue zones represent the reflectance minima of the first order cavity mode. (c)
Theoretical map for a L = 60 nm length cavity varying the wavelength and its
position (x2). Rhe second order minima appears for small wavelengths and the
symmetric and antisymmetric type resonances appear at higher wavelengths.
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Figure 4.7: Normalized |Hz| field of the cavity L = 60 nm, for two different res-
onances: the symmetric (left: x2 = 57 nm and λ = 4.05 µm) and antisymmetric
(right: x2 = 92 nm and λ = 3.53 µm) mode, respectively.

Let us focus on the reflectance minima of the map (blue zones in Fig. 4.6a). As
a first approximation, one can predict the resonant wavelengths as explained for
the isolated ribbon in the previous section via Eq. 4.7. In this way, the expected
wavelength would be λ = 2.8 µm, which is close to what is simulated. However, with
the directional coupling and the semi-infinite sheet reflection, there is an interference
via two other parameters: the coupling constant κ and x2.

First of all, for some values of x2 (x2 = 20 and 61 nm e.g.), there are no reso-
nances. This appears every half plasmon wavelength λp/2 = 41 nm. Indeed, when
there is no cavity, there is a stationary wave on the ribbon with incoming and re-
flected waves. Subsequently, if the cavity is centred on top of a node, the resultant
field in the cavity will be very small: the forward incoming wave and the backward
reflected wave create destructive interference in the cavity.

When the cavity is not centred on a node, different possible interferences appear
depending on the cavity position and the coupling strength κ. An interpretation is
provided by the supermodes of the directional coupler. Depending on the position
of the cavity, one will excite the symmetric (large field between the graphene sec-
tions, Fig. 4.7 (left)) or antisymmetric (node between the graphene sections, Fig. 4.7
(right)) supermode. The two supermodes have a different dispersion leading to two
corresponding wavelengths. This explains the slanted shape of the blue zone, with
two reflection dips e.g. at λ = 2.75 µm (x2 = 10 nm) and at λ = 2.78 µm (x2 = 28
nm).

That slanted shape of the blue zone is profoundly modified with the dispersion of
the two supermodes. That assumption is further verified in Fig. 4.6c, which shows
the reflectance as a function of λ and x2 for a larger cavity length L = 60 nm. As the
supermodes differ more when κ is large, the wavelength gap between the reflectance
dips becomes broader (see Fig. 4.6c between λ = 3.5 and 4 µm). Indeed, a larger
cavity size implies a larger plasmon wavelength (see Eq. 4.8) and so a larger coupling
κ (the plasmon is less confined transversally and it interacts more with the other
ribbon). In this case, one witnesses a larger wavelength gap between two minima
(λ = 3.7 µm, x2 = 27 nm and λ = 3.95 µm, x2 = 53 nm). Note that the minima
appear at higher wavelength than in Fig. 4.6b because larger plasmon wavelengths
are acquired with larger free space wavelengths (see Sec. 3.2.2). The other blue
zones around λ = 2.5 and 2.6 µm are second order resonances.
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Figure 4.8: Reflectance as a function of the wavelength for different doping levels of
the graphene ribbon cavity. One observes the tunability of the reflectance dip with
EF . In this case, L = 30 nm, d = 30 nm and x2 = 40 nm.

Finally, we investigate the reflectance tunability of such a structure. The re-
flectance as a function of wavelength is plotted for different doping levels of the
cavity ribbon in Fig. 4.8. The doping level of the access waveguide is fixed to 1 eV
and the one of the cavity ribbon is modified from 0.7 to 1 eV. The graph shows a
baseline of increasing reflectance for larger wavelengths with localized dips with the
resonance depending on the doping of the cavity, and shifting from λ = 3.3 to 2.75
µm. That increasing reflectance is a consequence of the longer propagation length
of graphene plasmons for larger wavelengths. In our structure (L = 30 nm, d = 30
nm and x2 = 40 nm), a minimum of reflectance (R = 2.5%) can be reached for
EF = 0.93 eV when λ = 2.84 µm.

The tuning behavior is explained in a first approximation by the phase resonance
condition of Eq. 4.7 or the scaling law (Eq. 4.8) as previously discussed (Sec. 4.2.2):
with a constant cavity length L, the resonance is achieved with the same β and, as
depicted in Fig. 4.4, smaller doping implies smaller resonant frequencies. A more
accurate model can be developed similar to Sec. 4.3.1 for two dissimilar waveguides.

4.4 Summary

This chapter demonstrates how the graphene plasmon reflectance at the end of a
graphene sheet can be tuned by a graphene nanoribbon. When it is placed at a small
distance from the graphene sheet (about 10 nm), the evanescent field can couple
and one can get a total absorption in the cavity, and therefore zero reflectance. The
quality factor of these nanoribbon cavities can reach 42, which is slightly larger than
the quality factor of regular plasmonic cavities. These results are interesting for the
development of graphene bio-sensors, where the graphene ribbon parameters can be
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tuned with a detectable molecule.
The simulated results are rigorously explained by coupled mode theory, and its

constitutive parameters (coupling and absorption lifetimes) as a function of the dis-
tance or the doping are qualitatively or quantitatively explained. A critical coupling
is achieved with a graphene doping of 0.3 eV and a free space wavelength of 8 µm.
We showed that critical coupling with another doping can be achieved by adjusting
the distance from the sheet and the size of the cavity. The position of the resonance
is further explained with two models: first with the well-known Fabry-Pérot model,
where we verified that the reflection phase of a graphene plasmon at the end of a
graphene sheet is fairly constant with doping and wavelength and second, with a
scaling law, showing that the same resonance always occurs for a particular value of
βL.

Second, when the cavity is on top of a semi-infinite sheet of graphene, the re-
flectance resonances depend on the vertical distance and the horizontal position of
the cavity, the cavity size, and the graphene doping. The theory of directional cou-
plers is in good agreement with the simulated results. We show that the horizontal
position of the cavity plays an important role creating or annihilating the resonance.
The coupling constant is also essential, giving two resonant wavelengths for two dif-
ferent positions because of the symmetric and antisymmetric supermodes. Finally,
we illustrate the strong tunability of the reflection thanks to the doping level of
graphene.
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5
Nonuniform doping

5.1 Introduction

The previous chapter was devoted to evanescent coupling with graphene cavities,
or in other terms, holes in graphene sheets. Here, we consider another interesting
feature of graphene: its doping tunability. Instead of structuring graphene sheets,
we can modulate the graphene plasmon (GP) response with various spatial doping
patterns. That is the key point of Vakil and Engheta’s paper [21]. They demon-
strate that, instead of shaping graphene sheets into ribbons for optical circuitry, one
can locally dope graphene to achieve the same goal. This chapter aims to study
this feature in more details, examining the reflectance and transmittance of GPs
impinging on such interfaces.

This chapter also describes the behavior of GPs encountering graphene defects
that are common in manufactured graphene sheets. Indeed, as described in Sec. 2.3,
many flaws can appear on a graphene sheet, even with the most careful fabrication
techniques. For example, with the chemical vapor deposition technique, the trans-
fer from the copper substrate to another substrate can create carbon vacancies in
the graphene sheets (see Sec. 2.3.2). These vacancies in the graphene lattice favors
molecular adsorption, locally increasing the carrier density [109]. These local ad-
sorptions are known as grain boundaries and locally distort the graphene doping
[32, 110].
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(a) (b)

(c) (d)

Figure 5.1: Doping configurations: (a) abrupt interface (Section 5.2), (b) tapered
interface (Section 5.3), (c) cavity with abrupt interfaces (Section 5.4), (d) cavity
with tapered interfaces (Section 5.6).

A numerical investigation of the phenomenon of nonuniform doping in back-gated
voltage graphene ribbons was reported [111]. In addition, plasmon scattering caused
by cracks in graphene have been demonstrated experimentally and theoretically
[32, 33], while doping inhomogeneities have been approached numerically in [34]
neglecting losses. Moreover, a clever way to redirect the GP and then avoid the
defect was designed, based on the invisibility cloaking technique [112]. However, a
complete study, including losses, of abrupt or smooth doping variations along the
propagation direction in order to create plasmonic tapers or couplers [113] has not
been reported to our knowledge.

We perform two dimensional simulations, and graphene plasmons are propagat-
ing in the horizontal direction. The excitation is performed by a port handled by
Boundary Mode Analysis in COMSOL, and the other boundaries are modelled by
Perfectly Matched Layers in order to account for the radiation losses (which are very
weak in these devices).

In this chapter, we perform two dimensional simulations, and graphene plasmons
are propagating in the horizontal direction. The excitation and the measurements
of the reflection and transmission are performed by a port handled by Boundary
Mode Analysis in COMSOL: the GP is excited by a port and propagates in the
horizontal direction to the other port. The boundaries in the transversal direction
use Perfectly Matched Layers in order to account for the radiation losses (expected
to be very weak).

In Sec. 5.2 we consider abrupt doping changes along the GP propagation direc-
tion. The considered doping profile is represented in Fig. 5.1a. This profile demon-
strates a simple behavior: stronger doping contrast leads to stronger reflection. We
show that these results are explained by Fresnel-type coefficients of reflection, owing
to the small radiation losses. A quadratic law of the reflectance is derived, only
depending on the doping levels considered.

Afterwards, Sec. 5.3 addresses a smooth interface as depicted in Fig. 5.1b. These
tapered interfaces drastically decrease the reflectance when increasing their length,
but also decrease the transmittance because of the losses encountered in the transi-
tion zone. Therefore, there is a trade-off between interface contrast and transition
length.

Then, we are prepared to consider local doping inhomogeneities, similar to the
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defects discussed previously. Sec. 5.4 considers a cavity delimited by two abrupt
doping changes, see Fig. 5.1c. We show that small homogeneities of 50 nm can
achieve 70% of absorption. The absorption pattern is described with a Fabry-Pérot
model, and the corresponding modes are plotted.

In Sec. 5.5 an even smaller cavity is designed to achieve total absorption. For
constant doping, a GP encountering the edge of a graphene sheet is nearly totally
reflected. Here, we show that locally doping the end of the graphene sheet on a 6
nm length distance is sufficient to achieve total absorption. This critical absorption
is explained with an analytical multi-layer approach based on Fresnel coefficients.

Finally, Sec. 5.6 is devoted to smooth cavities as shown in Fig. 5.1d. Although
small doping changes or longer cavities lead to near-zero reflectance, nearly 80% of
reflectance is achieved for a particular point. These results are explained employing
the simple interface case from previous sections.

Most of the work in this chapter was presented in [31].

5.2 Abrupt doping change

In this section we assume a sheet of graphene with two differently doped, abruptly
delimited zones (EF,in and EF,out in Fig. 5.1a). The GP is excited along the sheet
(in the half-plane with EF,in) towards this abrupt transition, and is reflected when
it encounters a variation in the sheet refractive index caused by the doping change.
Note that we compute the reflectance at the interface i.e. the power returned into
the counter-propagating plasmon mode (excluding the losses in the incident sec-
tion). The simulated reflectance of the GP mode under various doping variations is
represented by points in Fig. 5.2 at λ = 6 µm. GPs are excited from EF,in doped
graphene (legend) and are reflected on a EF,out doped sheet (abscissa).

As expected, uniform sheets (EF,in = EF,out) lead to zero reflection. Further-
more, exchanging EF,in with EF,out gives nearly the same reflectance: there are
negligible radiation losses, so the reflectance is directly related to the transmittance
(R = 1− T ). Transmittance being reciprocal, the incidence direction does not have
consequences on the reflectance. Finally, stronger reflectance is found for bigger
graphene doping (and thus refractive index) differences.

The latter observation can be explained by a simple plane wave model. Indeed,
the reflectance can be modeled by the Fresnel coefficient (solid lines in Figure 5.2)
if we assume an effective medium characterized by the complex effective index ñeff

of the propagating GP mode. It is given by ñeff = β̃/k0 where β̃ is the complex
propagation constant and k0 the wave vector in vacuum. From Sec. 3.2.2, we know
that for free-standing graphene in the non-retarded regime

β̃ = − 2jωε0

σ̃ (ω,EF )
(5.1)

where σ̃ is the conductivity of graphene described in Sec. 2.2. Transmittance and
reflectance are now completely described by the Fresnel coefficients established in
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Figure 5.2: Reflectance of GPs at an abrupt interface of two different dopings.
GPs propagate from EF,in to EF,out. Points are simulated results and lines are
computed with the Fresnel coefficients in Eq. 5.3. The grey dashed line stands for
the approximate relation (Eq. 5.5).

Sec. 3.1.5

T12 =

∣∣∣∣ 2ñ1

ñ1 + ñ2

∣∣∣∣2 n2

n1

(5.2)

R12 =

∣∣∣∣ ñ1 − ñ2

ñ1 + ñ2

∣∣∣∣2 (5.3)

where ñ1 and ñ2 are the complex effective refractive indices of the incoming GP
and the transmitted one, respectively and n1 (n2) is the real part of ñ1 (ñ2). The
theoretical solid lines in Fig. 5.2 (corresponding to R12) match the simulated points,
except for large doping changes. In fact, the Fresnel coefficients in Eqs. 5.2 and
5.3 are no longer valid for heavily lossy media [114]. For 0.2 eV doped graphene at
λ = 6 µm, the effective refractive index of the GP is neff = 97− 12j.

The reflectance can be written in a simple quadratic function of the doping
variation. When doping and wavelength are large, i.e. for ~ω � EF (at λ = 6µm
for example, EF � 0.2eV), interband losses disappear (σinter vanishes), and the
conductivity of graphene reduces to a Drude-like expression (see Eq. 2.15)

σ̃(ω,EF ) ≈ σ̃intra(ω,EF ) ≈ e2EF
π~2

−j
ω − jτ−1

g

(5.4)

Combining Eqs. 5.1 and 5.3, one obtains the simple formula

R ≈
(
EF,out − EF,in
EF,out + EF,in

)2

(5.5)
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which does not depend on the wavelength in this approximation. An example for
EF,in = 0.4 eV is shown in Fig. 5.2 (grey dashed line) justifying the accuracy of
the approximation. Note that deviations from the simulations are larger for smaller
doping (EF,out < 0.4 eV), as expected from the approximation validities.

5.3 Tapered interface

In the previous section, the sudden interface led to strong reflections for large doping
differences. In order to enhance the transmission, we examine here smooth doping
transitions, depicted in Fig. 5.1b. We assume a cosine-like shape of the doping
profile EF (x) with a transition zone of length d

EF (x) =
EF,in + EF,out

2

[
1 +

EF,in − EF,out

EF,in + EF,out

cos
(πx
d

)]
(5.6)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Taper length d (µm)

R
efl
ec
ta
n
ce

an
d
T
ra
n
sm

it
ta
n
ce

 

 

T

R

E
F
 = 0.2eV

E
F
 = 0.4eV

E
F
 = 0.6eV

E
F
 = 0.8eV

Figure 5.3: Reflectance (solid lines) and transmittance (dashed lines) of GPs with
a smooth cosine-shaped transition of doping. GP propagates from 1 eV to a range
of smaller doping going from 0.2 eV to 0.8 eV. Points are simulated reflectance and
lines are from theoretical considerations (multi-layer approach).

The reflectance (solid lines) and transmittance (dashed lines) as a function of
the transition zone length d are represented in Fig. 5.3. The GP is always incident
from doping EF,in = 1 eV, and gradually reaches the doping level indicated in
the legend. As a check, when d approaches zero, the reflection tends to the same
reflection obtained for an abrupt interface (Fig. 5.2). Indeed, the reflection increases
drastically when increasing the doping difference, corroborating Eq. 5.5.
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Longer taper lengths decrease the reflectance drastically, down to nearly zero
for d >100 nm. However, the transmittance does not always increase as a function
of d, there is even an optimum point for smaller EF,out. Indeed, absorption during
propagation is important for the GP, especially at lower doping. Therefore, there is a
trade-off between interface contrast and propagation length, leading to a maximum
of transmission at a certain taper length. For example, the variation from 1 eV to
0.2 eV doping is optimal for a d = 100 nm transition.

The solid and dashed lines in Fig. 5.3 are computed via a one-dimensional multi-
layer Fresnel approach implemented with a software module (CAMFR): the smooth
doping of the profile is discretized in 100 layers. Each layer thus corresponds to a
particular graphene doping and the effective refractive index of the layer is deter-
mined with Eq. 5.1. The model fits very well with the rigorous simulation results,
except for large doping changes, as also observed in the previous section.

Finally, we checked that the reflectance does not vary much upon change of
incidence direction in this system (maximum 2%, not shown here). This equivalence
is not straightforward. Indeed, although radiation losses are negligible, significant
absorption occurs in the tapered section. Therefore, the relation T = 1−R does no
longer hold, and the transmittance reciprocity does not imply reflectance reciprocity.

5.4 Cavity with abrupt interfaces

In this section, we assume a localized inhomogeneity in the doping: the sheet has
doping EF,in except in a particular zone of width d where the doping abruptly changes
to EF,min (Fig. 5.1c). The simulation results are represented in Fig. 5.4a and show
that strong absorption can be achieved in this small zone depending on the width
d and doping level (EF,min). The operating wavelength remains λ = 6 µm and the
sheet is EF,in = 1 eV doped.

For small doping of the cavity (EF,min < 0.2eV), graphene does not support GPs
anymore at the considered wavelength and we observe a fairly constant absorption as
a function of the size. Non-absorbed light is simply reflected, nothing is transmitted,
except for cavities smaller than 20 nm: reflectance goes to zero in these conditions
(not shown here, light tunnels to the exit waveguide, similar to the evanescent field
coupling with the ribbon cavity described in Chapter 4).

For doping between 0.2 eV and 0.6 eV, bands of absorption show up. This is a
Fabry-Pérot (FP) cavity: in order to get constructive interference during a round-
trip, one needs (see Sec. 3.3.3)

2<
{
β̃
}
d+ 2ϕr = 2mπ (5.7)

where m is an integer for the mode order and ϕr is the phase induced by the reflection
(found via simulations and varying monotonously from 0.6 to 0 rad for EF,min = 0.2
to 1 eV). The solutions of this equation for the five first modes are depicted as black
lines in Fig. 5.4a and follow the simulated absorption maxima closely.

The norm of the electric field in the vertical direction for the two first modes is
represented in Figure 5.4b, clearly indicating the FP-type profile. Note that strongly
localized electric fields appear on the doping interfaces: this can be connected to
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Figure 5.4: (a) Simulations of the absorption in the cavity (color plot) as a function
of the size of the cavity and its doping level EF,min (from 0 to 1 eV). Outside the
cavity EF,in = 1 eV. The black lines represent the five first theoretical modes of the
FP cavity. (b) The norm of the electric field component in the vertical direction for
the two points indicated in (a).

nanoribbon modes reported in [115] and [24]. It was also observed for back-gated
graphene circuits in [21].

For higher doping of the cavity (EF,min > 0.6 eV), reflectance is too weak to
create a strong resonance. That corroborates with the single interfaces we examined,
see e.g. Eq. 5.5 or Fig. 5.5 in Sec. 5.2. For example, a doping difference of 0.4 eV
only provides maximum 10% of reflection.

It is worth noticing that a small cavity of only 50 nm can absorb nearly 70% of
the incoming light (point 1 in Fig. 5.4a). This absorption may be further improved
by the use of an asymmetric FP cavity, i.e. when the outgoing graphene part has
a different doping level than the incoming one. As an even tighter alternative,
however, we examine a design with a semi-infinite sheet of graphene in the next
section.
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(a) (b)

Figure 5.5: (a) A doping defect at the edge of a semi-infinite graphene sheet. The
doping profile is represented underneath. (b) The norm of the total electric field for
the resonance at λ = 4 µm and EF,cav = 0.25 eV for a d = 6 nm cavity.

5.5 Asymmetric cavity

In this section we propose an ultra-thin perfect absorber. In the previous FP sym-
metric cavity, the GP was trapped for many round trips and was gradually absorbed.
However, we only reached about 70% absorption. To achieve critical coupling the
easiest way is to limit the number of output ports. Thus, we design a semi-infinite
graphene sheet of EF,in = 1 eV doping (Fig. 5.5a), with the end zone (of length d)
doped with EF,cav = 0.25 eV. The latter value is chosen so that GPs are very lossy
between λ = 3 and 5 µm. Varying the size d of the low-doped zone, one obtains the
reflectance represented in Fig. 5.6.

For d = 6 nm, one gets zero reflectance, meaning 100% absorption since there
are almost no radiation losses (because of the remarkable impedance or density of
states mismatch between the GP and free space). Incidentally, we observe a highly
confined field in this zone for the mode without reflection (Figure 5.5b).

This resonant wavelength can by explained again via a Fabry-Pérot-type model.
Indeed, one fits a quarter of the effective wavelength in the cavity: d = λp/4 ≈ 6
nm, with λp ≈ 26 nm being the GP wavelength at λ = 4 µm and EF = 0.25 eV.

Even if a 6 nm cavity is really small, one could envisage smaller cavities. Indeed,
since the media involved are very lossy, from [116] one might get a resonance for
cavities of ≈ 1 nm, but this is beyond the application regime of pure electromagnetic
simulations, and ab initio computations would be more appropriate.

The calculations in Fig. 5.6 can be approximated by a multi-layer approach. The
reflection in a 3-layer model becomes

R =
∣∣∣r12 + t12t21r23e

−2jβ̃d + t12t21r
2
23r21e

−4jβ̃d + ...
∣∣∣2 (5.8)

=
∣∣∣r12 + t12t21r23e

−2jβ̃d{1 + r23r21e
−2jβ̃d + ...}

∣∣∣2 (5.9)

=

∣∣∣∣∣r12 + t12t21r23

∞∑
n=0

(
r23r21e

−2jβ̃d
)n∣∣∣∣∣

2

(5.10)

=

∣∣∣∣∣r12 +
r23t12t21e

−2jβ̃d

1− r21r23e−2jβ̃d

∣∣∣∣∣
2

(5.11)
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Figure 5.6: Plot of the reflectance of GPs with a change of doping from EF,in = 1
eV to EF,cav = 0.25 eV at the end of a semi-infinite graphene sheet with length d
indicated in the legend. Critical coupling is reached when the size of the smaller
doping zone is 6 nm. The grey dashed line stands for analytical Fresnel reflectance.

with 1 indicating the semi-infinite graphene part, 2 the edge defect and 3 the air
half-space, and where we used |r23r21| < 1 for the infinite series convergence. It is
known that when the GP reaches an air edge, it is totally reflected [34, 71, 32], the
phase shift induced by reflection being ≈ 0.27π [30, 23], so r23 = e−0.27jπ. The other
contributions are computed via Fresnel coefficients as done in Sec. 5.2. The solution
for d = 6 nm is plotted in Fig. 5.6 (grey dashed line). The match is not perfect
because of the evanescent fields involved due to the small size of the cavity, which
are not taken into account in Eq. 5.11.

5.6 Cavity with tapered interfaces

In this section we consider that the inhomogeneity is not abruptly shaped (as in
Sec. 5.4) but smooth (Fig. 5.1d). A theoretical study on this geometry was performed
for larger wavelengths neglecting losses [34], but here we focus on λ = 6 µm with
losses included. The reflectance and the transmittance are represented in Fig. 5.7a
and 5.7b depending on the size of the cavity d and its minimum doping EF,min. The
transition from the maximum EF,in = 1 eV doping to the varying minimum doping
(EF,min) is the cosine shape of Eq. 5.6.

As a check, when the minimum doping is close to 1 eV, the GP is totally trans-
mitted, since it is the doping of the main sheet. Moreover, for cavities longer than
200 nm, the reflectance is zero. That corroborates with Fig. 5.3 where the reflectance
is close to zero for tapers longer than 100 nm independently of doping changes (the
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Figure 5.7: Simulated color plot of (a) reflectance and (b) transmittance of a GP
through a smooth cavity as a function of its size d and the minimum doping of the
modulation EF,min. The GP is excited from an EF,in = 1 eV doped graphene sheet
at λ = 6 µm.
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cavities here are composed of two tapers, compare Figs. 5.1b and 5.1d). On the
other hand, when the minimum doping is lower than 0.15 eV, the reflection is small,
and decreases even more for larger defect sizes. This leads to a large absorption
reaching 100% for a cavity bigger than 250 nm (Figs. 5.7a and 5.7b, reflectance
and transmittance are nearly zero): the doping change is smooth enough to avoid
reflection (see Sec. 5.3) and the GP is gradually absorbed, with increasing losses
when the doping decreases.

Figure 5.8: Plot of the normalized H field for the maximum reflection condition:
EF,min = 0.2 eV and d = 75 nm. GP excited from the left. Strong reflection is
observed.

An interesting feature is the maximum reflectance (around 80%) for a small
defect of 70 nm and 0.2 eV minimum doping. The norm of the electric field is plotted
in Fig. 5.8. A very small field amplitude is transmitted, a large standing-wave in
reflection is observed. This is due to constructive interference in the reflection, which
is only possible with the limited defect size here.

Finally we point out that in Fig. 5.7a, other orders of reflection are barely visible
for larger cavity sizes (from 200 to 300 nm). Their intensity is very weak since the
GP are more damped with longer transition zones. This is consistent with [34] where
higher orders are clearly observed because the operating wavelength is larger, and
losses are missing.

5.7 Summary

This chapter discusses the reflectance and transmittance of GPs through various
doping change geometries. For all doping configurations the GP behavior is anal-
ogous to a simple plane wave Fresnel-type model, considering an effective medium
index. The plane wave analogy works well since the GP is the guided mode and
there are no radiation losses. However, the model deviates for smaller doping i.e.
lossier media since Fresnel coefficients need small corrections in this range.

In the case of an abrupt doping change, an analytic approximation of the re-
flectance is derived and only depends on the considered doping level. This for-
mula shows why the reflectance is stronger with higher doping contrast and why
reflectance is independent from the incidence direction. However, small deviations
for weak graphene doping appear because the approximation becomes less valid.
In order to decrease the reflectance, we then consider a smooth doping transition.
We calculate an increased transmission and find an optimal size of 100 nm for the
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1 to 0.2 eV taper, which is a trade-off between high reflection for abrupt changes
and high absorption for long transition zones. Indeed, reflectance diminishes rapidly
when increasing the transition length, and is already negligible for a 150 nm length
transition.

By combining these types of interfaces we investigate various cavity situations.
We first describe a localized abrupt doping change leading to about 70% absorption
for a 50 nm length cavity, which is described by a simple Fabry-Pérot model. Af-
terwards, the cavity is optimized to reach total absorption. The GP is impinging
the graphene edge, and is absorbed in the cavity formed by a local doping of only
6 nm length. Finally, cavities composed of two tapered interfaces are considered,
demonstrating 80% reflectance for a particular configuration.

We envisage this work to be useful for graphene circuitry. On the one hand, these
theoretical considerations help to understand the behavior of GPs encountering grain
boundaries, constituting a strong damping source. On the other hand, mastering
the doping profiles is important to control GPs. We demonstrate the possibilities
of trapping or transmitting the plasmon modes. Finally, the asymmetric cavity
could lead to nano-sensor applications if an adsorbed molecule locally changes the
electronic density.



6
Patterned graphene edges

6.1 Introduction

In Chapter 5, we found that graphene plasmons encountering the straight edge of a
graphene sheet are totally reflected, with a special phase. The anomalous reflection
phase was described later by Nikitin et al. in [30]. However, that particular total
reflection and phase is valid for a straight edge only; what happens for a patterned
edge? The previous two chapters were devoted to two-dimensional structures, where
we experimented with doping and gaps between graphene sheets and ribbons. Here,
we consider a more complex three-dimensional structure.

In this chapter we show that the reflection is strongly determined by the edge
structure. The examined ribbon grating case offers longitudinal and lateral edge
mode Fabry-Pérot resonances that drastically decrease the reflection for particular
ribbon length and width combinations, whereas it would have been nearly 100% for
a non-structured edge. The edge mode coupling is associated with phase changes,
influencing the positions of the longitudinal cavity modes. Furthermore, the rapidly
changing transmittance beyond such a resonance leads to particular points of critical
and near-zero reflection.

In Sec. 6.2, we describe the considered structure. The semi-infinite graphene
sheet is connected to a finite graphene ribbon grating. We characterize the grating
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by length and width and we fix the period in order to avoid diffraction. As a first
step, we assume a simple model with a fixed wavelength and doping.

Sec. 6.3 analyzes the reflection of a graphene plasmon impinging the patterned
edge, which constitutes our main result in this chapter. We describe the complex
reflection pattern observed by a simple Fabry-Pérot analytical model. Then, a
deeper investigation follows on the constitutive variables of the Fabry-Pérot model.
We analyse the case of a semi-infinite graphene ribbon connected to a semi-infinite
graphene sheet. The mode dispersion, the reflection and transmission phase together
with the reflectance and the transmittance are taken into account. This deeper
analysis concludes that lateral edge modes play an important role for specific ribbon
widths.

The final Sec. 6.4 discusses the broad validity of the results. The fixed doping
condition is released and we show that the doping does not influence the results if
they are judiciously normalized.

Most of the work in this chapter was presented in [35]

6.2 Graphene edge structure

The particular pattern we study is represented in Fig. 6.1. It is a grating at the
end of a semi-infinite free-standing sheet in air, with an edge described as a ribbon
array with elements of length l, width w and period p. This can be experimentally
realized for a sheet of graphene obtained with chemical vapour deposition in order to
have a large sheet of high quality, as discussed in Sec. 2.3.2. The micro-ribbon array
constituting the edge can be shaped using standard optical lithography followed
by oxygen plasma etching [117]. The grating is excited via an in-plane graphene
plasmon (GP), perpendicular to the edge (incidence along y axis, Fig. 6.1).

Figure 6.1: The patterned edge on a graphene sheet, with period p, length l and
width w. The norm of the incident graphene plasmon magnetic H-field is depicted
in the background.
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For this problem, full-wave three-dimensional calculations are needed. A single
period is simulated, delimited by Perfect Magnetic Conductor boundaries in the
x direction (since the GP propagates in parallel to the boundary), with Perfectly
Matched Layers on the y and z boundaries in order to account for radiation losses
(see Fig. 6.1 for axes). Graphene’s optical properties are defined by the graphene
permittivity established in Sec. 2.2. We fix the free-space wavelength to λ0 = 10 µm
and the doping level to EF = 1 eV, but this is fairly arbitrary and does not influence
our conclusions, as we will see in Sec. 6.4. The scattering lifetime of electrons is
τg = 0.16 ps. Thus, the graphene permittivity for an effective thickness of t = 2 nm
is ε = −185−6.4j, and the corresponding plasmon effective wavelength is λp = 1.16
µm. Note that the effective permittivity technique is used since the Boundary Mode
Analysis node of COMSOL does not compute modes along a conductive boundary,
see discussion in Sec. 3.1.2.

In order to make the analysis easier, we deliberately consider a grating period to
avoid diffraction. That condition is achieved for a period 2π/p > 2π/λp. Thus we
choose p = 0.95λp = 1.1 µm.

6.3 Results and discussion

The reflectance of an in-plane plasmon mode perpendicularly incident on the grating
constitutes our main result (Fig. 6.2), as we observe a rich characteristic as a function
of the ribbon length l (normalized to λp) and the width w (normalized to the period
p). Here, the reflectance is the power returned into the counter-propagating plasmon
mode (excluding the losses in the incident section), as we fixed p = 0.95λp there is
no diffraction towards other directions. If the graphene edge was unstructured, it
would give total reflectance, whereas now zones with near-zero reflectance appear
(blue zones), which means near-complete absorption as the radiation losses remain
very small. In the following we explain these features through models that are as
compact as possible.

Fabry-Pérot model

The considered structure (Fig. 6.1) can be viewed as a graphene sheet connected
with a finite graphene ribbon grating (GRG) of length l. A schematic of this problem
is represented in Fig. 6.3. As one can see, even this simple picture implies many
parameters to consider. However a simple model can be considered.

The reflectance dips appear when the plasmon is trapped in the grating: a GRG
mode is reflected back and forth with internally constructive interference. This
Fabry-Pérot (FP) resonance condition is

2<{β}l + ϕr21 + ϕr23 = 2mπ (6.1)

where <{β} is the real part of the propagation constant of the (fundamental and
only) GRG plasmonic mode, ϕr21 and ϕr23 are the reflection phases for the funda-
mental mode at the two different interfaces of the GRG cavity, and m is an integer.
Upon calculating <{β}, ϕr21 and ϕr23 (through separate simulations), we can repre-
sent the first five orders with white lines in Fig. 6.2.
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Figure 6.2: Reflectance of a GP impinging the patterned edge, as a function of nor-
malized ribbon width w/p and length l/λp. Theoretical Fabry-Pérot modes depicted
with white lines.

The single-mode description agrees well with the full-structure simulation results,
with deviations mainly for widths w > 0.7p that increase for smaller lengths l.
Indeed, at the interfaces evanescent modes are generated (similar to metallic edges
[118]) and they are expected to have a larger influence for short cavities (small
l) and larger w (better match with edge mode, discussed below). Note that the
complex modal reflection (or transmission) is written following the convention rij =√
Rije

−jϕrij .

Parameter analysis

We are now in a position to analyze the behavior of the resonances in more detail,
using as few parameters as possible, amongst others via the parameters of Eq. 6.1.
Fig. 6.4 represents the real part of the effective refractive index (<{neff}) of the
fundamental GRG mode (blue line) as a function of the ribbon width w (where
β = 2πneff/λ0). This mode (which builds up the resonance in the GRG) is highly
confined (large neff) for narrow ribbons, while for wider ribbons the mode ultimately
reaches the index of a pristine graphene sheet plasmon (red dashed line). If not
embedded in a grating (single ribbon, black dashed line), the dispersion of the
fundamental single ribbon mode approaches the edge mode dispersion (green dashed
line). Note that they dissociate at w ≈ 0.7p when the ribbon modes in the GRG start
to interact with their neighbours via the edge modes (edge mode and GRG dispersion
crossing). These edge modes will play an important role in our description.

The following parameters we analyse are simulated with a simpler system than
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Figure 6.3: Top view with the relevant reflection and transmission parameters at
the two interfaces. Lateral edge modes ce are sketched.
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Figure 6.4: Dispersion of the relevant modes as a function of normalized width (w/p).
The fundamental single ribbon mode is identical to the ribbon grating mode, except
when w/p approaches 1. In one hand, the single ribbon mode tends to the edge
mode effective refractive index as the field is more distributed on the edges. On the
other hand the ribbon grating mode tends to the effective refractive index of the
sheet mode since w/p = 1, physically corresponding to a graphene sheet. On the
right, the norm of the electric field is plotted for the different mode at w/p = 0.75.
From top to bottom: single ribbon, ribbon grating, edge and sheet modes.

the one depicted in Fig. 6.3. In order to extract the reflection and transmission
from a GRG to a sheet, we simulate a semi-infinite graphene sheet, connected to
a semi-infinite GRG. Then, we measure the reflection and transmission when the
mode is incident from the GRG or the graphene sheet.
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The phases in Eq. 6.1 have a direct influence on the modelled resonances (white
lines in Fig. 6.2). Fig. 6.5a represents the reflection and transmission phases of
the GRG plasmon at the interfaces of the FP cavity, see Fig. 6.3 for their defini-
tions. Fig. 6.5a shows two regions where the phases rapidly change (w/p < 0.2 and
w/p > 0.7). These fast changes are responsible for the slope variations of the FP res-
onances (blue regions, Fig. 6.2), also explicit in the single-mode model (white lines,
Fig. 6.2). They are both connected to a strong coupling with lateral (x direction)
FP resonances via edge modes (discussed below). The variation in the reflection
phase [119] of the GRG at w = 0.75p (ϕr23 , black dashed line) characterizes another
lateral FP cavity resonance at the end of the GRG (into air, see below). Note that
ϕr23 tends to the value 0.85 = 0.27π rad for a straight edge (w/p = 1), as already
mentioned in Sec. 3.3.3.

Finally, Fig. 6.5b shows the transmittance and reflectance from GRG to a graphene
sheet (T21 and R21) and the reflectance at the end of the grating (R23), see Fig. 6.3.
By reciprocity T12 = T21, so T21 (red line) also applies for transmittance from
graphene sheet to GRG. Similarly to the phase plot, there are two regions where the
reflectance and transmittance rapidly change (w/p < 0.2 and w/p > 0.7), making
those points particular.

We also calculated the average of the magnetic field z component at the lateral
edges of the sheet-grating interface (Fig. 6.5b, green-dot line, right axis). At this
interface only part of the energy stays in the y directed longitudinally propagating
modes (R21 + T21 < 1). With negligible radiation losses and without other longitu-
dinally propagating modes, the remaining energy flows towards evanescent modes,
determined as ce = 1−R21−T21 (green line, Fig. 6.5b). The evanescent contribution
ce mainly corresponds to the edge mode, propagating in the lateral x direction [115]
(sketched in Fig. 6.3).

This is correlated with the averaged edge magnetic field (green line and dots in
Fig. 6.5b): two peaks are observed at w = 0.15p and 0.7p. The corresponding electric
fields are represented in Fig. 6.6a and Fig. 6.6b and they indicate a third order and
a first order lateral FP resonance along the edge, respectively. Accordingly, the
Poynting vectors (green arrows, Fig. 6.6a and 6.6b) exhibit an enhanced energy flow
along the x direction edge. Note that the second order resonance, characterized
by a node at the boundaries of the period, is not allowed by the symmetry of the
excitation. At the other end of the grating (to air), a similar edge mode lateral FP
resonance at the end of the ribbons is responsible for the R23 reflectance dip around
w = 0.75p (black dashed line, Fig. 6.5b).

Synthesis

Now we have the elements to understand the complete structure. The first order
(lateral) resonance (Fig. 6.6b) is responsible for the disappearance of the (longitu-
dinal) FP modes around w = 0.7p in Fig. 6.2 (a band of higher reflectance appears,
in between low reflectance zones). Indeed, in Fig. 6.5b the transmittance T21 falls to
nearly zero, while edge mode coupling reaches 40%, which weakens the GRG cavity
mode. Note that this particular width w = 0.7p corresponds with the crossing point
of the edge mode and the grating ribbon dispersion (Fig. 6.4). The coupling with
edge modes is also present at the other interface (towards air) of the GRG: the
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Figure 6.5: (a) Reflection and transmission phase shift at the interfaces. (b) Re-
flectance and transmittance at the two interfaces. ce represents coupling with evanes-
cent modes. The right axis shows the z-component magnetic field average at sheet-
grating interface edge (dots).
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Figure 6.6: Top view of the graphene sheet with the real part of the y-component
of the electric field for (a) w = 0.15p and (b) w = 0.7p, corresponding to lateral
(x-direction) FP resonances of the edge mode. The excitation comes from the top
via a semi-infinite GRG and is transmitted to a semi-infinite graphene sheet at
the bottom. Poynting vectors are sketched in green arrows, with the arrow length
depicting the vector norm in logarithmic scale.

reflection R23 is nearly 100% except around 0.75p, where the energy is absorbed at
the edge (dashed black line in Fig. 6.5b).

The other lateral edge mode resonance (peak around w = 0.15p in Fig. 6.5b)
however, does not spoil the reflectance dip in Fig. 6.2 at w = 0.15p. This is under-
stood considering that the transmittance T12 = T21 is not affected in this case (red
line in Fig. 6.5b). The altered parameters are the reflectance of the GRG plasmon
R21 where a dip appears (blue line in Fig. 6.5b), and the slope of the phase ϕr21
(blue line in Fig. 6.5a). The latter influences the white line slopes in Fig. 6.2 for
w < 0.15p.

Finally, we focus on the brutal changes of transmittance T21 and reflectance R21

when w/p > 0.8 (Fig. 6.5b). At the final value (w/p = 1) the grating becomes a
graphene sheet, leading to the absence of an interface, thus total transmittance and
zero reflectance. Therefore, in the range w/p > 0.8, the losses remain fairly constant,
while reflectance and transmittance change very rapidly. This leads to a particular
value of w/p that achieves critical coupling (losses equal coupling), whereas the
other values are under- or overcoupled. This explains the localized minima (tight
blue spots in Fig. 6.2) in this regime, in contrast to the more extended FP resonances
for w/p < 0.8 (elongated blue minima zones).

6.4 Broad validity range

The results in the previous section were computed with fairly arbitrary wavelength
and doping (λ = 10 µm and EF = 1 eV). In this section, we show that the phe-
nomena are very similar for different dopings and wavelengths, if the structural
parameters are scaled with the plasmon wavelength of the graphene sheet, so the
conclusions are more general.
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6.4.1 Doping

To asses the broad validity range, we plot the graphene plasmon reflectance as a
function of the normalized width in Fig. 6.7 for different doping. The length of the
GRG is fixed to l/λp = 0.93 (ordinate of Fig. 6.2). Incidentally, the 1 eV curve
(magenta in Fig. 6.7) is a horizontal cross-section of Fig. 6.2. All results in Fig. 6.7
are normalized by the graphene sheet plasmon wavelength, which depends on the
doping. For example, 0.2 eV doping leads to a plasmon wavelength of λp = 212 nm,
thus the width w is normalized by the period p = 0.95λp = 201 nm and the length
l = λp = 0.93λp = 212 nm.
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Figure 6.7: Graphene plasmon reflectance as a function of the normalized width
for different doping with a fixed length of the GRG (l = 0.93λp). The operating
wavelength is 10 µm. The normalization is thus different for each doping: for 0.2
eV, λp = 0.21 µm, for 0.4 eV, λp = 0.46 µm, for 0.6 eV, λp = 0.70 µm, for 0.8 eV,
λp = 0.93 µm and for 1 eV, λp = 1.16 µm.

The reflectance of the graphene plasmon (Fig. 6.7) behaves similarly for varying
doping. The three dips represent three different orders of the FP cavity discussed in
Sec. 6.3. We observe similar curves for all doping values, except for 0.2 eV, where
the dips are less pronounced. In the following, we explain the invariant position of
the peaks and the damping.

First, we show that the doping has no influence on the FP resonance positions.
That assumption is correct if the parameters in Eq. 6.1 remain largely invariant with
doping variation. Examining <{β}, we plot the propagation constant of the GRG
(normalized by the propagation constant of the graphene sheet) as a function of the
normalized ribbon width in Fig. 6.8a. The results of doping varying from 0.2 to 1
eV overlap each other. Therefore, no deviation is expected if the length of the GRG
is normalized by the sheet plasmon wavelength (2π/βsheet).

Note that Fig. 6.8a shows that the dispersion of a GRG (βGRG) only depends
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Figure 6.8: (a) Propagation constant of the GRG mode normalized by the propaga-
tion constant of the graphene sheet mode as a function of the width of the ribbon.
The curves and points overlap. (b) Reflectance and (c) transmittance from the GRG
to the graphene sheet. The doping influence is stronger with small doping.

on the graphene plasmon propagation constant and the width of the ribbon. That
observation corroborates with the scaling law for single ribbons discussed in [24].
Finally, the remaining terms in Eq. 6.1 that we need to discuss are the reflection
phases. The plots are not shown here, but the curves are close to each other.

Second, we focus on the reflectance and the transmittance at the interface be-
tween the graphene sheet and the GRG. They are represented in Figs. 6.8b and
6.8c for different doping levels. The curves are similar, with a deviation for smaller
doping. That behavior can be explained by the losses. Indeed, with smaller doping
and constant wavelength, damping is stronger: the condition ~ω � 2EF is no longer
fulfilled and interband transitions start to occur and, as already demonstrated in
various works [114, 120] and discussed in Chapter 5, the increase of the imaginary
part of the propagation constant has an influence on the reflection coefficients. If
the phase of the reflection plays a role for the position of the dip, the amplitude
has an influence on their depth (see also Eq. 5.11 from the previous chapter). That
explains why the dips in Fig. 6.7 are less pronounced for 0.2 eV doping (reflectance
is about 20% stronger), but occur at the same w/p.
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Figure 6.9: Graphene plasmon reflectance as a function of the normalized width for
different wavelength with a fixed length of the GRG (l = 0.93λp). Graphene is 1
eV doped. The normalization is thus different for each wavelength: for λ = 4 µm,
λp = 0.18 µm, for λ = 8 µm, λp = 0.74 µm, for λ = 10 µm, λp = 1.16 µm and for
λ = 12 µm, λp = 1.67 µm.

6.4.2 Wavelength

Following the same normalization procedure of the previous section for w and l,
we perform simulations for different wavelengths, with doping fixed to 1 eV. The
reflectance as a function of the normalized width is represented in Fig. 6.9. As we
can see, the FP condition remains invariant, since the dip minima positions match
for the different wavelengths. From the previous discussions it indicates that the
reflection phase and the propagation constant are invariable with wavelength, within
the considered normalization.

Similarly to the doping influence, the depth of the reflectance dips in Fig. 6.9
are adjusted by wavelength changes (about 20% under the considered wavelength
range). That could be explained with an investigation of the amplitude of the
reflection and transmission, as previously discussed (but not shown here).

Summarizing, owing to the similarities between various dopings (Fig. 6.7) and
wavelengths (Fig. 6.9), with judicious normalization, we can conclude that the re-
ported graphene grating behaviour is fairly general.

6.5 Summary

Plasmon reflectance at the edge of a graphene sheet is profoundly influenced by its
shape. Indeed, the examined ribbon grating demonstrates a nearly zero reflection
for particular size configurations, where it would have been nearly 100% for a non-
structured edge.
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The reflection is strongly influenced by the length and the filling factor of the
ribbon grating. That is explained with simple Fabry-Pérot resonances, examining
the propagation constant and the phase of reflection and transmission. However, the
reflectance and transmittance are not trivial. We show that they are strongly influ-
enced by lateral edge modes. This assumption is further supported by integrating
the field along the edge and by analyzing the Poynting vector.

Although the edge mode lateral resonances hamper the longitudinal Fabry-Pérot
resonances, they are also responsible for particular points of critical and near-zero
reflection caused by the rapidly changing transmittance beyond such a longitudinal
resonance.

Finally, we examine the influence of the doping on the reflectance, transmittance
and effective index. We show that the effective index of the grating guided mode is
independent of the doping, when normalized by the effective index of the graphene
sheet plasmon. On the other hand, the doping influences slightly the reflectance and
the transmittance, caused by the lossy interface arising from lower doping. We also
show that the same conclusions are valid for a range of wavelengths, so our main
result is general for various dopings and wavelengths.

These results are of importance for designs of graphene sheets and flatland cir-
cuits, since we show that geometric deviations from straight edges induce drastic
changes on the reflection properties. The conclusions thus apply to the design of
nano-optical circuitry, sensors and antennas that employ graphene plasmons.



7
Coupled graphene disks

7.1 Introduction

In this chapter, we introduce another excitation type of plasmonics: the localized
surface plasmon resonance (LSPR). These LSPRs are non-propagating, which is
different from the other chapters. The effects of this phenomenon has been known
for a long time, especially by artists. They used them to generate brilliant colors
in glass artifacts and artwork, including gold nanoparticles of different size into the
glass to create a multitude of colors. For example, the Lycurgus cup from Roman
empire has a green color with reflected light and shines red with transmitted light.

The theoretical description of LSPRs on spherical nanoparticles was first de-
scribed by Gustav Mie in 1908. Since then, with the improvement of nano-fabrication
techniques, or modern characterization techniques, applications of these LSPRs have
been flourishing. At present, metallic nanoparticles with various shapes from spheres
to triangles and nanorods are widely investigated [37, 38, 39, 40]. They demonstrate
a strong interaction with incident light, with for example hot spots on tips, enabling
them for a wide range of applications such as biosensing [42], nonlinear optics [43],
nanocircuits [3], and optoelectronics [44]. Even more recently, their scattering prop-
erties were mastered to design a transparent screen display [121] and an invisibility
cloak [45].
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Strong field enhancements also appear on the edge of two adjacent nanoparti-
cles [41], so that two dipolar modes hybridize and localize the charge density on
the junction edges [122]. This hybridization can reveal higher order modes that are
not excitable at normal incidence for a single particle [46] (higher order resonance
can appear for a single particle under non-normal incidence [39]). These so-called
dark modes become bright thanks to the near-field excitation of the neighbouring
resonances, as experimentally observed [123, 124]. Recently, studies of clusters con-
sisting of even more particles (dimer, trimers, pentamers etc.) have flourished, in
search of hot spots or tunable asymmetric resonances known as Fano resonances
[99].

Another interesting aspect of nanoparticle dimers concerns the regime where
the two nanoparticles are connected by a conductive junction, allowing the charges
to oscillate in between the two metallic particles [47]. Several experiments and
simulations reveal that this connection drastically alter the optical spectra, because
the charge transfer tends to neutralize the two individual plasmonic charges and
it creates a new low energy resonance called a charge transfer plasmon (CTP) [47,
125]. The latter depends on the conductance of the junction, and is governed by
quantum [126] or classical properties [127] depending on the width of the junction. A
particular interest of this junction characterization is to achieve molecular junction
conduction measurements, since standard electrical transport measurement cannot
be performed in gigahertz and higher frequencies regime due to the strong capacitive
coupling between electrodes.

However, in metallic clusters, the only effective way to vary the optical response
of the system is to change the physical configuration. For example, one needs to vary
the size [40], change the metal [47], shift the configuration [128] or create a disk-ring
nanostructure [129]. With bridged dimers, the variation of the optical response is
achieved through the conductance of the junction: in [127], they vary the size of
the junction and in [47, 125] they choose another metal. As discussed throughout
this thesis, graphene is highly tunable via Fermi level doping. This chapter demon-
strates how the parameters flexibility can modulate the optical response of localized
resonances.

Experimental realization of graphene nanodisks have already been achieved [64].
Generally, a graphene sheet is grown using the chemical vapour deposition method,
as explained in Sec. 2.3. A monolayer of polystyrene spheres is prepared on the
graphene surface. Then, oxygen plasma is applied to transform the closely packed
nanosphere monolayer into arrays of separate nanospheres. Areas of graphene that
are not shadowed by the nanospheres are etched away. Finally, the spheres are
removed by sonication in ethanol. Local doping can be reached with N-doping of
graphene: local N+ ion irradiation creates vacancy defects in graphene that are filled
by N atoms after annealing in NH3 [67]. More details are provided in Sec. 2.3.3.

In this chapter, we consider 60 nm wide nanodisks of graphene and 25 nm wide
graphene junctions. As already explained in Sec. 2.2.4, the finite-size quantum effects
are not taken into account in our simulations. Related to nanodisks, experimental
measurements of the extinction cross-section of a 50 nm diameter graphene nanodisk
closely correspond with classical simulations [64]. One can observe a small red-shift
and broadening of the resonances, known as edge-state damping in zig-zag edge
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Figure 7.1: Illustration of the dimer considered, with the hybridization of the modes.

configurations [72], but the main conclusions of classical theory remain. Note finally
that the 5 nm gap between the two nanodisks does not have a strong influence
on the extinction cross-section for both zig-zag and armchair configurations. The
main contribution to the induced dipole originates from induced charges distributed
over regions away from the gap [130]. In this case, however, the local electric field
enhancement is hardly influenced by the edge conformation, so we will not analyse
the field enhancement in this chapter. Concerning the quantum effect in the ribbon
graphene junction, classical simulations are valid for ribbons wider than 20 nm [24].
In [24], this statement is for doping higher than 0.4 eV, so the doping of our 25 nm
graphene junction only varies between 0.4 and 1 eV.

Sec. 7.2 expands the work of single graphene disk modes. Indeed, graphene
disks have already been studied theoretically and experimentally in gratings [64, 74].
However, these studies only consider the first dipolar mode of single disks. We show
that there exist higher order modes that are dark (or subradiant) under normal
incidence. The study of those single disk modes is of prior importance regarding
asymmetric graphene dimers.

In Sec. 7.3, we consider two graphene disks under normal incident plane wave.
Symmetric graphene dimers have been reported before [64, 130, 131, 132], but here
we discuss the interaction of two graphene disks with different doping levels. This
asymmetric dimer structure creates a rather complicated infrared response, as the
plasmonic modes hybridize and new resonances appear, as illustrated in Fig. 7.1.
Indeed, mode coupling converts dark higher order modes into visible, relatively nar-
row resonances. On the other hand, the coupling of two dipolar, bright resonances
can create a subradiant coupled mode, which thus disappears as the doping is tuned.
The section is subdivided in two parts, considering parallel and perpendicular polar-
izations respectively. The slightly different response under the two polarizations is
analysed, resting upon the single disk modes described before and a classical model
of two coupled oscillators.

The last section discusses graphene dimers connected by a graphene ribbon. The
tunable, conductive junction allows charges to oscillate in between the two disks,
creating a new narrower and enhanced resonance, the charge transfer plasmon. The
dipolar-dipolar resonance is blue-shifted and weaker because it is screened by the
charge transfer (screen bonding dipolar plasmon).

In this chapter, we perform full-wave three-dimensional simulations, where the
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Figure 7.2: Scheme of the graphene nanodisk structure, with tunable doping. The
incident plane wave is z directed.

graphene disks are modeled with the optical conductivity in the x − y plane. A
sphere includes the disks with a background field defined as E =

(
E0e

jk0z, 0, 0
)

for
an x-polarized incident plane wave where E0 = 1 V/m and k0 is the wavevector in
the air. A Perfectly Matched Layer is designed all around the sphere to absorb the
outgoing wave energy.

Most of the work in this chapter was presented in [36].

7.2 Single disk

We investigate the absorption efficiency of a free-standing single graphene circular
disk of diameter D = 60 nm under normal irradiation (z directed; see Fig. 7.2).
Usually, the extinction (sum of absorption and scattering) of the incident elec-
tromagnetic field is considered, however, in our case scattering is negligible (by
three orders of magnitude), since the nanodisk is small in comparison to the wave-
length (D << λ0) [74]. Therefore, we only consider the absorption efficiency (Qabs)
where the absorption (A) is normalized with the irradiance (I) and the surface area
(G = π(D/2)2) as demonstrated in Sec. 3.3.2

Qabs =
A

IG
=

8Acµ0

|E0|2 πD2
(7.1)

where we used the energy of the plane wave (Eq. 3.17) for the irradiance, with c the
speed of light in vacuum, µ0 the vacuum permeability and E0 the incident electric
field [95].

The absorption efficiency of a single disk is plotted in Fig. 7.3 (logarithmic scale),
as a function of doping and the incident wavelength. As demonstrated in previous
studies [64, 74, 131], the dipolar mode (solid red band) dominates and reaches an
absorption efficiency of 25, which is 10 times higher than for conventional metal nan-
odisks [39]. Another mode appears weakly for smaller wavelength and doping, with
an absorption efficiency of Qabs ≈ 10−2 (light blue-green band below 0.5 eV). Note
that the curve slopes downward for the two modes: indeed, analogous to graphene
plasmons described in Sec. 3.2.2, a smaller doping implies a smaller imaginary part
of the optical conductivity of graphene i.e. a higher effective index or a higher con-
finement of the field [31, 60]. Finally, a fairly constant absorption is observed for
doping levels beneath the continuous white line. The latter represents the limit
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~ω = 2EF : for smaller EF interband transitions occur and graphene becomes di-
electric, with the well known value of 2.3% absorption of a graphene sheet [17] as
already described in Sec. 2.2.
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Figure 7.3: Logarithm of the absorption efficiency (Qabs) for a single nanodisk as a
function of disk doping EF and incident wavelength. The dipolar mode dominates.
A fairly constant absorption appears when graphene is dielectric (below the solid
white line). The theoretical dashed black lines stand for the first six disk modes.

This optical response can be modeled using the Coulomb potential produced by
the induced charge density [64, 74]. Searching for modes leads to an eigenvalue prob-
lem corresponding with a real, unitless value (noted as ηj) for each mode j, which
depends on the geometrical shape of the graphene flake. A more detailed math-
ematical demonstration is available in Appendix B. The resulting transcendental
equation is

ηj =
−jσ(ω,EF )

4πε0ωD
(7.2)

with ε0 the vacuum permittivity and σ(ω,EF ) the optical conductivity of graphene
from Sec. 2.2. Once the geometry of the graphene flake is fixed, the value of ηj is
fixed for all doping EF , frequency ω and disk diameter D.

In Fig. 7.4 we show the various mode profiles with the corresponding ηj value,
with j numbering the mode. The mode profiles are the total charge density com-
puted using the time-harmonic current continuity from Sec. 3.1.2 (ρ = −∇∇∇·J/(iω)),
with J the current density computed in COMSOL. We mainly observe a linear charge
on the edge for the dipolar mode (mode 0), with more charge appearing on the sur-
face for higher order modes. The sixth mode (mode 5) is a higher order dipolar
mode and shows a radial node. Note that the first mode value (η0 = 0.07) matches
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the theoretical value of a perfect conductor disk [96] (η0 = (3π2/2)−1 = 0.07) and a
previous study of graphene disk resonances [64] (η0 = 0.08).

Figure 7.4: Six first mode profiles (charge distribution) of the graphene nanodisks
with their corresponding ηj eigenvalue.

This fundamental parameter ηj is determined after computing the resonant fre-
quency once for a fixed (but fairly arbitrary) EF = 0.4 eV with the COMSOL eigen-
frequency solver. With the ηj value we easily determine the resonant frequency for
the particular mode for all doping levels, solving the transcendental Eq. 7.2. In this
way the mode dispersions of the six first modes are plotted in black dashed lines on
Fig. 7.3, in good agreement with the full simulations. One observes that only the
dipolar modes (modes 0 and 5) couple with the incident electric field; all the other
modes are dark due to the incompatibility of their symmetry with the excitation.
In order to excite these dark modes, we need to employ asymmetric dimers, as in
the following section.

7.3 Graphene dimers

We demonstrate that a free-standing graphene dimer gives rise to a more complicated
pattern of absorption when the doping is tuned judiciously. Indeed, the modes of
the two disks hybridize and give rise to various anti-crossing effects. We examine a
60 nm diameter disk with 0.4 eV doping, placed at 5 nm distance from a second disk
with doping varying from 0 eV to 1 eV (see Fig. 7.5). We investigate two directions
of polarization of the incident electric field: parallel (x directed, Sec. 7.3.1) and
perpendicular (y directed, Sec. 7.3.2). The incidence direction remains perpendicular
to the disk planes (along z axis).

7.3.1 Parallel polarization

The absorption efficiency as a function of wavelength and doping is plotted on
Fig. 7.6 for x directed electric field excitation. The first observation is the increase of
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Figure 7.5: Graphene dimer with one disk of 0.4 eV doping and the other of varying
doping. Normal incidence along z direction.

the complexity of the absorption pattern in comparison with the single disk absorp-
tion efficiency (Fig. 7.3). The continuous black lines represent the first six modes
of a single disk (with varying EF values) as explained in Sec. 7.2, and the vertical
dashed lines are for a fixed 0.4 eV doped disk. We observe a superposition and
interaction of these modes. The fundamental dipolar modes (mode 0 in Fig. 7.4) of
the two disks dominate the spectra, but complexity appears where modes cross, e.g.
around points 1 and 2 and around points 3 and 4, which gives rise to anti-crossings
of a different nature, as we will discuss.
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Figure 7.6: Logarithm of the absorption efficiency of a graphene dimer with a fixed
0.4 eV disk and a varyingly doped disk (from 0 to 1 eV) as a function of the
wavelength for x polarization. Solid black lines represent the first six modes with
varying doping, the vertical dashed lines for 0.4 eV. The horizontal white dashed
line indicates equally doped disks. Blue lines are from perturbation theory.

The particular shape of the anti-crossing bands can be described with a classical
model of two coupled oscillators [26]. Following the energy level analogy, we convert
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the resonant wavelength λr into energy level E, which is simply E = 2πc~/λr. With
Ei (Ev) the energy level of a single disk mode with invariant EF = 0.4 eV (varying
EF ), corresponding to the black dashed (solid black) lines in Fig. 7.6, the perturbed
Hamiltonian of the model is

Ĥ = Ĥ0 + Ŵ =

(
Ei +W11 W12

W21 Ev +W22

)
(7.3)

with Ŵ the perturbation induced by the disks coupling. For simplicity, we suppose
a reciprocal coupling (W12 = W21 = ∆) and a non-diagonal perturbation matrix
(W11 = W22 = 0). This last assumption is not totally correct in parallel polarization,
as we will explain later. However, it does not change our final result. Indeed, if W11

and W22 are non-zero, this can be induced via Ẽi = Ei + W11 and Ẽv = Ev + W22.
All the results then remain true after replacing Ei and Ev by Ẽi and Ẽv. The
eigenvalues of the coupling problem ĤΨ = E±Ψ are [133]

E± =
1

2
(Ei + Ev)±

1

2

√
(Ei − Ev)2 + 4∆2 (7.4)

The only undetermined parameter ∆ can be fitted to follow the particular anti-
crossing pattern. The results of this perturbation theory are plotted in blue lines
for two anti-crossings on Fig. 7.6, as discussed below.

First, we describe the interaction between the two dipolar modes of similar dop-
ing EF = 0.4 eV (around λ0 = 6.5 µm). This is the particular case of the bonding
and anti-bonding dipolar dimer plasmon [127]; we observe an anti-crossing between
two dipolar single-disk modes. The coupling ∆ between these two modes lifts the
degeneracy and we obtain two solutions (blue curves in Fig. 7.6) E+ (on the left,
smaller wavelengths) and E− (on the right). Here, we fit ∆ = 20 meV, and take
the single disk resonances Ei = 0.20 eV and Ev varying from 0.17 to 0.22 eV. The
blue curves correctly follow the absorption pattern but are slightly blueshifted. In-
cidentally, the vertical dashed line of the fixed 0.4 eV doped graphene disk is also
shifted from the absorption results in Fig. 7.6. This is due to the approximation
W11 = W22 = 0 as discussed above and could be adjusted by adding non-zero W11

and W22.
The resulting modes are a linear combination of the two (nearly) identical dipolar

modes (mode 0 in Fig. 7.4). The two possible combinations are illustrated in Fig. 7.7
for parallel polarization (horizontal arrows in the table). The lower energy mode
combination corresponds to E− and to a strong resonance since the dipolar moments
are parallel and add up (top-left of Fig. 7.7) [122]. On the other hand, the other
combination requires higher energy (E+) as the dipolar moments are opposed, but
resulting in a zero total dipolar moment (bottom-right of Fig. 7.7). Due to the
symmetry of the excitation, the latter mode is dark in our spectrum, which explains
the lack of resonance at point 1 of Fig. 7.6, and the strong resonance at point 2. This
is further supported by the plot of the corresponding field enhancement on Fig. 7.8
(1) and (2): they are both identically scaled in order to distinguish the dark mode
(1) from the bright mode (2).

Secondly, we describe the anti-crossing of two qualitatively different modes: the
dipolar mode of the 0.65 eV doped disk and the quadrupolar mode of the 0.4 eV
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Figure 7.7: Possible linear combinations of the dipolar modes for parallel (horizontal)
and perpendicular (vertical) polarizations. The arrows indicate the dipolar moment
directions of the involved single disk resonances.

doped disk (point 3-4 around 5 µm in Fig. 7.6). The blue curves for perturbation
theory are plotted in this area and follow the absorption pattern. In this case ∆ = 8
meV, indicating a smaller coupling with higher order modes (compared to 10 meV
of dipolar-dipolar interaction): the charge density on the edge near the other disk
is smaller for the quadrupolar mode, as charges are more distributed all along the
edge (see mode 1 in Fig. 7.4, 2 positive and 2 negative poles). For this coupling, the
normally dark quadrupolar mode (no coupling in Fig. 7.3) becomes bright over a
large EF range thanks to the evanescent field of the neighbouring dipolar mode. At
the crossing point, we then observe the quadrupolar resonance (point 3 on Fig 7.6)
as it can be seen with the enhancement of the electric field on Fig. 7.8 (3) and the
dipolar mode (point 4 on Fig 7.6) represented on Fig. 7.8 (4). Note that we still
observe the redshift of the modes as explained previously.

Furthermore, the sixth mode for each disk is (weakly) visible in Fig. 7.6: vertical
dashed line around λ0 = 3.3 µm and lowest black curve. At their crossing (around
point 5) the modes are not perturbed (∆ negligible), and do not interact as suggested
by the electric field enhancement (Fig. 7.8 (5)). Indeed, the evanescent field at the
edges demonstrates a faster decay than the lower order modes reducing the coupling
strength.

Finally, the charge density profile of point 6 in Fig. 7.6 is depicted in Fig. 7.8
(6). At this wavelength (λ0 = 6.35 µm), the 0.1 eV doped graphene disk (at right)
is dielectric, and the incident electric field only couples with the dipolar mode of
the fixed 0.4 eV doped graphene disk. Note that the redshift of the mode compared
to the theoretical single disk vertical dashed line does no longer appear: there is no
free charges on the dielectric disk at this frequency to perturb the mode.

7.3.2 Perpendicular polarization

In this section we briefly discuss the perpendicular y directed electric field polariza-
tion (Fig. 7.5), with absorption efficiency in Fig. 7.9. Again, the first six modes of
single disks are represented with a solid (varying EF values) or dashed black line
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Figure 7.8: Enhancement of the electric field (total electric field over incident electric
field: |E| / |E0|) for the particular points of Fig. 7.6. The dashed white disks repre-
sent the edge of the graphene disk when there is no resonance. The plot numbers
indicate the points in Fig. 7.6.

(EF = 0.4 eV).

Generally, one observes a smaller influence of the second disk than in the previous
section. First, there is no redshift of the modes in this case. Second, the anti-
crossings are less pronounced. For example, the dipolar-dipolar anti-crossing around
0.4 eV and λ0 = 6.3 µm shows a coupling of ∆ = 4.5 meV, twice smaller than
∆ = 10 meV for parallel polarization (Sec. 7.3.1). The quadrupolar-dipolar anti-
crossing (around 0.65 eV and 4.8 µm) is also characterized by a weak coupling of
∆ = 4 meV. Indeed, with perpendicular polarization the charge densities are not as
concentrated at the edge of the small gap between the two disks (Fig. 7.7 top-right
and bottom-left), reducing the influence of the neighbouring disk, and explaining
the better fit between single disk resonances and the simulated dimer absorption.

We focus now on an anti-crossing of dipolar-dipolar modes (between λ0 = 6 to
7 µm and around EF = 0.4 eV). An important difference appears in comparison to
the parallel polarization case in Fig. 7.6. In perpendicular polarization the bright
resonance occurs at high energy (short wavelength), while the dipolar moments
cancel at low energy. In this case, the resonant energy is smaller when the charge
oscillates out of phase (see Fig. 7.7) and the dark mode therefore appears on the
right (higher wavelength) side of the anti-crossing.

7.4 Tunable charge transfer dimer

An alternative way to induce a tunable response is to introduce a charge transfer
component. This consists e.g. in a graphene bridge connecting the two disks, which
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Figure 7.9: Logarithm of the absorption efficiency of a graphene dimer with a fixed
0.4 eV disk and a varyingly doped disk (from 0 to 1 eV) as a function of the
wavelength for y polarization. Solid black lines represent the first six modes with
varying doping, the vertical dashed lines for 0.4 eV. The horizontal white dashed
line indicates equally doped disks. Blue lines are from perturbation theory.

allows electric charges to oscillate from one disk to the other: the charge tranfer
plasmon (CTP). It was demonstrated that the CTP properties for metals strongly
depend on the junction conductance [127]. Graphene is therefore a very suitable
CTP material due to its tunable conductivity.

Here, we examine two graphene disks (diameter D = 60 nm) separated by a
distance of 15 nm and with the same doping (0.4 eV). We add a charge transfer
junction of 25 nm wide, see Fig. 7.10a (classical electromagnetic simulations are
accurate for ribbons wider than about 25 nm [24]).

In this system we vary the junction conductance via the graphene conductivity,
from 0.4 eV to 1 eV. The absorption is plotted in Fig. 7.11 for the wavelength range
4-18 µm. The hybridized non-bridged dipolar-dipolar resonance around λ0 = 6.5
µm is also shown for comparison (dashed line). Note that the maximal absorption
efficiency is smaller than previously, due to the longer distance d = 15 nm between
the two nanodisks (d = 5 nm in Sec. 7.3).

When the dimer is bridged, two groups of resonances are distinguished: one is
redshifted, while the other group appears at smaller wavelengths. The blueshifted
family of resonances is called the screened bonding dipolar plasmon (SBDP) [125].
The non-bridged dipolar-dipolar resonance, which is a capacitive coupling over the
dimer gap, is screened by the charge transfer, inducing a blueshift and a weaker
absorption efficiency. The charge densities are plotted in Fig. 7.10c for 0.4 eV doping
throughout. The dipolar modes of the two nanodisks are still visible, as charge also
appears on the edges of the junction. In the case of small doping, the resistance in
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(a)

(b) (c)

Figure 7.10: (a) Scheme of the charge transfer structure. Charge density of the 0.4
eV doped junction for (b) CTP at λ0 = 14.3 µm and (c) screened bonding dipolar
plasmon (SBDP) at λ0 = 5.7 µm.

the junction increases, reducing the screening and therefore the blueshift.
The redshifted resonances are the charge transfer plasmons, the particular oscil-

lation of the electrons between the disks is presented on Fig. 7.10b: one disk is a
positive pole and the other a negative one. This is completely different from Sec. 7.3
where the charges oscillate separately on each disk (Fig. 7.7). With the junction the
dimer acts as a continuous particle of larger length, which consequently induces a
redshift.

The magnitude of the redshift depends on the time needed for the electrons to
cross the junction, which is inversely proportional to the conductance [127]. In our
case the only varying factor is the conductivity as the junction size is invariant.
This explains why 1 eV doped graphene (higher conductivity) resonates at smaller
wavelength than lightly doped graphene junctions.

Note finally that the peak is narrower for higher doping i.e. better conductivity.
This last assumption can be understood with a simple resistor model (Fig. 7.12)
where the disk and the junction are replaced by serial resistors rd and rj [127]. The
power dissipated Wj in the junction when a potential V is applied is

Wj =
V 2rj

(2rd + rj)
2 (7.5)

The conductivity and the resistance are inversely proportional, with a constant
depending on the geometry of the conductor (Pouillet’s law). Therefore

Wj = V 2

cj
σj(

2 cd
σd

+
cj
σj

)2 (7.6)

= V 2 cjσj(
2
cdσj
σd

+ cj

)2 (7.7)

where cj and cd are the geometric constants of the junction and the disks, respec-
tively. At those wavelengths (≈ 12 µm), we have ~ω ≈ 0.1 eV � EF , and we can
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Figure 7.11: Absorption efficiency of a graphene charge transfer dimer with varying
bridge doping. The non-bridged dipolar-dipolar resonance is plotted in black dashed
line for comparison.

use the Drude approximation for the graphene conductivity (see Eq. 2.15). We then
have σ ∝ EF and that leads to

Wj = C
EFj(

2
cdEFj

cjEFd
+ 1
)2 (7.8)

where C = −2jV 2e2

cj~2π(ω−jτ−1)
. In our case, the doping of the disks EFd is constant.

EFj dominates in the dominator (squared) and therefore, the increase of the junc-
tion doping EFj decreases the energy dissipated in the junction. As discussed in
Sec. 3.3.4, decreasing damping narrows the resonance, and we observe a sharper
peak for high doping.

7.5 Summary

This chapter discusses the infrared response of graphene nanodisks under various
geometries: single disks, asymmetrically doped dimers and charge transfer dimers.
The description of single disks under normal incidence expands the work of mode
characterization to the first six modes. The previous studies mainly consider the
first dipolar mode of single disks. We show that there exist higher order modes
that are dark (or subradiant) under normal incidence. This study also validates the
theoretical model description over a wide range of doping and wavelengths.

We demonstrate that asymmetric graphene dimers under normal incidence, in-
duced by different doping levels, lead to an intricate and tunable absorption spec-
trum. From the theoretical solutions of the single modes, we explain the anti-crossing
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Figure 7.12: Resistor model describing the influence of the junction doping on the
width of the CTP resonances. The disks (junction) are (is) represented by the
resistance rd (rj).

of the absorption bands, with the help of a perturbation Hamiltonian. We show that
the degeneracy of the dipolar modes prompted from the two equally doped disks
leads to a bright and a dark mode. That phenomenon is explained by adding the
dipolar moments and depends strongly on the incident polarization. Finally, the
evanescent field of the dipolar mode changes higher order dark modes into bright
ones.

Finally, we demonstrate strong and tunable absorption efficiencies with charge
transfer plasmon resonances, when the graphene disks are coupled via a bridge of
varying doping. These numerical considerations of junctions show their interest
for the ease of tunability: with conventional metals the optical properties are only
adjusted when the metal of the junction is exchanged for another metal. Further
investigations can consider e.g. particular non-uniform graphene doping profiles of
the junction. Our findings could lead to molecular junction conduction measure-
ments, since standard electrical transport measurements cannot be performed in gi-
gahertz and higher frequency regimes due to the strong capacitive coupling between
electrodes [127]. Moreover bio-sensors could be designed by providing a molecule
functionalization of the graphene junction.

Further work can also examine more complicated cluster structures, such as
pentamers, where tunable responses should also appear. Other studies suggest the
potential for Fano resonances [99, 128] when the symmetry is broken by the size or
the position of the center particle. Graphene nanodisk pentamers could deliver a
similar response by adjusting the doping level of the central disk.



8
Conclusion and outlook

Throughout this work we studied and exploited the low-damped, highly confined
and tunable graphene plasmons in various fundamental structures and configura-
tions. Low-loss and strong confinement are crucial for the design of compact infrared
components and the tunability allows for a myriad of functionalities, strengthening
graphene as a promising material for optoelectronic applications. In the following,
we propose a concise summary of this work and discuss further opportunities.

First, we considered the strong resonance of a graphene nanoribbon, and its in-
fluence on the well-known total reflectance of a propagative plasmon encountering
a graphene edge. Incidentally, a ribbon separated by 10 nm from a graphene edge
creates a plasmonic cavity that can achieve total absorption. Its quality factor can
reach 42 for 1 eV doped graphene, which is slightly larger than the quality factor
of regular plasmonic cavities. The resonance frequency is tailored easily with the
graphene doping and the size of the cavity, with a simple conservative law allow-
ing for a direct prediction of the resonant frequency. Furthermore, we inquired the
influence of the distance of the ribbon to the edge and the scattering lifetime of elec-
trons on the critical coupling, which is convenient for applications since it strongly
depends on the quality of the manufactured graphene. Finally, we investigated a
ribbon placed at the top of a semi-infinite graphene sheet. In that case the resonance
depends on the position of the cavity and its doping. We extended the directional
coupler theory to agree with the simulated results and explained qualitatively the
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complex resonance dependence with symmetric and asymmetric supermodes. We
concluded by emphasizing the interest of these resonances for graphene bio-sensors,
where the graphene ribbon parameters could be tuned with a detectable molecule.

Afterwards, we investigated the influence of doping changes on graphene plasmon
propagation. We showed that for all doping configurations reflectance and trans-
mittance follow a simple plane wave Fresnel-type model. Indeed, graphene plasmon
is single mode and there are no radiation losses, fulfilling the same conditions as
a plane wave encountering an interface at normal incidence. However, a small de-
viation is noticed for smaller doping since Fresnel coefficients need a correction for
lossier media. We first considered one interface, with abrupt and smooth doping
changes and we revealed reasonably that smoother and smaller doping changes in-
duce a weaker reflectance. However, it is worth noting that smooth doping changes
induce losses. Therefore, there is a trade-off between high reflectance for abrupt
changes and high absorption for long transition zones. Second, we examined double
interfaces that can be seen as local inhomogeneities: they occur in manufactured
graphene and originate from a vacancy in the lattice filled by a grain boundary.
We proposed different designs of the cavity combining abrupt and smooth doping
profiles and reached total absorption for a 6 nm length cavity at the end of a semi-
infinite graphene sheet. We concluded with the benefit of these results for graphene
circuitry: they help to understand the behavior of plasmons encountering grain
boundaries, which constitutes a strong damping source and they demonstrate the
possibilities of trapping or transmitting the plasmon modes.

Patterning the edge is another way to tailor the reflection of graphene plasmons.
If the straight edge totally reflects plasmons, our ribbon grating pattern offers a more
complex reflectance response depending on the length and the width of the ribbons.
The explanation is based on a simple Fabry-Pérot model, but originates from two
contributions. First, there are longitudinal resonances, properly described examining
the propagation constant and reflection phase of a ribbon grating. But the second
contribution is not trivial: the incident plasmon couples with lateral edge modes,
which strongly influence the reflectance. Their presence is proved by inspecting
the fields and the Poynting vector. Afterwards, the influence of the doping on the
reflectance was explored and it was shown that the results are general providing a
careful normalization of the pattern dimensions. Summing up, geometric deviations
from straight edges induce drastic changes on the reflection properties and should
be considered for designs of graphene sheets and flatland circuits.

Finally, we examined the infrared response of graphene nanodisks, broaden-
ing the quickly growing field of metallic resonant particles. Unlike noble metals,
graphene is tunable and allows facile adaptability of the resonance with the doping.
We expanded the description of recent works on single disk modes under normal
incidence to the first six modes. In this way, we revealed higher order modes that
are dark (or subradiant) under normal incidence and validate the theoretical model
description over a wide range of doping and wavelengths. Then, we simulated an
intricate and tunable absorption spectrum of asymmetric graphene dimers under
normal incidence, induced by different doping levels. The plasmonic modes hy-
bridize and new resonances appear. On the one hand, mode coupling converts dark
higher order modes into visible and relatively narrow resonances. On the other
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hand, two equally doped disks create a degeneracy of the dipolar modes, leading to
a bright and a dark mode. Finally, we considered bridged dimers linked by a tunable
graphene ribbon junction and we observed a stronger and narrower resonance than
non-bridged dimers. The advantage of graphene compared to noble metals resides
in the ease of tunability: simply varying the doping of the junction shifts the res-
onance, where conventional metal would have required a different junction size or
constitutive metal.

Further work can also examine more complicated cluster structures, such as
pentamers, where tunable responses should also appear. Other studies suggest the
potential for Fano resonances when the symmetry is broken by the size or the po-
sition of the center particle. Graphene nanodisk pentamers could deliver a similar
response by adjusting the doping level of the central disk.

However, before going further into pure graphene device developments, another
issue needs to be addressed: the losses. Indeed, even if graphene plasmons are less
damped than conventional surface plasmons, the damping is stronger than in their
photonic counterpart. Fortunately, a novel idea to answer this problem is emerging.
Recently, with the rise of graphene and the development of mid-infrared sources,
the field of polaritonic materials was revitalised. These materials support surface
phonon polaritons, a result of light interacting with optical phonons, creating a sur-
face excitation mediated by the atomic vibrations. They offer an opportunity to
simultaneously achieve sub-diffraction confinement, low optical losses (in compari-
son to their plasmonic counterparts) and operation in the mid-infrared range. By
placing a polaritonic substrate next to graphene, plasmons and phonons can couple,
leading to a new mixed state recently defined as a plasmon-phonon-polariton, with
a two times longer propagation length than surface phonon polaritons. Therefore,
exploring the coupling between plasmons and phonons will enable light detection,
modulation functionality and plasmon-phonon circuitry, combining the tunability of
graphene plasmons with the low-losses of surface phonon polaritons.

Furthermore, after the rise of graphene, new two-dimensional materials have
been burgeoning. They all arise from a bulk material composed of a stack of weakly
attached sheets by van der Waals forces (e.g. graphite for graphene). First principle
calculations of 2D hexagonal boron nitride optical parameters have been computed
and experimentally measured. An entire class of 2D semiconductors can be imple-
mented via transition metal dichalcogenides, making up for the lack of a bandgap
in pristine graphene. Together, they pave the way for the realization of all 2D gated
optoelectronic devices.

To conclude, graphene may not be the complete solution to design cheap, fast
and compact photonic devices because the damping is still stronger than in silicon
photonics. However, throughout this thesis, we demonstrated its amazing tunabil-
ity properties, designing fundamental devices and describing doping influence on
graphene plasmon propagation. That facile tunability makes graphene essential in
the development of future heterostructures, with a wise combination of the proper-
ties of polaritonic or other two-dimensional materials.
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Appendices





A
Graphene plasmon dispersion

In this appendix we demonstrate that the graphene dispersion obtained with the
permittivity and the conductivity of graphene are equivalent. We start from the
result of [88] considering the dispersion of a classical insulator-metal-insulator (IMI)
structure represented in Fig. A.1. The metal is denoted 1 with a permittivity of ε1

and the dielectrics are denoted 2 and 3, with respective permittivity ε2 and ε3.

Figure A.1: Geometry of a planar layer of thickness a surrounded by two half-spaces.
The absolute value of the transversal magnetic field component is drawn in grey solid
lines (in the case of ε1 = ε3). Propagation direction is along x axis. Figure from
[88].
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The dispersion of such an IMI is given by

(ε2k1 + ε1k2) (ε3k1 + ε1k3)

(ε2k1 − ε1k2) (ε3k1 − ε1k3)
= e−2k1a (A.1)

= 1− 2k1a+ ϑ(a2) (A.2)

with

ki =
√
β2 − εik2

0 (A.3)

with i depicting the number of the medium and developing the Taylor series of the
exponential around 0 (a→ 0) in Eq. A.2.

Distributing and simplifying leads to

2ε1ε2k3 + 2ε1ε3k2 = −2a
(
ε2ε3k

2
1 − ε1ε2k1k3 − ε1ε3k2k1 + ε2

1k2k3

)
(A.4)

Multiplying each side of the equality by a, and expressing the permittivity of the
metal in term of conductivity σ (Eq. 3.9) gives

2a

(
1− jσ

ωε0a

)
ε2k3+2a

(
1− jσ

ωε0a

)
ε3k2 =

− 2a2

[
ε2ε3k

2
1

(
1− jσ

ωε0a

)
ε2k1k3

−
(

1− jσ

ωε0a

)
ε3k2k1 +

(
1− jσ

ωε0a

)2

k2k3

] (A.5)

And taking the limit a→ 0 the equation simplifies to

jσ

ωε0
ε2k3 +

jσ

ωε0
ε3k2 =

(
− jσ

ωε0

)2

k2k3 (A.6)

or simply

ε2

k2

+
ε3

k3

= − jσ

ωε0
(A.7)

and with Eq. A.3 we reach the same dispersion as the one demonstrated with a line
of current

ε2√
β2 − ε2k2

0

+
ε3√

β2 − ε3k2
0

= − jσ

ωε0
(A.8)

showing that computing the graphene plasmons with the effective permittivity or
with the conductivity is similar in the limit of thin graphene (a→ 0).



B
Nanodisk modes

In this section we describe the optical response of a graphene flake in term of the
electrostatic potential φ [74, 64]. We consider a graphene flake of size D in vacuum,
homogeneously doped. It is characterized by a charge density ρ(r′). The coulomb
potential in the plane of the graphene flake is then [86] :

φ(r) =
1

4πε0

∫
ρ(r′)

| r− r′ |
d2r′ (B.1)

where d2r′ = dx′dy′ is a two-dimensional plane element.
The continuity equation in the harmonic fields approximation without charge

creation is (ejωt convention)

ρ(r′) =
j

ω
∇ · ~J(r′) =

−j
ω
∇ · [σ(r′, ω)∇φ(r′)] (B.2)

using Ohm’s law J = σE and the definition of the scalar potential E = −∇φ.
We can remove the position in σ(r′, ω) introducing a function f(r′) that takes

value 1 on graphene and 0 elsewhere. Inserting Eq. B.2 in Eq. B.1, we find

φ(r) =
−jσ(ω)

4πε0ω

∫
∇ · [f(r′)∇φ(r′)]

| r− r′ |
d2r′ (B.3)
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Using dimensionless coordinates θθθ = (x/D, y/D) we can write the eigenvalue prob-
lem

1

η
φ(θθθ) =

∫
∇ · [f(θ′θ′θ′)∇φ(θ′θ′θ′)]

| θθθ − θ′θ′θ′ |
d2θ′ (B.4)

with a graphene flake geometrical dependant operator

W [φ(θθθ)] =

∫
∇ · [f(θ′θ′θ′)∇φ(θ′θ′θ′)]

| θθθ − θ′θ′θ′ |
d2θ′, (B.5)

the eigenvectors φ and the eigenvalues or modes 1/η of the problem:

η =
−jσ(ω)

4πε0ωD
(B.6)

Note that the eigenvalues are established for any geometrical form of the graphene
flake. This means that once η is determined for one mode of a fixed geometry, then
it will not vary as a function of the frequency ω, the conductivity of the graphene
sheet σ(ω), or the size D of the graphene flake.
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