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Abstract

We propose a covariant technique to excavate physical bosonic string states by entire trajec-

tories rather than individually. The approach is based on Howe duality: the string’s spacetime

Lorentz algebra commutes with a certain inductive limit of sp(•), with the Virasoro constraints

forming a subalgebra of the Howe dual algebra sp(•). There are then infinitely many simple tra-

jectories of states, which are lowest–weight representations of sp(•) and hence of the Virasoro

algebra. Deeper trajectories are recurrences of the simple ones and can be probed by suitable

trajectory–shifting operators built out of the Howe dual algebra generators. We illustrate the for-

malism with a number of subleading trajectories and compute a sample of tree–level amplitudes.
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1 Introduction

The string spectrum is crowded by massive higher–spin and, more generally, mixed–symmetry states,

all of which are vital for the theory’s consistency. While most of its extent remains little explored,

some examples of level–by–level probes of a few of the lightest string states include [1–10] and,

while the leading Regge trajectory is well understood, see e.g. [11–16], much less is known about

the subleading ones, see e.g. [11, 12]. Various other aspects have been investigated, among which

vertex operators for coherent string states [17, 18], the decay of superheavy string states [5, 19],

with evidence for chaotic traits having recently been presented [19–23], as well as the renormal-

ization of the mass spectrum [24–26]. In addition, in the context of twisted strings [27–29], a new

approach to the computation of tree–level string amplitudes of one massive and arbitrarily many

massless string states, employing both string and field theory tools, has appeared [30]. Yet an-

other line of research that is sensitive to the presence of higher–spin states is the exploration of the

universality of Veneziano(–like) amplitudes and of Regge trajectories [31, 32].

There is a number of well–known techniques that allow one, as a matter of principle, to get access

to any string state. Firstly, in the light–cone gauge [33, 34] any function of the transverse oscillators

αi
−n, i = 1, . . . , d − 2, represents a physical state. Secondly, the DDF formalism [35, 36] allows one

to climb up the string spectrum by scattering photons multiple times off the lowest state. While

the two approaches do cover the entirety of string spectrum, in both cases some external reference

momenta are needed to fix the frame, which is intrinsically non–covariant. In addition, one does

not easily reach elementary states, obtaining instead by default a linear superposition thereof or

even fractions of elementary states. The smallest or elementary string states can be thought of as

corresponding to particles in the sense of the Wigner classification [37], see [38] for a review and

for its d–dimensional generalizations that are relevant for string theory. Physical string states namely

correspond to irreducible representations of Wigner’s little algebra, which is so(d − 1) for massive

particles and so(d− 2) for massless ones.

For the purpose of exploring the string spectrum and navigating therein, it would be advanta-

geous to have at our disposal a technique that gives easy access to elementary string states instead

of superpositions thereof, which is precisely the goal of this paper for the case of the bosonic string.

Our simple technical observation is that there exists a relevant algebra that is bigger than the Vira-

soro one: it is the inductive limit of sp(•) that operates on the mode labels n of αµ
−n or ∂nXµ. Any

irreducible state activates a finite number of creation oscillators, say with n ∈ [0, K] at a K bounded

by its mass level, in which case the relevant algebra becomes sp(2K). The latter commutes with the

spacetime Lorentz algebra and this pair can be recognized as Howe duals [39]. When represented

on such states, the Virasoro constraints reduce to a subalgebra of sp(2K). The simplest physical

states are then the lowest–weight states of the full sp(2K) and, hence, of the Virasoro algebra. It is

important to note that confining ourselves to K first oscillators does not restrict the level and the

sp(2K) lowest–weight condition covers entire trajectories. Therefore, the simplest trajectories are

built of from the lowest–weight states of sp(2K). Other trajectories are recurrences of the simplest

ones and can be reached with the help of dressing functions, namely trajectory–shifting operators

that are built out of creation operators of sp(2K).
An advantage of our approach is that it covers infinitely many states of the “same complexity”: if

we manage to reach a single physical state belonging to a given trajectory by constructing a suitable

dressing function, the same function covers all similar states of the entire trajectory. By “similar
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states” we refer to the states that have the same type of Young diagram specifying the respective

so(D − 1) representation, e.g. all symmetric polarization tensors or all polarization tensors with

the symmetry of Young diagrams with n rows. The complexity of dressing functions depends on

two main parameters: i) the “depth”, which we can think of as the difference of levels between the

lowest–level appearance of a given physical Young diagram to the higher level it can also appear and

which we want to get access to; ii) the complexity of the polarization tensors of the corresponding

physical states, which, in practice, is the number of rows of the Young diagram.

While the DDF and the light–cone gauge are two very general approaches in that they offer

free access to the whole string spectrum, there is a number of techniques that require additional

calculations to yield an actual state: (i.a) one can try to solve the Virasoro constraints directly by

decomposing all states at a given level into irreducible ones, which is tedious and gives access to

a few light levels, see e.g. [40, 41]; (i.b) a more economical way is to consider tensors that are

transverse with respect to the momentum [12]; (ii) the vertex operators can also be fixed by start-

ing with their covariant versions and requiring local Weyl invariance [11, 42–44], which is rather

cumbersome to apply. Some of the papers that address infinitely many irreducible states include

[3, 11–14, 18, 19, 23]. If one is interested in the spectrum only rather than vertex operators, the

character(ization) has been worked out in [45], see also [46]. Our approach is somewhat in be-

tween: it covers infinitely many states at low cost, including many of the subleading ones; probing

trajectories beyond the simplest also requires further calculations which, nevertheless, always exca-

vate states by entire trajectories.

The paper is organized as follows. In section 2 we provide a short overview of bosonic string

theory, which mainly recalls the standard notation and normalizations. We also review there what

is known about the string spectrum and give examples of vertex operators. In section 3 we develop

the technique of excavating trajectories with the help of dressing functions and Howe duality. Many

examples are given in section 4. To illustrate the formalism some amplitudes are computed in section

5. Conclusions and discussion can be found in section 6. There are also three Appendices with small

technical details referred to in due time.

Conventions. We use the mostly plus metric signature, so that the mass m and the momentum

pµ of a state at rest are related via m2 = −p2 . We assume a flat background spacetime and use

Greek letters µ, ν, . . . to denote indices of the Lorentz algebra so(d − 1, 1). Whenever there is a

shortage of letters, we also use Latin letters a, b, . . . for the same purpose, which are also used for

abstract tensors. All vertex operators and energy–momentum tensors are implicitly normal–ordered

throughout this work.

2 Bosonic string ingredients

2.1 Worldsheet CFT and the operator–state correspondence

In this section we review the rudiments (see for example [47, 48]) of bosonic string theory in regard

to its worldsheet properties and physical spectrum, on which we will build in later sections. The

string spectrum is essentially a property of worldsheet actions; the bosonic string in particular is
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described by the Polyakov action for the real field Xµ(z, z), that can be written as

SP =
1

2πα′

∫
d2z ∂X · ∂X , T =

1

2πα′ , (2.1.1)

where α′ is the string scale, related to the string tension T as indicated above. Xµ is a map

from a 2–dimensional worldsheet, that we parametrize directly in complex coordinates (z, z), to

a 26–dimensional spacetime, in which the (Minkowski) scalar product we denote by “·”; µ, ν, . . . =
0, . . . , 25 denote spacetime Lorentz indices, but in most of this work we keep their range free, namely

µ, ν, . . . = 0, . . . , d − 1. The form (2.1.1) implies a conformal gauge–fixing of the worldsheet metric

and a Euclidean worldsheet signature. The equation of motion derived from (2.1.1) reads

∂∂Xµ(z, z) = 0 , (2.1.2)

which for closed strings implies the Fourier expansion

Xµ(z, z) = xµ − i
α′

2
kµ ln |z|2 + i

√
α′

2

∑

n 6=0

1

n

[
αµ
n

zn
+

αµ
n

zn

]
, (2.1.3)

while for open strings with Neumann boundary conditions

Xµ(z, z) = xµ − iα′pµ ln |z|2 + i

√
α′

2

∑

n 6=0

αµ
n

n

[
1

zn
+

1

zn

]
, (2.1.4)

where xµ and (kµ) pµ are respectively the position and momentum of the (closed) open string’s

center of mass.

The open string expansion (2.1.4) can be obtained from the closed string one (2.1.3) by setting

kµ = 2pµ , αµ
n = αµ

n , (2.1.5)

since a closed string can be thought of as two open strings with identified ends, each carrying half its

momentum; the open string’s boundary conditions also force the presence of a single set of Fourier

modes αµ
n. It is instructive to further set

αµ
0 ≡





√
α′

2
kµ , for closed strings

√
2α′ pµ , for open strings .

(2.1.6)

The worldsheet topology of closed and open strings can be thought of as that of the (Riemann)

sphere S2 and the disk D2 respectively, the boundary of the latter being the real axis R. Open string

relations can then be obtained from their closed string versions by means of the doubling trick [49],

which can be formulated as the substitutions

X → 1

2
X or α′ → 4α′ . (2.1.7)
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The αµ
n, that will be referred to as the (bosonic) oscillators in the following as is customary, obey

the reality condition and the commutation relation

(αµ
n)

† = αµ
−n , [αµ

m, α
ν
n] = mδm+n,0 η

µν (2.1.8)

and the αµ
n obey another copy of the same algebra in the case of closed strings. Consequently, for

n > 0, αµ
n and αµ

−n act up to
√
n as annihilation and creation operators respectively, namely

αµ
n |0; p〉 = 0 , n > 0 (2.1.9)

for the vacuum state |0; p〉 . A number operator can be defined according to

Nn ≡






1
n
: αn · α−n : = 1

n
α−n · αn , n > 0

0 , n = 0
, N ≡

∑

n=0

nNn . (2.1.10)

A generic open string state of momentum pµ can then be represented as

|φ〉 = φµ1...µk
(p)αµ1

−n1
. . . αµk

−nk
|0; p〉 , N =

k∑

i=1

ni , ni > 0 (2.1.11)

where φµ1...µk
(p) is an a priori arbitrary tensor which renders |φ〉 a spacetime scalar and each oscilla-

tor may appear with a different occupation number. In the old covariant quantization, |φ〉 is physical

provided it satisfies the conditions3

(Ln − δn,0) |φ〉 = 0 , ∀n ∈ N , (2.1.12)

where the Virasoro operators Ln are given by

Ln = 1
2

+∞∑

m=−∞
: αn−m · αm : . (2.1.13)

They satisfy the famous Virasoro algebra

[Ln, Lk] = (n− k)Ln+k +
c

12
(n3 − n)δn+k,0 . (2.1.14)

Since the subalgebra of “positive” operators Ln, n > 0 , is generated by L1 and L2, it is sufficient to

impose

L1 |φ〉 = 0 , L2 |φ〉 = 0 , (2.1.15)

see for example [40], along with the lowest Virasoro constraint (L0 − 1) |φ〉 = 0, which provides the

mass spectrum

M2
o =

N − 1

α′ , (2.1.16)

3In the familiar form these constraints were written first in [50].
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with N referred to as the mass level. For closed string states, two copies of (2.1.11) are needed, one

for the left and one for the right movers, with level–matching yielding

M2
c = (NL − 1)

4

α′ = (NR − 1)
4

α′ . (2.1.17)

Differentiating (2.1.3) and inverting gives

∂Xµ(z) = −i

√
α′

2

+∞∑

n=−∞

αµ
n

zn+1
⇒ αµ

−n ∼ i√
2α′

1

(n− 1)!
∂nXµ , n > 0 , (2.1.18)

where the doubling trick has been employed; the (open string) creation operators are namely the

Laurent coefficients of the regular part of ∂Xµ(z). The dictionary (2.1.18) provides a “1–1” cor-

respondence between oscillators and fields, or more generally between states and vertex operators

[40]. In particular, an open string state is said to be created by a vertex operator V (z) that is a con-

formal field within the worldsheet conformal field theory, the ingredients of which are the “matter”

fields Xµ(z) and the (anticommuting) conformal ghost system b(z), c(z). They are described by the

worldsheet energy–momentum tensors

T (z) = − 1

4α′∂X · ∂X (z) , T b,c(z) = −2 b ∂c (z)− (∂b) c (z) , (2.1.19)

with respect to which ∂Xµ(z) is a conformal primary of weight 1 and ∂kXµ(z) a descendant of weight

k. The relevant 2– and 3–point functions read

〈∂Xµ(z1)∂X
ν(z2)〉D2 = −2α′ηµν

1

z212
(2.1.20)

and

〈c(z1)b(z2)〉 =
1

z12
, 〈c(z1)c(z2)c(z3)〉 = z12z13z23 , (2.1.21)

where zij ≡ zi − zj and the worldsheet BRST charge is given by

Q =

∮
dz

2πi

[
c
(
T +

1

2
T b,c

)]
=

∮
dz

2πi
c
[
T + (∂c)b

]
. (2.1.22)

A generic open string integrated vertex operator VF of weight h can then be written as

VF =

∫
dz VF (z) , VF (z) = F

(
∂Xµ(z), ∂2Xµ(z), . . . , ∂kXµ(z)

)
eip·X(z) , (2.1.23)

where F is an a priori arbitrary polynomial of ∂X and its descendants and eip·X the momentum

eigenstate of weight α′p2. For normalization purposes, each ∂X or descendant should appear to-

gether with a prefactor of i√
2α′

, which cancels its mass dimension. The physical state condition in

the BRST quantization takes the form

[Q, VF ] = tot. deriv. ⇒ [Q, VF ] = ∂(cVF ) or h = 1 , (2.1.24)
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namely for all physical vertex operators

T (z) VF (w) ∼ VF (w)

(z − w)2
+

∂VF (w)

z − w
. (2.1.25)

At level N , the weights heigen and hF of eip·X and F are respectively given by

heigen = 1−N , hF = N (2.1.26)

due to (2.1.16) and (2.1.24). For example, the vertex operator of a symmetric rank–N tensor at

level N , the set of which defines the leading Regge trajectory, reads

Vφ(p, z) =

(
i√
2α′

)N

φµ1...µN
(p) ∂Xµ1(z) . . . ∂XµN (z) eip·X(z) . (2.1.27)

This Ansatz obviously satisfies (2.1.26) and the on–shell condition (2.1.16); absence of higher–order

poles in (2.1.25) further enforces transversality and tracelessness

pµφµµ2...µN
= 0 , φµ

µµ3...µN
= 0 . (2.1.28)

Let us also note that (2.1.24) is equivalent to imposing

[Q, V ] = 0 (2.1.29)

on the unintegrated operator

V (z) = c(z) VF (z) . (2.1.30)

Moreover, any operator of the form [Q,U ], where U is any operator, satisfies (2.1.29) due to the

Jacobi identity. Consequently, BRST–exact states can be represented by vertex operators of the form

(2.1.30), so that we can find such spurious vertex operators Vsp via

cVsp = [Q,U ] ⇒ Vsp = ∂U , (2.1.31)

where Vsp still has to satisfy (2.1.24), so U must have weight 0, equivalently ∂U weight 1. Eq.

(2.1.31) is equivalent to the action of L−1 in the old covariant quantization. There is one more

generator of null states, L−2, whose action can be obtained via δV = [Q, bU ] for an integrated

operator V .

As a final comment, a factor of goT
a, where go is the (dimensionful) open string coupling and T a

the brane group generator à la Chan–Paton, is assumed to dress every physical open string vertex

operator; go essentially sets the strength of the states’ interactions and eventually ensures the correct

mass dimension of scattering amplitudes. Physical closed string vertex operators are obtained by

taking two copies of (2.1.23), one for the left– and one for the right–movers, and imposing the

level–matching condition (2.1.17), so they have a holomorphic and an antiholomorphic part with

weights (1, 1). Each closed string vertex operator is then dressed by the closed string coupling

gc ∼ g2o.
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2.2 Examples of light vertex operators

One way of constructing physical string states is by choosing a level N , which determines the weight

(2.1.26) of the polynomial F of the level’s vertex operator (2.1.23). One then proceeds to write an

Ansatz for F , where a priori aritrary Lorentz tensors contract ∂Xµ and its descendants to formulate

spacetime scalars. Computing the OPE with T (z) may yield poles of order higher than 2 because

of Wick’s theorem, to cancel which and maintain (2.1.25), constraints involving the various Lorentz

tensors and momentum emerge. Eventually, this results in the level splitting into transverse and

traceless irreducible Lorentz representations, namely on–shell physical string states. In this subsec-

tion we review this procedure for the open bosonic string up to N = 3.

N = 0. (2.1.26) yields hF = 0, so there is a single possible term contributing to the level’s vertex

operator:

V open
tachyon(p, z) = eip·X(z) , p2 =

1

α′ . (2.2.1)

The vertex operator (2.2.1) creates a single state that is a tachyonic scalar and (2.1.25) is automati-

cally satisfied.

N = 1. (2.1.26) yields hF = 1, so again there is a single possible term contributing to the level’s

vertex operator:

Vǫ(p, z) =
1√
2α′

ǫµ(p) i∂X
µ(z) eip·X(z) , p2 = 0 , (2.2.2)

where ǫµ is a vector of SO(26). The OPE of (2.2.2) with the energy–momentum tensor (2.1.19)

produces, however, a pole of cubic order, to cancel which the transversality condition

ǫ · p = 0 , (2.2.3)

which can be thought of as removing 1 of the generic vector’s 26 degrees of freedom, has to be

enforced. It is furthermore instructive to notice how the gauge invariance

ǫµ → ǫµ + pµ , (2.2.4)

that removes another degree of freedom, is realised. To this end, for a polarisation equal to the

state’s momentum, the vertex operator (2.2.2) becomes

Vsp(p, z) =
1√
2α′

∂
(
eip·X(z)

)
, (2.2.5)

namely it is a total derivative and so does not contribute to scattering amplitudes. Formally, (2.2.2)

is BRST–closed and (2.2.5) is BRST–exact, since the latter can be written as

c Vsp = [Q,U ] , U ≡ 1√
2α′

eip·X , p2 = 0 , (2.2.6)

which confirms that it is a spurious state corresponding to one pure gauge degree of freedom. Notice

that this spurious state is associated with U , which resembles the tachyon vertex operator (2.2.1) at

one level higher. The vertex operator (2.2.2) thus creates a single state that is a massless vector and

propagates 24 degrees of freedom.
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N = 2. The first treatment of this level appeared in [51]. (2.1.26) yields hF = 2 so there are two

possible terms4

VB(p, z) =

[
1

4α′Bµν(p) i∂X
µ(z) i∂Xν(z) +

1√
2α′

φµ(p) i∂
2Xµ(z)

]
eip·X(z) , (2.2.7)

where Bµν and φµ are a (by construction) symmetric rank–2 tensor and a vector of SO(26) respec-

tively. Since

φµ i∂
2Xµeip·X = tot. deriv. − φµpν i∂X

µ i∂Xνeip·X , (2.2.8)

we already expect that (2.2.7) propagates a single physical state associated with Bµν . More con-

cretely, the OPE of (2.2.7) with the energy–momentum tensor (2.1.19) produces a pole of quartic

and one of cubic order, to cancel which one has to impose respectively the conditions

B µ
µ + 4

√
2α′pµφ

µ = 0 , (2.2.9)

√
2α′ pµBµν + 4φν = 0 . (2.2.10)

Interestingly, these are invariant under the restricted Stueckelberg transformation [52, 53]

δBµν = 2
√
2α′ (pµξν + pνξµ) , δφµ = ξµ , p · ξ = 0 , (2.2.11)

which can be used to fix the p–transverse components of φ to zero, φµ
⊥ = 0 , which further implies

that (2.2.9) and (2.2.10) become tracelessness and transversality conditions

B µ
µ = 0 , pµBµν = 0 (2.2.12)

and

pνφν = 0 . (2.2.13)

This gauge–fixing amounts to the 25 d.o.f. of the spurious massive vector

Vsp,ξ(p, z) =
1√
2α′

∂
(
ξµ i∂X

µ(z) eip·X(z)
)

, p · ξ = 0 , p2 = −1/α′ (2.2.14)

for which

c Vsp,ξ(p, z) = [Q,Uξ] , Uξ ≡
1√
2α′

ξµ i∂X
µ eip·X . (2.2.15)

Consequently, there appears a single physical state at level N = 2 ,

VB(p, z) =
1

2α′ Bµν(p) i∂X
µ(z)i∂Xν(z) eip·X(z) , (2.2.16)

subject to (2.2.12), propagating 324 d.o.f.

4their relative unphysical prefactor of 2 is chosen for convenience
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N = 3. (2.1.26) yields hF = 3 so there are three possible terms

VN=3 =

[
1

(2α′)3/2
Fµνλ i∂X

µi∂Xνi∂Xλ +
1

2α′Fµν i∂
2Xµi∂Xν +

1√
2α′

Fµ i∂
3Xµ

]
eip·X , (2.2.17)

where Fµνλ(p), Fµν(p) and Fµ(p) are a (by construction) fully symmetric rank–3 tensor, a rank–2
tensor and a vector of SO(26) respectively. Since

Fµ i∂
3Xµ eip·X = tot. deriv. − Fµpν i∂

2Xµi∂Xν eip·X , (2.2.18)

2F(µν) i∂
2Xµi∂Xν eip·X = tot. deriv. − Fµνpλ i∂X

µ i∂Xν∂Xλ eip·X , (2.2.19)

we already expect that F[µν] and Fµνλ are sufficient to determine the physical content of (2.2.17).

More concretly, the OPE of (2.2.17) with the energy–momentum tensor (2.1.19) produces poles of

order 5, 4, 3, cancellation of which yields

F µ
µ = 0 , (2.2.20)

3Fµνλη
µν + 2

√
2α′pµFµλ + 6Fλ = 0 , (2.2.21)

pµFµνλ = 0 ,
√
2α′pµFµλ + 6Fλ = 0 , pµFµ = 0 , (2.2.22)

using which one can eliminate Fµ and F(µν). There are then two physical states at this level [11, 40],

namely the symmetric rank–3 tensor

VFµνλ(p, z) = 1
(2α′)3/2

Fµνλ(p) i∂X
µ(z)i∂Xν(z)i∂Xλ(z) eip·X(z)

p2 = − 2
α′

, pµFµνλ = 0 , F µ
µν = 0

(2.2.23)

as well as the antisymmetric rank–2 tensor

VFµν(p, z) = 1
2α′

Fµν(p) i∂
2Xµi∂Xν(z) eip·X(z)

p2 = − 2
α′

, pµFµν = 0 , F(µν) = 0 .
(2.2.24)

By inspecting the partial integrations e.g. (2.2.8) and (2.2.18) associated with the spurious

states at every level, we can expect more generally that terms linear in pµ within an arbitrary vertex

operator do not contribute to scattering amplitudes.

Closed bosonic strings. The spectrum of the closed bosonic string is given by tensoring that of the

open under the level matching condition. The same applies to vertex operators. Therefore, we do

not go into any detail and only recall the massless vertex operator as the most useful one

VG(p, z, z) = εµν ∂X
µ(z) ∂Xν(z) eip·X(z,z) , (2.2.25)

where decomposing εµν into so(d − 2) irreps yields the graviton, Kalb–Ramond and dilaton degrees

of freedom.
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2.3 String spectrum’s Zoology

Let us now consider the string spectrum from different angles. In principle, one can work out the

spectrum’s decomposition into irreducible representations of Wigner’s little algebra level–by–level,

namely all states at a given N are enumerated and built covariantly, as reviewed in the previous

Subsection, or in the light–cone gauge, see Appendix B. While it is widely appreciated that this pro-

cedure becomes technically cumbersome for very high N , the characters of various string spectra

have been explicitly constructed, which reduces the problem to that of expressing a given character

as a sum of characters of irreducible representations, which can be solved level–by–level, if needed

[45]. Let us also highlight that it is possible to show that the Hilbert space induced by the BRST

cohomology is free from negative–norm states, without having to enumerate all physical states ex-

plicitly [54–58].

A generic on–shell (massive) physical state is associated with a polarization tensor

ǫµ1(s1), µ2(s2),..., µk(sn) (p) ,

where we use commas to separate groups of symmetric indices. It is an irreducible Lorentz tensor,

namely traceless with a definite type of Young symmetry; it is also p–transverse in all Lorentz indices.

Any physical string state can thus be represented by a Young diagram whose lengths of rows in

numbers of boxes are given by the labels s1, . . . , sn as5

Y (s1, . . . , sn) :
sn
· · ·
s2
s1

, s1 ≥ s2 ≥ . . . ≥ sn . (2.3.1)

Any such diagram is part of the physical string spectrum and there are infinitely many ways to

embed it into the spectrum, in other words to dress a given polarization tensor with a polynomial

F such that it represents the vertex operator of a physical state: the string spectrum is degenerate

in spin. The open bosonic string spectrum up to N = 6 [12, 45] is displayed in table 1. Here the

only peculiarity is that the vector at N = 1 is massless, with all other states being massive. In red

what is traditionally referred to as the leading Regge trajectory, namely the set of highest–spin states

per level, is highlighted. The question then of how to order the subleading ones becomes one of

ordering Young diagrams, since they encode the weights of so(d − 1), namely ultimately spin. A

possible ordering is by decreasing length of rows starting from the first, as in table 1; for example,

the set of states highlighted in blue can be referred to as the first subleading trajectory. Another

way of grouping states together could be by the maximum weight K of the descendants of ∂X they

necessitate to be constructed, see Appendix B for more detail in the oscillator language. For example,

K = 1 for the leading Regge trajectory.

In this work, instead of proceeding level–by–level or by Regge trajectories, we approach the

construction of the spectrum in an alternative manner. Let us first define the notion of depth,

anticipating its applications in section 3. It is easy to see that the lowest level Nmin at which a

physical state Y (s1, . . . , sn) can (and will) occur is

Nmin =
n∑

i=1

si i . (2.3.2)

5we will come back to the irreducibility conditions of tensors and Young diagrams in section 3.3
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N decomposition in physical states

0 •
1 so(d−2)

2

3 ⊕
4 ⊕ ⊕ ⊕ •
5 ⊕ ⊕ ⊕ ⊕ ⊕

6 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ 2 ⊕ ⊕ ⊕ •

Table 1: Open bosonic string, physical content per level up to N = 6.

w trajectories

0 s ⊕ s− 2 ⊕ s− 4 ⊕ s− 5 ⊕ s− 6 ⊕ . . .

1 s− 3 ⊕ s− 5 ⊕ . . .

2 s− 2 ⊕ 2∗ s− 4 ⊕ . . .

3 s− 3 ⊕ . . .

4 3∗ s− 4 ⊕ . . .

Table 2: Open bosonic string, physical families per depth up to w = 4.

It may also be possible to find such a state at level N = Nmin + w, so let us define

w ≡ N −
n∑

i=1

sii (2.3.3)

and refer to w as depth in what follows. We can now consider families of trajectories depth–by–depth

and we list the first few families in table 2, with the number displayed in the first row of a Young

diagram being the value of s1, i.e. the spin in case of totally symmetric tensors, in such a way that

N = s for any state. For example, the family w = 0 consists of the leading and subleading Regge

trajectories, as well as (infinitely many) subsubleading trajectories, the lightest states of which are

highlighted in violet and teal in table 1. Another example is the subsubleading Regge trajectory

highlighted in olive in table 1, which becomes the first member of the w = 2 family in table 2. It

should be noted that, in table 2, not all trajectories listed start at the lowest possible level where the

displayed Young diagram makes sense. For instance, the subsubleading trajectory s− 2 does

not start at level s = 2, but at s = 4. Likewise, s− 4 has multiplicity 2 at a sufficiently high level,

but the two components start at different levels (4 and 6).
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The spectrum displays certain patterns; trajectories, once having emerged, do not disappear:

once a certain Young shape appears, it is the first state of a new trajectory, proceeding along which

is about increasing the length of the first row. In fact, it turns out that for any given state one can

find states at higher levels whose polarization tensors are obtained by adding boxes to any of the

rows. The first row is only distinguished by the fact that one can immediately add any number of

boxes and that adding one box increases the level by one. Adding a box to the second row can be

done as long as its length does not exceed the first row and each box from the second row costs

two units of energy, etc. This motivates us to introduce the notion of the family of trajectories that

groups trajectories with polarization tensors having Young diagrams with n rows.

At this point it appears that, to fully determine a physical state, three pieces of information are

required: its polarization tensor, its level N or depth w and its multiplicity. The full spectrum looks

complicated and its organizing principles are not manifest: the main difficulty is to determine what

kind of and where trajectories emerge, namely which Young diagrams appear at what level, while

following them along presents no difficulty. In what follows, we will use the maximum weight K
of the descendants of ∂X in physical polynomials to organize and probe trajectories depth–by–depth

in a covariant way that will prove to be advantageous in efficiency compared to the level–by–level

approach, as well as show the existence of a certain subset of trajectories. Let us note that w
naturally groups trajectories within families, to which families we will also be referring with the

term “trajectories” and that w can also be thought of as a measure of the complexity of a state, but

for now it is just a way of organizing trajectories.

3 Excavating string trajectories

In this section, we probe physical vertex operators by K, namely the maximal weight of the descen-

dants of ∂X their polynomials F involve; the value of K appears as an index of F . We use the

symbol V to denote such operators that describe whole trajectories, while we keep the symbol V for

whole levels or individual states.

3.1 Warm–up: the leading Regge trajectory

Let us begin with the simplest case of the polynomial F of a generic vertex operator (2.1.23), namely

the one in which F depends only on the first derivative of X , i.e. K = 1:

VF1(z) = F1(∂X) eip·X =
∑

s

Fµ1...µs(p) ∂X
µ1(z) . . . ∂Xµs(z) eip·X(z) , (3.1.1)

where s ∈ N is a priori free and the rank–s tensors F µ1...µs are by construction totally symmetric.

Then (2.1.25) is satisfied identically at the level of the pole of order 1, while the poles of order 2, 3
and 4 enforce respectively, see e.g. [13],

(
α′p2 − 1 +N1

)
F1 = 0 , p · δF1

δ∂X
= 0 and

δ

δ∂X
· δ

δ∂X
F1 = 0 , (3.1.2)

where the operator N1 is defined as

N1 ≡ ∂X · δ

δ∂X
⇒ N1F1 = s F1 , (3.1.3)
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which matches the definition (2.1.10) following Appendix A and in the last formula F was restricted

to spin–s.
The first of (3.1.2) fixes the mass, i.e. p2, of the state in terms of the number of ∂X in F , which

here is directly the spin. Therefore, strictly speaking, one should write the expansion (3.1.1) as

VF1(z) =
∑

s

Fµ1...µs(ps) ∂X
µ1(z) . . . ∂Xµs(z) exp{ips ·X(z)} , (3.1.4)

stressing that different spins have pµs belonging to different mass–shells; we will avoid such an

unpleasant notation and always use just one pµ that will land on the right mass–shell whenever

needed. VF1 along with the on–shell conditions (3.1.2) can thus be thought of as the vertex operator

creating the entire leading Regge trajectory, highlighted in red in tables 1 and 2. The spin-one state

is massless and the BRST–exact terms manifest the gauge symmetry, (2.2.6). All other states are

massive and physical, i.e. there are no BRST–exact terms to mod out. The last two conditions of

(3.1.2) imply that the Taylor coefficients F µ1...µs are p–transverse and traceless. As it is customary

in the literature, one can solve these with the help of an auxiliary vector ǫµ such that ǫ · p = 0 and

ǫ · ǫ = 0. In this way, for any function f(x) ,

VF1 = f(ǫ · ∂X) eip·X (3.1.5)

is a physical vertex operator. Bearing in mind that Wick’s theorem favours exponentials, it makes

sense to choose f(x) = eix to rewrite [59]

VF1(z, p, ǫ) = exp
(
ip ·X + iǫ · ∂X

)
. (3.1.6)

3.2 All trajectories at once

The most general vertex operator can be written as

VF (z, p) = F
[
∂X(z), ∂2X(z), ....

]
eip·X(z) , (3.2.1)

where the generating function F is responsible for making it BRST–closed and primary of weight 1.

Now K is a free index, so we suppress it: the form (3.2.1) has the potential to probe all trajectories

of the open bosonic string. At this point it is convenient to introduce the shorthand notation

X(n)
µ (z) ≡ ∂nXµ(z) . (3.2.2)

Taking the OPE of any operator V with T can be implemented via

: T (z) : : V(w) : = exp

{
−2α′ ηµν

∑

n=0

δ

δX
(1)
µ (z)

n!

(z − w)n+1

δ

δX
(n)
ν (w)

}
: T (z)V(w) : , (3.2.3)

where X(k) are treated as independent variables. We now suppress the normal ordering symbol

as there is no confusion. The OPE of any operator with the energy–momentum tensor (2.1.19)

truncates at the second term after expanding the exponent due to T being quadratic in X(1). It is
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also convenient to split the sum into n = 0 and n > 0 parts since X ≡ X(0) contributes in a way

different from X(n>0). Using (3.2.3), we find that

T (z)VF (w) ∼
{

1

z − w
i p ·X(1)(w)F (w) +

1

(z − w)2
α′p2 F (w)

+
∑

n=1

n!

(z − w)n+1

[
X(1)(w) · δF

δX(n)(w)
− 2α′ 1

z − w
i p · δF

δX(n)(w)

+
∑

m=1

(
(z − w)m

m!
X(m+1)(w) · δF

δX(n)(w)

− α′ m!

(z − w)m+1

δ2F

δX(n)(w) · δX(m)(w)

)]}
eip·X

(0)(w) .

(3.2.4)

Comparing this result (3.2.4) with the general form of the OPE (2.1.25), namely6

T (z)VF (w) ∼ VF (w)

(z − w)2
+

1

z − w

[
ip ·X(1)(w)VF (w) +

∑

n=1

X(n+1) · δF

δX(n)(w)
eip·X

(0)(w)

]
(3.2.5)

and imposing that they be equal for poles of every order, we find that equality at the level of the

pole of order 1 is trivially satisfied, while those of order 2 and n+ 2 > 2 yield respectively

(L0 − 1)F =

(∑

n=0

nX(n) · δ

δX(n)
+ α′p2 − 1

)
F = 0 , (3.2.6)

where

T n
n ≡ Nn = X(n) · δ

δX(n)
(3.2.7)

is the number operator in accordance with the definition (2.1.10), cf. Appendix A, and

LnF =

[
2α′ n! ip · δ

δX(n)
+ α′

m=n−1∑

m=1

m!(n−m)!
δ2

δX(m) · δX(n−m)

−
∑

m=0

(n+m+ 1)!

m!
X(m+1) · δ

δX(n+m+1)

]
F = 0 , ∀n ∈ N

∗ .

(3.2.8)

(3.2.6) is the on–shell mass constraint. It is straightforward to see that (3.2.6) and (3.2.8) reproduce

the constraints (3.1.2) for the first Regge trajectory, in particular the last two after setting n = 1 and

n = 2 respectively in the second of (3.2.8); for n > 3, the latter yields the triviality 0 = 0 for the

trajectory in question.

The above calculation is, of course, homotopic to directly imposing the physical state condition

(2.1.12) à la Gupta–Bleuler: the differential operators that act on F in (3.2.6) and (3.2.8) represent

6The second bracket unfolds ∂VF .
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the Ln’s in the operator formalism in a “1–1” fashion, as we show in Appendix A. In both languages,

the Virasoro constraints suggest defining the following atomic structures

T k
l ≡ X(k) · δ

δX(l)
, Tkl ≡

δ2

δX(l) · δX(l)
, (3.2.9)

which we may also write as

T k
l = X(k) · P(l) , Tkl = ηµνP

µ
(k)P

ν
(l) , P µ

(l) ≡
∂

∂X
(l)
µ

. (3.2.10)

Together with a few other operators, they form an sp(2K)–algebra, where K has become the maxi-

mal value of the labels k, l,m, n. This algebra commutes with the Lorentz algebra and is instrumental

in solving the Virasoro constraints, as we explain in the next Subsection.

For completeness, let us note that for closed strings the most general generating function reads

VF (z, z, p) = F
[
∂X(z), ∂2X(z), . . . , ∂X(z), ∂

2
X(z), . . .

]
eip·X(z,z) (3.2.11)

and the Virasoro constraints are straightforward generalizations of those above.

3.3 Interlude on irreducible tensors

The prefactor F of a generic vertex operator VF as in (3.2.1) can be Taylor–expanded to reveal

components of the form

F (X(1), ...) ∋ F µ(n1)|....|ν(nk) X(1)
µ1

...X(1)
µn1

...X(k)
ν1

....X(k)
νnk

, (3.3.1)

where we use “|” to separate groups of symmetric indices (with no additional algebraic constraints

imposed a priori), so that a symmetric group µ1 . . . µk is abbreviated to µ(k). The Taylor coefficients

F µ(n1)|....|ν(nk) are by construction very far from irreducible so(d) tensors. They are also not gl(d)-
irreducible. The latter must obey Young symmetry conditions, which ensure irreducibility under

gl(d), and the former be, in addition, so(d)–traceless (for d even one can also impose self–duality

constraints). Let us forget for a moment about vertex operators and briefly review these concepts

while also introducing some useful notation.

gl(d) tensors. It is convenient to define operators that impose Young symmetry conditions and

tracelessness. For a generic function F = F (X(1), . . .) to represent an irreducible gl(d) tensor, the

Young symmetry condition has to be imposed, which we may write as

T k
l F = 0 , k < l , (3.3.2)

using the operators defined in (3.2.9). They imply that symmetrization of all indices from the k–

group with one index from any of the following groups, l > k, must give zero. The conditions

(3.3.2) are not independent from each other and one can choose a smaller subset to impose that

still makes the tensor F irreducible under gl(d), which corresponds to the simple roots of the Howe
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dual algebra, as we will see below. For K = 1, there are no Young conditions and all tensors within

F1 are just symmetric. The first nontrivial case is K = 2, in which F2 can be expanded as

F2(X
(1), X(2)) =

∑

k,l

F µ(k)|ν(l) X(1)
µ1

. . .X(1)
µk

X(2)
ν1

. . . X(2)
νl

. (3.3.3)

Irreducible tensors under gl(d) are then singled out by

T 1
2 F2 = 0 ⇒ F µ(k),µν(l−1) = 0 , (3.3.4)

where we use commas to separate groups of symmetric indices that also obey the Young condi-

tions and all indices that are to be symmetrized are denoted by the same latter, i.e. µ(k), µ ≡
(µ1, . . . , µk, µk+1). Every tensor can be decomposed into irreducible ones. However, each type of an

irreducible tensor may lead to more than one polynomial. For example, with the same irreducible

Taylor coefficients we can write

F2(X
(1), X(2)) =

∑

k≥l
k≥l+i

F
µ(k−i)ν(i),ν(l)
i X(1)

µ1
. . .X(1)

µk−i
X(2)

ν1
. . .X(2)

νl+i
. (3.3.5)

Interestingly, the operators T k
l form the algebra gl(•), where • is the range of the indices k, l, ....

In particular, using the definitions (3.2.9) we obtain

[T k
l , T

m
n ] = δml T

k
n − δknT

m
l . (3.3.6)

This algebra commutes with gl(d) that we can realize on indices µ, ν, ...

[gl(d), gl(•)] = 0 (3.3.7)

and they are the maximal algebras with this property: these two algebras are called Howe duals [39],

see [60] for a review. The Cartan generators are Hk ≡ T k
k (no summation) and count the number

of X(k) present in a generating function. One can choose

aI = {ak,l = T k
l , k < l} , a†I = {a†k,l = T k

l , k > l} (3.3.8)

be respectively lowering and raising generators of gl(•). It is obvious that any polynomial f can be

decomposed into eigenvectors of T k
k , i.e. those having fixed number of X(k). Any such eigenvector

can further be decomposed into

f =
∑

a†I1 ...a
†
Im
fY , aIfY = 0 , (3.3.9)

c.f. (3.3.5). Howe duality leads to a very useful statement that the lowest weight conditions

aIfY = 0 , HifY = sifY (3.3.10)

with respect to gl(•) imply that fY is an irreducible gl(d) tensor:

l.w.s. of gl(•) ⇐⇒ irreps of gl(d) . (3.3.11)
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If the eigenvalues of the Cartan generators are fixed, fY is a single irreducible representation of gl(d),
whose Young diagram is Y (s1, . . . sn). Otherwise, fY , when expanded, covers all finite dimensional

irreps of gl(d) with Young diagrams having at most K rows, • = K.

Coming back to the example with K = 2, the lowest weight vectors correspond to tensors with

(no more than) two groups of indices, each coefficient obeying the Young conditions

a1F2 ≡ T 1
2 F2 = 0 . (3.3.12)

The creation operator is a†1 ≡ T 2
1 , which allows to reach other arrangements of X(1), X(2) on the

same tensors, c.f. (3.3.5)
∑

k!
(k−i)!

F
µ(k−i)ν(i),ν(l)
i X(1)

µ1
. . .X(1)

µk−i
X(2)

ν1 . . .X(2)
νl+i

= (a†)iF . (3.3.13)

We can split the Howe dual gl(2) into gl(1), generated by T 1
1 + T 2

2 , and sl(2), formed by a1 = T 1
2 ,

a†1 = T 2
1 and h = T 1

1 − T 2
2 . In this way, totally symmetric tensors (l = 0, Y (k)) correspond to

the (k + 1)–dimensional representations of sl(2) and type–Y (k, l) tensors form the
(
(k − l) + 1

)
–

dimensional representation of sl(2). Indeed,

a1Fk,l = 0 , (a†1)
k−l+1Fk,l = 0 . (3.3.14)

The singlets of sl(2) correspond to rectangular Young diagrams, k = l. Extending the 2–row example

to the most general case is straightforward.

so(d) tensors. Irreducible gl(d) tensors are a prelude to so(d) ones. In order for F to represent an

irreducible so(d) tensor, one has to further impose a tracelessness constraint via

TklF = 0 . (3.3.15)

Again, not all of these conditions are independent. In fact, one can generate them all from T11F = 0
by means of the Young symmetry condition and the algebra

[Tkm, T
l
n ] = δlkTmn + δlmTkn , (3.3.16)

which can be derived using the definition (3.2.9). If the dimension d is even and f represents

a tensor with a symmetry of a Young diagram with d/2–rows, one can further impose (anti)–self

duality constraints with the help of the Levi–Civita symbol; we ignore this possibility since there is

no parity violation in the spectrum of bosonic strings.

We may also extend the set of operators (3.2.9) with trace–creation ones

T km = X(k) ·X(m) . (3.3.17)

The complete set of nontrivial commutation relations involving the generators T k
l , T

kl, Tkl reads

[T l
n , T

km] = δknT
lm + δmn T

lk (3.3.18)

[Tkm, T
l
n ] = δlkTmn + δlmTkn (3.3.19)

[T k
l , T

m
n ] = δml T k

n − δknT
m
l (3.3.20)

[Tkm, T
ln] = d(δnk δ

l
m + δlkδ

n
m) + δlkT

n
m + δlmT

n
k + δnkT

l
m + δnmT

l
k , (3.3.21)
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generators algebra Howe dual algebra

T k
l gl(•) gl(d)

T k
l , Tkl, T

kl sp(2•) so(d− 1, 1)

T 0
l , T

k
l , Tkl, T

kl
parabolic subalgebra of

iso(d− 1, 1)
sp
(
2(•+ 1)

)

Table 3: Algebras and their Howe duals (k, l = 1, 2, . . .).

where in the last line the “central term” can be absorbed in the definition of T k
l via T k

l → T k
l +

δkl d/2. The resulting algebra is sp(2•). This algebra commutes with the orthogonal algebra so(d)
realized on indices µ, ν, . . .. In practice, the real form we are interested in is the Lorentz algebra

so(d − 1, 1). The creation operators get extended by T km and the annihilation operators by Tkm,

namely now

a†I = {T km;T k
l , k > l} , aI = {Tkm;T

k
l , k < l} . (3.3.22)

The implication of Howe duality is that

l.w.s. of sp(2•) ⇐⇒ irreps of so(d− 1, 1) , (3.3.23)

where l.w.s. satisfy (3.3.10). Now, the most general polynomial can be reduced to irreducible

so(d − 1, 1) tensors, which can then be dressed with creation operators as in (3.3.9). The latter

include traces, e.g. schematically

F2(X
(1), X(2)) =

∑
ηµµ...ηµν ...ηνν ...F µ(k−i)ν(i),ν(l) X(1)

µ1
. . .X(1)

µ.
X(2)

µ1
. . .X(2)

µ.
. (3.3.24)

Polarization tensors of string theory. It is worth stressing that the discussion of irreducibility

constraints above does not yet concern string theory per se. In particular, even though they are

represented by p–transverse and so(d − 1, 1) irreducible polarization tensors, most of the physical

states of bosonic string theory will have complicated representations as polynomials in X
(k)
µ . This is

exactly the problem we address in this work: given a polarization tensor represented by a function

F , how can we render it physical by embedding it at a specific depth w in the spectrum?

Let us first discuss how transversality can be imposed. Massive physical states are associated with

so(d − 1) irreducible polarization tensors. Without breaking Lorentz covariance, one can single out

such tensors as those irreducible under so(d− 1, 1) and obeying the transversality constraint

T 0
l F = 0 , l > 0 , (3.3.25)

where

T 0
l ≡ p · P(l) = p · ∂

∂X(l)
. (3.3.26)
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The notation suggests that the momentum pµ can be grouped with X
(k)
µ and, in fact, should be

placed as the first element. T 0
l extends the sp(2•) algebra of T km, T k

l and Tkm and together they

form a parabolic subalgebra of sp(2(• + 1)) that commutes with the target space Poincaré algebra

iso(d− 1, 1). In table 3 we summarize the above considerations on Howe duals. Let us notice that, if

we add both p and ∂/∂p to the set of X and P , we find an sp(2(•+1)) algebra that does not commute

with iso(d− 1, 1).
In case of string theory, • = ∞. The Virasoro algebra is realized as a subalgebra of sp(2(• +

1)), with respect to which the physical state conditions are the lowest–weight conditions. Had the

Virasoro lowest–weight conditions corresponded to all annihilation operators of sp(2•), we would

have ended up with all so(d − 1, 1) irreducible tensors in terms of X
(k)
µ . The difference between all

polynomials in X
(k)
µ and those that are annihilated by aI of sp(2•) is that the latter must have X

(k)
µ

consecutively filling the rows of Young diagrams, i.e. the indices corresponding to the first row are

contracted with X
(1)
µ ’s, the indices of the second row with X

(2)
ν , etc., e.g. for Y (s1, . . . , sn) we can

write

FY = F µ(s1),...,ν(sn)X(1)
µ1

...X(1)
µs1

...X(n)
ν1

....X(n)
νsn

. (3.3.27)

The sp(2•) l.w.s. condition is a much stronger condition than the Virasoro constraints. Nevertheless,

it is easy to see that the p–transverse lowest–weight states of sp(2•) form an infinite subspace that

solves the Virasoro constraints and contains complete trajectories. All other trajectories can be

generated with the help of dressing functions or “trajectory–shifting” operators that are built out of

the creation operators a†I of the sp(2•) algebra, as we will demonstrate in explicit examples in the

next Section.

3.4 More on BRST cohomology

With the integrated (2.1.23) and unintegrated (2.1.30) vertex operators, the cohomology groups

H(Q) and H(Q/d) can be associated accordingly; the generic vertex operators we treated using their

integrated representatives (3.2.1). Using the operators defined in (3.2.7), (3.2.9) and (3.3.26), the

Virasoro constraints (3.2.6) and (3.2.8) we derived can be rewritten as

(L0 − 1)F =

(∑

n=0

nT n
n + α′p2 − 1

)
F = 0 , (3.4.1)

−LnF =

[
2iα′ n!T 0

n + α′
m=n−1∑

m=1

m!(n−m)!Tm,n−m − Tn

]
F = 0 , ∀n ∈ N

∗ , (3.4.2)

where we have also defined

Tn ≡
∑

m=0

(n+m+ 1)!

m!
Tm+1

n+m+1 , n ∈ N
∗ . (3.4.3)

Using the algebra (3.3.6), it is straightforward to find that

[Tn, Tk] = (n− k) Tn+k , [Ln, Lk] = (n− k)Ln+k , (3.4.4)
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whose form is identical to the Virasoro algebra (2.1.14) for positive integers; this is why we denote

the differential operators that appear in the LHS of (3.4.2) with the same symbol as the Virasoro

operators.7 As it was already mentioned in Section 2, while the number of constraints arising from

(3.4.2) seems to grow with K, only two constraints, L1F = 0 and L2F = 0 , are sufficient.

As we will need the explicit form of the constraints (3.4.1) and (3.4.2) for K = 1, 2, 3 in later

sections, we gather the respective expressions below:
(
α′p2 − 1 +N1

)
F1 = 0 , T 0

1F1 = 0 , T11F1 = 0 , (3.4.5)

(
α′p2 − 1 + T 1

1 + 2 T 2
2

)
F2 = 0 ,

(
T 1

2 − α′i T 0
1

)
F2 = 0 ,

(
T11 + 4i T 0

2

)
F2 = 0, (3.4.6)

while T12F2 = 0, T22F2 = 0 follow from the commutators of L1 and L2, and
(
α′p2 − 1 + T 1

1 + 2 T 2
2 + 3 T 3

3

)
F3 = 0 , (3.4.7)

(
3 T 2

3 + T 1
2 − α′ i T 0

1

)
F3 = 0 , (3.4.8)

(
α′T11 + 4α′ i T 0

2 − 6T 1
3

)
F3 = 0 , (3.4.9)

which again imply a few other simpler conditions equivalent to L3,4,5,6.

As explained in Section 2, the simplest BRST–exact terms can be written by means of any operator

U of weight 0. Using generating functions, it should be chosen in the form

U(z, p) = G
[
∂X(z), ∂2X(z), ....

]
eip·X(z) . (3.4.10)

Using (2.1.31) and the OPE (3.2.3), this yields

Vsp(z, p) = DG
[
∂X(z), ∂2X(z), ....

]
eip·X(z) , D ≡ ip ·X(1) +

∑

n=1

T n+1
n , (3.4.11)

where, to ensure that U has weight 0 or equivalently Vsp weight 1, the function G must satisfy

the same differential equation (3.2.8) as the function F of physical states, but now the mass–level

constraint becomes (∑

n=0

nT n
n + α′p2

)
G = 0 . (3.4.12)

Comparing with (3.2.6), we deduce that spurious states look like physical states at one level higher

than where they are supposed to be. We have already seen such an example: the (transverse) vector

ǫµ i∂X
µ(z) eip·X(z) (3.4.13)

is physical at level N = 1 and given by (2.2.2) but spurious at level N = 2 as in (2.2.15). The

action of D corresponds to L−1. Similarly, one can realize the action of L−2, which together with

L−1 generate all spurious states. We will not be very concerned with BRST–exact terms, since there

is a simple way to eliminate them by restricting to the transverse subspace.

7Note that Ln represented on operators have a particular structure: there is a first order differential operator, let’s

call it D1, built of T k
l with l − k = n and the second order piece, let’s call it D2 built from Tm,n−m. It is clear that

[D1, D1] = D1 and [D1, D2] = D2 with D1 forming the same algebra as Ln and D2 being a module over it. Since the

first order part D1 of Ln forms the same algebra as the complete Ln, one might be curious to see whether imposing D1

leads to an interesting spectrum and what is the underlying theory, which is insensitive to the metric since T k
l do not

depend on the metric
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4 String spectrum’s sections

In this Section, we work out how explicit examples of physical trajectories of different depth w,

which were discussed in Subsection 2.3, can be embedded in the string spectrum using the covariant

method developed in Section 3. Since most of the open bosonic string spectrum is massive, we

forget temporarily about the massless vector. With “trajectory” or “family” we refer to an infinite set

of states that have similar symmetry types. For example, we will be considering symmetric states

ǫµ(s), i.e. spin–s, or 2–row families, i.e. states ǫµ(s1), ν(s2) that enjoy the symmetries of 2–row Young

diagrams, and so on, as in the generic Young diagram (2.3.1).

4.1 Embedding physical states

Principal embedding: w = 0. It is easy to see [11] that the simplest way to construct an operator

that belongs to the string’s BRST–cohomology is by contracting all indices from the i–th group of

ǫµ(s1),..., ν(sK) with X
(i)
µ , namely by means of the polynomial

Fǫ = ǫµ(s1),..., ν(sK)X(1)
µ1

...X(1)
µs1

...X(K)
ν1 ....X(K)

νsK
. (4.1.1)

(4.1.1) may be referred to as the principal embedding, since it corresponds to the simplest vector

that is the lowest weight state of Howe dual algebra sp(2K). By construction, Fǫ satisfies the Young

symmetry condition (3.3.2) and is traceless (3.3.15) and we also take it to be transverse (3.3.25). It

is clear then that Fǫ is physical, since the operators Ln in the Virasoro constraints (3.4.1) and (3.4.2)

are linear combinations of T 0
k , k > 0, that checks transversality, and the annihilation operators aI ,

which consist of T k
l with k < l, that check Young symmetry, and Tm,n−m, that check tracelessness

on various groups of indices. It is at this point that the notion of an infinite family of states becomes

natural: we can, in addition, fix explicitly the spin via T i
i Fǫ = siFǫ (no summation), but it is as easy

to identify one such string state as to find infinitely many of them, since si can be arbitrary. Given

that string spectrum is repetitive, it is clear that the principal embedding gives states at the lowest

possible mass level where a given polarization tensor can occur. Consequently, the definition (2.3.3)

of depth yields

N = Nmin =
K∑

i=1

si i , w = 0 . (4.1.2)

Evidently, all possible massive states, from scalars to arbitrarily complicated Young diagrams, appear

at w = 0.

It is customary to factorize symmetric polarization tensors ǫa(s) as a product of polarization vec-

tors ǫa

ǫa(s) = ǫa . . . ǫa , ǫ · ǫ = 0 , (4.1.3)

with ǫa being light–like, which guarantees the tracelessness of ǫa(s). In order to build more compli-

cated polarization tensors from elementary blocks, one can take a number of light–like vectors ǫia,
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i = 1, . . . , K that are orthogonal to each other; a polarization tensor with the symmetry of a Young

diagram Y (s1, . . . , sn) can then be written as

F a(s1),...,c(sn) = ǫa11 ∧ . . . ∧ ǫc1n ǫa21 ∧ . . . ∧ ǫc2n . . . , ǫi · ǫj = 0 . (4.1.4)

Here, ∧ is the usual exterior product of vectors, whose purpose is to anti-symmetrize the tensor

products. Once the polarization tensor is contracted with X
(k)
a , the symmetrization over the Lorentz

indices is automatic.

Non–principal embedding: w > 0. To uplift the principal embedding (4.1.1) to a higher mass

level N > Nmin, or in other words increase its depth, we have to dress it by a function f constructed

by means of the sp(2(•+ 1)) creation operators a†I as

F f
ǫ ≡ f(a†I)Fǫ = f(T 0m, Tmn, T k

l )Fǫ , k > l , (4.1.5)

with the respective conformal weights related as

hF f
ǫ
= hf + hFǫ ⇒ hf = N −Nmin = w , (4.1.6)

such that F f
ǫ appears at level N . We may now think of the depth w as the conformal weight of the

uplifting operator f , namely the number of units of energy it adds to a trajectory at Nmin. Let us

note that the units of energy added by Tmn and by T k
l are m + n and k − l respectively. Since the

polynomial F f
ǫ of every trajectory employs a finite number K of descendants of X(1), the Ansatz for

f is always finite and a single f will give access to an entire trajectory. In other words, the dressing

function f shifts all member–states of the trajectory Fǫ of the principal embedding by w units of

energy up their respective Nmin. Importantly, despite the fact that the dimension of the vector space

spanned by f(X
(1)
µ , . . . , X

(K)
µ ) grows with N , it always gives a (globally) bounded number of so(d−1)

irreducible representations, see also Appendix B. In other words, for fixed K, one finds a family of a

fixed number of trajectories (at sufficiently high N) and, in order to discover new trajectories, one

has to increase K.

In practice, we can write the most general Ansatz for f that satisfies (4.1.6) and can allow F f
ǫ

to represent a physical state and then impose QF f
ǫ = 0, namely the Virasoro constraints (3.4.1) and

(3.4.2). Similarly, we can write the most general Ansatz F g
ǫ of conformal weight one and two units

less than that of F f
ǫ , in order to determine the BRST–exact states δF f

ǫ = QF g
ǫ , δf = Dg ∼ L−1g

and those produced by L−2, respectively. A useful observation is that, given a physical state F f
ǫ

represented by the Young diagram Y (s1, . . . , sn), one can obtain states at higher levels by adding

one box to any row, say the i–th, and increasing the level accordingly by i, while maintaining that

the maximal length of every row is that of its preceding one. This is manifest in the structure of the

dressing functions f , whose coefficients will depend on the lengths sj in a smooth way, as we will

see later in specific examples.

Restricting to the transverse subspace. One simplifying assumption is that vertex operators can

be restricted to depend on the transverse metric8 only, see [12] for bosonic strings. Within our

8One of the proofs of positivity of the physical states relies on mapping physical states into the transverse subspace, see
e.g. [61]. One can give a simpler argument that applies to all string theories. Indeed, Ln begins with T 0

n = p ·∂/∂X(n)

23 of 46



formalism using dressing functions f , this means that, instead of ηµν , we can use

ηµν⊥ = ηµν − pµpν

p2
. (4.1.7)

Among the set of operators {T 0
l , T

k
l , Tkl, T

kl}, this affects only the trace–creation operators T kl,

which can be replaced with

T kl
⊥ = ηµν⊥ X(k)

µ X(l)
ν , (4.1.8)

which essentially reduces sp(2(K + 1)) to sp(2K). Consequently, the Virasoro constraint (3.4.1),

namely the mass–shell condition, remains unchanged, while (3.4.2) simplifies to

−L⊥
nF =

[
α′

m=n−1∑

m=1

m!(n−m)!T⊥
m,n−m − Tn

]
F = 0 , ∀n ∈ N

∗ . (4.1.9)

In addition, one needs to replace d with d − 1 in the commutator (3.3.21). Crucially, the physical

polynomials are now free from terms linear in the momentum p, there are namely no BRST–exact

states in the transverse target space!

As a last comment, while the dressing function f can depend on the spacetime dimension d, there

is nothing special about the critical dimension d = 26 at the moment.

4.2 Principal embedding

As it was discussed previously, there are infinitely many trajectories, each corresponding to a differ-

ent value of K, that correspond to the principal embedding w = 0, for which the dressing functions

are trivial. We now treat the examples of such trajectories displayed in the w = 0 row of table 2.

K = 1. We begin with the simplest case of polynomials F , in which they depend only on X(1),

with the respective polarization tensors ǫa(s) being by construction symmetric, represented by the

Young diagram

Y (s) : s . (4.2.1)

Generically, such an F can be written as

F f
ǫ = f(a†I)Fǫ(X

(1)) , (4.2.2)

where a†I = {T 01, T 11}. However, the Virasoro constraints (3.4.5) imply that f = 1, so hf = w = 0
and (4.2.2) belongs to the principal embedding (4.1.1) and describes a single trajectory, the leading

Regge trajectory reviewed in section 3.1, highlighted in red in tables 1 and 2. This is the simplest

example of the fact that for fixed K, we are able to detect only a finite number of trajectories.

and one can reduce the system to the cohomology of this set of commuting operators, which leads to the transverse

Ansatz. More formally, Ln = T 0
n + ln. Operators T 0

n form an abelian subalgebra a and ln form a subalgebra h, such

that [h, a] ∈ a, [h, h] ∈ h. Therefore, one can use Hochschild-Serre spectral sequence that reduces first the problem to
the cohomology of a. The latter are just transverse tensors. The induced differential of h on this subspace is not just

a restriction, but has certain correction terms to preserve the transverse subspace, the net result being that the trace

creation/annihilation operators of sp(2K) needs to be taken with respect to the transverse metric η⊥. Even simpler, p
can be assigned degree 1, which separates T 0

n from the rest and allows one to compute its cohomology first.

24 of 46



K = 2. Next, we consider polynomials that depend only on X(1), X(2), with the respective polar-

ization tensors ǫa(s1), b(s2) generically having the symmetry of an arbitrary 2–row Young diagram

Y (s1, s2) : s2
s1 . (4.2.3)

Generically, such an F can be written as

F f
ǫ = f(a†I)Fǫ(X

(1), X(2)) , (4.2.4)

where a†I = {T 01, T 02, T 11, T 12, T 22, T 2
1 }. For f = 1, the states described by (4.2.4) appear at level

Nmin = s1 + 2s2. Restricting to the transverse target space, we reduce the list of creation operators

to a†I = {T 11
⊥ , T 12

⊥ , T 22
⊥ , T 2

1 } and, save for (L0 − 1)F = 0, the Virasoro constraints (3.4.6) simplify

further to

T 1
2 F

f
ǫ = T11F

f
ǫ = T12F

f
ǫ = T22F

f
ǫ = 0 , (4.2.5)

which are precisely the lowest–weight conditions for sp(4). They imply f = 1 ⇒ w = 0. Conse-

quently, the physical (4.2.4) covers all diagrams at w = 0 with two rows at most, namely the leading

Regge, the trajectories highlighted in blue and violet in table 2, as well as (infinitely) many others

that have more boxes in the second row. All together they form a family with polarizations tensors

having symmetries of two-row Young diagrams. To give an example and illustrate the power of the

transverse Ansatz, let us consider the simplest (massive) low–spin example of K = 2, namely

F = 1
2
F µνX(1)

µ X(1)
ν + F µX(2)

µ , (4.2.6)

which is precisely the level N = 2 (2.2.7) we have already reviewed in the old–school formulation.

Using (3.4.11), BRST–exact states take the form

Vsp =
[
ip ·X(1) + T 2

1

]
Geip·X

(0)

=
i√
2α′

[
ip ·X(1) ǫ ·X(1) + ǫ ·X(2)

]
eip·X

(0)

, p2 = − 1

α′ , (4.2.7)

where

G =
i√
2α′

ǫµX(1)
µ , (4.2.8)

matching (2.2.14), which are associated with the gauge symmetry (2.2.20) that can be used to elim-

inate F µ. As a result, we capture a transverse–traceless state from the leading Regge trajectory, the

massive spin–2 tensor. On the other hand, applying our considerations for (4.2.4) in the transverse

target space, we immediately have

N = Nmin = 2 ⇒ s1 = 2 , s2 = 0 (4.2.9)

without having to treat BRST–exact states. To summarize, the lightest levels N = 0, 1, 2, 3 reviewed

in Subsection (2.2) consist of states that find themselves all at w = 0.

25 of 46



K = 3. Let us also present the lightest member–state of the trajectory highlighted in teal in tables

1 and 2, the (1, 1, 1)–tensor at level N = 6. Its Young symmetry and level fix entirely its polynomial

to

F = F µνλX(1)
µ X(2)

ν X
(3)
λ , (4.2.10)

where F µνλ is totally antisymmetric and transverse. Since w = 0, the dressing function is trivial and

following the trajectory along essentially means constructing polarization tensors with the appropri-

ate Young symmetry and at the right level, which simply gives

F = F µ(s1),ν(s2),λ(s3)X(1)
µ1

. . .X(1)
µs1

X(2)
ν1

. . .X(2)
νs2

X
(3)
λ1

. . .X
(3)
λs3

. (4.2.11)

Non–existent trajectory. It may also be instructive to search once for non–existent states to test

the formalism. For example, one may imagine that there is a spin–(s−1) family at level N = s, since

we can write

F f
ǫ = ǫa(s−1)

[
a1(s− 2)X(1)

a . . .X(1)
a X(2)

a + a2X
(1)
a . . .X(1)

a

(
ip ·X(1)

)]
, (4.2.12)

with a1, a2 dimensionless parameters, which can be rewritten as

F f
ǫ ≡ f Fǫ =

[
a1T

2
1 + ia2 T

01
]
Fǫ , (4.2.13)

where

Fǫ ≡ ǫa(s−1) X(1)
a . . .X(1)

a ≡ ǫa(s−1) X
(1)
a(s−1) , T 0

1Fǫ = 0 , T11 Fǫ = 0 , (4.2.14)

and

hF f
ǫ
= s , hFǫ = s− 1 , hf = w = 1 , (4.2.15)

namely f is supposed to uplift the trajectory consisting of spin–(s− 1) states at level s− 1 to level s.
For F f

ǫ to correspond to a physical state, it has to satisfy the conditions (3.4.6) since K = 2, which

yield

p2 = −s− 1

α′ , a1 = a2 ≡ a ⇒ F f
ǫ = a [T 2

1 + i p ·X(1)]Fǫ , (4.2.16)

namely F f
ǫ takes the form of a BRST–exact state (3.4.11), the simplest example of which being

(4.2.7). As expected from the discussion after equation (3.4.12), the spin–(s− 1) state created by Fǫ

is a spurious state at level s and a physical state at level s−1. In the transverse subspace, the second

term in (4.2.12) is forbidden and the constraints (3.4.6) simply tell us that the first one cannot pass.

4.3 Non–principal embeddings

We now focus on non–principal embeddings and construct various examples of dressing functions.

Since K = 1, 2 inevitably lead to the principal embedding, we have to set at least K = 3. For every

family of trajectories, the input consists of the value of w as well as of the lengths of the rows of the

depicted Young diagrams, which using (2.3.3) yields N .
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s− 2 –trajectory, w = 2. This is the trajectory highlighted in olive in tables 1 and 2, with its

lightest member being a massive spin–2 tensor at N = 4. Let us construct its most general Ansatz by

uplifting the trajectory of spin–(s− 2) states at Nmin = s− 2 of the prinicpal embedding w = 0

Fǫ ≡
( i√

2α′

)s−2

ǫa(s−2)X
(1)
a(s−2) , T11Fǫ = T 0

1 Fǫ = 0 , T 1
1 Fǫ = (s− 2)Fǫ , (4.3.1)

to N = s > 4, w = 2. The Ansatz can span oscillators up to X(3), namely

F f
ǫ =

(
i√
2α′

)s−2

ǫa(s−2)

[
β1

α′
X

(1)
a(s−2)(X

(1) ·X(1)) + β2X
(1)
a(s−2)(ip ·X(1))2

+β3X
(1)
a(s−2)(ip ·X(2)) + (s− 2) β4X

(1)
a(s−3)X

(2)
a (ip ·X(1))

+(s− 2) β5X
(1)
a(s−3)X

(3)
a + (s− 2)(s− 3) β6X

(1)
a(s−4)X

(2)
a X

(2)
a

]
,

(4.3.2)

where the parameters β1, . . . , β6 are real and dimensionless, which can be rewritten as

F f
ǫ ≡ fFǫ =

[
β1

α′ T
11 + β2(ip ·X(1))2 + β3(ip ·X(2)) + β4(ip ·X(1))T 2

1

+ β5T
3
1 + β6(T

2
1 )

2

]
Fǫ ,

(4.3.3)

with the weights

hF f
ǫ
= s , hFǫ = s− 2 , hf = w = 2 , (4.3.4)

fixing its structure. The Virasoro constraints (3.4.7)–(3.4.9) for K = 3 on (4.3.3) lead to the on–shell

condition

p2 = −s− 1

α′ (4.3.5)

as well as to three algebraic relations involving the β’s, which we can use to write three parameters

in terms of β1, β3, β4 and s. It is convenient to perform the shift

s− 2 → s , (4.3.6)

so that all member–states of the trajectory have spin–s and appear at N = s+ 2. The solution reads

β2 = − β1

s + 1
+

β3

2(s+ 1)
+

β4s

2(s+ 1)
, (4.3.7)

β5 =
β1(d+ 2s− 1)

3s
+

β3(4s+ 5)

6s
+

β4

6
, (4.3.8)

β6 = −β1(d+ 2s− 1)

2(s− 1)s
− β3(4s+ 5)

4(s− 1)s
+

β4(2s+ 1)

4(s− 1)
. (4.3.9)
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Forgetting for a moment the shift (4.3.6), let us construct the corresponding BRST–exact states.

Those due to L−1 can be written as vertex operators (3.4.10) of weight 0 satisfying now the on–shell

condition (4.3.5). The respective G can span oscillators up to X(2) namely takes the generic form

Gf̃
ǫ =

( i√
2α′

)s−2

ǫa(s−2)
[
γ1X

(1)
a(s−2)(ip ·X(1)) + (s− 2) γ2X

(1)
a(s−3)X

(2)
a

]
(4.3.10)

or

Gf̃
ǫ ≡ f̃Fǫ =

[
γ1(ip ·X(1)) + γ2T

2
1

]
Fǫ , (4.3.11)

where the parameters γ1, γ2 are real and dimensionless and the weights

h
Gf̃

ǫ
= s− 1 , hFǫ = s− 2 , hf̃ = 1 . (4.3.12)

have fixed the structure of the Ansatz. Gf̃
ǫ further has to satisfy the conditions (3.4.6), which yield

γ1 =
s− 2

s− 1
γ2 . (4.3.13)

The respective spurious states of spin–(s− 2) are then given by

Fsp = DGf̃
ǫ =

[
γ1(ip ·X(1))2 + γ1(ip ·X(2)) + γ2T

2
1 T

2
1

+ (γ1 + γ2)(ip ·X(1))T 2
1 + γ2T

3
1

]
Fǫ ,

(4.3.14)

with γ1 given by (4.3.13). This allows one to eliminate one free parameter. Another one can be elimi-

nated by employing the L−2 generator. Therefore, the physical trajectory in question is paremetrized

by a single parameter and all its member–states have multiplicity one.

It is much simpler to construct the same trajectory in the transverse subspace. Here, the Ansatz

simplifies to

F f
ǫ =

[
β1

α′ T
11
⊥ + β5T

3
1 + β6(T

2
1 )

2

]
Fǫ . (4.3.15)

Equivalently, the parameters β3,4 can be eliminated by BRST–exact terms (one needs to use both

D ∼ L−1 and L−2, thereby fixing the ambiguity, while the transverse Ansatz requires a specific

relation between β1,2). The solution reads

β5 = β1
d+ 2s− 1

3s
, β6 = −β1

d+ 2s− 1

2(s− 1)
, (4.3.16)

where we have performed the shift (4.3.6) and the relation between β1,2 is consistent with having

T 11
⊥ as well. The singularities of the coefficients at s = 0, 1 reveal that indeed the trajectory starts

with s = 2 at N = 4 as expected from table 1, whose vertex operator we can now easily write by

setting s = 2, d = 26 in the trajectory’s solution

VB̃(p, z) =
1
2α′

B̃µν

[
− 3

α′
i∂Xµi∂Xνi∂Xκi∂Xκ + 29 i∂Xµi∂3Xν − 87 i∂2Xµi∂2Xν

]
eip·X . (4.3.17)
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This is the second lightest massive spin–2 state that appears in the open bosonic string spectrum and

it is the lightest state at a non–trivial depth that our formalism probes.

As this first example of non–principal embedding shows, spin is a free parameter here (boxes can

be added to the first row of the Young diagram). This demonstrates the efficiency of the depth–by–

depth approach compared to proceeding level–by–level: writing the Ansatz for the level N = 4 and

solving the Virasoro constraints to determine the physical states can certainly give access to (4.3.17),

but will not provide information about other levels. Instead, the solution (4.3.16) covers the vertex

operators of the entire trajectory with lowest member the state (4.3.17). Notice also that we cannot

add boxes to the second row since it was empty. If we took ǫ to enjoy the symmetry of a two–row

Young diagram, this would activate additional terms in Ln and our dressing function would fail.

More generally, the complexity of the dressing function is due to the number of rows as well as the

depth w of the trajectory we want to construct.

From now on we consider dressing functions in the transverse subspace, which simplifies their

form and also completely fixes the ambiguity due to BRST–exact terms.

s2
s1 − 2s2 − 1 –trajectories, w = 1. This is a double–infinite family of states that, for any admissi-

ble s2, appears at level N = s1: the two trajectories displayed at w = 1 in table 2 are precisely of this

type. If this family were to be principally embedded, it would appear at N = s1 − 1, which case we

have already treated. Now, the principal embedding is just by one unit of energy away. Therefore,

the dressing function has to be very simple; indeed, in the transverse subspace the only operators of

weight 1 are T k+1
k , k = 1, 2, . . . . It is more convenient to reparameterize the family as s2

s1 ,

rewriting its level as N = s1 + 2s2 + 1 and the polynomial to be uplifted depends on X(2) at most.

Then the Ansatz for the dressing function reads

f = T 2
1 + aT 3

2 . (4.3.18)

The solution of the Virasoro constraints for K = 3 is a = −(s1 − s2)/(3s2). This example illustrates

another general feature of the formalism: the various lengths of the rows of Young diagrams can be

kept arbitrary, which allows to excavate multiple trajectories at a time, i.e. families.

s3
s2
s1

–trajectories and beyond, w = 1. At very low cost, we can find similar states with

more complicated Young diagrams that appear at level N = s1+2s2+3s3+1 and beyond and are all

one unit of energy away from the principal embedding. The dressing function is the same (4.3.18),

but the solution is a = −(s1 − s2)/(3(s2 − s3)) and works for any number of rows.

There are also other states that are one unit away from the principal ones and have the same

spin. For example, one can shift the indices of the dressing function (4.3.18) by one to get

f = T 3
2 + aT 4

3 , (4.3.19)

and find that a = −(s2 − s3)/(2(s3 − s4)) using the Virasoro constraints for K = 4. Even more

generally, whenever the corresponding Young diagram makes sense in d−1 (transverse) dimensions,

we can use

fi = T i
i−1 + aT i+1

i , a = −(i− 1)(si − si−1)

(i+ 1)(si+1 − si)
. (4.3.20)
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Note that for all these trajectories, the L2 condition is automatically satisfied: T i+1
i destroy Young

symmetry between the rows i and i + 1, but L2 ∼ Tm+1
m+3 checks it across two rows, which is not

violated. We can also try a weight 1 dressing function that acts on rows i and j

f = T i+1
i + aT j+1

j . (4.3.21)

The L1 condition implies

a = − i(i+ 1)(si+1 − si)

j(j + 1)(sj+1 − sj)
. (4.3.22)

The last example covers all possible trajectories at w = 1. We observe that the set of principally

embedded trajectories represented by Young diagrams with n rows can be shifted in n− 1 different

ways one level up, which determines the multiplicity.

3∗
s2

s1 − 2s2 − 2, –trajectories, w = 2. This is a triply degenerate family of trajectories; the second

trajectory displayed at w = 2 in table 2 is of this type. It is again convenient to reparameterize the

family as s2
s1 , such that it appears at level N = s1 + 2s2 + 2. Then the Ansatz for the dressing

function reads

f =
β1

α′ T
11
⊥ + β2(T

2
1 )

2 + β3T
2
1 T

3
2 + β4T

3
2 T

3
2 + β5T

3
1 + β6T

4
2 , (4.3.23)

so K = 4. There are three free parameters in the solution of the respective Virasoro constraints.

Three independent solutions can be chosen to be

βi =

{
6

d+ 2s1 − 1
,− 3

s1 (s1 − s2 − 1)
, 0,

1

3s1 (s2 − 1)
,
2

s1
, 0

}
, (4.3.24)

βi =

{
0,− 3 (s1 + 1) s2

2 (s1 − s2 − 1)
, s1,−

(s1 + 1) (s1 − s2)

6 (s2 − 1)
, s2, 0

}
, (4.3.25)

βi =

{
0,

6s2
s1 − s2 − 1

, 0,−3s1 + 2s2
3 (s2 − 1)

,−4s2, s1

}
. (4.3.26)

The first solution reduces to (4.3.15) for s2 = 0.

s− 3 –trajectory, w = 3. This is a trajectory of symmetric states deeper into the spectrum.

The Ansatz for the dressing function reads

f =
β1

α′ T
12 + β2T

4
1 + β3T

2
1 T

2
1 T

2
1 +

β4

α′ T
11T 2

1 + β5T
3
1 T

2
1 . (4.3.27)

The unique solution (up to an overall factor) of Virasoro constraints for K = 4 can be chosen to be

βi =

{
s

d+ s− 3
,
1

6
,

1

(s− 2)(s− 1)
,− 1

d+ s− 3
,− 1

s− 1

}
, (4.3.28)

where again we have shifted s− 3 → s, so that the family appears at level N = s + 3.
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3∗ s− 4 –trajectory, w = 4. Even deeper, the Ansatz for the dressing function reads

f =
β1

α′ T
22 +

β2

α′ T
13 + β3T

5
1 + β4(T

2
1 )

4 +
β5

α′ T
1,1(T 2

1 )
2 + β6T

3
1 (T

2
1 )

2 +
β7

α′ T
12T 2

1+

β8T
4
1 T

2
1 +

β9

α′2 (T
11)2 +

β10

α′ T
11T 3

1 + β11(T
3
1 )

2 .

(4.3.29)

The Virasoro constraints for K = 5 have three independent solutions.

Complexity of dressing functions. The complexity of dressing functions depends on the height

of Young diagrams n we want to search for and on the depth w of the trajectory. Indeed, the most

general Ansatz of a given weight w is built from T kl, k + l ≤ w, k, l ≤ n and T k
l , 0 < k − l ≤ w,

l ≤ n. We could easily cover all cases of w = 1 and an arbitrary Young diagram. Note that the

sp(2•)–module generated by creation operators a†I is infinite dimensional (it is finite for any given

tensor, but the dimension depends on the Young diagram and can grow indefinitely). Therefore, if

we restrict the number of oscillators α−n to n ≤ K and want to search for all trajectories (i.e. all

depths w), with such a restriction the Ansatz is infinite. For example, for the leading trajectory in the

transverse subspace the dressing function could have been an arbitrary function of T 11. However,

the Virasoro constraints (3.4.5) leave f = 1 as the unique solution. In addition, we know that for

fixed K the number of trajectories is finite and, hence, there is a way to improve the formalism.

To summarize, all trajectories displayed in table 2 have been analyzed in this Subsection. It is

also straightforward to proceed to w = 5 and w = 6 which can probe the vector and singlet of N = 6.

All other states of table 1 have been covered.

Closed strings. In order to treat the case of closed string states, a few modifications are needed.

The modes X
(k)
µ = ∂(k)Xµ need to be extended with X

(k)

µ = ∂̄(k)Xµ and we can use our open string

dressing functions to write functions that depend on X
(k)
µ , for the left movers, and on X

(k)

µ , for the

right movers. The total dressing function of closed string is just the product of any two of the open

provided the level matching condition is imposed, L0 = L̄0.

5 Tree–level amplitudes

In this Section, we compute tree–level amplitudes for the scattering of open strings, specializing

in the “deeper” trajectories constructed in Section 4. An open string tree–level amplitude is the

Wick contraction of the (normal–ordered) vertex operators creating the open string external states

at locations x of the boundary R of the disk D2, which is summed over the inequivalent orderings σ
of, as well as intergated over, the insertion points. The contribution of the volume of the conformal

Killing group of D2 is cancelled after inserting a c–ghost at every open string insertion and fixing

the locations of three (arbitrary) vertex operators. For more details, see for example [47, 48].

Normalizing our amplitudes is straightforward, so we suppress overall normalization factors.
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5.1 N–point technicalities

The simplest N–point function to compute is that of the open string tachyon (2.2.1), which reads

EN ≡
〈
: V open

tachyon(p1, z1) : . . . : V
open

tachyon(pN , zN) :
〉
=

〈
N∏

i=1

: eipi·Xi :

〉

D2

. (5.1.1)

Using the open string two–point function (2.1.20), (5.1.1) gives the universal Koba–Nielsen factor

for open string amplitudes

EN =

N∏

i<j

|zij|2α
′ pi·pj . (5.1.2)

Momentum conservation
∑N

i pµi = 0 is always implicit. We will be focusing on the trajectory of

symmetric tensors of spin–s at level N = s+ 2 (which we originally treated in the form spin–(s− 2)
at N = s) and w = 2 that is highlighted in olive in tables 1 and 2, namely the one described

by vertex operators built by the dressing functions (4.3.3) at the solution (4.3.7)–(4.3.9), or, in

transverse space, by (4.3.15) at the solution (4.3.16). For convenience, we will be referring to this

family of states as the w = 2 trajectory. Let us highlight that the form of the on–shell condition for

the leading Regge as well as for the w = 2 trajectory, is the same

p2i = − li − 1

α′ , (5.1.3)

where li is the level of the state of the i–th leg.

For the leading Regge trajectory, the generating function (3.1.6) can be used, the N–point func-

tion for which reads [59], see also [13, 62],

Z leading
N =

〈
N∏

i=1

: exp
(
i pi ·Xi + i ξi · ∂Xi

)
:

〉

D2

= EN exp

[ N∑

i 6=j

α′
(
2
ξi · pj
zij

+
ξi · ξj
z2ij

)]
. (5.1.4)

For more general trajectories, it is convenient to start with a simple generating function

V
(
z, p, ~ξ

)
= exp

(
i p ·X + i ξ(1) · ∂X + i ξ(2) · ∂2X + . . .

)
≡ exp

(
i

∞∑

n=0

ξ(n) ·X(n)

)
, (5.1.5)

where ξ(0) ≡ p and the auxiliary vectors ξ
(n)
µ obey initially no relations. We then find the general

N–point correlation function to be

ZN =

〈
N∏

i=1

: exp

(
i

∞∑

ni=0

ξ
(ni)
i ·X(ni)

i

)
:

〉

D2

= EN exp

[∑

i 6=j

∑

n>0

(−)n+1α′
(
2(n− 1)!

ξ
(n)
i · pj
znij

+
∑

m>0

(n+m− 1)!
ξ
(n)
i · ξ(m)

j

zn+m
ij

)]
,

(5.1.6)
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where we recall that three kinds of indices are distinguished, namely spacetime indices µ, ν, . . . ,
lower indices i, j, . . . that denote worldsheet location / leg number and upper indices (n), (m) that

denote components of the (Euclidean and infinite–dimensional) vectors ~ξµ and ~Xµ .

Now, suppose we are interested in a family of states with polarization tensors having the sym-

metries of n–row Young diagrams Y (s1, . . . , sn). It is convenient to factorize the polarization tensor

ǫa(s1),...,c(sn) into the products of polarization vectors ǫaI , I = 1, . . . , n. Tracelessness and transversality

are then enforced by the additional constraints

ǫI · ǫJ = 0 , ǫI · p = 0 . (5.1.7)

Let us denote the Y (s1, . . . , sn)ǫ1,...,ǫn the Young symmetrizer that projects onto the indicated Young

symmetry the tensor product of ǫI ’s. One possible realization of such a projector was given in (4.1.4).

Then trajectories belonging to the principal embedding, w = 0, can be obtained via

Y (s1, . . . , sn)ǫ1,...,ǫn

k=n∏

k=1

(−iǫk · ∂ξ(k))skV
(
z, p, ~ξ

)∣∣
ξ(i)=0

. (5.1.8)

For example, for the leading Regge trajectory (3.1.1), we have

VF1

(
z, p, ξ(1) = −iǫ(1), 0, . . . , 0

)
= exp

[
−iǫ(1) · ∂ξ(1)

]
V
(
z, p, ~ξ

)∣∣
ξ(i)=0

, (5.1.9)

since the Young projector trivializes, which is essentially (3.1.6). Turning to w > 0, any dressing

function f can be represented as a poly–differential operator in ξ(n) that acts on V
(
z, p, ~ξ

)
. Recalling

that a generic f contains a number of derivatives in ∂X, together with the coefficients in front of its

corresponding terms, one finds the following set of functions

Ek(x) =
∑

s=k

xs−k/s! , E0(x) = ex , E1(x) =
ex−1
x

, E2(x) =
ex−1−x

x2 , (5.1.10)

which are truncated exponents. Ek(x) can be massaged back into a purely exponential form with

the help of

Ek(x) =

∫

∆k

exp[u1x] , (5.1.11)

where ∆k = {0 ≤ u1 ≤ . . . ≤ uk ≤ 1} is the k–dimensional simplex. For example, the w = 2
trajectory (4.3.15) can be represented as

V =

∫

∆2

e
−iu1ǫ·∂ξ(1)

{
δ(1− u2)δ(u2 − u1)

[
− (∂ξ(1) ·⊥ ∂ξ(1))− 2

3
iǫ · ∂ξ(3)

]

+ δ(u2 − u1)
[
d−1
3
(−iǫ · ∂ξ(3)) + (ǫ · ∂ξ(2))2

]
+ d−1

2
(ǫ · ∂ξ(2))2

}
V
(
z, p, ~ξ

)∣∣
ξ(i)=0

.

(5.1.12)

In general, after applying the derivatives that are inside f , one needs to replace the corresponding ξ
with −iu1ǫ.

For completenesss, let us note that for closed string amplitudes, we have to first double the

generating function

V~ξ,z,z̄ = exp

(
i

∞∑

n=0

ξ(n) ·X(n)(z) + i
∞∑

n=0

ξ(−n) ·X(n)
(z̄)

)
, (5.1.13)

and then generalize the open string considerations.
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5.2 3–point examples

What is special about 3–point amplitudes is that (i) the kinematic structure is very simple and for

fixed spins there is always a finite number of independent structures; (ii) momentum conservation

fixes the scalar products of all momenta to be

2α′ pi · pj = li + lj − lk − 1 , i 6= j 6= k . (5.2.1)

Therefore, the product of the Koba–Nielsen factor at 3 points and the c–ghost contribution turns into

E3 × 〈c1c2c3〉 = |z12|l1+l2−l3 |z13|l1+l3−l2 |z23|l2+l3−l1 . (5.2.2)

For example, if one leading Regge or w = 2 trajectory and two tachyons are being scattered, 5.2.2

yields

E3 × 〈c1c2c3〉 =
∣∣∣∣
z12z13
z23

∣∣∣∣
s

. (5.2.3)

It is not immediately obvious that 3–point amplitudes do not depend on zij , as should be the case.

We will be using the notation (w1 . . . wk)–amplitude to indicate that the i–th leg is a trajectory at

depth wi, while As1s2s3 signifies that the i–th leg has spin–si.

Principal3 or (000)–amplitudes. The case of the 3–tachyon amplitude is trivial:

E3 × 〈c1c2c3〉 = 1 ⇒ A000 = Tr(T a1T a2T a3 + T a1T a3T a2) . (5.2.4)

The amplitude of one leading leg and two tachyons takes the form

As00 = 〈c1Va1
F leading(z1, p1) c2 V

a2
tachyon(z2, p2) c3 V

a3
tachyon(z3, p3)〉+ (p2, a2) ↔ (p3, a3)

=
∑

s

(
1√
2α′

)s ∣∣∣∣
z12z13
z23

∣∣∣∣
s
1

s!

(
ǫ · ∂

∂ξ

)s

exp
{
2α′ξ · p2

[
z−1
12 − z−1

13

]}∣∣∣∣
ξ=0

×
[
Tr(T a1T a2T a3) + (−)sTr(T a1T a3T a2)

]

=
∑

s

(
√
2α′)s

(ǫ · p2)s
s!

[
Tr(T a1T a2T a3) + (−)s Tr(T a1T a3T a2)

]
,

(5.2.5)

where in the first (and second) line we sum over the two possible orderings of the three vertex

operator insertions and in the second line we have used momentum conservation along with the

constraints (5.1.7) for the factorized polarization F µ1...µs = ǫµ1 . . . ǫµs of the leading leg. It is straight-

forward to see that (5.2.5) matches the result for the same amplitude obtained in [13]; notice that

it has no z–dependence as appropriate. In the rest of this Subsection, we will be displaying the

color–ordered versions of the amplitudes.
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The case of three arbitrary spins of the leading Regge trajectory is also well–known. The essential

part of the amplitude is (5.1.4), the contributing part of the generating exponential of which reduces

to

exp

{
2α′

[
ξ1 · p2(z−1

12 − z−1
13 ) + ξ2 · p3(z−1

23 − z−1
21 ) + ξ3 · p1(z−1

31 − z−1
32 ) +

ξ1 · ξ2
z212

+
ξ1 · ξ3
z213

+
ξ2 · ξ3
z223

]}
,

upon employing momentum conservation and the constraints (5.1.7) for the three legs. Upon ex-

panding this result and collecting terms with fixed powers of the polarization vectors, one observes

that its z–dependence is cancelled by the Koba–Nielsen factor and the c–ghost contribution (5.2.4).

Consequently, one can set for example z1 = 0, z2 = −1, z3 = 1 to facilitate the computation of

3–point amplitudes. To give some examples, the amplitude of three (leading) gauge bosons reads9

cyclic
[
2α′(p1 · ǫ3)(p2 · ǫ1)(p3 · ǫ2) + 3(ǫ1 · ǫ2)(p1 · ǫ3)

]
, (5.2.6)

which is of course gauge invariant. The amplitude of three leading massive spin–2 tensors is given

by

cyclic
[
2α′3 (p1 · ǫ3) 2 (p2 · ǫ1) 2 (p3 · ǫ2) 2 + 12α′2(ǫ1 · ǫ2) (p1 · ǫ3) 2(p2 · ǫ1)(p3 · ǫ2)
+ 3α′ (ǫ1 · ǫ3) 2 (p3 · ǫ2) 2 + 12α′(ǫ1 · ǫ2)(ǫ1 · ǫ3)(p1 · ǫ3)(p3 · ǫ2)
+ 2(ǫ1 · ǫ2)(ǫ1 · ǫ3)(ǫ2 · ǫ3)

]
,

(5.2.7)

which in a slightly different form can also be found in [6].

A slightly less trivial case is to scatter trajectories of the principal embedding beyond the leading

Regge, for example polarization tensors that have the shape of a 2–row Young diagram, such as the

trajectories highlighted in blue and violet in tables 1 and 2. Since w = 0, one does not have to use

more than V
(
z, p, ~ξ

)
, e.g.

V = Y (s1, s2)ǫ(1),ǫ(2) exp
[
−iǫ(1) · ∂ξ(1) − iǫ(2) · ∂ξ(2)

]
V
(
z, p, ~ξ

)∣∣
~ξ=0

, (5.2.8)

where the prefactor indicates that the symmetry of a 2–row Young diagram has to be imposed on

ǫ(1,2). Let’s consider the lightest member–state, with diagram (l = 3), of the blue trajectory, for

example. Its amplitude with two tachyons must vanish: it is proportional to (ǫ(1) · p2)(ǫ(2) · p2), which

vanishes after we anti-symmetrize the ǫ’s. Its amplitude with one tachyon and one gauge boson is

the first nontrivial one and is proportional to

(ǫ
(1)
1 · ǫ(1)2 )(ǫ

(2)
1 · p2)− (ǫ

(2)
1 · ǫ(1)2 )(ǫ

(1)
1 · p2) . (5.2.9)

To give another example, its amplitude with two gauge bosons is proportional to

−α′(p1 · ǫ3)(p2 · ǫ(1)1 )(ǫ
(2)
1 · ǫ2) + α′(p2 · ǫ(1)1 )(p3 · ǫ2)(ǫ(2)1 · ǫ3) + (ǫ

(1)
1 · ǫ2)(ǫ(2)1 · ǫ3)− (ǫ

(1)
1 ↔ ǫ

(1)
2 )

Both structures are gauge invariant with respect to the spin–1. Note that the on–shell conditions,

including Young symmetry, need to be used to show that it’s z–independent. Amplitudes of tensors

with the symmetry of more general Young diagrams are discussed in Appendix C.

9By cyclic[F ] we mean the sum over all cyclic permutations divided by the number thereof.
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(200)–amplitudes. The amplitude of one w = 2 trajectory and two tachyons takes the form

As00 =
α′s (p2 · ǫ) s

3 s!
q(s) , (5.2.10)

where

q(s) = −sβ4 + 2β1(−d+ 4s+ 31) + β3(2s+ 1) . (5.2.11)

One can also check that q(s) is BRST invariant. To get a more compact form we restrict to the

transverse subspace, which effectively means β3 = β4 = 0,

As00 =
α′s (p2 · ǫ) s

3s!
(−d+ 4s+ 31) (5.2.12)

Using (5.1.12), the complete amplitude for three arbitrary spins with the first leg belonging to the

w = 2 trajectory and two others to the leading ones can be represented as

As1s2s3 =

∫

∆2

eA
[
δ(1− u2)δ(u2 − u1)P0 + δ(u2 − u1)P1 + P2

]

= exp[A0]
[
E0(A

′)P0 + E1(A
′)P1 + E2(A

′)P2

] (5.2.13)

where

A = A0 + u1A
′

A0/α
′ = −ip1 · ǫ3 − ip3 · ǫ2 −

ǫ2 · ǫ3
2

A′/α′ = −2 (ǫ1 · ǫ2 + ǫ1 · ǫ3 + 2ip2 · ǫ1)
(5.2.14)

and the prefactors Pi are given by

P0/α
′ = −2

(
s21 − 2 (s2 + s3 − 3) s1 + s22 + s23 − 2s3 − 2s2 (s3 + 1) + 5

)

+ 2α′2 (p3 · ǫ2 − p1 · ǫ3) 2 − 8
3
iα′(s1 + 1)p2 · ǫ1

− 4α′(s1 + 1)(ǫ1 · ǫ2 + ǫ1 · ǫ3 − ǫ2 · ǫ3)− 4iα′p3 · ǫ2(s1 + s2 − s3 + 1)

− 4iα′p1 · ǫ3(s1 − s2 + s3 + 1)

P1/α
′ = −8i(d−1)

3
p2 · ǫ1 − 16α′[(ǫ1 · ǫ2) 2 + (ǫ1 · ǫ3) 2]− 4(d− 1)[ǫ1 · ǫ3 + ǫ1 · ǫ2]

+ 32α′ (ǫ1 · ǫ3) ǫ1 · ǫ2
P2/α

′2 = −8(d− 1) (ǫ1 · ǫ2 − ǫ1 · ǫ3) 2 ,

(5.2.15)

where, after checking that the amplitude is z–independent, we have fixed z1 = 0, z2 = −1, z3 = 1,

which choice seems to give the most compact form of the amplitude. To present an example, the

amplitude of the lightest member–state of the w = 2 trajectory, which has spin–2, and two gauge

bosons reads

As1=2,s2=1,s3=1 = 4dǫ1 · ǫ2ǫ1 · ǫ3 +
8

3
α′d (ǫ1 · ǫ2p1 · ǫ3p2 · ǫ1 + ǫ1 · ǫ3p2 · ǫ1p3 · ǫ2)

+
2

3
α′ (p2 · ǫ1) 2 (2α′(d+ 13)p1 · ǫ3p3 · ǫ2 + (d− 39)ǫ2 · ǫ3) .

(5.2.16)

It can be easily checked to be gauge invariant for any d.

36 of 46



(220)–amplitudes, etc. It is also easy to continue replacing leading Regge legs with the w = 2
trajectory. Indeed, the dressing functions act on separate legs, hence, for example, one only needs to

apply (5.1.12) to the second leg as well as the first, to compute (220)–amplitudes. The computation

is straightforward and we do not give the final answer for it being quite long. Instead, we illustrate

it with a couple of particular low–spin amplitudes

As1=2,s2=2,s3=0 =
1

9
α′2 (d2 + 466d+ 2249

)
(p2 · ǫ1) 2 (p3 · ǫ2) 2

+
4

9
α′ (17d2 + 194d+ 195

)
ǫ1 · ǫ2p2 · ǫ1p3 · ǫ2

+
2

9

(
15d2 + 162d+ 182

)
(ǫ1 · ǫ2) 2

(5.2.17)

and

As1=2,s2=2,s3=1 =
−2

9
α′2 (d2 + 518d+ 4953

)
p1 · ǫ3 (p2 · ǫ1) 2 (p3 · ǫ2) 2

− 8

9
α′ (17d2 + 246d+ 1209

)
ǫ1 · ǫ2p1 · ǫ3p2 · ǫ1p3 · ǫ2

+
4

9
α′ (d2 + 246d+ 1209

)
p2 · ǫ1p3 · ǫ2 (ǫ1 · ǫ3p3 · ǫ2 − ǫ2 · ǫ3p2 · ǫ1)

− 4

3

(
5d2 + 54d+ 117

)
ǫ1 · ǫ2 (ǫ1 · ǫ2p1 · ǫ3 + 2ǫ1 · ǫ3p3 · ǫ2 + 2ǫ2 · ǫ3p2 · ǫ1) .

(5.2.18)

The latter, despite involving strange coefficients, can be shown to be gauge invariant for any d.

Note that proceeding to 4–point amplitudes is straightforward using the N–point function (5.1.6).

Closed string amplitudes. Since closed string correlators on the sphere factorize into (anti)-

holomorphic parts, the results obtained in the Section allow us to write down 3–point amplitudes of

closed string trajectories that are obtained by tensoring the treated w = 0 and/or w = 2 open string

ones, which is the simplest example of the KLT relations [59]. For mixed amplitudes of interacting

open and closed strings we would have to consider for instance [63–65].

6 Conclusions and discussion

Most of the string spectrum is an uncharted territory. In this paper, we have developed a general

covariant technique to construct irreducible string states, i.e. those that correspond to elementary

particle–like excitations. One advantage of the approach is that states are excavated by entire trajec-

tories rather than one by one. There appears also naturally a notion of complexity associated with

each trajectory: groups of trajectories consist of states with polarization tensors having the symme-

tries of Young diagrams with a fixed number of rows, with the simplest trajectory corresponding to

the first occurrence of the given states in the spectrum, when going up level by level. Recurrent

trajectories, hence their member–states, become more and more complicated in the sense of the

structure of the dressing functions that act on their simplest versions to create them.

Any particular trajectory, even though it is unbounded in spin, takes advantage of a finite number

of modes α−1, . . . , α−K . Irreducible states |φ〉 are found by solving the Virasoro constraints, of which
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the complicated part is Ln>0|φ〉 = 0. At a more technical level, our observation is simply that there is

a bigger relevant algebra than the one represented on the Fock space by the Ln. It is sp(2K), which

can also be understood as the Howe dual algebra to the Lorentz algebra, with which it commutes.

The lowest–weight states of sp(2K) give the simplest solutions to the Virasoro constraints, which

already cover infinitely many trajectories, what we call the principal ones. The non–principal tra-

jectories, or recurrent ones, are accessed with the help of trajectory–shifting operators or dressing

functions, built out of sp(2K) creation operators. One more advantage of dressing functions is that

they allow one to compute generating functions of amplitudes of entire trajectories, rather than of

individual states.

Several extensions and generalizations come to mind. Firstly, it should be possible to extend the

technique so as to cover superstring theory, where the Howe dual algebra should be of an osp(•|•)–
type. Secondly, it is clear that very deep recurrent states are quite complicated and an improvement

is needed in order to be able to construct arbitrarily deep trajectories, even for totally symmetric

states. A possible direct application of the techniques developed here is to try to relate the amplitude

[66] that describes black hole scattering (a different characterization is the unique amplitude with

the softest high energy behaviour) to string theory, see [16] for such an attempt for the leading

Regge trajectory in superstrings.

On the same note of exploring the string spectrum, it is worth mentioning the canonical example

of the AdS/CFT correspondence [67]. In the tensionless limit, Type IIB string theory on AdS5 × S5

should be dual to weakly coupled N = 4 SYM [68], hence, the counting of states is equivalent to

counting primary operators on the free CFT side [69, 70].10 In the free limit, the states are “1–1”

with cyclic invariant tensor products of the singleton (also called doubleton) representation, see e.g.

[73, 74]. The singleton is a fundamental representation of the higher spin algebra. The latter allows

one to repackage the string spectrum into its representations, which consist of infinitely many string

states. It is quite amusing that the string spectrum is so simple in such a counter–intuitive limit (in

the sense of being ruled by a new, infinite–dimensional, symmetry, the higher spin symmetry), while

it appears to be much more complicated already for bosonic strings in flat space.
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A Alpha BRST invariance

As is well known, there exists a “1–1” correspondence between vertex operators and physical states,

but it is easier to compute amplitudes using the former. Therefore, the Virasoro conditions we

studied in the main text can be reformulated for generating functions of α–oscillators αµ
n , αµ

−n ≡ yn.

In particular, we can define a generating function F ({yn}) of generic states F |0; p〉. For the latter to

be physical, they must be annihilated by the Virasoro generators Ln

(Ln − δn,0)F ({ym}) |0; p〉 = 0 , ∀n ∈ N , m > 0 . (A.0.1)

For n = 0, we obtain from (A.0.1)

(N + α′p2 − 1)F = 0 , (A.0.2)

while for n > 0, we find

[√
2α′ n p · ∂

∂yn
+

1

2

n−1∑

m=1

m(n−m)
∂2

∂yn−m · ∂ym
+

∑

m=0

(n +m+ 1)ym+1 ·
∂

∂yn+m+1

]
F = 0 , (A.0.3)

where we have defined

αµ
m ≡ mηµν

∂

∂yνm
, m > 0 , (A.0.4)

since, for example,

αµ
m yνn |0; p〉 = mδmn η

µν |0; p〉 , n,m > 0 . (A.0.5)

Moreover, BRST–exact states are created by L−n, for example,

L−n = 1
2

n−1∑

m=1

ym · yn−m +
∑

m=0

(m+ 1)yn+m+1 ·
∂

∂ym+1
+
√
2α′ p · yn . (A.0.6)

The constraints (A.0.2) and (A.0.3), as well as the form (A.0.6), are equivalent to (3.2.6), (3.2.8),

upon using the dictionary (2.1.18), which implies

∂

∂yµm
= −i

√
2α′(m− 1)!

∂

∂X(m)µ
(A.0.7)

and establishes the equivalence of the definition of the number operator in the oscillator language,

(2.1.10), and in the CFT language, (3.2.7).

B Finding trajectories

The unitarity of the bosonic string is easier to prove in the light–cone gauge [33, 34]. After fixing two

spacetime coordinates, any state of the spectrum is given by an arbitrary function of the transverse
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N gl(d− 2) tensors so(d− 2) irreps little group irreps

0
|k〉

• •
•

1
αi
−1|k〉

2
αi1
−1α

i2
−1|k〉 αi

−2|k〉 ⊕ ⊕ •

3
αi1
−1α

i2
−1α

i3
−1|k〉 αi1

−2α
i2
−1|k〉 αi

−3|k〉
(

⊕ ⊕ ⊕ •
)
⊕
(

⊕
)

⊕
⊗

Table 4: Open bosonic string, decomposition and recombination per level up to N = 3.

oscillators αi
−n, i = 1, ..., d−2, each of which essentially adds n units of energy to a given level N . For

the lowest levels N = 0 and N = 1, precisely 0 and 1 oscillator is allowed respectively, so each level

contains a single state, the tachyon and a vector respectively, as displayed in table 4. The vector is

consequently the only massless state of the open bosonic string spectrum, with little algebra so(d−2).
All other states are massive, so it is rather amusing that a bunch of gl(d− 2) tensors recombines into

Wigner’s little algebra so(d − 1) tensors to form any such state. The transverse oscillators produce

gl(d−2) tensors since there are no trace constraints; it is then important to apply the level constraint,

which will yield the physical states.

At every N , there appears a “leading” possible oscillator product

αi1
−1α

i2
−1...α

iN
−1|k〉 = N ⊕ N − 2 ⊕ ...⊕ /• (B.0.1)

where in the RHS we have the trace decomposition of a rank–N gl(d−2) tensor into so(d−2) irreps,

as highlighted in red for N = 2, 3 in table 4. It ends with either a vector or a scalar, depending on

whether N is odd or even. It is obvious that B.0.1 is not capable of delivering a complete set of

so(d − 1) states. Indeed, the decomposition of a rank–N irreducible so(d − 1) tensor into so(d − 2)
tensors reads

N ⊕ N − 1 ⊕ ...⊕ ⊕ • (B.0.2)

while the irreps with ranks N − 1, N − 3, . . . are missing from (B.0.1). The spectrum is saved

by taking into account oscillators that add more units of energy. In particular, the next possible

oscillator product at level N is

αi1
−1α

i2
−1...α

iN−2

−1 α
iN−1

−2 |k〉 = N − 2 ⊗ = N − 1 ⊕ N − 2 (B.0.3)

where in the RHS the respective gl(d−2) irreps are displayed, with the N = 3 example highlighted in

blue in table 4. Now, the so(d− 2) decomposition of the first diagram of the RHS of (B.0.3) supplies
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the missing states to form the rank–N irrep of so(d−1). This recombination mechanism is illustrated

with Young diagrams in bold for N = 2, 3 in table 4. Next, the second diagram of the RHS of (B.0.3)

requires considering further αi
−3, as illustrated in pale font for N = 3 in table 4, and so on. For the

procedure to work, a neat balance between the energy cost of introducing a new oscillator and the

total index structure of the oscillator product is required.

The recombination procedure is algorithmic: one starts with the totally symmetric representation

built out of αi
−1, decomposes it into so(d − 2)-irreps, then, one takes the representation with the

maximal spin11 upgrades it to so(d − 1)-irrep with the same Young diagram and subtracts from the

set of so(d− 2)-irreps those obtained by branching this maximal spin so(d− 1)-irrep, one then adds

more oscillators and repeats the cycle. For example, for the states that involve α−1 up to α−4 one

gets

α−1 , α−2 : s (B.0.4)

α−1 , α−2 , α−3 : s− 2 (B.0.5)

α−1 , α−2 , α−3 , α−4 : s− 2 ⊕ s− 4 (B.0.6)

The decomposition of strings spectrum along these lines is given in Subsection 2.3. One simple

reason we can start with (α−1)
s and add other oscillators step by step is due to the energy cost of

α−n: the more we introduce the tensors of smaller rank we can build. Therefore, we first make sure

that the tensors of the maximal rank are taken care of first and no contradiction can arise when

more oscillators are introduced. The cheap states are easy to point out at any mass level N : for each

partition N =
∑

i i ni one finds the Young diagram (n1, n2, ...) among the so(d− 1) irreps. Since this

diagram does not appear in the decomposition of any other so(d − 1) irrep, it has to be present in

the physical spectrum.

It may be entertaining to see to which extent string spectrum is a unique solution. As an assump-

tion, one should ask for a weakly coupled theory that is built on some Fock space. Therefore, in

the light-cone gauge one ends up with a set of transverse oscillators. Once the spectrum is mostly

massive the recombination problem is present, i.e. the so(d − 2) states must result from branching

of some so(d − 1) irreps at the same mass level. It is not obvious that this can always be done.

For example, the leading family built on αi
−1 is clearly inconsistent since tensors contracted with

α−1 cannot be uplifted to so(d − 1) ones. One has to add αi
−2, which completes the leading Regge

trajectory, but creates an incomplete subleading one.

One spectrum that does not pose any problem at the free level is to have all states massless.

The recombination problem is absent and it is also convenient to impose so(d − 2) tracelessness to

reduce the spectrum further. Obviously, it is possible to keep only the first family of states built on

αi
−1. However, this story usually does not end well once interactions are turned on — there is only a

handful of nontrivial theories with massless higher spin fields, see e.g. [75] for a review.

11Given a Young diagram/weights (s1, s2, ...), one defines an order by comparing the weights starting from the first
one, e.g. (4, 1, ...) > (3, 2, ...) > (3, 1, ...).
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C More on the scaterring of general Young diagrams

The most general expression that can show up in amplitude calculations corresponds to three (or

more for N–point amplitudes) polarization tensors of arbitrary Young symmetry Y k = Y (sk1, . . . , s
k
n),

k = 1, . . . , N . The multiplicity of the singlet in the triple tensor product of these so(d− 1) represen-

tations can be greater than one. It is quite easy to describe what can happen at the 3–point level. Let

the three polarization tensors have the symmetry of Y k diagrams. Indices of each diagram Y i are

contracted either with another diagram or with the next momentum pi+1 (modulo 3). The maximal

power of the momentum that can be contracted equals the length of the first row. It is convenient

to split the Young diagram into rectangular blocks {sj, pj}. Then for every partition k =
∑

j kj of

k ≤ s1 such that kj ≤ sj+1 − sj there is a unique contraction of the corresponding momenta. The

number of singlets in the tensor product of three diagrams Y k cut in such a way gives the number of

independent (atomic) 3–point amplitudes. The principal states lead to a particular combination of

these amplitudes, which is encoded in (5.1.6). Due to the nature of (5.1.6), such an amplitude will

contain the atomic amplitudes ranging from those with the minimal number of derivatives to the

maximal one. What going to the non–principal embedding does is to change the linear combination

of these atomic 3–point amplitudes. The deeper the trajectory the more coefficients get changed.12

Y :

s1
p1

k1

k2

km
sm

pm

k =
∑

kj ≤ s1 , kj ≤ sj − sj+1
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