

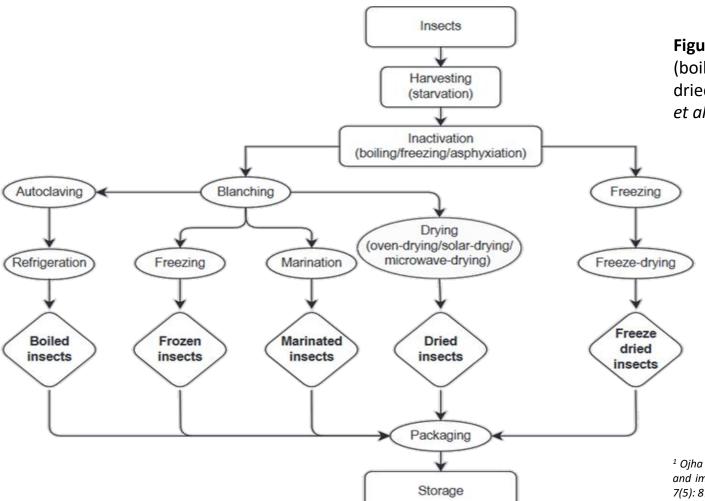
Walloon Agricultural Research Centre

Manure as a substrate for insect breeding: ecological progress or health risk?

A. Anselmo, A. Cordonnier, L. Plasman, J. Maljean, C. Aerts, D. Evrard, A. Marien, E. Janssen, V. Ninane, S. Gofflot, P. Veys, M-C. Lecrenier, V. Baeten and D. Michez

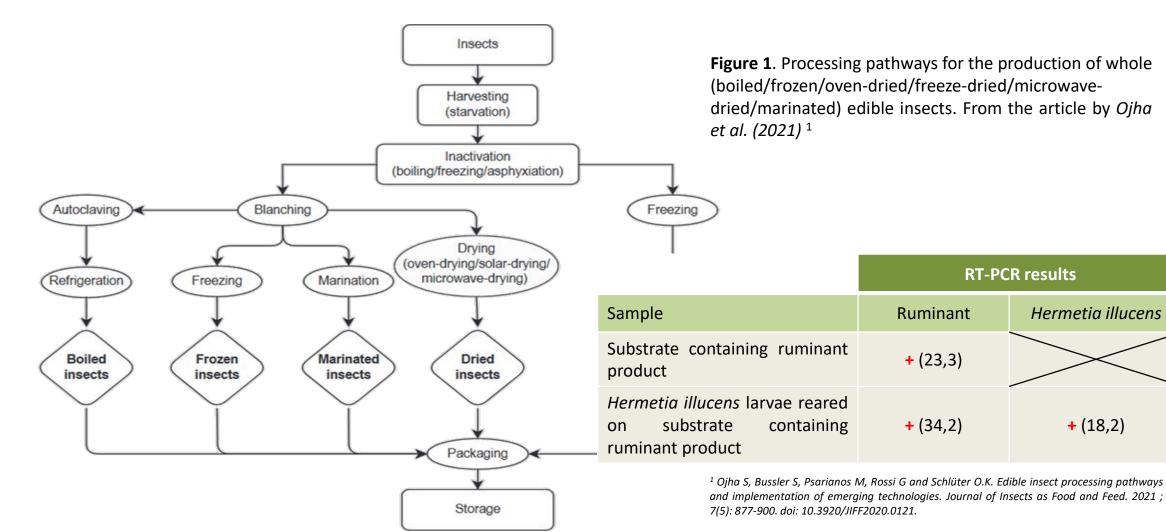
Some background

- 8 insect species authorised for feed in the European Union
- Authorised for aquaculture, pig and poultry sectors
- Very rich in protein, easy to breed, minimal maintenance
- Known for recycling organic waste and transform lowquality material into a very high protein product



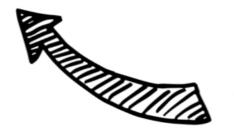
From left to right and top to bottom: A. domesticus, G. assimilis, G. sigillatus, T. molitor, A. diaperinus, M. domestica, B. mori, H. illucens.

Industrial processing technologies


Figure 1. Processing pathways for the production of whole (boiled/frozen/oven-dried/freeze-dried/microwave-dried/marinated) edible insects. From the article by *Ojha et al.* (2021) ¹

¹ Ojha S, Bussler S, Psarianos M, Rossi G and Schlüter O.K. Edible insect processing pathways and implementation of emerging technologies. Journal of Insects as Food and Feed. 2021; 7(5): 877-900. doi: 10.3920/JIFF2020.0121.

Industrial processing technologies


Industrial processing technologies

Tuesday 29 August - Session 36 - 17h15

Proteomics evaluation of the barrier role of insects for the indirect recycling of fast food in feed

M.C. Lecrenier, M. Aerts, A. Cordonnier, L. Plasman, O. Fumière and V. Baeten

Sample	Ruminant	Hermetia illucens
Substrate containing ruminant product	+ (23,3)	
Hermetia illucens larvae reared on substrate containing ruminant product	+ (34,2)	+ (18,2)

RT-PCR results

Experimentation design

- o *T. molitor* larvae reared on a substrate adulterated with 5, 15 or 25% bovine manure
- Put in an incubator at 20°C ± 2°C and ambient
 (27%) humidity, in the dark, for 15 days.
- Recovered, cleaned (sodium hypochlorite bath 5min), dried overnight at 50°C, ground and analysed

Objective: See if we still detect manure on the grinded larvae.

www.cra.wallonie.be

Analysis of the *T. molitor* larvae meal

Light microscopy (LM) and RT-PCR

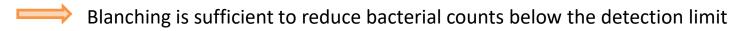
	Light microscopy results			RT-PCR results			
Sample		Terrestrial	Insects particles	Ruminant (35,97)		Tenebrio molitor	
		particles		Results	Ct (mean)	Results	Ct (mean)
Manure	10	-	-	+	24,8		
T. molitor reared on control substrate	10	-	+	-		+	29,6
<i>T. molitor</i> reared on substrate adulterated with 5% manure	10	-	+	-		+	31,44
T. molitor reared on substrate adulterated with 15% manure	10	-	+	-		+	32,76
T. molitor reared on substrate adulterated with 25% manure	10	-	+	-		+	32,82

Analysis of the *T. molitor* larvae meal

Light microscopy (LM) and RT-PCR

	Light microscopy results				RT-PCR results			
Sample	Number of slides	Terrestrial particles	Insects particles	Ruminant (35,97)		Tenebrio molitor		
				Results	Ct (mean)	Results	Ct (mean)	
Manure	10	-	-	+	24,8			
T. molitor reared on control substrate	10	-	+	-		+	29,6	
T. molitor reared on substrate adulterated with 5% manure	10	-	+	-		+	31,44	
T. molitor reared on substrate adulterated with 15% manure	10	-	+	-		+	32,76	
T. molitor reared on substrate adulterated with 25% manure	10	-	+	-		+	32,82	

No ruminant observation/signal detected in both LM and RT-PCR analyses


Analysis of the *T. molitor* larvae meal

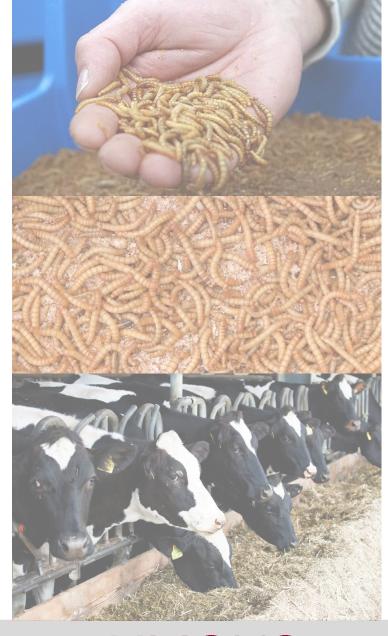

Impact of processing on nutritional value and bacteria counts

Processing methods can have an impact on nutritional value ²

Nitrogen Kjeldahl * 6,25	T. molitor meal control	<i>T. molitor</i> meal + 5% manure	<i>T. molitor</i> meal + 15% manure	<i>T. molitor</i> meal + 25 % manure	T. molitor larvae meal		<i>T. molitor</i> larvae
Crude protein (%)	53,83	53,13	52,02	53,91	55,27 ³	50,79 4	53,22 ⁵
p-value	0,238					0,158	

How does meal processing affect the presence of faecal bacteria?

² Melgar-Lalanne, G., et al. (2019). Edible Insects Processing: Traditional and Innovative Technologies. Comprehensive Reviews in Food Science and Food Safety, 18: 1166-1191. ³ De Marco, et al. (2015).Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 209, 211–218. ⁴ Yoo, J.S., et al. (2019). Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas. J. Anim. Sci. 32, 387–394. ⁵ Ghosh, S., et al. (2017). Nutritional composition of five commercial edible insects in South Korea. J. Asia-Pac. Entomol. 20, 686–694.



Conclusion

More drastic insect larvae processing:

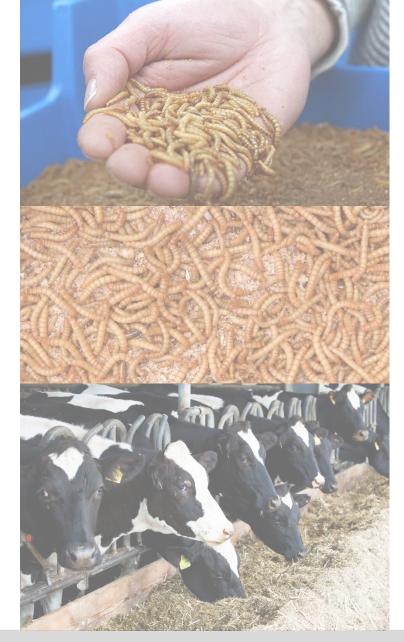
- Manure not detected in *T. molitor* meal produced, regardless of substrate adulteration percentage
- No impact on sample protein value

Additional analyses still need to be carried out (mass spectrometry, complete nutritional value, microbiology, etc.).



Conclusion

Feeding animals a product treated using this processing method?



Conclusion

Feeding animals a product treated using this processing method?

The use of manure to rear insects is possible, but still present health risks

- Develop solutions/methods to potentially enable the use of new products without health risks
- What about the presence of prions?

Thanks to all those who have worked and are still working on this experiment!

Thanks for your attention!

