2023 IEEE PES ISGT-Europe

October 23rd-26th, 2023, Grenoble, France

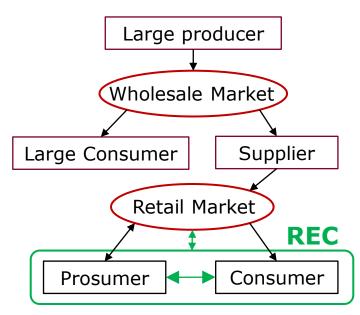
Impact of retail electricity prices and grid tariff structure on the operation of resources scheduling in Renewable Energy

Communities

Louise Sadoine, Thomas Brihaye, Zacharie De Grève

University of Mons

Paper №: A9084



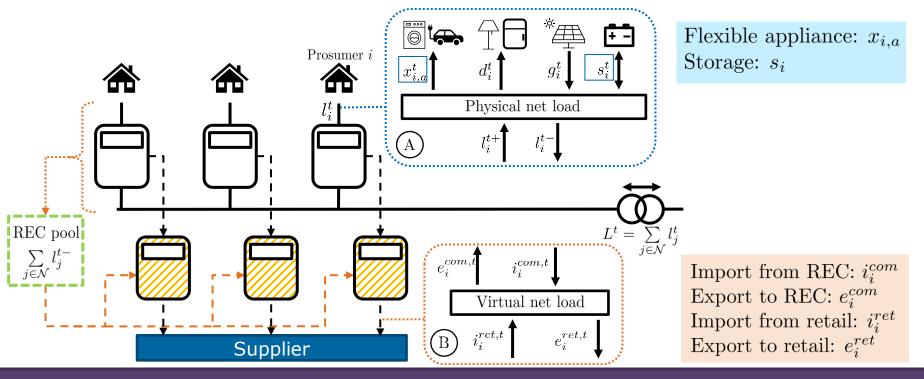
What is a Renewable Energy Community?

- An organized entity of consumers and prosumers of electricity established on the public electricity distribution network,
- In which exchanges of local renewable electricity can occur,
- Without necessarily resorting to the wholesale/retail market,
- Where members may benefit from economic, environmental or social advantages

Why a REC?

- Responding to growing desire of the citizen to play an active and central role in the electricity supply chain,
- Stimulate investment in local distributed energy resources,
- Stimulate mobilization of local flexibility provision
- Creating a local stable economic framework, less subject to wholesale/retail price spikes.

Research questions and contributions


- How do the retail electricity price and grid tariff structure impact the daily optimal dispatch of resources in RECs (total REC cost, individual costs)?
- We formulated mathematically the coordinated day-ahead scheduling of energy assets in residential communities with cooperative local mechanisms.
- The interdependence between community members who share a common resource has been modeled adopting centralized (convex optimization) and decentralized (game theory) approaches [1].
- Different internal costs allocation mechanisms have been implemented [1].

[1] L. Sadoine, Z. De Grève, and T. Brihaye, "Valuing the electricity produced locally in renewable energy communities through noncooperative resources scheduling games", arXiv preprint, arXiv:2305.04085, 2023.

Day-ahead resources scheduling problem

- We consider residential communities established on the public LV grid
- Individual excesses of local generation are pooled and can be purchased by members
- We assume perfect forecast of the nonflexible load and local production
- Decision variables: demand-side management and economics variables

Day-ahead resources scheduling problem

Objective function: REC costs

$$f(\Theta) = \sum_{t \in \mathcal{T}} (\underbrace{\sum_{i \in \mathcal{N}} C_{i,supp}^t}_{\mathbf{r}} + \underbrace{C_{gr}^t}_{\mathbf{r}}) + \underbrace{\sum_{i \in \mathcal{N}} \beta.\overline{p}_i}_{\mathbf{r}})$$
Commodity costs
Network costs

- Commodity costs: $C^t_{i,supp} = \lambda^t_{imp} i^{ret,t}_i + \lambda^t_{iloc} i^{com,t}_i \lambda^t_{exp} e^{ret,t}_i \lambda_{eloc} e^{com,t}_i$
- Network costs = Volumetric-based costs + Peak-based costs

Tariff T1 (academic):

- quadratic costs (power losses)
- based on the aggregated load of all prosumers

$$C_{gr}^{\mathrm{T1},t} = \alpha(\sum_{i \in \mathcal{N}} l_i^t)^2$$

Tariff T2 (real):

- in line with the real grid tariffs applied in Flanders (Belgium)
- possible discount $\gamma \in [0,1]$, on the grid tariffs for the energy consumed locally as in Brussels (Belgium)

$$C_{qr}^{\mathrm{T2},t} = \sum_{i \in \mathcal{N}} \alpha(i_i^{ret,t} + \gamma.i_i^{com,t})$$

Models:

Centralized: Convex Opt.

$$\min_{\Theta} f(\Theta)$$

s.t.
$$\Theta \in \Omega$$

Ex post cost allocation

Decentralized: GNEP

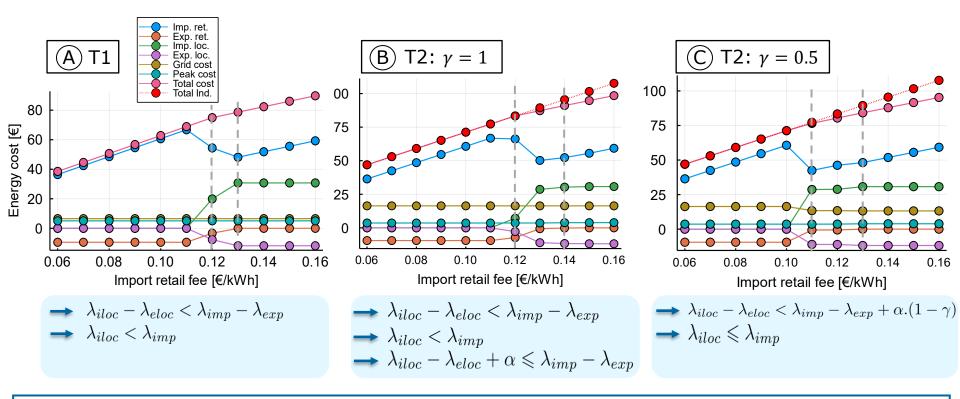
$$\min_{\Theta_i} b_i(\Theta_i, \Theta_{-i}) \quad \forall i \in \mathcal{N}$$

s.t.
$$\Theta_i \in \Omega_i(\Theta_{-i})$$

Endogenous cost allocation

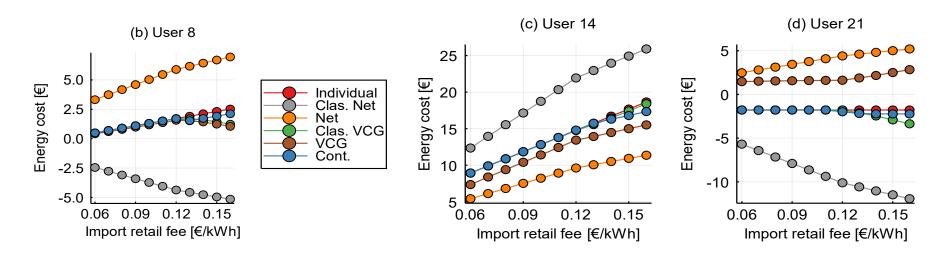
Use case

- Impact of retail price variation on the costs and behavior of the community and its members
 - 25 Users
 - 10 Days
 - 24 times steps
 - Value of retail import fee λ_{imp} varies from 0.06 to 0.16 €/kWh with steps of 0.01
- Ex post cost allocation via different billings methods: daily ([Clas. Net], [Net], [Clas. VCG], [VCG]) and hourly alloc. methods ([Cont.])


	PRICE	UNIT
Export retail λ_{exp}	0.04	[€/kWh]
Import local λ_{iloc}	0.13	[€/kWh]
Export local λ_{eloc}	0.05	[€/kWh]
Grid α	T1: 0.00109488 T2: 0.027	[€/kWh²] [€/kWh]
Peak β	0.11	[€/kW]

User	PV [kWc]	ESS	Total Consumption [kWh]	Flexibility level
8	9	0	37.36	0%
14	3	0	116.03	36.4%
21	9	1	11.8	138.24%

[2] Pecan Street Inc. (2020) Residential data New York 15 min.


Impact of retail price on total REC costs

- We observe a threshold in the import retail price value, above which REC costs become lower than individual costs
- Tariff T1 has the lowest total costs and constant grid costs,
- Tariff T2 with γ < 1 increases the incentive for members to trade in the REC.

Costs allocation among members

Tariff T2: for each user type [Clas. VCG] and [Cont.] at least neutral or beneficial.

$$\longrightarrow$$
 0.13 $\leqslant \lambda_{imp}$

Conclusion and outlook

- RECs mechanisms can partially protect consumers from price volatility.
- The importance of defining an appropriate grid cost structure and cost sharing method.
- Other types of preference (e.g., self-consumption or CO2) must be considered when selecting a billing and sharing method.

