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1 Introduction

The asymptotic symmetries of four-dimensional asymptotically flat gravity and of Yang-
Mills theories on Minkowski backgrounds have been related to soft theorems and memory
effects, see e.g. [1] for a review. The relation with soft theorems was also extended to
gauge theories describing free particles of arbitrary spin and p-forms [2–6], thus presenting
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itself as a general feature of any gauge theory. This connection motivated a reassessment
of the asymptotic symmetries of both gravity and gauge theories in spacetimes of dimen-
sion greater than four, since proper generalizations of the Bondi-Metzner-Sachs (BMS)
group [7–9] and of its counterparts in gauge theories [10–14] seem instrumental in establish-
ing the link with soft theorems, that in their turn take the same form in any spacetime
dimension.1 This observation appears however in tension with the option of defining bound-
ary conditions in higher-dimensional spacetimes which, on the one hand, are compatible
with radiative solutions while, on the other hand, lead to finite-dimensional asymptotic
symmetry groups [16–19].

This led to introduce less restrictive boundary conditions allowing to recover, e.g., the
BMS asymptotic group also for spacetime dimensions D > 4 [20], see also [21–29]. Similar
infinite-dimensional enhancements of the asymptotic symmetries at null infinity have been
identified also for Yang-Mills [30–34] and higher-spin gauge theories [35]. Most of these
works also confirmed the expected link between infinite-dimensional symmetries and soft
theorems. Boundary conditions allowing for infinite-dimensional asymptotic symmetry
groups in higher dimensions were discussed at spatial infinity [36–40] and on (Anti) de
Sitter backgrounds [41–43] too.

While relaxing the boundary conditions so as to allow for a larger class of residual
gauge transformations is always possible, selecting bona fide asymptotic symmetries requires
a careful analysis of the associated boundary charges, which are the tool allowing one to
distinguish between proper and large gauge transformations. Indeed, the boundary charges
associated to infinite-dimensional residual symmetries at face value are found to diverge
when D > 4. These divergences can however be renormalized with various techniques, see
e.g. [44–62], and in this paper we systematically explore two of them in the instructive and
yet relatively handy example of Maxwell fields in Anti de Sitter (AdS) backgrounds of any
dimensions. These investigations can be relevant for both AdS/CFT and flat holography, as
well as to prepare for a corresponding study of de Sitter spacetime, although in the latter
case the boundary analysis would require a different interpretation.

In particular, we derive finite boundary charges parameterizing infinite-dimensional
asymptotic symmetries in two ways. We first derive them starting from the renormalized
bulk action computed via holographic renormalization [46–48, 52]. We then compare the
results with those obtained by directly renormalizing the presymplectic potential derived
from the naive bulk action [52, 57]. The advantage of the first procedure is that it can be
performed in a gauge invariant way at each step and that it provides a complete action
principle, including the appropriate boundary contributions. The second approach requires
instead a gauge fixing, but it is somewhat simpler to implement.

We explore and contrast these two complementary renormalization techniques in two
different sets of coordinates. We first deal with Poincaré coordinates, which provide an
established arena for holography and allow one to get results applying to arbitrary D, but
which do not cover the full AdS space in Lorentzian signature and do not seem appropriate
for taking a limit in which the AdS radius ℓ tends to infinity. We then move to Bondi

1See however [15] for an alternative perspective in D > 4.
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coordinates, which are global coordinates and allow for a straightforward flat, ℓ → ∞
limit. We compute renormalized actions and presymplectic potentials in both coordinate
systems, and study the diffeomorphism connecting the two. We stress that holographic
renormalization is diffeormorphism invariant, which guarantees the agreement between the
charges evaluated in Poincaré and in Bondi coordinates. However, since both Bondi and
Poincaré coordinates represent standard choices in the literature, we opt to present them in
parallel, in order to stress their similarities and differences for practical computations.

Our renormalized charges are not conserved, and we explicitly discuss the associated
flux across the spacetime boundary [42, 58]. Compared to previous analyses of holographic
renormalization and boundary charges of Maxwell fields in AdSD [41, 43, 45], we provide a
general expression for the renormalized action in any D in Poincaré cordinates and, thanks
to our analysis in Bondi coordinates, we set up a framework that allows one to recover the
surface charges at null infinity [57], rather than spatial infinity, in a smooth flat limit. Let
us also mention that our solution spaces include logarithms of the radial coordinate in odd
spacetime dimensions.

A natural extension of the current work will be to apply the same strategy and the tools
here developed to any linear gauge theory. On the one hand, this is expected to allow one to
generalize the boundary conditions employed in [63] to derive conserved asymptotic charges
for higher-spin fields in AdS. In addition, the option to get charges at null infinity via the
ℓ → ∞ limit computed in Bondi coordinates should provide an alternative derivation of the
boundary charges associated to the infinite-dimensional higher-spin asymptotic symmetries
of [35], that played a crucial role in establishing the link with soft theorems.

In order to display our strategy in a simpler setting, we begin in section 2 by evaluating
the renormalized action and presymplectic potential for a massless scalar field. In section 3
we then move to Maxwell fields on AdS backgounds, in Poincaré coordinates. This allows us
to obtain results applying to generic spacetime dimensions, while in section 4 we recompute
from scratch the renormalized action and presymplectic potential in Bondi coordinates in a
number of examples. In section 5 we eventually discuss how one can derive the charges in
Bondi coordinates by starting from the more general results obtained in Poincaré coordinates
and we also discuss how to take the flat limit. A couple of appendices recall some useful
facts about the geometry of AdS and the key features of the covariant phase space formalism
that we use to renormalize the presymplectic potential.

2 Scalar fields

2.1 Poincaré coordinates

As a warm up to illustrate the renormalization techniques, let us begin by discussing the
case of a free massless scalar field. In this section, we employ Poincaré coordinates:

ds2 = 1
z2

(
ℓ2dz2 + ηab dxadxb

)
, (2.1)

where ηab is the Minkowski metric and a, b ∈ {0, . . . , D − 2} (see also appendix A.2).2
2Although we restrict for simplicity to the Minkowski metric ηab on the boundary, we emphasize that our

results also hold for a generic flat boundary metric.
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Solution space. We consider the action of a free massless scalar field,

S = −1
2

∫
dDx

√
−g ∇µΦ∇µΦ , (2.2)

whose equation of motion
∂µ
(√

−g ∂µΦ
)
= 0 (2.3)

in Poincaré coordinates looks

z ℓ2 □Φ+ (z ∂z − (D − 2)) ∂zΦ = 0 , (2.4)

where □ := ηab∂a∂b. Considering an asymptotic expansion of the field in the radial
z-coordinate of the form

Φ(z, xa) =
∑
n≥0

zn ϕ(n)(xa) +
∑
n≥0

zn log z ϕ̃(n)(xa) , (2.5)

where we are excluding solutions that explode at the boundary z → 0, one finds the
recursion relations

□ϕ(n−2) + 1
ℓ2 n (n − D + 1)ϕ(n) + 1

ℓ2 (2n − D + 1) ϕ̃(n) = 0 , (2.6a)

□ϕ̃(n−2) + 1
ℓ2 n (n − D + 1) ϕ̃(n) = 0 . (2.6b)

These, in their turn, determine the asymptotic solution space, where ϕ(0) and ϕ(D−1) are
arbitrary functions of the boundary coordinates xa, while the coefficients that will be
relevant in the following read

ϕ(2n) =
ℓ2n (−4)−nΓ

(
3−D

2

)
□nϕ(0)

Γ(n+1)Γ
(
n−D−3

2

) , ϕ(2n+1) =0 ,

(
0< n <

D−1
2

)
, (2.7a)

ϕ̃(D−1) =− ℓ2

D−1□ϕ(D−3) , (2.7b)

where the last equation is trivial for even D. Therefore, the asymptotic radial expansion is,
in even D

Φ(z, xa) =
∑
n≥0

z2n ϕ(2n)(xa) +
∑
n≥0

z2n+D−1 ϕ(2n+D−1)(xa) , (2.8)

and in odd D

Φ(z, xa) =
∑
n≥0

z2n ϕ(2n)(xa) + log z
∑
n≥0

z2n+D−1 ϕ̃(2n+D−1)(xa) . (2.9)

As noticed in [46–48, 64] for (massive) scalars in any D, the on-shell action typically
diverges due to contributions localized at the boundary (z → 0), and one has to implement
holographic renormalization to set up the variational principle.
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Holographic renormalization. We start by computing the regularized on-shell action,

S(ϵ)
reg = −1

2

∫
z≥ϵ

dDx
√
−g Fµ gµν Fν , (2.10)

where we defined
Fµ := ∇µΦ , (2.11)

in order to mimic the role played by the field strength in the spin-one case. Since the
boundary is now located at z − ϵ = 0, its normal is given by nµ = ∂µ(z − ϵ) = δz

µ, so that

√
−g nµgµν Fν = 1

ℓzD−2 Fz . (2.12)

By Stokes’ theorem we can then write the regulated on-shell action as (≈ stands for
on-shell equality)

S(ϵ)
reg ≈ 1

2ℓϵD−2

∫
z=ϵ

dD−1xΦFz , (2.13)

where the global sign reflects the fact that z = ϵ is the lower limit of the integration. To
leading order for small z, the field Φ is z-independent, while the “field-strength” component
Fz scales like z. Therefore, the regulated action scales like ϵ3−D and, whenever D ≥ 4, it
has divergent contributions. We will now see in a few examples how can one subtract those
divergences.

Let us consider D = 6. In this case the free functions in the asymptotic expansion (2.5)
are ϕ(0) and ϕ(5). The regulated on-shell action (2.13) reads

S(ϵ)
reg =

∫
z=ϵ

d5xΦΨ , Ψ = 1
2ℓ ϵ4 Fz , (2.14)

where Ψ diverges like 1/ϵ3 to leading order as ϵ → 0. Our strategy will be to find a
counterterm action S

(ϵ)
ct such that

S
(ϵ)
sub = S(ϵ)

reg + S
(ϵ)
ct =

∫
z=ϵ

d5xΦ Ψ̃ (2.15)

and Ψ̃ is finite as ϵ → 0. Since the additional Φ appearing in the action is finite at the
boundary, achieving this will be enough to produce a finite subtracted action. With this
objective in mind, we thus proceed by writing

S(ϵ)
reg =

∫
z=ϵ

d5x

2ℓ
Φ
(
ϵ−3F (1)

z + ϵ−1F (3)
z

)
+O(1) , (2.16)

where F
(k)
z denotes the coefficient of zk in the expansion of Fz(z, xa). Following the above

strategy, since Φ remains finite as ϵ → 0 and thus cannot introduce additional divergences,
we will eventually choose to not expand it. This has the advantage of simplifying the
intermediate calculations, and will make it possible to obtain results holding for generic
D below. A similar choice in the spin-one case will allow us to express all counterterms
directly in terms of the field strength.

More explicitly, expressing the F
(k)
z in (2.16) in terms of ϕ(0) by using the equations of

motion, expanding also the Φ appearing in (2.16) and multiplying its expansion with the
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one in the round parenthesis, we obtain the following expression for the divergent terms
expressed in terms of ϕ(k),

S(ϵ)
reg = 1

ℓ

∫
d5x

[ 1
ϵ3 ϕ(0)ϕ(2) + 1

ϵ

(
2ϕ(0)ϕ(4) + (ϕ(2))2

)]
+O(1) , (2.17)

which shows the dependence on the counterterm from the boundary data. However,
inverting the expansion (2.8), we can express back the regulated action in terms of the bulk
field, finding

S(ϵ)
reg =

∫
z=ϵ

d5x
ℓ

6ϵ3 Φ
(
1 + ℓ2ϵ2

3 □

)
∂ · F +O(1) . (2.18)

Let us now note that the operation of expanding Φ in terms of its asymptotic expansion
coefficients ϕ(k) and then inverting this expansion to re-express the resulting sum in terms
of Φ acts as the identity on Φ, i.e. gives back Φ itself (regardless whether or not one first
multiplies this expansion with that of Fz in (2.16)). This fact can be checked explicitly
using (2.17) for the present example, but holds in any dimension. Therefore, while needed in
order to obtain the explicit expression (2.17) of S

(ϵ)
reg in terms of ϕ(k), explicitly expanding Φ

is not necessary in order to arrive at the form (2.18) for S
(ϵ)
reg in terms of the bulk field, which

is what we need to the goal of computing the presymplectic potential. In the following, we
will restrict our attention to expressions in terms of the bulk fields, so that we will not need
to expand the overall Φ appearing in the regulated action, which considerably simplifies the
intermediate steps especially as D increases. We can thus define the counterterm action as
follows in the present case,

S
(ϵ)
ct = −

∫
z=ϵ

d5x
ℓ

6ϵ3 Φ
(
1 + ℓ2ϵ2

3 □

)
∂ · F (2.19)

and write the subtracted action as

S
(ϵ)
sub = S(ϵ)

reg + S
(ϵ)
ct

= −
∫

z>ϵ
d6x

√
−g

2 Fµ Fµ +
∫

z=ϵ
d5x

ℓ

6ϵ3 Fa

(
1 + ℓ2ϵ2

3 □

)
Fa +O(ϵ) .

(2.20)

Here and in the following, the indices a, b, . . . are lowered and raised respectively via the
metric ηab and its inverse ηab. In (2.20), we have assumed Fa vanishes on the boundary of
the z = ϵ surface (which allows one to freely integrate by parts w.r.t. xa); alternatively we
could add the extra “corner term” S

(ϵ)
corner =

∫
z=ϵ d5x ∂a

[
ℓ

6ϵ3 Φ
(
1 + ℓ2ϵ2

3 □
)
Fa
]

, which has
the effect of canceling such integrations by parts, and clearly does not spoil the variational
principle. By varying it on-shell and by injecting the asymptotic solution, we obtain

δS
(ϵ)
sub ≈

∫
z=ϵ

d5x

[
1

ℓϵ4 δΦFz −
ℓ

3ϵ3 δΦ
(
1 + ℓ2ϵ2

3 □

)
∂ · F

]
+O(ϵ)

=
∫

z=ϵ
d5x

1
ℓ

δΦF (4)
z +O(ϵ) ,

(2.21)

thus leading to

δSren := lim
ϵ→0

δS
(ϵ)
sub ≈

∫ d5x

ℓ
δΦF (4)

z . (2.22)
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In arbitrary even D ≥ 4, by expressing the boundary contributions encoded into the
F

(n)
z in terms of bulk field Φ, gathering the divergent pieces and assuming the same falloff

for Fa (equivalently, adding a suitable corner term), one obtains the counterterm action

S
(ϵ)
ct = ℓ

2(D − 3)ϵD−3

∫
z=ϵ

dD−1xFa

1 +
D−4

2∑
k=1

ℓ2kϵ2kc
(k+1)
N □k

Fa , (2.23)

where the coefficients are fixed recursively by

c
(k)
N =−

(−4)−k+1(k−1)Γ
(
−D+3

2

)
Γ(k)Γ

(
2k−D+3

2

) −
k−5∑
q=0

c
(q+2)
N

(−4)−k+2+qΓ
(
−D+3

2

)
Γ(k−1+q)Γ

(
2k−D+1−2q

2

)
 . (2.24)

Let us remark that the expression (2.23) for the counterterm Lagrangian can be rewritten
in the following way,

S
(ϵ)
ct = ℓ

2(D − 3)

∫
z=ϵ

dD−1x
√
−γ γab Fa

1 +
D−4

2∑
k=1

ℓ2kc
(k+1)
N □k

γ

Fb , (2.25)

where γab = ηab/ϵ2 is the induced metric on the surface z = ϵ and □γ = γab∂a∂b. This makes
the diffeomorphism invariance of the procedure manifest, since no explicit (coordinate-
dependent) dependence on ϵ appears in (2.25). The on-shell variation of the subtracted
action takes the form

δS
(ϵ)
sub ≈

∫
z=ϵ

dD−1x δΦ

ϵ2−DFz

2ℓ
− ℓ ϵ3−D

D − 3

1 +
D−4

2∑
k=1

ℓ2kϵ2kc
(k+1)
N □k

 ∂ · F

 , (2.26)

and yields the following variation of the renormalized on-shell action

δSren = lim
ϵ→0

δS
(ϵ)
sub ≈ 1

ℓ

∫
dD−1x δΦF (D−2)

z , (2.27)

depending only on the subleading free function since F
(D−2)
z = (D − 1)ϕ(D−1).

In the odd-dimensional case there appear new finite terms in the counterterm action
when expressed in terms of bulk fields, although, in the present renormalization scheme,
we systematically drop them. For concreteness, let us first illustrate this phenomenon for
the case D = 7. The asymptotic expansion of the scalar field is given by (2.9) where the
arbitrary orders are ϕ(0) and ϕ(6). As explained below (2.14), if we don’t radially expand Φ,
the regulated on-shell action is

S(ϵ)
reg =

∫
z=ϵ

d6x

2ℓ
Φ
(
ϵ−4F (1)

z + ϵ−2F (3)
z + log ϵF̃ (5)

z

)
+O(1) (2.28)

and re-expressing it in terms of the bulk fields leads to

S(ϵ)
reg =

∫
z=ϵ

d6x
ℓ

8ϵ4Φ
(
1 + ℓ2ϵ2

8 □− ℓ4ϵ4

16 log ϵ□2
)

∂aFa +O(1) . (2.29)
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As anticipated, in this last step additional contributions of the type ϵ4ℓ4□2 would appear
inside the round parenthesis, but we systematically drop them as they correspond to
finite local functionals of ϕ(0), and, following [46–48, 64], we recall that the result after
the subtraction of the divergent parts is only defined up to the addition of such scheme-
dependent finite terms. An additional source of (harmless) ambiguities of this type would
come from first expanding the overall Φ in (2.28), dropping the resulting finite pieces
depending on ϕ(k) and then re-expressing the divergent contributions in terms of the bulk
field Φ. The counterterm action, with the inclusion of the corner term, thus takes the
following form:

S
(ϵ)
ct =

∫
z=ϵ

d6x
ℓ

8ϵ4F
a

(
1 + ℓ2ϵ2

8 □− ℓ4ϵ4

16 log ϵ□2
)
Fa (2.30)

and, in the limit ϵ → 0, the on-shell variation of the subtracted action S
(ϵ)
sub = S

(ϵ)
reg + S

(ϵ)
ct

yields

δSren ≈ 1
ℓ

∫
d6x δΦF (5)

z . (2.31)

Similarly to the even-dimensional case, we can generalize the procedure to any odd
dimension, for D > 4, by means of the following counterterm

S
(ϵ)
ct =

∫
z=ϵ

ℓ dD−1x

2(D − 3)ϵD−3F
a

1 +
D−5

2∑
k=1

(ℓϵ)2kc
(k+1)
N □k − (ℓϵ)D−3 log ϵ cL□

D−3
2

Fa , (2.32)

which, as usual, includes a corner-term contribution. The last two equations involve the
recursive coefficients c

(k)
N (2.24) as well as a logarithmic coefficient

cL = 2D−4Γ (D − 4)
Γ
(

D−3
2

) . (2.33)

Let us rewrite (2.32) also in a manner analogous to (2.25),

S
(ϵ)
ct =

∫
z=ϵ

ℓ dD−1x

2(D − 3)
√
−γ γabFa

1 +
D−5

2∑
k=1

ℓ2kc
(k+1)
N □k

γ − ℓD−3 log ϵ cL□
D−3

2
γ

Fb ,

(2.34)
where all the dependence on ϵ enters via the cutoff surface and the induced metric γab

thereon, except for the log ϵ term. When one approaches the boundary, it leads to the same
expression for the variation of the renormalized on-shell action as in (2.27).

Symplectic renormalization. Using the covariant phase space formalism (see ap-
pendix B) one can renormalize the scalar theory directly at the level of the symplectic
structure [52, 57]. As we shall see, an advantage of this set-up is that we will obtain
a radial renormalization equation providing the systematics for the introduction of the
additional terms.

– 8 –
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In order to see this explicitly, following [57], let us write the variation of the action (2.2)
in the form

δL = (eom) δΦ+ ∂µΘµ , (2.35)

where the presymplectic potential is

Θµ = −
√
−g Fµ δΦ . (2.36)

Splitting Θµ into radial and boundary components and factoring out an overall z−(D−2) for
convenience, we define

Θz = z−(D−2) Θ̃z , Θ̃z = −1
ℓ
Fz δΦ , (2.37)

Θa = z−(D−2) Θ̃a , Θ̃a = −ℓFa δΦ , (2.38)

and
L = z−(D−2) L̃ , L̃ = − 1

2ℓ

(
(Fz)2 + ℓ2 Fa Fa

)
(2.39)

for the off-shell Lagrangian. Thus, we can split the total divergence in (2.35) into radial
and boundary divergences and obtain the asymptotic renormalization equation:

1
z

(
z ∂z − (D − 2)

)
Θ̃z ≈ δL̃ − ∂aΘ̃a . (2.40)

The radial equation (2.40) implies that the symplectic potential can be made finite on-shell by
subtracting counterterms which are either total variations or total boundary derivatives, as
allowed by the ambiguity equation (B.7). Indeed, assuming an asymptotic radial expansion
of the form

Θ̃µ =
∑

n

zn
(
Θ̃µ

(n) + log z θ̃µ
(n)

)
, L̃ =

∑
n

zn
(
L̃ (n) + log z ℓ̃(n)

)
, (2.41)

and substituting in (2.40) one finds

(n − D + 2) Θ̃z
(n) + θ̃z

(n) ≈ δL̃ (n−1) − ∂aΘ̃a
(n−1) , (2.42)

and similar equations involving the coefficients of the log terms. The above equation shows
in particular that the orders n < D − 2 of Θ̃z

(n), i.e. the ones that come with divergent
prefactors in Θz, are fixed on-shell to be total derivatives plus total variations, while Θ̃z

(D−2),
which gives the finite order of Θz, is left undetermined. The remaining terms do not
contribute in the asymptotic limit z → 0. Let us illustrate the procedure for the two cases
of even and odd dimensions.

For even D ≥ 4, we can write

Θz =
D−4

2∑
n=0

z2n−D+3 Θ̃z
(2n+1) + Θ̃z

(D−2) +O(z) , (2.43)
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where the summation includes all diverging terms, given on-shell by (see (2.7))

Θ̃z
(2n+1) = −1

ℓ

p∑
q=0

F (2(n−q)+1)
z δϕ(2q) , (2.44)

while the finite order is
Θ̃z

(D−2) = −1
ℓ

F (D−2)
z δϕ(0) . (2.45)

According to the radial equation (2.42), we can cancel the divergent orders adding terms of
the form ∂aΘ̃a

(2n) and δL̃ (2n), with

Θ̃a
(2n) = −ℓ

2n−1∑
q=0

F a
(2n−2q) δϕ(2q) , (2.46)

and

L̃ (4n) = − 1
2ℓ

(F (2n)
z

)2
+ ℓ2

4n−1∑
q=0

F a
(4n−2q) F (2q)

a

 , (2.47a)

L̃ (4n+2) = − 1
2ℓ

 2n∑
q=0

F (2(2n−q)+1)
z F (2q+1)

z + ℓ2
4n+1∑
q=0

F a
(2(2n−q+1)) F (2q)

a

 . (2.47b)

The counterterm is therefore

Θz
ct = δBct − ∂aCa

ct , (2.48a)

Bct =
D−4

2∑
p=0

z−(D−2n−3)

D − 2n − 3L̃ (2n) , Ca
ct = −

D−4
2∑

p=0

z−(D−2n−3)

D − 2n − 3Θ̃
a
(2n) , (2.48b)

while the renormalized presymplectic potential is

Θz
ren = lim

z→0
(Θz +Θz

ct) = Θ̃z
(D−2) = −1

ℓ
F (D−2)

z δϕ(0) . (2.49)

By following similar steps, we can deal with the case of odd D > 4. The asymptotic
expansion of the radial component of the presymplectic potential is

Θz =
D−5

2∑
p=0

z2n−D+3 Θ̃z
(2n+1) + log z θ̃(D−2)

z + Θ̃z
(D−2) +O(z2) , (2.50)

where the diverging orders are the terms in the sum and the log term. They are given
on-shell respectively by (2.44) and

θ̃z
(D−2) = −1

ℓ
F̃ (D−2)

z δϕ(0) , (2.51)

while the finite order is given by

Θ̃z
(D−2) = −1

ℓ

D−3
2∑

n=0
F (D−2−2n)

z δϕ(2n) . (2.52)
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Using (2.42) we can build a counterterm Θz
ct = δBct − ∂aCa

ct, where

Bct =
D−5

2∑
n=0

z−(D−2n−3)

D − 2n − 3L̃ (2n) − log z L̃ (D−3) , (2.53)

Ca
ct = −

D−5
2∑

n=0

z−(D−2n−3)

D − 2n − 3Θ̃
a
(2n) + log z Θ̃a

(D−3) . (2.54)

Therefore, the renormalized presymplectic potential is

Θz
ren = lim

z→0
(Θz +Θz

ct) = Θ̃z
(D−2) . (2.55)

Upon further adding the following corner term

Θcorner
a =

i (−1)
i
4 (iD+iD) Γ

(
1
4(D − iD+1)

)
Γ
(
1− D

4 − i
4e

iDπ
2
)

√
π 2

D−3
2 ℓD−2Γ

(
D−3

2

)
Γ
(

D−1
2

)
Γ
(

3−D
2

) ∂a□
D−5

2 ∂ · F (0)δϕ(0) ,

(2.56)
the above renormalized potential can be expressed in terms of the arbitrary coefficients as

Θz
ren = −1

ℓ
F (D−2)

z δϕ(0) −
(

ℓ

2

)D−2 H D−3
2

Γ
(

D−1
2

)2□
D−3

2 ∂ · F (0)δϕ(0) (2.57)

where we denoted the n-th harmonic number by Hn

Hn =
n∑

k=1

1
k

. (2.58)

One can see that the last term of (2.57) is a combination of symplectic ambiguities (B.7).
Indeed, it can be cancelled through the addition of

Θbdy = 1
2

(
ℓ

2

)D−2 H D−3
2

Γ
(

D−1
2

)2 δ
(
□

D−3
2 F a

(0)F
(0)
a

)
(2.59)

and

Θcorner
a = −

(
ℓ

2

)D−2 H D−3
2

Γ
(

D−1
2

)2 □
D−3

2 F (0)
a δϕ(0) . (2.60)

At the end, we obtain the same result (2.49) as for the even-dimensional case. Note that the
results obtained for the presymplectic potential from the two renormalization procedures
lead to the exact same expression in even dimensions, see (2.27) and (2.49), while they
differ by local terms in ϕ(0) in odd dimensions, see (2.27) and (2.57). We will encounter a
similar situation for the case of spin one.

– 11 –



J
H
E
P
1
2
(
2
0
2
3
)
0
6
1

2.2 Bondi coordinates

We now revisit the previous construction in Bondi coordinates,

ds2 = −
(
1 + r2

ℓ2

)
du2 − 2dudr + r2γij dxidxj , (2.61)

where γij is the metric on the unit (D−2)-dimensional celestial sphere, parameterised by the
angular coordinates xi (see also appendix A.3). Furthermore, we focus on the renormalization
of the presymplectic potential. The resulting techniques will be instrumental to consider
the flat limit of the surface charges in the spin-one case discussed in section 5.

Solution space. In Bondi coordinates, in which the AdS metric is given by (2.61), the
equation of motion (2.3) for a massless scalar reads[(

∆+r2 ∂2
r +r (D−2)∂r

)
−r
(
2r∂r+D−2

)
∂u+

r2

ℓ2

(
r2 ∂r+Dr

)
∂r

]
Φ=0 , (2.62)

where ∆ denotes the Laplacian on the (D − 2)−sphere. We assume a radial expansion of
the form

Φ(u, r, xi) =
∑
n≥0

r−n
(
ϕ(n)(u, xi) + log r ϕ̃(n)(u, xi)

)
, (2.63)

which turns the above equations of motion into the following recursive relation:

[∆ + n(n − D + 3)]ϕ(n) + (2n − D + 4) ∂uϕ(n+1) + 1
ℓ2 (n + 2) (n − D + 3)ϕ(n+2)

= (2n − D + 3) ϕ̃(n) + 2 ∂uϕ̃(n+1) + 1
ℓ2 (2n − D + 5) ϕ̃(n+2) ,

(2.64)

and similarly for the log terms. We obtain that ϕ(0) and ϕ(D−1) are undetermined. In terms
of Fµ := ∇µΦ, the equation of motion takes the form

1
r2 D · F + D − 2

r
(Fr −Fu)− ∂(uFr) + ∂rFr +

1
ℓ2

(
r2∂2

r + D r
)
Fr = 0 , (2.65)

where the round brackets denote symmetrization on the corresponding indices, ∂(uFr) =
∂uFr − ∂rFu, and where “·” stands for contraction of indices on the sphere, raised and
lowered using γij and γij .

Symplectic renormalization. In Bondi coordinates the presymplectic potential has
radial divergences when r → ∞, so that one has to renormalize the symplectic structure
along the lines of section 2.1 and appendix B. The components of the presymplectic
potential (2.36) and the Lagrangian are

Θr = rD−2√−γ Θ̃r = −rD−2√−γ

(
Fr −Fu + r2

ℓ2 Fr

)
δΦ , (2.66)

Θu = rD−2√−γ Θ̃u = rD−2√−γ Fr δΦ , (2.67)

Θi = rD−2√−γ Θ̃i = −rD−4√−γ F i δΦ , (2.68)
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and

L = rD−2√−γ L̃ =
√
−γ

2 rD−2
[
2Fu Fr +

(
1 + r2

ℓ2

)
(Fr)2 + 1

r2 F i Fi

]
. (2.69)

Upon substituting in (2.35) one obtains

1
r
(r ∂r + D − 2) Θ̃r ≈ δL̃ − ∂uΘ̃u − ∂iΘ̃i , (2.70)

which, in its turn, when taking into account the radial expansions

Θ̃µ =
∑

n

r−n
(
Θ̃µ

(n) + log r θ̃µ
(n)

)
, L̃ =

∑
n

r−n
(
L̃ (n) + log r ℓ̃(n)

)
, (2.71)

yields
(D − n − 2) Θ̃r

(n) + θ̃r
(n) ≈ δL̃ (n+1) − ∂uΘ̃u

(n+1) − ∂iΘ̃i
(n+1) . (2.72)

In the following, we shall illustrate along these lines two specific examples in even and odd
dimensions, D = 4, 5.

Let us first consider D = 4. First, we compute the asymptotic solution space and obtain
that the orders ϕ(0), ϕ(3) are arbitrary functions of the boundary coordinates functions of
u and xi. Next, we inject the corresponding expansions into the radial component of the
presymplectic potential:

Θr = r
√
−γ Θ̃r

(1) +
√
−γ Θ̃r

(2) +O
(
r−1

)
, (2.73)

where

Θ̃r
(1) = δϕ(0)

(
D · F (0) − ℓ2 ∂uF (0)

u

)
, (2.74a)

Θ̃r
(2) = − 1

2ℓ2

[
2F (4)

r δϕ(0) + ℓ4
(
2F (0)

u δϕ(0) − ∂uD · F (0) + 2
(
D · F (0)

− ℓ2 ∂uF (0)
u

)
∂uδϕ(0)

)]
.

(2.74b)

So we have a divergent order, Θ̃r
(1) to be renormalized. Using the radial renormalization

equation (2.72) we have
Θ̃r

(1) = δL̃ (2) − ∂uΘ̃u
(2) − ∂iΘ̃i

(2) , (2.75)

so that

Θ̃u
(2) = ℓ2 F (0)

u δϕ(0) , Θ̃i
(2) = −F i

(0) δϕ(0) , L̃ (2) = −1
2

(
F i

(0) F
(0)
i − ℓ2

(
F (0)

u

)2
)

. (2.76)

Thus, the counterterm to be added to the presymplectic potential is

Θr
ct = δBct − ∂uCu

ct − ∂iC
i
ct , (2.77)

where
Bct = −

√
−γ L̃ (2) , Cu

ct = −
√
−γ Θ̃u

(2) , Ci
ct = −

√
−γ Θ̃i

(2) , (2.78)
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which implies that the renormalized potential takes the following form:

Θr
ren = lim

r→∞
(Θr +Θr

ct) =
√
−γ Θ̃r

(2)

= −
√
−γ

[ 1
ℓ2 F (4)

r δϕ(0) + ℓ2

2
(
2F (0)

u δϕ(0) − ∂uD · F (0) + 2
(
D · F (0)

− ℓ2 ∂uF (0)
u

)
∂uδϕ(0)

)]
.

(2.79)

In the odd dimensional example of D = 5, the asymptotic solution space is given by

Φ = ϕ(0) + 1
r ϕ(1) + 1

r2 ϕ(2) + 1
r3 ϕ(3) + 1

r4 log rϕ̃(4) + 1
r4 ϕ(4) + · · · (2.80)

where ϕ(0) and ϕ(4) are arbitrary functions of u and xi. It leads to the following radial
expansion of the presymplectic potential

Θr = r2Θ̃r
(1) + rΘ̃r

(2) + log r θ̃r
(3) + Θ̃r

(3) +O(r−1) , (2.81)

where the first three terms diverge with r. If we add the following counterterm to the
presymplectic potential

Θr
ct =

4∑
p=2

√
−γ

p − 1
(
δL̃(p) − ∂uΘ̃u

(p) − ∂iΘ̃i
(p)

)
, (2.82)

where

−2ℓ2L̃(p) =
p−2∑
q=0

[
F (q+2)

r F (p−q)
r + ℓ2

(
F i

(q)F
(p−2−q)
i − 2F (p−q)

r F (q)
u

)]
+ ℓ2

p−4∑
q=0

F (q+2)
r F

( p
2−q)

r ,

(2.83)
and

Θ̃u
(p) =

p−2∑
q=0

F (p−q)
r δϕ(q) , Θ̃i

(p) = −
p−2∑
q=0

F
(p−2−q)
i δϕ(q) , (2.84)

one obtains the renormalized potential, whose explicit form is

Θr
ren =

√
−γ

24ℓ2

{
− 24F (5)

r δϕ(0) + ℓ4
[
2δϕ(0)

(
6D · F (0) + ℓ2∂u

(
ℓ2∂2

uF (0)
u − 3∂uD · F (0)

+ 10F (0)
u

))
− 3ℓ4

(
∂2

uδϕ(0) + 4∂2
uF (0)

u ∂uδϕ(0)
)
+ 3D · F (0)□δϕ(0)

+ 3ℓ2
(
D · F (0)∂2

uδϕ(0) + 4∂uD · F (0)∂uδϕ(0) − ∂uF (0)
u □δϕ(0)

)]}
.

(2.85)

3 Spin-one fields in Poincaré coordinates

In this section we compute and renormalize asymptotic charges of massless spin-one fields
in AdS space of arbitrary dimension, in Poincaré coordinates A.2.
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3.1 Solution space

Maxwell’s equations ∂µ(
√
−g Fµν) = 0 in Poincaré coordinates read

∂aFaz = 0 ,
1

zℓ2 (z∂z − D + 4)Fza + ∂bFba = 0 , (3.1)

and combining them with the Bianchi identities, ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 , one obtains

∂z

(
z4−D∂zFab

)
= −z4−Dℓ2□Fab . (3.2)

To begin with, let us explore the solution space in terms of the field strength.
For even D we assume an expansion in z of the schematic form

F(z, x) =
∑

n

znF (n)(x) (3.3)

and get
∂aF (n)

az = 0 ,
1
ℓ2 (n − D + 4)F (n)

za + ∂bF
(n−1)
ba = 0 , (3.4)

and
1
ℓ2 n(D − n − 3)F (n)

ab = □F
(n−2)
ab , (3.5)

where the first of (3.4) is the divergence of the second one, for n ̸= D − 4.
One sees that (3.5) fixes F

(n)
ab in terms of F

(0)
ab for any positive even integer n,

F
(n)
ab =

( n
2∏

q=1

1
(D − n − 5 + 2q)

)
(ℓ2□)

n
2

n!! F
(0)
ab . (3.6)

Similarly, one can fix F
(D−3+n)
ab for positive even n in terms of F

(D−3)
ab . Thus, for even D,

we assume the following structure of the solution as an expansion in z,

Fza =
∑
n≥0

z2n+1F (2n+1)
za +

∑
n≥0

zD−4+2nF (D−4+2n)
za , (3.7a)

Fab =
∑
n≥0

z2nF
(2n)
ab +

∑
n≥0

zD−3+2nF
(D−3+2n)
ab . (3.7b)

The free data in this case are encoded in F
(0)
ab , which is an arbitrary antisymmetric tensor, and

in F
(D−4)
az , which by the first equation in (3.4) is divergence-free. These two characteristic

orders at which the new boundary data appear correspond to the “source” and to the “VEV”
according to the standard terminology.

For odd D > 4, we include logarithmic terms and expand the field strength according to

F(z, x) =
∑

n

znF (n)(x) + log z
∑

n

znF̃ (n)(x) , (3.8)

which modifies (3.1) into

∂aF (n)
az = ∂aF̃ (n)

az = 0 ,
1
ℓ2 (n − D + 4)F̃ (n)

za + ∂bF̃
(n−1)
ba = 0 , (3.9)
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and
1
ℓ2 (n − D + 4)F (n)

za + 1
ℓ2 F̃ (n)

za + ∂bF
(n−1)
ba = 0 , (3.10)

so as to lead, together with the Bianchi identities, to the recursion relations

0 = 1
ℓ2 (n − D + 4)(n + 1)F̃ (n+1)

ab +□F̃
(n−1)
ab , (3.11a)

0 = 1
ℓ2 (n − D + 4)(n + 1)F (n+1)

ab + 1
ℓ2 (2n − D + 5)F̃ (n+1)

ab +□F
(n−1)
ab . (3.11b)

In this case, we assume

Fza =
∑
n≥0

z2n+1F (2n+1)
za + log z

(
zD−4F̃ (D−4)

za + · · ·
)

, (3.12a)

Fab =
∑
n≥0

z2nF
(2n)
ab + log z

(
zD−3F̃

(D−3)
ab + · · ·

)
. (3.12b)

It turns out that the logarithmic branch can be fixed in terms of the free data specified by
the source, in such a way that F

(0)
ab remains unconstrained.

To summarize, the structure of the solution space for arbitrary D is as follows: the
arbitrary functions are F

(0)
ab and F

(D−4)
za , the last one being divergence-free, while

F
(2n)
ab =

(−4)−nℓ2nΓ
(5−D

2
)
□nF

(0)
ab

Γ(n+1)Γ
(2n+5−D

2
) , F

(2n+1)
ab =0 , 0< n <

D−3
2 (3.13a)

F (2n+1)
za =

(−4)−nℓ2n+2Γ
(7−D

2
)
□n∂bF

(0)
ab

(D−5)Γ(n+1)Γ
(2n−D+7

2
) , F (2n)

za =0 , 0≤n <
D−5
2 , (3.13b)

F̃
(D−3)
ab =− ℓ2□

D−3F
(D−5)
ab , F̃ (D−4)

za =−ℓ2∂bF
(D−5)
ab . (3.13c)

Note that in particular the order F
(D−3)
ab is fixed in terms of F

(D−4)
az by

F
(D−3)
ab = 1

D − 3
(
∂bF

(D−4)
az − ∂aF

(D−4)
bz

)
. (3.14)

The falloffs (3.7) and (3.12) for even and odd D, respectively, capture the two expected
branches of solutions associated to radiation (or source) and to static (or VEV) contributions.

Let us now discuss the solution space in terms of the gauge potential Aµ. Upon
imposing the Lorenz gauge ∇ · A = 0 and assuming the expansion

A(z, x) =
∑
n≥0

znA(n)(x) + log z
∑
n≥0

znÃ(n)(x) , (3.15)

the relations (3.4) and (3.10) yield

0 = (n − 1)(n − D + 2)A(n)
z + ℓ2□A(n−2)

z + (2n − D + 1)Ã(n)
z , (3.16a)

0 = n(n − D + 3)A(n)
a + ℓ2□A(n−2)

a − 2ℓ2∂aA(n−1)
z + (2n − D + 3)Ã(n)

a , (3.16b)
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while the gauge condition reads

0 = (n − D + 2)A(n)
z + ℓ2∂ · A(n−1) + Ã(n)

z . (3.17)

The equations determining the log terms are obtained similarly. The solutions, for any
D ≥ 4, are

A(2n+1)
z =

4−nℓ2n+2Γ
(

D−2n−3
2

)
□n∂ ·A(0)

(D−3)2Γ
(

D−3
2
)
Γ(1+n)

, 0≤n <
D−2
2 , (3.18a)

A(2n)
a =

ℓ2nΓ
(

D−2n−3
2

)
□n−1

(
(D−3)□A

(0)
a −2∂a∂ ·A(0)

)
22n+1Γ(n+1)Γ

(
D−1

2
) , 0< n <

D−3
2 , (3.18b)

while A
(2n)
z = 0, A

(2n+1)
a = 0 and

Ã(D−2)
z = −ℓ2∂ · A(D−3) = −ℓ2□A

(D−4)
z

D − 3 , Ã(D−3)
a = − ℓ2

D − 3
(
□A(D−5)

a − 2∂aA(D−4)
z

)
.

(3.19)
The arbitrary functions of the boundary coordinates are A

(0)
a , A

(D−2)
z and the transverse

part of A
(D−3)
a (while ∂ · A(D−3) = □A

(D−4)
z

D−3 ), and the corresponding radial expansions are
given by

even D ≥ 4 :

Az =
∑
n≥0

z2n+1A(2n+1)
z +

∑
n≥0

zD−2+2nA(D−2+2n)
z ,

Aa =
∑
n≥0

z2nA(2n)
a +

∑
n≥0

zD−3+2nA(D−3+2n)
a ,

(3.20)

odd D > 4 :

Az =
∑
n≥0

z2n+1A(2n+1)
z + log z zD−2

(
Ã(D−2)

z + . . .
)

,

Aa =
∑
n≥0

z2nA(2n)
a + log z zD−3

(
Ã(D−3)

a + . . .
)

.
(3.21)

In Lorenz gauge the parameter in δλAµ = ∇µλ is constrained by ∇µ∇µλ = 0. Thus, one
can perform on λ the same analysis illustrated for scalar fields in section 2.1 and find the
corresponding solutions (2.7). In particular, one can use the available free function λ(D−1)

in the residual gauge parameter to gauge-fix A
(D−2)
z to zero. As we shall see below, see

e.g. eq. (3.54), λ(D−1) does not appear in the boundary charges (in contrast with λ(0)), so
that the transformation needed to achieve this gauge fixing is a small gauge transformation.
This shows that the nontrivial boundary data consists of source, i.e. the free vector A

(0)
a ,

and VEV, i.e. the divergence-free part of A
(D−3)
a .

As an alternative, in the radial gauge Az = 0, (3.4) and (3.10) become

0 = n ∂ · A(n) + ∂ · Ã(n) , (3.22a)

0 = n(D − 3− n)A(n)
a + (D − 2n − 3)Ã(n)

a − ℓ2□A(n−2)
a + ℓ2∂b∂aA

(n−2)
b , (3.22b)
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whose solutions are, for D ≥ 4,

A(2n)
a =

ℓ2nΓ
(

5−D
2

)
□n−1

(
□A

(0)
a − ∂a∂ · A(0)

)
(−4)nΓ

(
2n−D+5

2

)
Γ (n + 1)

, A(2n+1)
a = 0 , 0 < n <

D − 3
2 ,

(3.23a)

Ã(D−3)
a = ∂a∂ · A(D−5) −□A

(D−5)
a

D − 3 , (3.23b)

with the extra constraints

∂ · A(n) = 0 , ∂ · Ã(D−3) = 0 , (3.24)

for n ̸= 0, D − 3. Note also that
∂aA(D−3)

a = 0 (3.25)

as a consequence of (3.22a) and (3.24). Thus, for even dimension

Aa =
∑
n≥0

z2nA(2n)
a +

∑
n≥0

zD−3+2nA(D−3+2n)
a , (3.26)

while for odd dimension

Aa =
∑
n≥0

z2nA(2n)
a + log z zD−3

(
Ã(D−3)

a + . . .
)

. (3.27)

The radial orders A
(0)
a and the divergence-free part of A

(D−3)
a are unconstrained by the

above equations of motion.

3.2 Holographic renormalization

The starting point is the regularized action

Sreg = −1
4

∫
z>ϵ

dDx
√
−gFµνFµν . (3.28)

On-shell ∂µAν
√
−gFµν ≈ ∂µ(Aν

√
−gFµν) and thus

Sreg ≈ 1
2ℓϵD−4

∫
z=ϵ

dD−1xAaFza . (3.29)

Upon expanding the fields for small z = ϵ, we see that this regulated action diverges for
D ≥ 5 and one can isolate the divergent terms to then identify the counterterms needed to
obtain the renormalized action. Once the latter is available, from its on-shell variation it is
possible to compute the renormalized asymptotic charges. Note instead that (3.29) is finite
for D = 4 thanks to the falloffs (3.7).

3.2.1 Even dimensions

In order to renormalize (3.29), we shall follow a strategy analogous to the one detailed for
the scalar field below eq. (2.14). Starting from

Sreg ≈
∫

z=ϵ
dD−1xAaBa , Ba = 1

2ℓϵD−4Fza , (3.30)
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in order to define an appropriate subtracted action, it is enough to find a counterterm
action Sct such that

Ssub = Sreg + Sct ≈
∫

z=ϵ
dD−1xAaB̃a , (3.31)

where B̃a is finite as ϵ → 0, since Aa is itself finite in that limit. To this end, upon inserting
the first of (3.7) in (3.29) we have

Sreg ≈ 1
2ℓϵD−4

∫
dD−1xAa

D−5∑
n=1

ϵnF (n)
za +O(1) , (3.32)

where the sum runs formally over all n from 1 to D − 5 but only the odd terms are
nonvanishing. Note that, in the present renormalization scheme, we conveniently choose
not to expand Aa = O(z0). Similarly to the discussion for the scalar case below eq. (2.16),
this is because we do not aim to obtain the explicit expansion of the regulated action in
terms of asymptotic field components A

(k)
µ , but rather only its expression in terms of bulk

fields, which will suffice in order to obtain a finite presymplectic potential. Let us also
stress that this choice cannot affect the bulk-covariant form of the counterterms, except
possibly for scheme-dependent terms in the finite piece (and only for odd D, as for the
scalar field). This choice is particularly convenient because it allows us to only use the
equations of motion for the field strength; below we will compare this with a different
procedure, checking that a different choice only introduces finite local functionals of the
source field. Using the equations of motion (3.4) together with

F
(0)
ab = Fab −

∞∑
n=2

ϵnF
(n)
ab (3.33)

near the boundary, we rewrite the regulated action in the form

Sreg ≈ ℓ

2

∫
dD−1x

Aa∂bFba

(D − 5)ϵD−5 + ℓ

2

∫
dD−1xAa

D−6∑
n=2

[ 1
D − 5− n

− 1
D − 5

]
∂bF

(n)
ba

ϵD−5−n
,

(3.34)
where the first term determines the most singular counterterm. Let us introduce the
notation S

(n)
ct for the nth counterterm and S≤n for the sum of the counterterms up to n (in

decreasing order of divergence), for later convenience. So

S
(D−5)
ct = S≤D−5

ct = − ℓ

2

∫
dD−1x

Aa∂bFba

(D − 5)ϵD−5 (3.35)

and

Sreg + S
(D−5)
ct = ℓ

2

∫
dD−1xAa

D−6∑
n=2

n

(D − 5)(D − 5− n)
∂bF

(n)
ba

ϵD−5−n
. (3.36)

The idea is to use (3.5) in order to write a recursion equation for the counterterms. Indeed,
inserting (3.5) and shifting the sum by 2, one finds

Sreg + S≤D−5
ct = 1

D − 5
ℓ

2

∫
dD−1xAa

D−8∑
n=0

ℓ2□
(D − 7− n)(D − 5− n)

∂bF
(n)
ba

ϵD−7−n
, (3.37)
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where, exploiting again (3.33), one can isolate the second counterterm,

S
(D−7)
ct = − ℓ

2

∫
dD−1x

Aaℓ2□
(D − 7)(D − 5)2

∂bFba

ϵD−7 , (3.38)

thus arriving at

Sreg + S≤D−7
ct = ℓ

2(D − 5)2(D − 7)

∫
dD−1xAa

D−8∑
n=2

n(2D − 12− n)
(D − 7− n)(D − 5− n)

ℓ2□∂bF
(n)
ba

ϵD−7−n
.

(3.39)
The general structure is therefore

S
(D−5−i)
ct = − ℓ

2

∫
dD−1x c(i) Aa(ℓ2□)i/2∂bFba

ϵD−5−i
(3.40)

and

Sreg + S≤D−3−i
ct = ℓ

2

∫
dD−1x

D−6−i∑
n=0

c(i)
n

Aa(ℓ2□)i/2∂bF
(n)
ba

ϵD−5−n
(3.41)

with

c(i) = c
(i)
0 c(i)

n =
c

(i−2)
n+2 − c(i−2)

(n + 2)(D − 5− n) . (3.42)

Upon integrating by parts one finds the general form of the counterterm

S
(ϵ)
ct = + ℓ

4(D − 5)ϵD−5

∫
z=ϵ

dD−1xFab

1 +
D−6

2∑
k=1

ℓ2kϵ2kc
(k+1)
N □k

Fab , (3.43)

up to a boundary-of-the-boundary term, where the coefficients c
(k)
N satisfy

c
(k)
N =−

(−4)−k+1(k−1)Γ
(
−D+5

2

)
Γ(k)Γ

(
2k−D+5

2

) −
k−3∑
q=0

c
(q+2)
N

(−4)−k+2+qΓ
(
−D+5

2

)
Γ(k−1+q)Γ

(
2k−D+1−2q

2

)
 . (3.44)

Let us note that the expression (3.43) for the counterterms can be rewritten in the following
manifestly diffeomorphism invariant way,

S
(ϵ)
ct = + ℓ

4(D − 5)

∫
z=ϵ

dD−1x
√
−γ γacγbdFab

1 +
D−6

2∑
k=1

c
(k+1)
N ℓ2k□k

γ

Fcd (3.45)

where all explicit powers of ϵ have been reabsorbed into the induced metric γab = ηab/ϵ2 on
the surface z = ϵ and into □γ = γab∂a∂b. There are two possibilities to do away with the
boundary-of-the-boundary term. The first one is to assume that we are working with field
configurations that fall off in the early past and in the far future at the boundary:

Fab = 0 on the boundary of z = ϵ . (3.46)
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The second one is to add a corner term to the action that cancels it, whose general form is

S(ϵ)
corner =

ℓ

2(D − 5)ϵD−5

∫
z=ϵ

dD−1x ∂b

Aa

1 +
D−6

2∑
k=1

ℓ2kϵ2kc
(k+1)
N □k

Fba

 . (3.47)

Of course this will not interfere with the variational principle, since it only involves derivatives
tangential to the boundary.

Altogether, the on-shell variation of the subtracted action, S
(ϵ)
sub = S

(ϵ)
reg+S

(ϵ)
ct , is given by

δS
(ϵ)
sub ≈

∫
z=ϵ

dD−1xδAa

 Fza

ℓϵD−4 −
ℓ

(D−5)ϵD−5

1+
D−6

2∑
k=1

ℓ2kϵ2kc
(k+1)
N □k

∂bFab

 (3.48)

which, after taking the limit ϵ → 0, gives us the following variation of the renormalized
on-shell action

δSren = lim
ϵ→0

δS
(ϵ)
sub ≈ 1

ℓ

∫
dD−1x δAaF (D−4)

za (3.49)

and the boundary conserved current

⟨Ja⟩ =
δSren
δAa

= 1
ℓ

F (D−4)
za . (3.50)

In this scheme, where we haven’t expanded the Maxwell field and have inverted the
expansions, we can provide a covariant expression for the presymplectic potential and
symplectic structure in terms of the bulk fields:

δS
(ϵ)
sub ≈

∫
z=ϵ

dD−1xΘ(ϵ)
sub , Ω = 1

ℓ

∫
z=0

dD−1x δAa δF (D−4)
za , (3.51)

where F
(D−4)
za = (D − 3)A(D−3)

a − ∂aA
(D−4)
z (in both gauges). In particular, looking at the

variation along a gauge parameter λ, we can rewrite the latter as

δλSren = 1
ℓ

∫
dD−1x ∂a

(
λF (D−4)

za

)
, (3.52)

where we used ∂aF
(D−4)
za = 0 from (3.4). Correspondingly, the charge flux across the

boundary is given by
∆Q(λ) = 1

ℓ

∫
dD−1x ∂a

(
λF (D−4)

za

)
, (3.53)

and the surface charges read

Q(λ) = −1
ℓ

∫
dD−2x

(
λF

(D−4)
z0

)
. (3.54)

Let us note that the time derivative ∂0Q(λ) manifestly vanishes only for the standard electric
charge (λ = 1). Let us now discuss in more detail the counterterm structure in a couple
of examples.

In D = 6 there is only one counterterm which is given by

Sct = − 1
2ℓϵ

∫
z=ϵ

d5xAa∂bFba (3.55)
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so that, on shell

Sreg ≈ ℓ

2ϵ

∫
z=ϵ

d5x ∂b(AaFba)−
ℓ

4ϵ

∫
z=ϵ

d5xFabFab +O(1) . (3.56)

Of the two options to do away with the boundary-of-the-boundary we simply use (3.46) to
drop the first term in the second line so that the subtracted action is

Ssub =
∫

z>ϵ
d6x

(
−1
4
√
−g FµνFµν

)
− ℓ

ϵ

∫
z=ϵ

d5x

(
−1
4FabFab

)
; (3.57)

note that this expression is exactly gauge invariant. Its on-shell variation gives

δSsub ≈
∫

z=ϵ
d5x δAa

( 1
ℓϵ2Fza − ℓ

ϵ
∂bFba,

)
(3.58)

and expanding for small ϵ, we find
1

ℓϵ2Fza − ℓ

ϵ
∂bFba = ℓ

ϵ

( 1
ℓ2 F (1)

za − ∂bF
(0)
ba

)
+ 1

ℓ
F (2)

za +O(ϵ) , (3.59)

where the divergent term vanishes due to (3.4). We conclude that

δSren ≈ 1
ℓ

∫
z=0

d5x δAaF (2)
za . (3.60)

We can thus identify the conserved current (3.50) and the surface charge (3.54), for D = 6.
In D = 8 a leading and a subleading term need to be taken into account. Indeed, there

are two divergent terms

Sreg ≈ 1
2ℓϵ4

∫
z=ϵ

d7xAa
(
ϵF (1)

za + ϵ3F (3)
za

)
+O(1) . (3.61)

Following the steps from (3.33) to (3.38) we obtain

Sreg ≈ ℓ

2

∫
z=ϵ

d7xAa∂b
( 1
3ϵ3Fba + 1

9ϵ
ℓ2□Fba

)
+O(1) , (3.62)

and integrating by parts

Sreg ≈ ℓ

2

∫
z=ϵ

d7x ∂b
[
Aa
( 1
3ϵ3Fba + 1

9ϵ
ℓ2□Fba

)]
− ℓ

4

∫
z=ϵ

d7xFab
( 1
3ϵ3Fab +

1
9ϵ

ℓ2□Fab

)
+O(1) ,

(3.63)

where the second line identifies the counterterms. The subtracted action is therefore

Ssub =
∫

z>ϵ
d8x

(
−1
4
√
−gFµνFµν

)
− ℓ

4

∫
z=ϵ

d7x

(
− 1
3ϵ3FabFab− 1

9ϵ
Fabℓ

2□Fab
)

.

(3.64)
In the on-shell variation

δSsub ≈
∫

z=ϵ
d7x δAa

( 1
ℓϵ4Fza − ℓ

3ϵ3 ∂bFba − ℓ

9ϵ
ℓ2□∂bFba

)
, (3.65)

both divergent contributions arising from the expansion of the first term cancel,
leaving behind

δSren ≈ 1
ℓ

∫
z=0

d7x δAaF (4)
za , (3.66)

which matches (3.49) for D = 8, and reproduces current (3.50) and the surface charge (3.54),
for D = 8.
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3.2.2 Odd dimensions

From (3.29) and (3.12) we see that in odd D ≥ 5 there will be a single counterterm
associated to a logarithmic divergence plus a collection of counterterms associated to the
power-like divergences:

Sreg = Sst + Slog (3.67)

with

Sst =
1

2ℓϵD−4

∫
dD−1xAa

D−6∑
n=1

ϵnF (n)
za , Slog = − ℓ

2 log ϵ

∫
dD−1xAa∂bF

(D−5)
ba .

(3.68)
Using the equation of motion (3.11b), one finds

Slog = − ℓ

2 log ϵ

∫
dD−1x

Aa(ℓ2□)
D−5

2

(D − 5)!! ∂bFba , (3.69)

while the structure of Sst is the same as that of Sreg in even D, i.e. its counterterms are
given by (3.40) with coefficients (3.42). The recursion relation starts with

c(0)
n = 1

D − 5− n
(3.70)

where of course the n = D−5 terms is absent. Nevertheless, we do have a finite counterterm
S

(0)
ct associated to c(D−5).

Equivalently, in order to regularize the on-shell action, we can add a counterterm action
that differs from the even-dimensional one only by the presence of a term in log ϵ

S
(ϵ)
ct =

∫
z=ϵ

dD−1x ℓ

4(D − 5) ϵD−5Fab

1 +
D−7

2∑
k=1

(ℓϵ)2kc
(k+1)
N □k − (ℓϵ)D−5 log ϵ cL□

D−5
2

F ba ,

(3.71)
and takes this suitable expression thanks to the further addition of a corner term,

S(ϵ)
corner =

∫
z=ϵ

dD−1x ℓ ∂b

2(D − 5)ϵD−5

Aa

1 +
D−7

2∑
k=1

(ℓϵ)2kc
(k+1)
N □k − (ℓϵ)D−5 log ϵ cL □

D−5
2

Fba

 ,

(3.72)
with the coefficients c

(k)
N determined by the recursive relation (3.44), while the coefficient

for the logarithmic term is

cL = 2D−6Γ (D − 6)
Γ
(

D−5
2

) . (3.73)

Let us also rewrite (3.71) by introducing the induced metric γab on the cutoff surface, in a
manner similar to (3.45),

S
(ϵ)
ct =

∫
z=ϵ

ℓ dD−1x

4(D − 5)
√
−γ γacγbdFab

1 +
D−7

2∑
k=1

ℓ2kc
(k+1)
N □k

γ − ℓD−5 log ϵ cL□
D−5

2
γ

Fcd ,

(3.74)
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where the only leftover explicit dependence on ϵ enters via log ϵ. The on-shell variation of
the subtracted action yields δS

(ϵ)
sub ≈

∫
z=ϵ Θ

(ϵ)
subdD−1x, where

Θ(ϵ)
sub = δAa

ℓϵD−5

Fza

ϵ
− ℓ2

(D − 5)

1 +
D−7

2∑
k=1

(ℓϵ)2kc
(k+1)
N □k − (ℓϵ)D−5 log ϵ cL□

D−5
2

 ∂bFab

 .

(3.75)
In the limit ϵ → 0, the last equation gives us the following variation of the renormalized
on-shell action

δSren = lim
ϵ→0

δS
(ϵ)
sub ≈ 1

ℓ

∫
dD−1x δAaF (D−4)

za . (3.76)

In this case, F
(D−4)
za = (D−3)A(D−3)

a + Ã
(D−3)
a −∂aA

(D−4)
z (in both gauges). Along a gauge

parameter λ, the latter reduces on-shell to a corner term

δλSren = 1
ℓ

∫
dD−1x ∂a

(
λF (D−4)

za

)
, (3.77)

so that the conserved current and the charge are given by the same expressions as in the
even dimensional case, (3.50) and (3.54), respectively.

The case of D = 5 provides the simplest example to this effect, with the only the
divergent term being the logarithmic one

Sreg ≈ − ℓ

2 log ϵ

∫
z=ϵ

d4xAa∂bFba +O(1) . (3.78)

Assuming that (3.46) holds, we can integrate by parts this term and write the subtracted
action as follows

Sren =
∫

z>ϵ
d5x

(
−1
4
√
−g FµνFµν

)
+ ℓ log ϵ

∫
z=ϵ

d4x

(
−1
4FabFab

)
. (3.79)

Taking the variation on shell and using the condition (3.46) to drop the boundary of the
boundary contribution,

δSren ≈ 1
ℓϵ

∫
z=ϵ

d4xFzaδAa + ℓ log ϵ

∫
z=ϵ

d4x δAb ∂aFab

=
∫

z=ϵ
d4x δAa

( 1
ℓϵ
Fza + ℓ log ϵ ∂bFba

)
.

(3.80)

Expanding the quantity within round parentheses,

1
ℓϵ
Fza + ℓ log ϵ ∂bFba = log ϵ

(1
ℓ

F̃ (1)
za + ℓ∂bF

(0)
ba

)
+ 1

ℓ
F (1)

za + o(1) , (3.81)

and the coefficient of the singularity vanishes on the equations of motion thanks to (3.10)
evaluated for n = 1. In conclusion,

δSren ≈ 1
ℓ

∫
z=0

d4x δAaF (1)
za (3.82)
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and therefore
⟨Ja⟩ =

δSren
δAa

= 1
ℓ

F (1)
za , (3.83)

and the equations of motion indeed ensure that this is a conserved current, since ∂aF
(n)
za ≈ 0.

Correspondingly, the charge flux that we get is

∆Q(λ) ≈ 1
ℓ

∫
z=0

d4x ∂aλ F (1)
za ≈ 1

ℓ

∫
z=0

d4x ∂a(λ F (1)
za ) , (3.84)

where we have used the equations of motion ∂aF
(n)
za ≈ 0.

The first case in which both a power divergence and a logarithm need to be taken into
account simultaneously is the case D = 7. Starting again from (3.29) for D = 7,

Sreg ≈ 1
2ℓϵ3

∫
z=ϵ

d6xAaFza (3.85)

and substituting the falloffs (3.12) we have

Sreg ≈ 1
2ℓϵ2

∫
z=ϵ

d6xAaF (1)
za + 1

2ℓ
log ϵ

∫
z=ϵ

d6xAaF̃ (3)
za +O(1) . (3.86)

The equation of motion (3.10), setting n = 1 and n = 3, gives

F (1)
za = ℓ2

2 ∂bF
(0)
ba , F̃ (3)

za = −ℓ2∂bF
(2)
ba , (3.87)

while the recursion relation (3.11b) yields

F
(2)
ab = 1

4 ℓ2□F
(0)
ab =⇒ F̃ (3)

za = −ℓ2

4 ℓ2□∂bF
(0)
ba . (3.88)

Substituting into (3.86) and using F
(0)
ab = Fab − z2 F

(2)
ab + · · · , we find

Sreg ≈ − ℓ

4

∫
z=ϵ

d6xFab
( 1
2ϵ2 − 1

8 ℓ2□− 1
4 log ϵℓ2□

)
Fab +O(1) , (3.89)

after integrating by parts in the usual way. Note that the second term in the round
parentheses gives a finite contribution as ϵ → 0. Since in the minimal subtraction scheme
we simply identify all divergent terms of the regularized action, it could be natural to drop
it. However, we may also keep it because it actually cancels a finite term arising from the
first term when re-expanded in ϵ. We are thus led to define the renormalized action as

Sren =
∫

z>ϵ
d7x

(
−1
4
√
−g FµνFµν

)
+ ℓ

4

∫
z=ϵ

d6xFab
( 1
2ϵ2 − 1

8 ℓ2□− 1
4 log ϵℓ2□

)
Fab.

(3.90)
Taking the variation on shell and using the condition (3.46) to drop the boundary of

the boundary contribution,

δSren ≈
∫

z=ϵ
d6x δAa

[ 1
ℓϵ3 Fza − ℓ

( 1
2ϵ2 − 1

8 ℓ2□− 1
4 log ϵℓ2□

)
∂bFba

]
. (3.91)
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Expanding the quantity within square brackets, we have

[ · · · ]a = 1
ℓϵ2

(
F (1)

za − ℓ2

2 ∂bF
(0)
ba

)
+ 1

ℓ
F (3)

za + log ϵ

ℓ

(
F̃ (3)

za + ℓ2

4 ℓ2□∂bF
(0)
ba

)

+ ℓ

2 ∂b
(
F (2)

za − 1
4 ℓ2□∂bF

(0)
ba

)
+O(1) .

(3.92)

All round parenthesis in this expression vanish by the equations of motion (3.87), (3.88),
including the “spurious” finite term coming from the variation of the counterterm. In
conclusion,

δSren ≈ 1
ℓ

∫
z=0

d6x δAaF (3)
za (3.93)

and therefore
⟨Ja⟩ =

δSren
δAa

= 1
ℓ

F (3)
za , (3.94)

and the equations of motion indeed ensure that this is a conserved current, since ∂aF
(n)
za ≈ 0.

Correspondingly, the charge flux that we get is

∆Q(λ) ≈ 1
ℓ

∫
z=0

d6x ∂aλ F (3)
za ≈ 1

ℓ

∫
z=0

d6x ∂a(λ F (3)
za ) , (3.95)

where we have used the equations of motion ∂aF
(n)
za ≈ 0.

3.3 Symplectic renormalization

In order to obtain finite charges an alternative procedure is to directly renormalize the
symplectic structure of the theory, as we saw in section 2.1 for the scalar case. To this end,
from the Maxwell Lagrangian

L = −
√
−g

4 FµνFµν , (3.96)

one derives the presymplectic potential (see appendix B)

Θµ(A, δA) = −
√
−g FµνδAν . (3.97)

The main idea of the symplectic renormalization is to exploit the ambiguities of the
presymplectic potential (B.7) in order to cancel radial divergences. In general, explicitly
determining the form of the counterterm ambiguities in (B.7) can be impractical. However,
a systematic way of obtaining such terms has been proposed in [52, 57]. In this approach,
contrary to the holographic renormalization, we need not only the solution space of the field
strength but also that of the gauge field and therefore this procedure depends in principle
on the gauge.

Again, since the boundary has the orientation nµ = δz
µ in the Poincaré patch, the

charges are computed using Θz. If we factor out the off-shell radial dependence of Θµ

Θz = z−(D−4)Θ̃z , Θ̃z = 1
ℓ
FazδAa ,

Θa = z−(D−4)Θ̃a , Θ̃a = 1
ℓ
Fz

aδAz − ℓFab δAb ,
(3.98)
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and similarly for the Lagrangian

L = z−(D−4)L̃ , L̃ = 1
2ℓ

Fa
zFza − ℓ

4F
abFab , (3.99)

we obtain the asymptotic renormalization equation

1
z
(z∂z − (D − 4)) Θ̃z ≈ δL̃ − ∂aΘ̃a . (3.100)

Upon further expanding radially Θ̃µ and L̃ ,

Θ̃µ =
∑

n

zn
(
Θ̃µ

(n) + log z θ̃µ
(n)

)
, L̃ =

∑
n

zn
(
L̃ (n) + log z ℓ̃(n)

)
, (3.101)

equation (3.100) becomes

(n − D + 4) Θ̃z
(n) + θ̃z

(n) ≈ δL̃ (n−1) − ∂aΘ̃a
(n−1) . (3.102)

Therefore, one can see that the orders n < D− 4 of Θ̃z
(n), which are the ones that come with

divergent prefactors in Θz, are fixed on-shell to be total derivatives plus total variations
that can be removed order by order, while Θ̃z

(D−4), which gives the finite order of Θz, is
undetermined by this equation. In order to see how the procedure concretely works one has
to distinguish even- and odd-dimensional cases.

3.3.1 Even dimensions

In the generic even dimensional diverging case, i.e. for D ≥ 6, the asymptotic radial
expansion of the presymplectic potential radial component is

Θz =
D−6

2∑
n=0

z2n−D+5 Θ̃z
(2n+1) + Θ̃z

(D−4) +O(z) , (3.103)

where the divergent orders are given in terms of the asymptotic solution space of the
massless spin-1 field and its field strength by

Θ̃z
(2n+1) = −1

ℓ

n∑
q=0

F (2(n−q)+1)
za δAa

(2q) , (3.104)

while the finite order is
Θ̃z

(D−4) = −1
ℓ

F (D−4)
za δAa

(0) . (3.105)

According to (3.102), the divergent orders can be expressed as ambiguities built on ∂aΘ̃a
(2n)

and δL̃ (2n), where

odd n : Θ̃a
(2n) = −ℓ

2n−1∑
q=0

(
F a(2n−2q)

b δAb
(2q)

)
− 1

ℓ
F a(n)

z δA(n)
z , (3.106a)

even n : Θ̃a
(2n) = −ℓ

2n−1∑
q=0

(
F a(2n−2q)

b δAb
(2q)

)
− 1

ℓ

(
F a(n−1)

z δA(n+1)
z + F a(n+1)

z δA(n−1)
z

)
,

(3.106b)
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and

odd n : L̃ (2n) = − ℓ

4

2n−1∑
q=0

F ab
(2n−2q)F

(2q)
ab + 1

2ℓ
F a(n)

z F (n)
za , (3.107a)

even n : L̃ (2n) = − ℓ

4

2n−1∑
q=0

F ab
(2n−2q)F

(2q)
ab + 1

ℓ
F a(n+1)

z F (n−1)
za . (3.107b)

The counterterm is therefore

Θz
ct = −

D−6
2∑

n=0
z2n−D+5

(
∂aΘ̃a

(2n) − δL̃ (2n)
)

, (3.108)

and the renormalized presymplectic potential is

Θz
ren = lim

z→0
(Θz +Θz

ct) = Θ̃z
(D−4) = −1

ℓ
F (D−4)

za δAa
(0) . (3.109)

This procedure involves a choice of the gauge fixation of the A−field in the asymptotic
solution spaces. However, in the way we have written it above, the systematics is gauge
independent, as is the final result for the finite renormalized part of the potential.

3.3.2 Odd dimensions

For D ≥ 5, the divergent terms of the presymplectic potential read

Θz =
D−7

2∑
n=0

z2n−D+5 Θ̃z
(2n+1) + log z θ̃z

(D−4) +O(1) , (3.110)

where, in terms of the asymptotic solution spaces, the non-logarithmic terms are given
by (3.104) and the logarithmic one by

θ̃z
(D−4) = −1

ℓ
F̃ (D−4)

za δAa
(0) . (3.111)

Using the radial equation (3.102) and the expressions (3.106)–(3.107), we can cancel the
above divergences with the following counterterm

Θz
ct = −

D−7
2∑

n=0
z2n−D+5

(
∂aΘ̃a

(2n) − δL̃ (2n)
)
+ log z

(
∂aΘ̃a

(D−5) − δL̃ (D−5)
)

(3.112)

such that the renormalized presymplectic potential takes the form

Θz
ren = lim

z→0
(Θz +Θz

ct) = Θ̃z
(D−4) = −1

ℓ

D−5
2∑

n=0
F (D−4−2n)

za δAa
(2n) . (3.113)

Although this finite order is not subject to the renormalization equation, we can still add
finite ambiguities to it. In particular, if we add the following corner term

Θcorner
c = −

ℓD−4∑D−5
2

n=1
1
n

2D−4
[(

D−5
2

)
!
]2 (∂b□

D−7
2 F

(0)
ab ∂cδAa

(0) −
2

D − 3∂b□
D−7

2 F
(0)
cb ∂ · δA(0)

)
, (3.114)
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we obtain

Θz
ren = −1

ℓ
F (D−4)

za δAa
(0) −

ℓD−4

2D−4
[(

D−5
2

)
!
]2


D−5
2∑

n=1

1
n

 ∂b□
D−5

2 F
(0)
ab δAa

(0) . (3.115)

Note that, despite involving a gauge choice for the spin-one field, the final result and the
entire procedure above are gauge-independent. The only concrete effect of the Lorenz gauge
that we employed above is in the factor

(
2

D−3

)
of (3.114) that in the radial gauge, for

instance, would be equal to 1. We can further enhance the last expression with the addition
of the following terms

Θbdy = ℓD−4

2D−2
[(

D−5
2

)
!
]2


D−5
2∑

n=1

1
n

F ab
(0) □

D−5
2 F

(0)
ab , (3.116a)

Θcorner
c = ℓD−4

2D−4
[(

D−5
2

)
!
]2


D−5
2∑

n=1

1
n

(□D−5
2 F (0)

ac δAa
(0) +

D − 5
4 ∂c□

D−7
2 F

(0)
ab δF ab

(0)

)
,

(3.116b)

to end up with the expected result

Θz
ren = −1

ℓ
δAa

(0)F
(D−4)
za . (3.117)

Let us consider explicitly the case of D = 7, so as to also highlight the role played by
different gauge choices, for the two instances of the Lorenz gauge and the radial gauge.

Lorenz gauge. In this case, the asymptotic radial expansion of Θz is

Θz = 1
z2 Θ̃

z
(1) + log z θ̃z

(3) + Θ̃z
(3) +O(z2) , (3.118)

where the diverging orders are

Θ̃z
(1) = − ℓ

2∂bF
(0)
ab δAa

(0) , θ̃z
(3) =

ℓ3

4 ∂b□F
(0)
ab δAa

(0) , (3.119)

and where in particular the solution space of Aµ is such that

Aa = A(0)
a + z2A(2)

a +O(z4) , A(2)
a = ℓ2

8
(
2□A(0)

a − ∂a∂ · A(0)
)

, (3.120)

with A
(0)
a a free function of xa. The divergences are cancelled thanks to the following

counterterm
Θz

ct = −1
z

(
∂aΘ̃a

(0) − δL̃ (0)
)
+ 1

z3 log z
(
∂aΘ̃a

(2) − δL̃ (2)
)

(3.121)

since the asymptotic renormalization equation (3.102) yields

Θ̃z
(1) ≈

1
2
(
∂aΘ̃a

(0) − δL̃ (0)
)

, θ̃z
(3) ≈ δL̃ (2) − ∂aΘ̃a

(2) , (3.122)
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where
Θ̃a

(0) = −ℓF ab
(0)δA

(0)
b , L̃ (0) = − ℓ

4F ab
(0)F

(0)
ab , (3.123)

and

Θ̃a
(2) =

ℓ3

32

[
∂bF ab

(0)∂ ·δA(0)+4F ab
(0)∂b∂ ·δA(0)−8

(
□F ab

(0)δA
(0)
b +F ab

(0)□δA
(0)
b

)]
, (3.124a)

L̃ (2) =−ℓ3

8

(
∂bF

(0)
ab ∂cF ac

(0)+F ab
(0)□F

(0)
ab

)
. (3.124b)

Therefore, the renormalized presymplectic potential (3.113) is

Θz
ren = −1

ℓ
F (3)

za δAa
(0) −

ℓ3

8 ∂bF
(0)
ab □δAa

(0) +
ℓ3

16∂bF
(0)
ab ∂a∂ · δA(0) . (3.125)

If we add the following corner and boundary terms

Θcorner
c = ℓ3

16
(
∂bF

(0)
cb ∂ ·δA(0)−2∂bF

(0)
ab ∂cδAa

(0)+2δAa
(0)□F (0)

ac +∂cF
(0)
ab δF ab

(0)

)
, (3.126a)

Θbdy =
ℓ3

32F ab
(0)□F

(0)
ab , (3.126b)

the renormalized presymplectic potential reads

Θz
ren = −1

ℓ
δAa

(0)F
(3)
za , (3.127)

and matches the result we obtained by renormalizing the variational principle. Note that
the ambiguity in δ-exact must be justified by a boundary term to add to the bulk action.

Radial gauge. In the radial gauge Az = 0, the solution space of the A−field takes
the form

Aa =A(0)
a +z2A(2)

a +O(z4) , A(2)
a = ℓ2

4
(
□A(0)

a −∂a∂ ·A(0)
)
= ℓ2

4 ∂bF
(0)
ba , (3.128)

where A
(0)
a is an arbitrary function of the boundary coordinates. The renormalization

is identical to what we performed for the Lorenz gauge. The radial component of the
presymplectic potential then radially expands as in (3.118), where the on-shell values of the
diverging orders are given in (3.119). Using (3.102), we have shown that the latter can be
cancelled if we add the counterterm (3.121)–(3.124) to the presymplectic potential, except
that in the present case

Θ̃a
(2) =

ℓ3

4
(
2F ab

(0)∂b∂ · δA(0) −□F ab
(0)δA

(0)
b − F ab

(0)□δA
(0)
b

)
. (3.129)

This leads us to the on-shell renormalized symplectic structure

Θz
ren ≈ −1

ℓ
F (3)

za δAa
(0) −

ℓ3

8 ∂bF
(0)
ab □δAa

(0) +
ℓ3

8 ∂bF
(0)
ab ∂a∂ · δA(0) (3.130)

which differs from (3.125) obtained in the Lorenz gauge by a pure corner term

∂a

(
− ℓ3

16∂bF
(0)
ab ∂ · δA(0)

)
. (3.131)
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We can then conclude that we obtain the same result in both gauges. Note that we can
still fix the ambiguities of the presymplectic potential for the finite order. Hence, if we add
the same finite boundary and corner terms to the renormalized potential as in the Lorenz
gauge, it can finally be rewritten as (3.127).

4 Spin-one fields in Bondi coordinates

We want to determine the renormalized asymptotic spin-one charges in Bondi coordinates A.3.
One motivation is that in this framework computing the flat limit of the charge becomes
essentially trivial. However, in Bondi coordinates the analysis in arbitrary dimensions
turns out to be more involved than in the Poincaré patch and we will detail only a few
specific cases.

4.1 Solution space

The equations of motion for the field strength read

0=
(

∂r+
D−2

r

)
Fur−

1
r2 ∂iFir , (4.1a)

0= ∂uFru−
1
r2 ∂iFiu+

( 1
r2 +

1
ℓ2

)
∂iFir , (4.1b)

0= 1
r2

(
∂r+

D−4
r

)
(Fri−Fui)+

1
ℓ2

(
∂r+

D−2
r

)
Fri−

1
r2 ∂uFri−

1
r4 ∂jFij . (4.1c)

Assuming an asymptotic radial expansion of the form

Fµν(u, r, xi) =
∑

n

r−n
(
F (n)

µν (u, xi) + log r F̃ (n)
µν (u, xi)

)
, (4.2)

the above equations of motion yield the following recursive relations

0 = (D − n − 2)F (n)
ur + F̃ (n)

ur − ∂iF
(n−1)
ir , (4.3a)

0 = ∂uF (n)
ru + ∂i

(
F

(n−2)
ir − F

(n−2)
iu

)
+ 1

ℓ2 ∂iF
(n)
ir , (4.3b)

0 = (D − n − 4)
(
F

(n)
ri − F

(n)
ui

)
+
(
F̃

(n)
ri − F̃

(n)
ui

)
+ 1

ℓ2 (D − n − 4)F
(n+2)
ri

+ 1
ℓ2 F̃

(n+2)
ri − ∂u F

(n+1)
ri − ∂jF

(n−1)
ij ,

(4.3c)

while the Bianchi identities provide the additional constraints

∂uF
(n)
ir − ∂iF

(n)
ur = −(n − 1)F (n−1)

iu + F̃
(n−1)
iu , (4.4a)

∂iF
(n)
uj − ∂jF

(n)
ui = ∂uF

(n)
ij , (4.4b)

∂iF
(n)
rj − ∂jF

(n)
ri = −(n − 1)F (n−1)

ij + F̃
(n−1)
ij , (4.4c)

∂iF
(n)
kj − ∂jF

(n)
ki = ∂kF

(n)
ij . (4.4d)

The relations governing the logarithmic terms are obtained similarly. One can streamline a
bit the recursive relation for the radial orders F

(n)
ij by injecting (4.4b), (4.4c) and (4.4d)
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into the antisymmetric spatial derivative of (4.3c)

0 = 1
ℓ2 (D − n − 4)(n + 1)F (n+1)

ij − 1
ℓ2 (D − 2n − 5)F̃ (n+1)

ij + (D − 2n − 4)∂uF
(n)
ij

+ 2∂uF̃
(n)
ij − (∆− (D − n − 4)(n − 1))F

(n−1)
ij − (D − 2n − 3)F̃ (n−1)

ij ,

(4.5)

where we recall that ∆ is the Laplacian operator w.r.t. γij . The combination of (4.3a)
and (4.4a) leads to, for n ̸= {0, D − 3},

F
(n)
iu = − 1

n

∂uF
(n+1)
ir −

∂i∂
jF

(n)
jr

D − n − 3

+ 1
n

F̃
(n)
iu , (4.6)

and yields a recursive relation for F
(n)
ir in terms of F

(n)
ij when injected into (4.3c)

0 = 1
ℓ2 (D − n − 4)F (n+2)

ir + 1
ℓ2 F̃

(n+2)
ir − ∂uF

(n+1)
ir + (D − n − 4)F (n)

ir

+
(
F̃

(n)
ir − F̃

(n)
iu

)
+ D − n − 4

n

∂uF
(n+1)
ir −

∂i∂
jF

(n)
jr

D − n − 3 − F̃
(n)
iu

+ ∂jF
(n−1)
ij .

(4.7)

In terms of Aµ, in the radial gauge Ar = 0, the equations of motion (4.1) become

0=
[
r2(∂r−∂u)∂r+r(D−2)∂r+∆

]
Au−∂uD ·A+ r3

ℓ2 (r∂r+D−2)∂rAu , (4.8a)

0= r (r∂r+D−2)∂rAu−∂rD ·A, (4.8b)

0= r (r∂r+D−4)(∂iAu−∂uAi)−DiD ·A−r2∂u∂rAi+
r3

ℓ2 (r∂r+D−2)∂rAi

+
[
r2∂2

r +(D−4)r∂r+∆
]
Ai .

(4.8c)

In analogy with (4.2), assuming

Aµ(u, r, xi) =
∑

n

r−n
(
A(n)

µ (u, xi) + log r Ã(n)
µ (u, xi)

)
, (4.9)

we obtain

0= 1
ℓ2 (n+1)(n−D+4)A(n+1)

u +[∆+(n−1)(n−D+2)]A(n−1)
u +n∂uA(n)

u

−∂uD ·A(n−1)−∂uÃ(n)
u +(D−2n−1)Ã(n−1)

u + 1
ℓ2 (D−2n−5)Ã(n+1)

u ,
(4.10a)

0= (n−1)(n−D+2)A(n−1)
u +(n−2)D ·A(n−2)+(D−2n−1)Ã(n−1)

u

−D ·Ã(n−2) ,
(4.10b)

0= (2n−D+4)∂uA
(n)
i +(D−n−4)∂iA

(n)
u −DiD ·A(n−1)−2∂uÃ

(n)
i +∂iÃ

(n)
u

+(D−2n−1)Ã(n−1)
i +[∆+(n−1)(n−D+4)]A(n−1)

i

+ 1
ℓ2 (n+1)(n−D+4)A(n+1)

i + 1
ℓ2 (D−2n−5)Ã(n+1)

i .

(4.10c)
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4.2 Holographic renormalization

We introduce the regulated on-shell action

S(ϵ)
reg ≈ −1

2

∫
r≤ϵ

dDx ∂µ
(√

−gAνFµν) . (4.11)

Since the orientation of the boundary is given by nµ = δr
µ, the above action reduces to

S(ϵ)
reg = −1

2

∫
r=ϵ

dD−1x ϵD−2√−γ

[
AuFur −

1
ϵ2A

iFui +
( 1

ϵ2 + 1
ℓ2

)
AiFri

]
. (4.12)

Let us show how to obtain its renormalized on-shell variation in two explicit instances.

4.2.1 D = 6

By solving the equations (4.4)–(4.7) with the additional that all positive powers of r vanish,
one obtains the asymptotic solution space for D = 6

Fij = F
(0)
ij + 1

r F
(1)
ij + 1

r2 F
(2)
ij + 1

r3 F
(3)
ij +O( 1

r4 ) , (4.13a)

Fir = 1
r2 F

(2)
ir + 1

r3 F
(3)
ir + 1

r4 F
(4)
ir +O( 1

r5 ) , (4.13b)

Fur = 1
r3 F (3)

ur + 1
r4 F (4)

ur +O( 1
r5 ) , (4.13c)

Fiu = F
(0)
iu + 1

r F
(1)
iu +O( 1

r2 ) , (4.13d)

where F
(0)
ij , F

(3)
ij and F

(0)
iu are arbitrary functions of (u, xi), while for instance

F
(1)
ij = −ℓ2∂uF

(0)
ij , F

(2)
ij = ℓ2

2 ∆F
(0)
ij , F

(2)
ir = ℓ2F

(0)
iu ,

F
(3)
ir = −ℓ2∂jF

(0)
ij , F (3)

ur = ℓ2∂iF
(0)
iu , F

(1)
iu = −ℓ2∂uF

(0)
iu ,

(4.14)

and
0 = 1

ℓ2 ∂iF
(4)
ir + ℓ2∂iF

(0)
iu − ℓ2

2 ∂i∂j∂iF
(0)
ju − ∂uF (4)

ur . (4.15)

In the regulated on-shell action we can highlight the divergent part

S(ϵ)
reg = −1

2

∫
r=ϵ

d5x ϵ
√
−γ

[
Ai∂jFij + ℓ2

(
Au∂i −Ai∂u

)
Fiu

]
+O(1) , (4.16)

where we used

F
(0)
ij =

(
1 + ℓ2

r
∂u

)
Fij +O

(
r−2

)
, F

(0)
iu =

(
1 + ℓ2

r
∂u

)
Fiu +O

(
r−2

)
. (4.17)

We then add the following counterterm

S
(ϵ)
ct = 1

4

∫
r=ϵ

d5x ϵ
√
−γ

(
F ijFij − 2ℓ2F i

uFiu

)
, (4.18)

where we cancelled a boundary term by means of a corner term

S(ϵ)
corner =

1
2

∫
r=ϵ

d5x ϵ
√
−γ

[
∂i
(
AjFji + ℓ2AuFiu

)
− ℓ2∂u

(
AiFiu

)]
. (4.19)
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Therefore, the subtracted action S
(ϵ)
sub = S

(ϵ)
reg + S

(ϵ)
ct takes the following form

S
(ϵ)
sub =

∫
r≤ϵ

d6x

(
−
√
−g

4 FµνFµν
)
+ 1

4

∫
r=ϵ

d5x ϵ
√
−γ

(
F ijFij − 2ℓ2F i

uFiu

)
. (4.20)

By varying the latter on-shell and taking the limit ϵ → 0, one obtains

δSren ≈ −
∫

d5x
√
−γ

[
δAuF (4)

ur − 1
ℓ2 δAiF

(4)
ir + ℓ2

2 δAi
(
∂j∂uF

(0)
ij − 2F

(0)
iu + ∂i∂

jF
(0)
ju

)]
,

(4.21)
which becomes, when evaluated along a gauge parameter λ and exploiting (4.15),

δλSren = −
∫

d5x
√
−γ

{
∂u

(
λF (4)

ur

)
− 1

2ℓ2 ∂i
[
λ

(
2F

(4)
ir − ℓ4

(
∂j∂uF

(0)
ij − 2F

(0)
iu

+ ∂i∂
jF

(0)
ju

))]}
.

(4.22)

Note that the square bracket in the previous equation drops out, since the integral of its
divergence on the sphere vanishes. As a result, we obtain the charge

Q(λ) = −
∫

d4x
√
−γ λ F (4)

ur . (4.23)

4.2.2 D = 5

Similarly to the previous case, one determines the asymptotic solution space

Fij = F
(0)
ij + 1

r F
(1)
ij + 1

r2

(
F

(2)
ij + log r F̃

(2)
ij

)
+O( 1

r3 ) , (4.24a)

Fir = 1
r2 F

(2)
ir + 1

r3

(
F

(3)
ir + log r F̃

(3)
ir

)
+O( 1

r4 ) , (4.24b)

Fur = 1
r3

(
F (3)

ur + log r F̃ (3)
ur

)
+O( 1

r4 ) , (4.24c)

Fiu = F
(0)
iu +O(1

r ) , (4.24d)

where the free data are F
(0)
ij , F

(2)
ij and F

(0)
iu , and

0 = 1
ℓ2 ∂iF

(3)
ir + ℓ2∂i∂uF

(0)
iu − ∂uF (3)

ur . (4.25)

We shall omit further relations among the coefficients that are not useful to our purposes.
Using the inverse expansion

F
(0)
ij = Fij +O

(
r−1

)
, F

(0)
iu = Fiu +O

(
r−1

)
, (4.26)

and adding the corner action

S(ϵ)
corner =

1
2

∫
r=ϵ

d4x log ϵ
√
−γ

[
∂i
(
AjFji + ℓ2AuFiu

)
− ℓ2∂u

(
AiFiu

)]
, (4.27)

one concludes that the counterterm action is

S
(ϵ)
ct = 1

4

∫
r=ϵ

d4x log ϵ
√
−γ

(
F ijFij − 2ℓ2F i

uFiu

)
. (4.28)
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This leads us to the following variation of the renormalized on-shell action

δSren ≈ −
∫

d4x
√
−γ

(
δAuF (3)

ur − 1
ℓ2 δAiF

(3)
ir − ℓ2δAi∂uF

(0)
iu

)
. (4.29)

If one evaluates the latter along a gauge parameter λ and uses (4.25), it yields

δλSren = −
∫

d4x
√
−γ

{
∂u

(
λF (3)

ur

)
− 1

ℓ2 ∂i
[
λ
(
F

(3)
ir − ℓ4∂uF

(0)
iu

)]}
. (4.30)

Again the square bracket drops out, and we obtain the charge

Q(λ) = −
∫

d3x
√
−γ λ F (3)

ur . (4.31)

4.3 Symplectic renormalization

As in (2.66) and (4.34) we factor out the radial off-shell dependence of the latter and of the
Lagrangian,

Θµ = rD−2√−γ Θ̃µ , L = rD−2√−γ L̃ , (4.32)

where

Θ̃r = FruδAu + 1
ℓ2FirδAi + 1

r2 (Fui −Fri)δAi, (4.33a)
Θ̃u = FurδAr + 1

r2FirδAi, (4.33b)
Θ̃i = 1

ℓ2Fr
iδAr − 1

r2Fr
iδAu − 1

r2 (Fu
i −Fr

i)δAr − 1
r4F i

jδAj , (4.33c)

and

L̃ = 1
2

[
FurFur − 1

ℓ2Fr
iFri + 1

r2Fr
i (Fui −Fri)− 1

r2Fu
iFri − 1

r4F ijFij

]
, (4.34)

so as to get the asymptotic renormalization equation in the form

1
r
(r ∂r + D − 2) Θ̃r ≈ δL̃ − ∂uΘ̃u − ∂iΘ̃i . (4.35)

Under the assumption

Θ̃µ =
∑

n

r−n
(
Θ̃µ

(n) + log r θ̃µ
(n)

)
, L̃ =

∑
n

r−n
(
L̃ (n) + log r ℓ̃(n)

)
, (4.36)

equation (4.35) delivers the recursive renormalization relation

(D − 2− n) Θ̃r
(n) + θ̃r

(n) ≈ δL̃ (n+1) − ∂uΘ̃u
(n+1) − ∂iΘ̃i

(n+1) . (4.37)

The latter fixes the divergent orders of the presymplectic potential to be ambiguities,
corresponding to n < D − 2, in the very same spirit of section 3.3. Let us check the
consistency of the procedure for the examples of D = 6 and D = 5.
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4.3.1 D = 6

Let us recall that, in addition to (4.13), we must also consider the solution space of the
A-field. This one is obtained by solving the equations (4.10) in the radial gauge, which
gives for D = 6

Ai = A
(0)
i + 1

r A
(1)
i + 1

r2 A
(2)
i +O( 1

r3 ) , Au = A(0)
u +O( 1

r2 ) , (4.38)

such that A
(0)
i and A

(0)
u define arbitrary functions of (u, xi), whereas

A
(1)
i = ℓ2

(
∂iA

(0)
u − ∂uA

(0)
i

)
, A

(2)
i = ℓ2

2
(
∆A

(0)
i − ∂iD · A(0)

)
. (4.39)

Using (4.33a) one gets the asymptotic expansion of the radial presymplectic potential

Θr = r
√
−γ Θ̃r

(3) +
√
−γ Θ̃r

(4) +O(1
r ) , (4.40)

where divergent and finite orders are given by

Θ̃r
(3) = ∂iF

(0)
ij δAj

(0)+ℓ2F
(0)
ui δF i

(0)u , (4.41a)

Θ̃r
(4) =

1
ℓ2 F

(4)
ir δAi

(0)+F (4)
ru δA(0)

u + ℓ2

2
[
∂j
(
∂uF

(0)
ij +∂iF

(0)
uj

)
δAi

(0)+2F
(0)
iu δAi

(0)

]
+ℓ4∂uF

(0)
iu δF i

(0)u .

(4.41b)

Thanks to (4.37), we can renormalize the above symplectic structure by adding the following
counterterm

Θr
ct = r

√
−γ

(
∂uΘ̃u

(4) + ∂iΘ̃i
(4) − δL̃(4)

)
, (4.42)

where

Θ̃u
(4) = ℓ2F

(0)
iu δAi

(0) , (4.43a)

Θ̃i
(4) = −F i

(0)jδAj
(0) + ℓ2F i

(0)uδA(0)
u , (4.43b)

L̃(4) = −1
2
(
F

(0)
ij F ij

(0) + ℓ2F i
(0)uF

(0)
iu

)
, (4.43c)

since one can check that
Θ̃r

(3) ≈ δL̃(4) − ∂uΘ̃u
(4) − ∂iΘ̃i

(4) . (4.44)

Taking the limit r → ∞, we then have

Θr
ren =

√
−γ Θ̃r

(4) , (4.45)

where we emphasize that we recover the result (4.21) upon subtracting the boundary term

ℓ4∂uF
(0)
iu δF i

(0)u = ℓ4

2 δ
(
∂uF

(0)
iu F i

(0)u

)
. (4.46)

Proceeding in this way, we are led to the same expression for the charge as in (4.23).
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4.3.2 D = 5

In this case, the asymptotic solution space of the Maxwell field is

Ai = A
(0)
i + 1

r A
(1)
i +O( 1

r2 ) , Au = A(0)
u +O( 1

r2 ) . (4.47)

The zeroth orders are arbitrary while the first subleading term is given by

A
(1)
i = ℓ2

(
∂iA

(0)
u − ∂uA

(0)
i

)
. (4.48)

This implies the following expansion

Θr = log r
√
−γ θ̃r

(3) +
√
−γ Θ̃r

(3) +O(1
r ) , (4.49)

that we have to renormalize. Indeed, in the limit r → ∞, the logarithmic term diverges

θ̃r
(3) = ∂iF

(0)
ij δAj

(0) + ℓ2F
(0)
ui δF i

(0)u . (4.50)

Using (4.37), we can cancel the latter via ambiguities

Θr
ct = − log r

√
−γ

(
δL̃(4) − ∂uΘ̃u

(4) − ∂iΘ̃i
(4)

)
, (4.51)

where the boundary and corner terms are respectively

L̃(4) = −1
2
(
F

(0)
ij F ij

(0) + ℓ2γijF i
(0)uF

(0)
iu

)
, (4.52a)

Θ̃u
(4) = ℓ2F

(0)
iu δAi

(0) , (4.52b)

Θ̃i
(4) = −F i

(0)jδAj
(0) + ℓ2F i

(0)uδA(0)
u . (4.52c)

Therefore the renormalized presymplectic potential is given by

Θr
ren = lim

r→∞
(Θr +Θr

ct) =
√
−γ Θ̃r

(3) , (4.53)

where
Θ̃r

(3) =
1
ℓ2 F

(3)
ir δAi

(0) + F (3)
ru δA(0)

u + ℓ2∂uF
(0)
iu δAi

(0) . (4.54)

It coincides, without extra term, with the result (4.29) obtained by renormalizing the
variational principle. Eventually, this leads to the charge in (4.31).

5 Further observations

5.1 Dictionary between Bondi and Poincaré

We would like to compare our results obtained in the two different coordinate systems
presented in the previous sections. To this end, let us write down the associated change
of coordinates. We introduce a splitting of the index I, which labels the D − 1 spatial
directions 1, . . . , D − 1 by breaking it down as I = (I ′, D − 1) with I ′ = 1, . . . , D − 2.
Similarly, we break down the unit vector X̂I(xi) parametrized by the D − 2 angles xi, with
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i = 1, . . . , D − 2, by isolating the angle with respect to the (D − 1)th direction, so that
xi = (xi′ , xi=D−2 = θ) with i′ = 1, . . . , D − 3 and

X̂I(xi) =
(
sin θ X̂I′(xi′)

cos θ

)
, X̂I′X̂I′ = 1 . (5.1)

Then we can express the Poincaré coordinates in terms of the Bondi coordinates as follows

z−1 = cos u

ℓ
− r

ℓ

(
cos θ + sin u

ℓ

)
, (5.2)

x0 = ℓ
cos u

ℓ + ℓ
r sin

u
ℓ

ℓ
r cos

u
ℓ −

(
cos θ + sin u

ℓ

) , (5.3)

xI′ = ℓ
X̂I′(xi′) sin θ

ℓ
r cos

u
ℓ −

(
cos θ + sin u

ℓ

) . (5.4)

For ℓ ≪ r, one finds

z ∼ ℓ

r
(
−sin u

ℓ −cosθ
) , x0 ∼

ℓcos u
ℓ(

−sin u
ℓ −cosθ

) , xI′ ∼ ℓsinθX̂I′(xi′)(
−sin u

ℓ −cosθ
) (5.5)

so that in particular z ∝ 1/r, provided

cos θ < − sin u

ℓ
. (5.6)

This relation highlights rather clearly that, depending on the retarded time at which one
approaches the boundary, only a portion of the sphere at infinity is covered by the Poincaré
coordinates, except when u = −πℓ/2 (i.e. X0 = 0 for large r) in which case the whole sphere
is covered except for the North pole (see figure 2b). Using the change of coordinates given
above we can calculate the component transformation for the field strength for large r. In
particular, we find

Fru ∼ ℓ
Fz0

(
1 + cos θ sin u

ℓ

)
+ FzI′X̂I′ sin θ cos u

ℓ

r2 (sin u
ℓ + cos θ

)3 . (5.7)

We also note that, for field configurations such that, for small z in Poincaré coordinates

Fz0 ∼ zD−4F
(D−4)
z0 , (5.8)

which as we have seen play the role of the “VEV” or “Coulombic” branch in the analysis of
the equations of motion, then, at u = −πℓ/2,

Fru ∼ F
(D−2)
ru

rD−2 , F (D−2)
ru = − ℓD−3F

(D−4)
z0

(1− cos θ)D−2 . (5.9)

Here the minus sign and the offset D − 4 → D − 2 reflect the fact that z roughly scales as
the inverse of r (see eq. (5.5)). Moreover, by using (5.9) and noting that

dD−2x = ℓD−2(sin θ)D−3

(1− cos θ)D−2
√

γ′ dθ dD−3x , dΩD−2(X̂) = (sin θ)D−3√γ′ dθ dD−3x ,

(5.10)
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with γ′ = det(γi′j′) = det(∂i′X̂
I′

∂j′X̂
I′), one can explicitly check that

1
ℓ

∫
x0=0
z=0

λ F
(D−4)
z0 dD−2x =

∫
u=−πℓ/2

r=∞
λ F (D−2)

ur dΩD−2(X̂). (5.11)

This shows that the charges constructed in the two setups are indeed identical, as expected.
Let us now briefly comment on the role of the independent free functions appearing in

the solutions of the equations of motion. The relation between the “VEV” or “Coulombic”
branches in the two coordinate systems is discussed above. The information about the
“source” or radiation branch, in Poincaré coordinates is contained in the leading, O(z0)
component of Fab,

Fab ∼ F
(0)
ab . (5.12)

This translates into Bondi components via

Fuj′ ∼ ℓ
∂X̂J ′

∂xj′

sin θ
[
−F0J ′

(
1 + cos θ sin u

ℓ

)
+ FJ ′I′X̂

I′ sin θ cos u
ℓ

]
(
sin u

ℓ + cos θ
)3 ,

Fuθ ∼ −ℓ
F0I′X̂

I′(
sin u

ℓ + cos θ
)2 ,

Fi′j′ ∼ ℓ2 ∂X̂I′

∂xi′
FI′J ′

∂X̂J ′

∂xj′
(sin θ)2(

sin u
ℓ + cos θ

)2 ,

Fi′θ ∼ ℓ2 ∂X̂I′

∂xi′

sin θ
[
FI′J ′X̂J ′ (1 + cos θ sin u

ℓ

)
−F0I′ sin θ cos u

ℓ

]
(
sin u

ℓ + cos θ
)3 ,

(5.13)

so inducing O(r0) terms in Fui and Fij , which thus encode the dependence on the radiation
data. Note that eq. (5.13) does not involve any additional factor of 1/r to leading order, in
contrast with (5.7).

5.2 Flat limit

In order to take the flat-space limit ℓ → ∞, we need to fix a choice of coordinate system,
and the factor of 1

ℓ on the left-hand side of (5.11) suggests that the flat limit be better
defined in Bondi coordinates than in Poincaré ones.

Actually, from (4.30) for D = 5 and (4.22) for D = 6, we see that even in these more
convenient coordinates the symplectic structure itself still contains potentially dangerous
terms that scale as ℓ2. However, such offending terms actually are total derivatives on
the sphere and vanish identically. We can then safely take the limit ℓ → ∞ and find the
standard expression

Q(λ) = −
∫

dD−2x
(
λ F (D−2)

ur

)
. (5.14)

Whereas we have explicitly performed the derivation in Bondi coordinates only for D = 5, 6,
but our generic-D results of section 3, in particular the charge (3.54), combined with (5.11)
allow us to conclude that the expression (5.14) applies in any dimensions, for both AdS
and flat spacetime.
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A Geometry of AdS

In this appendix, we collect a few facts about the geometry of AdS spacetime and detail the
coordinate systems that are used in the main body of the text. A standard presentation of
D-dimensional AdS spacetime can be obtained starting from (D + 1)-dimensional flat space
with line element

ds2 = dXM ηMN dXN , ηMN = diag(−1, 1, . . . , 1,−1) , (A.1)

where N, M = 0, 1, . . . , D − 1, D, and imposing the following constraint (ℓ being the
AdS radius)

XM ηMN XN = −ℓ2 . (A.2)

A.1 Global coordinates and Penrose diagram

Introducing a time coordinate T , a radial coordinate R and D− 2 angular coordinates xi by

X0 = ℓ cosh R

ℓ
sin T

ℓ
, XI = ℓ X̂I(xi) sinh R

ℓ
, XD = ℓ cosh R

ℓ
cos T

ℓ
, (A.3)

with X̂I a Euclidean unit vector, X̂IX̂I = 0, the metric takes the form

ds2 = −(cosh R
ℓ )

2dT 2 + dR2 + ℓ2(sinh R
ℓ )

2dΩ2 , dΩ2 = dxiγij dxj , γij = ∂X̂I

∂xi

∂X̂I

∂xj
.

(A.4)
The main advantage of the set of coordinates (T, R, xi) is that they cover the whole AdSD

spacetime, see figure 1 for a schematic representation in the case D = 2.
Introducing the compactified radial variable

ρ = ℓ arctan
(
sinh R

ℓ

)
, (A.5)

the metric becomes

ds2 = 1
(cos ρ

ℓ )2

[
−dT 2 + dρ2 + ℓ(sin ρ

ℓ )
2dΩ2

]
(A.6)

from which it becomes manifest that the conformal boundary is the surface of a cylinder
located at ρ = πℓ/2 as depicted in figure 2. Although the original time coordinate T is
periodic, T ∼ T + 2πℓ, as is clear from figure 1, in order to avoid closed time-like loops
it is standard prolong this cylinder to infinity and to adopt a decompactified coordinate
−∞ < T < +∞.
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X0

X1

X2 T

R

Figure 1. A representation of AdS2. The red line is the R = 0 submanifold, the solid green line
is the one at T = 0 and the dashed green line is the one at T = πℓ. The purple lines mark the
intersection with the plane X1 = X2: the portion of the spacetime below this plane is covered by
the Poincaré coordinates, see eq. (A.9).

ρ

T

ρ = −π
2 ℓ ρ = π

2 ℓ

T = πℓ

T = −πℓ

(a) The AdS2 Penrose diagram.

ρ

T

x1 = φ

(b) The AdS3 Penrose diagram.

Figure 2. Penrose diagrams for AdS2 and AdS3. The highlighted region is the portion of spacetime
covered by the Poincaré coordinate patch (see eq. (A.9)). The boundary of this region has two
components (see below eq. (A.9)): z = 0, which lies on the actual boundary of AdSD, and z = ∞,
which lies in the interior of AdSD.
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A.2 Poincaré coordinates

One can alternatively solve the defining constraint (A.2) by introducing Poincaré coordinates
(z, xa), with a = 0, 1, . . . , D − 1, as follows

Xa = xa

z
, XD−1 = z

ℓ

2

(
1+ x2

ℓ2z2 −
1
z2

)
, XD = z

ℓ

2

(
1+ x2

ℓ2z2 +
1
z2

)
, (A.7)

where x2 = xaηab xb and ηab = diag(−1, 1, . . . , 1). The AdS metric then takes the form

ds2 = ℓ2dz2 + dxaηabdxb

z2 . (A.8)

Since
XD − XD−1 = ℓ

z
, z > 0 , (A.9)

the Poincaré coordinates only cover the portion of AdS space lying in the half-space
XD > XD−1 (see figures 1, 2). As z → ∞, one approaches the hyperplane XD = XD−1

slicing the AdS space in two, while, as z → 0, one approaches the actual boundary of AdS.
The metric determinant and the inverse metric take the following forms

√
−g = ℓ

zD
, gµν∂µ∂ν = z2

(
ℓ−2∂2

z + ηab∂a∂b

)
, (A.10)

while the non-zero Christoffel symbols are

Γz
zz = −1

z
, Γz

ab =
1

zℓ2 ηab , Γa
bz = −1

z
δa

b . (A.11)

A.3 Bondi coordinates

Starting again from the embedding space, one can introduce polar coordinates for the
spatial directions I = 1, 2 . . . , D − 1 according to XI = rX̂I(xi), with X̂IX̂I = 1, and
i = 1, 2, . . . , D − 2 labeling the angular variables. One can then solve the constraint (A.2)
by letting

X0 = ℓ

√
1 +

(
r

ℓ

)2
sin
(

u

ℓ
+ arctan r

ℓ

)
, XD = ℓ

√
1 +

(
r

ℓ

)2
cos

(
u

ℓ
+ arctan r

ℓ

)
.

(A.12)
In this way, (u, r, xi) define Bondi coordinates on AdSD and the metric takes the form [65]

ds2 = −
(
1 + r2

ℓ2

)
du2 − 2dudr + r2dΩ2 , dΩ2 = dxiγij dxj , γij = ∂X̂I

∂xi

∂X̂I

∂xj
.

(A.13)
The determinant is given by

√
−g = rD−2√−γ and the inverse metric by

gµν∂µ∂ν = −2∂u∂r +
(
1 + r2

ℓ2

)
∂2

r + r−2γij∂i∂j . (A.14)
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The non-zero Christoffel symbols are

Γi
rj = 1

r
δi

j , Γu
uu = − r

ℓ2 , Γu
ij = r γij ,

Γr
ru = r

ℓ2 , Γr
uu = r

ℓ2

(
1 + r2

ℓ2

)
, Γr

ij = −r

(
1 + r2

ℓ2

)
γij ,

Γi
jk = 1

2 γil (∂jγkl + ∂kγjl − ∂lγjk) .

(A.15)

B Covariant phase space formalism

In this appendix, we review the covariant phase space (CPS) formalism in order to introduce
the notations used in the main body of the text. This formulation was introduced in [66–68]
and refined in [69–72].3

The differentiable manifold that we considered is the Anti de Sitter spacetime M =
AdSD of dimension D. On the latter, the forms induce the de Rham cohomology, with
exterior derivative d (such that d2 = 0) and interior product i. The Lie derivative along a
diffeomorphism ξ ∈ TM is given by

Lξ = diξ + iξd . (B.1)

The idea of the CPS formalism is to put together spacetime and phase space calculi. The
space of all possible field configurations is also a differential manifold Γ, with δ (such that
δ2 = 0) and I respectively the exterior derivative and the interior product on the latter.
The formula

LV = δIV + IV δ (B.2)

computes their effects when applied in different orders along V ∈ TΓ. A theory is specified
by an action

S =
∫
M

L , (B.3)

where L = L dDx is the Lagrangian form. An arbitrary field variation yields

δL = (eom)δΨ+ dΘ , (B.4)

where (eom) denotes the equations of motion, Ψ ∈ Γ and Θ = Θµ(dn−1x)µ is the local
presymplectic potential form. One defines the local presymplectic two-form

ω = δΘ (B.5)

in terms of which one computes the presymplectic two-form

Ω =
∫

Σ
ω , (B.6)

as the integral over an (arbitrary) Cauchy surface Σ ⊂ M. The presymplectic potential
admits two types of modifications — often referred to as ambiguities in the literature

3See, e.g., [73–75] for pedagogical reviews.
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although in general they lead to inequivalent presymplectic potentials — which do not alter
the equations of motion:

Θ → Θ+ δB − dC . (B.7)

The first one corresponds to the addition of a boundary term to the Lagrangian, L → L+dB,
and does not contribute to the presymplectic form ω since δ2 = 0. The second one is related
to the fact that Θ appears as a boundary term in δL. The latter has an impact on ω,

ω → ω − dδC =: ω + dωC , (B.8)

while not affecting Ω. This is in line with the study of the so-called corner terms [76–87].
A vector V ∈ TΓ is called symplectomorphism or Hamiltonian vector field if LV ω = 0.

Since LV ω = δIV ω, given a Hamiltonian vector field one can define a current JV and the
associated global functional HV as

IV ω = −δJV , HV =
∫

Σ
JV . (B.9)

If this vector corresponds to a spacetime symmetry ξ, we denote it V = Vξ and we have
that LVξ

= Lξ. This implies that we can write the current as follows,4

JVξ
≈ IVξ

Θ− iξL , (B.10)

modulo δ-exact terms. This current is called the local weakly-vanishing Noether current. If,
in addition, the vector Vξ is a gauge symmetry, we have also that LV S = LξS = 0, where

LVξ
S ≈

∫
∂M

IVξ
Θ , LξS =

∫
∂M

iξL . (B.11)

Equating the two we get the fundamental theorem of CPS,

IVξ
Θ ≈ iξL ⇒ JVξ

≈ dQξ , (B.12)

stating that for gauge symmetries the Noether charge is a corner term:

Hξ =
∫

Σ
JVξ

≈
∫

S=∂Σ
Qξ . (B.13)

Moreover, one can add to Qξ the divergence of a (D − 3)–form without modifying Hξ, due
to Stokes’ theorem.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

4In this construction, for simplicity, we assume diξΘ pull-backs to zero at the boundary.
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