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Multigenerational exposure of
microplastics on the microbiota
of E. affinis (copepod): a
comparative study between
biodegradable and
nonbiodegradable microplastics
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Dylan Dufour1, Samira Benali2, Jean-Marie Raquez2,
Sami Souissi 1 and Sébastien Monchy1

1Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, IRD, UMR 8187, LOG, Laboratoire d’Océanologie et de
Géosciences, Wimereux, France, 2Centre d’Innovation et de Recherche des Matériaux et Polymères
(CIRMAP), Service des Matériaux Polymères et Composites (SMPC), Université de Mons,
Mons, Belgium, 3Center for Marine Science and Technology, Amity Institute of Biotechnology, Amity
University, Noida, Uttar Pradesh, India
The accumulation of plastic debris around the world, especially in marine

environments, has been well documented during the past decades. Recent

studies have found that inorganic surfaces of microplastics (MPs) can be used

by microorganisms as living substrates and form an ecosystem named

“plastisphere.” Some microorganisms present in MPs are capable of producing

polymer-degrading enzymes. In addition, MPs can also serve as vectors and carry

microorganisms (including potential pathogens) into higher trophic levels

through their ingestion by animals. In this study, impacts on copepod

microbiota during chronic exposure to MPs were investigated by exposing

copepods to a classic single-use polymer (low-density polyethylene (LDPE))

and a biodegradable polymer (polybutylene adipate terephthalate (PBAT)).

Copepods were exposed to “virgin” and “weathered” MPs during four

generations at an environmentally relevant concentration of 300 µg/L,

followed by one “detoxification” generation without MP exposition. Impacts of

MP exposure on copepod microbiota were investigated using 16S rRNA gene

high-throughput sequencing. The result of nonmetric multidimensional scaling

(NMDS) analysis showed that copepods (with or without MP exposure) carried

distinguishable microbiota as compared with the microbiota of water and

microalgae used for maintaining copepods. According to the results of

permutational analysis of variance (PERMANOVA), the microbiota of MP-

exposed (both PBAT and LDPE) copepods was significantly different from the

microbiota of unexposed copepods during generations one to four. After

“detoxification,” however, no significant difference in microbiota composition

was observed among all generation five copepods. Altogether, impacts on
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copepod microbiota of MP exposure for multiple generations were observed,

despite plastic origin (biodegradable or not) and aging conditions. Furthermore,

copepod microbiota seemed to return to their original structure as soon as the

MP exposure stopped.
KEYWORDS

microplastics, microbiota, copepod, Eurytemora affinis, high-throughput sequencing,
LDPE, PBAT
Introduction

Due to their numerous usages in modern society for packaging,

building industry, automotive, and more, world petroleum-based

plastic production increased every year before the coronavirus disease

(COVID) crisis in 2020 (Plastics, 2021). Even if recycling facilities and

energy recovery are progressing and decreasing plastic landfills, 6.9

million tons of plastics remained in landfills in 2020 (Plastics Europe,

2021) in member states and candidate countries of the European

Union (EU27 + 3). Moreover, Geyer et al. (2017) estimated that 60%

of all time-produced plastics were accumulating in landfills and

oceans. During the past decades, researchers demonstrated the

ecological impact of this pollutant that killed high numbers of

marine organisms situated at higher trophic levels, such as fishes

(Romeo et al., 2015), seabirds (Tanaka et al., 2013), or marine

mammals (Laist, 1997; Lusher, 2015). At present, the main solution

proposed and applied to avoid this worldwide pollution is the

replacement of some single-use nonbiodegradable plastics with

biodegradable ones such as polybutylene adipate terephthalate

(PBAT) or polylactic acid (PLA), whose durability in the

environment is considered limited. However, the global assessment

of the ecotoxicological impacts of these emerging bioplastics on

marine ecosystems was not deeply documented (Ali et al., 2023).

When entering the seas, plastic debris is subject to physical and

mechanical degradation, including photo-degradation, oxidation,

abrasion (Andrady, 2011), and biological fouling in less than 24 h

(Sheavly and Register, 2007). These phenomena lead to the

fragmentation of plastic debris into microplastics and nanoplastics

(Peng et al., 2020). Microplastics (MPs) (<5 mm) represent the hidden

part and majority of plastic pollution (Lindeque et al., 2020). Apart

from the degradation of larger plastic debris, sources of MPs also

include synthetic textile fibers unleashed from our laundry (Napper

and Thompson, 2016) and cosmetic products such as microbeads in

facial cleansers (Napper et al., 2015). Approximately 6% to 12% of MPs

are not captured in wastewater treatment plants and are released into

the natural aquatic environments (Iyare et al., 2020), with the sea as the

final destination. Because of their properties (e.g., small size,

abundance, variety of density, etc.), MPs may affect a broad range of

organisms from lower trophic levels such as phytoplankton (Li S. et al.,

2020) and copepods (Cole et al., 2015; Thery et al., 2022) to higher

trophic levels such as bluemusselMytilus edulis (VonMoos et al., 2012;

Li L.-L. et al., 2020) or even humans through seafood consumed

(Wright et al., 2013). In copepods, studies have demonstrated that
02
ingestion of MPs can induce oxidative stress (Jeong et al., 2017) or

modify proteome (Zhang et al., 2019), leading to lower survival and

fecundity rate (Lee et al., 2013; Cole et al., 2015). When ingested and

then excreted by copepods, MPs can modify the solidity, volume, and

density of fecal pellets (Cole et al., 2016; Coppock et al., 2019). The fate

of fecal pellets in the natural environment is driven by sedimentation

speed, generally leading them to the bottom of the water column.

Changes in properties in fecal pellets may affect this natural mechanism

and further have an influence on carbon and nutrient cycles (Cole

et al., 2016).

Previous studies have shown that MPs can be colonized by their

first bacteria community only a few hours after entering the marine

environment (Sheavly and Register, 2007; Dang et al., 2008; Lobelle

and Cunliffe, 2011; Jacquin et al., 2019), and the community forms

into a biofilm format (Oberbeckmann et al., 2015) that was named

as “plastisphere” (Zettler et al., 2013). MPs offer support and

protection for microorganisms in the plastisphere (Muthukumar

et al., 2011), including potential pathogenic species such as Vibrio

sp. (Zettler et al., 2013). Therefore, ingestion of such “plastisphere-

carrying” MPs may introduce foreign microbial communities into

animals and have impacts on their microbiota. Microbiota play a

key role in maintaining the health of hosts (Man et al., 2017), and

disequilibrated microbiota can lead to a higher susceptibility to

diseases (de Steenhuijsen Piters et al., 2022). Recently, researchers

started to investigate the effects of MPs on the microbiota of

animals’ guts and feces. Studies showed that MP exposure

significantly contributed to the decrease of bacterial families

involved in nitrogen cycling and organic matter decomposition in

oligochaete gut (Zhu et al., 2018) and induced dysbiosis in zebrafish

intestine (Qiao et al., 2019). MP exposure also affected bacterial

richness and diversity in mice gut and feces microbiota (Lu et al.,

2018) and altered microbiota in blue mussels, which may lead to an

increasing abundance of potential human pathogens (Li L.-L. et al.,

2020). Complementary to these findings, our study differs by

considering both biodegradable and nonbiodegradable MPs and

the ir impacts on copepod microbio ta throughout a

multigenerational experiment. Altogether, we can hypothesize

that MP ingestion, especially MPs with plastispheres, may induce

dysbiosis in the microbiota of copepods that could further affect the

life traits of individuals.

Copepods are considered a model organism in ecotoxicology

(Kwok et al., 2015) as they represent a widely distributed group in

all aquatic ecosystems (Turner, 2004), and some species can be
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cultured in the laboratory. Previous studies have demonstrated

acute and sublethal toxicity in copepods with a short-term

exposure of a few days at high concentrations of MPs (Lee et al.,

2013; Cole et al., 2015). Considering the relatively short life cycle of

copepods, the effects of long-termMP exposures at environmentally

realistic concentrations should be investigated using a

multigenerational approach. For example, Zhang et al. (2019)

have studied the multigenerational effects of polystyrene beads on

the marine copepod Tigriopus japonicus proteome plasticity for

three generations (two exposed to MPs and one recovered). The

copepod species of interest in this paper, Eurytemora affinis, has

been previously studied for multigenerational effects of natural

factors such as temperature and salinity (Souissi et al., 2021) and

effects of pollutants such as trace metals and contaminated

sediments (Das et al., 2020; Das et al., 2022). However, studies

regarding the microbiota of copepods are relatively rare. Most

existing studies were focused on the specific relationship between

copepods and Vibrio sp. (Heidelberg et al., 2002; Huq et al., 2005).

In this study, we monitored the effects on Eurytemora affinis

microbiota for several generations during chronic MP exposure at an

environmentally realistic concentration. Two types of MPs,

biodegradable plastics (PBAT) and nonbiodegradable plastics

(LDPE), were selected for the exposure experiment. In addition,

both untreated “virgin” and pretreated “weathered” forms of MPs

were used for investigating potential impacts on copepod microbiota

not only by MP itself but also by microorganisms (may include

potential pathogens) that were attached to MPs during the

“weathering”. High-throughput sequencing of the small subunit of

ribosome gene (16S rDNA) was employed to analyze the impacts of

MP exposure on copepod microbial diversity. To our knowledge, this

is the first study investigating the effects of MP exposure on copepod

microbiota in several generations.
Materials and methods

Biological material

Cultures of the model organism E. affinis used for this study

originated from a sampling of wild copepods in September 2014

from the oligohaline zone of the Seine Estuary (Michalec et al.,

2017; Das et al., 2020). A specific protocol with controlled

conditions (salinity at 15 PSU, constant temperature at 19°C, and

12:12 photoperiod) was developed (Souissi et al., 2016) to maintain

the mass culture and provide standardized individuals for

ecotoxicological studies (Das et al., 2020). For this experiment, a

specific 300 L copepod culture, generously fed with Rhodomonas

sp., was started 1 month before the start of the experiment to ensure

the acclimation of copepods.
Microplastics

For this study, PBAT was selected to represent biodegradable

plastics and LDPE for nonbiodegradable plastics. Pellets of LDPE

(product code: BM50, EXXONMOBIL™, Dallas, USA) and PBAT
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for (product code: Ecoflex F blend C 1200, distributed by B-Plast

2000, BASF, Ludwigshafen, Germany) were cryogenically ground

(CRYOMILL, RETSCH®, Hann, Germany) into MPs in a size range

of 1–10 µm because copepods were previously shown to ingest MPs

< 10 µm (Thery et al., 2022). The size range of each MP sample was

confirmed by Dynamic Light Scattering (Mastersizer 2000, Malvern

Panalytical, Malvern, UK). MPs were prepared individually for each

exposure replicates in sterilized 10 mL pill jars (540 µg MPs per jar).

To prepare weathered (biologically fouled) MPs, 540 µg of MPs

were mixed with 10 mL of 15 PSU water (25 µm filtered seawater

diluted with deionized water to 15 PSU) in pill jars and incubated at

19°C with a 12:12 photoperiod on a rotary shaker at 200 rpm for 45

days. Each jar was covered with a drilled top to allow air exchange

and prevent contamination/evaporation.
Experimental approach

During four successive generations, copepods were exposed to

five conditions: control (no MPs), virgin PBAT, weathered PBAT,

virgin LDPE, and weathered LDPE (each in triplicate), followed by

the fifth generation without MP exposure for detoxification. For

each replicate, copepods were maintained in a 2-L beaker filled with

1.8 L of 15 PSU water with constant airflow through a glass pipette.

During the five generations, copepods were fed every 2 days with 10

mL of Rhodomonas sp. microalgae (Dayras et al., 2021). Previously

established methods (Souissi et al., 2010; Souissi et al., 2016) were

followed for preparing microalgae cultures and feeding copepods.

In order to have copepods in synchronized lifecycle stages, a

specific protocol was followed (Das et al., 2020). To start each

generation, every beaker was filled with a laying nest and 1.8 L of

freshly prepared 15 PSU water, followed by 30 ovigerous females

from the mass culture. After 2–3 days, eggs that have been released by

females will have passed through the 200-µm mesh of the laying nest.

At this moment, non-ovigerous females were removed with laying

nests, and then MP samples were added according to respective

conditions (final concentration 300 µg/L). This final concentration

would be considered environmentally realistic according to a

previous review (Paul-Pont et al., 2018) on the presence and

concentration of MPs in different seawater surveys. After hatching

and the development of larval stages into adults (10–15 days),

copepods of each replicate were harvested with a 33-µm mesh. To

start the next generation, 30 ovigerous females were selected from

each harvest and added into their respective beakers after 15 PSU

water renewal. The remaining copepods were briefly fixed with 70%

ethanol and abundantly rinsed with sterilized MilliQ water.
DNA extraction, 16S rDNA library
preparation, sequencing, and
sequence processing

A total of 50 adult individuals (including males, females, and

ovigerous females) were collected randomly and stored in a 1.5-mL

microtube at −20°C until microbiota DNA extraction. At the end of

each generation, after copepods were harvested, water samples of
frontiersin.org
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each beaker were filtered through 0.22 µm Sterivex filter units

(Millipore, Burlington, MA, USA), and filters were stored at −20°C.

In addition, the microalgae cultures for copepod feeding were also

sampled during the multigenerational exposure (200 µL per filter, one

time per generation from generations one to four) using Sterivex

filters and then stored at −20°C. Before DNA extraction, copepods

were first crushed and homogenized using sterile single-use

micropestles. For water and microalgae samples, filters were cut out

of Sterivex units and placed into 1.5 mL microtubes. For all samples,

total DNA was extracted using the QIAamp PowerFecal Pro DNA

Kit (Qiagen, Hilden, Germany), following the manufacturer’s

instructions. The 16S amplicon library was prepared by

amplification of the V3–V4 region of the bacterial 16S ribosomal

RNA gene using primers 341F (5′-CCTACGGGNGGCWGCAG-3′)
and 805R (5′-GACTACHVGGGTATCTAATCC-3′). Phusion™

High-Fidelity DNA Polymerase (Thermo Fisher Scientific,

Waltham, MA, USA) was used for polymerase chain reaction

(PCR) following the manufacturer’s instructions. PCR products

were examined on 1% agarose gel electrophoresis, and the

purification protocol was achieved with the Nucleospin® Gel and

PCR Clean-up (MACHEREY-NAGEL GmbH & Co. KG, Düren,

Germany). The quantification of extracted DNA was performed

using the Qubit™ dsDNA HS Assay Kit (Thermo Fisher Scientific,

Waltham, MA, USA) and the Qubit® 2.0 Fluorometer (Thermo

Fisher Scientific, Waltham, MA, USA). Second PCR and sequencing

were achieved by Eurofins Genomics (Germany GmbH). Finally,

sequence processing was completed following methods used in a

previous publication of the group (Li L.-L. et al., 2020). Briefly, rDNA

sequences were analyzed following the standard procedure (https://

mothur.org/wiki/miseq_sop/) (Schloss et al., 2011) of the MOTHUR

program v1.47.0 (Kozich et al., 2013). First, sequences were extracted

and sorted based on their index tag, and then processed for quality

filtering (e.g., discarding suspected chimeras, single singletons, and

erroneous sequences). The remaining high-quality reads were

clustered into operational taxonomic units (OTUs) at a 97%

similarity threshold (Behnke et al., 2011). After normalization of

the dataset, OTUs were searched against the SILVA database (release

138, http://www.arb-silva.de/) (Quast et al., 2012) using BLASTN

(Altschul et al., 1990) for taxonomic affiliation. Sequencing data have

been submitted to the NCBI sequence read archive database (SRA

accession: PRJNA980077).
Statistical analyses and graphical
representations

Dissimilarity indices of microbial assemblages were computed

using the Bray–Curtis method as a dissimilarity index with square

root OTU read abundance normalization using R studio with the

“vegan” package (Dixon, 2003). Hierarchical cluster analysis was

performed with the Ward method using the “Cluster” package

(Maechler et al., 2013). Results were then plotted in a dendrogram

using “factoextra” (Kassambara and Mundt, 2017) and

“RcolorBrewer” (Neuwirth and Neuwirth, 2011) packages.

Nonmetric multidimensional scaling (NMDS) and permutational

analysis of variance (PERMANOVA-Adonis) were performed using
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the vegan package (Dixon, 2003). Post-hoc Adonis tests were

achieved using the “pairwiseAdonis” package (Teng et al., 2018).

Alpha-diversity estimators (diversity—Simpson and Shannon;

richness—Chao 1; and dominance—Equitability) were calculated

using the Past 4.03 software (Hammer et al., 2001) for each replicate

of each treatment. Values were averaged for each treatment and

distribution represented in boxplots using the “ggplot2” package.

Possible significant differences in alpha-diversity estimators

between conditions of each generation were evaluated with one-

way ANOVA or Kruskal–Wallis one-way analysis of variance,

depending on results of normality and homoscedasticity of

variances with R software. A p-value under 0.05 was considered

statistically significant.
Results

16S rRNA sequences analysis

Before quality filtering and normalization across samples, a total

of 4,053,284 reads were obtained. After normalization and

exclusion of singletons, a total of 264178 high-quality reads

(10,567 ± 3,938 reads per sample) corresponding to 7,540 OTUs

were identified for the microbiota of copepods during the

multigeneration exposition. In water samples collected at the end

of each generation, 2,532 OTUs (710 ± 171 OTUs per sample) were

found, while only 395 OTUs (176 ± 34 OTUs per sample) were

detected in the copepod feeding media composed of microalgae

Rhodomonas sp. Across the five generations, the microbiota of

copepods in the control condition was composed of 994 ± 203

OTUs (Figure 1). Respectively, the microbiota of copepods shared

113 ± 32 OTUs with the microbiota of water samples (representing

6.7% of copepod microbiota) and 47 ± 21 OTUs with the

microbiota of microalgae feedings (2.85%) (Figure 1). Throughout

the five generations, the lists of OTUs shared among the three

matrices stay similar.
Effects of microplastics on copepod
microbiota alpha-diversity

The alpha-diversity estimator showed no significant differences

in bacterial communities among treatments across the five

generations for Simpson, Shannon, and Equitability indices

(Figure 2). Two significant differences (p = 0.037) for Chao 1

indices were detected during generation two (G2) between control

(T) and weathered PBAT (PBATw) (p = 0.05) and between virgin

LDPE (PE) and weathered PBAT (PBATw) (p = 0.05).
Bacterial assemblage composition along
copepod generations

Taxonomic classification of the 16S rRNA amplicon sequences

identified 55 orders of bacteria in the copepod microbiota during the

five generations of the experiment. Rhodobacterales, Pseudomonadales,
frontiersin.org
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FIGURE 1

Venn diagram of OTUs shared among the microbiota of copepods in control, water, and algae used to feed copepods during the five-generation
experiment. Algae was not sampled during the last generation. C, control; C_water, water used to start generation; rhodo, Rhodomonas sp. Algae
used to feed copepods; G1, generation one; G2, generation two; G3, generation three; G4, generation four; G5, generation five (depuration).
FIGURE 2

Indices for alpha-diversity of taxa. Boxplots show mean and standard deviation values of the diversity (Simpson and Shannon), richness (Chao 1), and
dominance (Equitability) estimators for copepod microbiota among treatments and along the four MP exposure generations (G1–G4) and depuration
generation (G5). Each box corresponds to a treatment with control (C), virgin MPs of PBAT (PBAT), virgin MPs of LDPE (PE), weathered MPs of PBAT
(PBATw), and weathered MPs of LDPE (PEw).
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Enterobacterales, and Rhizobiales were the top four most abundant

orders present in all conditions during all experiments and represented

respectively 29.6%, 15%, 11.1%, and 8%. Flavobacteriales were

abundant during the first generation for all treatments but decreased

in the control” and “PE” treatments during the second generation.

They also decreased in the third generation in the “PBAT” and

“PBATv” treatments but stayed abundant in the “PEv” treatment

(Figure 3). During generations four and five, the abundance of this

order was low in all samples except for the PBAT treatment in

generation four, which had an increase. In the class of Bacilli, results

showed an increase in thermoactinomycetales during the second and

third generations and then a decrease during the two last generations.

Bacillales were also relatively abundant during the third

generation (Figure 3).

In the cultured water that was used to start each generation of

copepods, bacterial communities showed differences at the order level

during the five generations. Pseudomonadales, Flavobacteriales,

Rhodobacterales, and Burkhoderiales were the main order present

in the first generation. During the second generation, the abundance

of the abovementioned orders globally decreased and the abundance

of Enterobacterales highly increased. During the third generation,

Enterobacterales decreased while Pseudomonadales, Milano-WF1B-

44, and Rhodobacterales increased. Some orders such as
Frontiers in Ecology and Evolution 06
Verrucomicrobiales, Cytophagales, and Balneolales appeared at

higher abundance (Supplementary Material 1) compared to the

first two generations. During generations four and five, mainly

Kordiimonadales and Milano-WF1B-44 increased and were the

two most abundant orders in generation five. On the other

hand, Balneolales and Rhodobacterales decreased. Bacterial

communities present in the copepod feeding media (Rhodomonas

sp.) were relatively stable, and mainly composed of orders

of Pseudomonadales, Rhodobacterales, Flavobacteriales, and

Chitinophagales (Supplementary Material 1).

Results of the hierarchical cluster analysis (based on the Bray–

Curtis distances) have shown that copepod microbiota were

generally clustered according to their generations (Figure 4). On

the dendrogram, treatments of all five generations could be divided

into three groups: generations one and two, generations three and

four, and depuration generation five (Figure 4). The bacterial

communities of the two first generations had a closer Bray–Curtis

distance with the depuration generation (generation five) compared

to generations three and four with generation five (Figure 4).

Within treatments of the same MP types (PBAT or LDPE), virgin

and weathered samples generally had closer Bray–Curtis distances

for the same generation (Figure 4). In addition, we noticed that the

virgin PBAT-treated copepods in the depuration generation were
FIGURE 3

Microbial community composition of copepod microbiota at the order level. Taxa were grouped by class and then by phylum. Proteobacteria was presented
in shades of purple for Alphaproteobacteria class and in shades of blue for Gammaproteobacteria; Bacteroidota in shades of brown; Actinobacteria in shades
of red; Planctomycetes in black and grey; Bacilli in shades of green; and Phycisphareae in orange. Only classes for which abundance was superior to 1% of
total OTU reads were represented (total recovery of 97.6%). C, control; PBAT, virgin PBAT; PE, virgin LDPE; PBATw, weathered PBAT; PEw, weathered LDPE;
G1, generation one; G2, generation two; G3, generation three; G4, generation four; G5, generation five (depuration).
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placed in the first group with most of the generation one and

two samples.

In order to better understand the dispersion of different groups

based on bacterial communities, an nMDS plot was carried out to

analyze microbiota data from copepods, water used for copepods,

and microalgae used as food (Figure 5). Three groups appeared on
Frontiers in Ecology and Evolution 07
this plot: the first group includes water samples used to start each

generation (orange circle); the second group includes the four

Rhodomonas sp. samples for feeding (black circle), and the third

group includes samples corresponding to copepod microbiota with

slight differences according to generations (Figure 5). These results

agreed with the Venn diagram result (Figure 1) and suggested
FIGURE 4

Hierarchical clustering of different treatments along the five generations of experiment (1–4, contaminated generations; 5, depuration generation) of
copepod microbiota based on the Bray–Curtis dissimilarities calculated on square root transformed number of OTU reads. The colored rectangles
indicate arbitrary cluster separation. T, control; PBAT, virgin PBAT; PE, virgin LDPE; PBATv, weathered PBAT; PEv, weathered LDPE; G1, generation
one; G2, generation two; G3, generation three; G4, generation four; G5, generation five (depuration).
FIGURE 5

Nonmetric multidimensional scaling (NMDS) on the copepod microbiota communities, water used for the experiment for each generation of
copepods, and algae used for feeding copepods. The analysis was performed during the four-generation MP exposure and the last (fifth) generation
of depuration. The colors of the symbols correspond to the different generations of copepods, and the shapes of the symbols correspond to the
different treatments. Colored circles were arbitrarily placed to represent the different groups: the black circle represent samples of water used to
start treatments of the different generations, and the orange circle is the group of Rhodomonas sp. samples. G1, generation one; G2, generation
two; G3, generation three; G4, generation four; G5, generation five (depuration); C_water, control of water without copepods; C, control with
copepods; PBAT, contaminated with virgin PBAT MPs; PE, contaminated with virgin LDPE MPs; PBATw, contaminated with weathered PBAT MPs;
LDPEw, contaminated with weathered LDPE MPs.
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copepods carrying their specific microbiota, as copepod microbiota

only shared a mean value of 6.7% and 2.9% OTUs with the water

samples and the Rhodomonas sp. Feeds, respectively.
Effects of MPs on copepod microbiota
beta-diversity

Results of nMDS analyses coupled with PERMANOVA analysis

for the four generations exposed to MPs (G1–G4) revealed that

generation (p = 0.001), type of MPs (p < 0.01), and effects of

generation × type of MPs (p < 0.05) significantly influenced

copepod microbiota (Table 1). In order to further investigate how

factors significantly influence the bacterial communities of the

different treatments, a post-hoc test (pairwise ADONIS) was

performed. Side-by-side comparison between “control” and PBAT

showed that generation (p = 0.0001), type of MPs (p < 0.002), and

effects of generation × type of MP (p < 0.001) significantly affected

copepod microbiota (Table 2). Regarding control and “LDPE,” only

generation (p = 0.0001) and the type of MPs (p < 0.05) had a

statistically significant impact on copepod microbiota (Table 2).

Between LDPE and PBAT, only generation (p = 0.0001) had a

significant influence on copepod microbiota. PERMANOVA was

also performed on data of the depuration generation (G5), and no

significant differences were found among treatments (Table 3).

For each generation, sequence read count differences

between the control and the different treatments were analyzed

using a nonparametric Wilcoxon test. In total, 34 OTUs have

shown significant differences in abundance (increase/decrease)

after being exposed to MPs as compared with controls

(Supplementary Material 2). At the class level, OTUs came from

Alphaproteobacteria (47.1%), Gammaproteobacteria (23.5%),

Actinobacteria (14.7%), Bacteroidota (8.8%), and Planctomycetes

(5.9%). Alphaproteobacteria was composed of Rhodobacterales (10

OTUs), Rhizobiales (five OTUs), and Caulobacterales (one OTU).

Gammaproteobacteria by Enterobacterales (five OTUs) and

Legionellales, Nitrosococcales, and Pseudomonadales has one

OTU for each order. Actinobacteria was composed of
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Micrococcales (three OTUs) and Corynebacteriales (two OTUs).

Bacteroidota was composed of Flavobacteriales (two OTUs) and

Cytophagales (one OTU). Pirellulales (two OTUs) was the only

family found for Planctomycetes. Respectively, 12, 11, 8, 0, and 4

OTUs changed in abundance during generations one, two, three,

and four, and depuration generation has more than 82% of OTUs

for which abundance increased in MP treatment compared to

control one (Supplementary Material 2). Only one OTU (OTU

941, “Microbacterium”) had a significant read number difference

for the two treatments (weathered PBAT and weathered LDPE) in

generation one. Notably, OTUs affected by MP treatments, as

detected by the Wilcoxon test, were mostly present in low read

counts (≤ 3). Treatment with weathered PBAT in generation one

was shown to have the highest effect at the OTU level, with eight

OTUs that differed in read counts (seven OTUs increased and one

decreased) after MP exposure. Overall, weathered MPs (i.e.,

weathered PBAT and LDPE) treatment seems to have the highest

effect on OTU read abundance compared to control. Finally, the

Wilcoxon test identified one OTU (OTU 2602 – Labrenzia alba)

that was present in the control condition but absent in virgin PBAT

and weathered LDPE treatments.
Discussions

The impact of MPs on copepods has been previously documented

from the molecular scale (Heindler et al., 2017; Choi et al., 2020) to life

trait alterations (Cole et al., 2015; Cole et al., 2016). However, to our

knowledge, potential impacts of MPs on copepod microbiota have not

been reported. Copepods represent a high proportion of zooplankton

carbon biomass and are keystone between primary producers and

secondary consumers in marine food webs (Turner, 2004). In addition,

evidence has shown that microbiota plays an essential role in

maintaining animal health (Zhang et al., 2010) and supporting the

immune system (Nicholson et al., 2012). Furthermore, MPs offer

support and protection for microorganisms in the “plastisphere”

(Muthukumar et al., 2011), including potential pathogenic species

such as Vibrio sp. (Zettler et al., 2013). Therefore, it is essential to
TABLE 1 PERMANOVA (ADONIS) results for copepod microbiota (OTUs) communities’ structures during the four generations exposed to MPs (G1–
G4), calculated on the Bray–Curtis distance (significant effects of factors (p < 0.05) are indicated with asterisks).

Main effects Degrees of freedom Sum of squares F-statistic R2 p-value

Type of MPs 2 0.6969 2.1470 0.04936 0.0082*

Aging 1 0.2384 1.4690 0.01689 0.1333

Generation 3 3.9347 8.0809 0.27867 0.0001***

Types of MPs × Generation 6 1.4465 1.4853 0.10244 0.0221*

Types of MPs × Aging 1 0.2022 1.2459 0.01432 0.2236

Generation × Aging 3 0.7050 1.4478 0.04993 0.0679

Types of MPs × Generation × Aging 3 0.5661 1.1626 0.04009 0.2415

Residuals 39 6.3299 0.44830

Total 58 14.1196 1.00000
fron
*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001—statistical significance. Permutations n = 9,999.
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investigate the impacts of MP exposure on copepods in all aspects,

including copepod microbiota.

Previous studies have shown that MP exposure affected planarian

microbiota richness with a significant increase in Simpson and

Shannon indexes (Han et al., 2022) and marine medaka microbiota

with a decrease in Shannon and Chao 1 index (Zhang et al., 2023). In

our study, however, effects in E. affinis microbiota after MP exposure

seem to be more subtle, with only a significant difference in the Chao 1

index between the control and the treatment of weathered PBAT

during the second generation observed. Possible explanations could

come from the fact that studies by Han et al. (2022) and Zhang et al.

(2023) focused specifically on gutmicrobiota, which is consideredmore

sensitive to pollutants as compared with external microbiota

(Fackelmann and Sommer, 2019). Indeed, in our study, due to the

small size of E. affinis and the lack of protocols for gut isolation, total

DNA was extracted from each sample. Therefore, microbiota could

come from both the internal (gut) and external (exoskeleton) parts of
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copepods, including MPs that were ingested by copepods and adhered

to the external part of copepods. This hypothesis is supported by a

previous study confirming the ingestion of E. affinis for MP of the same

size range (Thery et al., 2022). In addition, the environmentally realistic

concentration of MPs used in this study might well contribute to the

observation of subtle changes. Indeed, contrasting with other studies

exposing their model organisms to high MP concentrations, the

environmentally realistic concentration of MPs used to expose

copepods was not enough to affect their microbiota alpha-diversity

estimators. Similar results were reported on the blue mussel Mytilus

edulis exposed to comparable concentrations of MPs (200 µg/L),

leading to no significant differences in the alpha-diversity estimator

of their gut microbial diversity (Li L.-L. et al., 2020). Similar to the

previous report for the blue mussel Mytilus edulis exposed to an

environmentally realistic concentration of MPs, no significant

differences were observed in the alpha-diversity estimator of gut

microbial diversity (Li L.-L. et al., 2020).
TABLE 3 PERMANOVA (ADONIS) results for copepod microbiota (OTUs) communities’ structures during the generation of depuration (G5), based on
the Bray–Curtis distance (significant effects of factors (p < 0.05) are indicated with asterisks).

Degrees of freedom Sum of squares F-statistic R2 p-value

Treatment 2 0.7231 1.3572 0.17273 0.1207

Residuals 13 3.4633 0.82727

Total 15 4.1864 1.0000
fron
*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001—statistical significance. Permutations n = 9,999.
TABLE 2 Statistical analyses of pairwise ADONIS differences in copepod microbiota profiles between treatments during the four generations exposed
to MPs (G1–G4), calculated on the Bray–Curtis dissimilarity measures (significant effects of factors (p < 0.05) are indicated with asterisks).

Treatments Main effects ADONIS test

Sum of squares F R² p-value

Control vs. PBAT Type of MPs 0.5358 3.7725 0.06543 0.0011**

Generation 2.5987 6.0992 0.31735 0.0001***

Aging of MPs 0.2051 1.4445 0.02505 0.1425

Type of MPs × generation 1.0215 2.3975 0.12475 0.0009***

Generation × Aging 0.561 1.3166 0.06851 0.1341

Control vs. PE Type of MPs 0.3498 1.8754 0.04054 0.0482*

Generation 2.4986 4.4658 0.28963 0.0001***

Aging of MPs 0.2461 1.3198 0.02853 0.1941

Type of MPs × Generation 0.5946 1.0628 0.06893 0.3597

Generation × Aging 0.6482 1.1586 0.07514 0.2522

PBAT vs. PE Type of MPs 0.2109 1.2895 0.01896 0.1996

Generation 3.4437 7.0175 0.30951 0.0001***

Aging of MPs 0.2389 1.4604 0.02147 0.1318

Type of MPs × Generation 0.5768 1.1753 0.05184 0.2334

Type of MPs × Aging 0.2124 1.2984 0.01909 0.2006

Generation × Aging 0.7089 1.4445 0.06371 0.076

Type of MPs × Generation × Aging 0.5003 1.0196 0.04497 0.412
*p-value < 0.05; **p-value < 0.01; ***p-value < 0.001—statistical significance. Permutations n = 9,999.
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Results of microbial community structure analyses at the OTU

level suggested that copepods carried their own specific microbiota

that was different from cultured water and Rhodomonas algal food

supplies. However, we noticed that the community structure was

shifting throughout the experiment at each copepod generation.

This observation could be due to the input of “new” bacterial

communities at the beginning of each generation by changing

water. Indeed, our results showed water community structure

evolved during the five generations with high increases/decreases

in the main orders of bacteria. Moreover, even if community

structures were quite stable during the experiment, few changes at

the order level were observed. Regarding our experimental design,

the generation factor is clearly represented by the water used for

each generation and the algae media. This hypothesis is a trivial

explanation of why generation was the most significant factor in the

copepod microbiota community, as shown by PERMANOVA and

pairwise couple comparison with the post-hoc test.

According to the results of PERMANOVA, the other factor that

significantly influences copepod microbiota is exposure to MPs. This

finding agreed with a previous report by Li L.-L. et al., 2020 that also

identified “MP exposure” as a significant factor influencing the gut

microbiota of blue mussels using PERMANOVA analysis. Our results

also agreed with existing studies on mice, zebrafish, and planarians that

suggested MP exposure could induce significant impacts on gut

microbiota (Lu et al., 2018; Qiao et al., 2019; Han et al., 2022). In

our study, results of post-hoc analysis suggested that the effects of MPs

on copepodmicrobiota compared to a control were independent ofMP

types (PBAT or LDPE), as a pairwise comparison between these two

treatments showed a nonsignificant difference. Interestingly, the

difference between the control and the PBAT-exposed samples was

greater than the difference between the control and the LDPE-exposed

samples, as the p-value of “control vs. PBAT” was approximately 10

times lower. As a result, the interaction between the factor “generation”

and PBAT was also identified to have a significant effect on microbial

community structure.

To investigate possible reasons for the greater effect on copepod

microbiota of PBAT exposure than of LDPE exposure, we analyzed

the biofilm communities attached to PBAT and LDPE. The

preliminary (observational) results suggested no differences in

bacterial communities between the two MP types that were

weathered up to one hundred twenty days (data not shown). A

similar observation was reported by Delacuvellerie et al. (2021) that

showed no differences in bacterial communities between PBAT and

LDPE after 82 days of immersion in the Mediterranean Sea. This

result may be further explored and the untreated data can provide

future perspectives of this study. Possible reasons for observing a

greater effect of PBAT exposure might involve the interaction

between copepods and PBAT. For example, as biodegradable

plastics, we cannot rule out the possibility that PBAT MPs could

be degraded (even partially) by the digestive enzymes of copepods

after ingestion. Products of digested/degraded PBAT may further

influence the gut microbiota of copepods. Altogether, we can

suggest that both PBAT and LDPE MPs could potentially impact

copepod microbiota in a natural environment with possible effects

on life traits, even though PBAT is generally considered as more

“eco-friendly.” On the opposite, a recent study on marine medaka
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(Oryzias melastigma) suggested that polylactic acid (PLA), a

compostable polymer, was less hazardous compared to “classic”

plastics (i.e., polyethylene terephthalate and polystyrene) regarding

effects on alpha-diversity indexes (Shannon and Chao 1) and

complexity of networks of gut microbiota (Zhang et al., 2023).

According to the results of PERMANOVA, no significant

difference was observed in the microbiota structures of copepods

between virgin and weathered MP exposure. This is surprising since

the result of diversity analysis suggested a significant difference between

the bacterial community on virgin MPs compared to 45 days

weathered MPs (data not shown). This result is in contrast with a

previous report by Li L.-L. et al., 2020 that showed significantly greater

impacts by weathered MPs on blue mussel gut microbiota than by

virgin MPs. A possible explanation for such a difference in observation

could be in the experimental design. For Li L.-L. et al., 2020, culture

tanks for mussels were cleaned every other day, refilled with fresh

seawater, and supplied with fresh virgin or weathered MPs. For

copepod cultures in this study, water and MPs were refreshed at the

beginning of each generation. Therefore, during each generation (10–

15 days), virgin MPs could have biofilms develop and become

weathered MPs. Finally, the PERMANOVA result of the depurated

generation suggested no statistical differences between the control and

previously MP-exposed samples. This result implied a relatively quick

recovery of copepod microbiota even after several generations of

exposure to MPs.

According to our results of taxonomy analysis, abundant bacterial

phyla found in copepod microbiota (Proteobacteria, Bacteroidota, and

Actinobacteria) were similar to those found in other copepods living in

natural environments of the North Sea and the Atlantic Ocean (Brandt

et al., 2010; Cregeen, 2016). Considering this taxonomic level, we were

not able to find differences between exposed and control copepod

microbiota. At a higher taxonomic resolution, the results of the

Wilcoxon test suggested 34 OTUs were significantly (p < 0.05)

impacted by MP exposure. Generally, the number of impacted

OTUs seemed to be slowly decreasing from the first to the third

generation and was close to zero for the two last generations. Among

these 34 OTUs, OTU 941 (“Microbacterium”) was identified both in

weathered PBAT and weathered LDPE during the first generation. It

should be noted that OTU 941, as well as all others within these 34

OTUs, were represented by low read counts (≤ 3 read counts).

Similarly, we found in generation three that OTU 2602 (Labrenzia

alba) was absent in virgin PBAT and weathered LDPE compared to

control. Although this OTUwas only present in low read numbers, it is

possible that MP impaired the symbiotic relationship between

copepods and Labrenzia alba, as it was shown that the genome of

this species possesses symbiosis factors between microbes and marine

invertebrate hosts (Couceiro et al., 2021). However, even if the

Wilcoxon test revealed several significant OTUs impacted by MP

exposure, since these OTUs were only supported by low read

numbers, we suggest considering these findings with caution.

It is worth mentioning that two Vibrio species (Vibrio splendidus

and Vibrio tasmaniensis) were detected in one replica of virgin PBAT-

exposed copepods for the second, third, and fourth generations. Both

Vibrio species are known mollusc pathogens: Vibrio tasmaniensis has

been reported to correlate to mass mortality events in cultured oysters

(Roux et al., 2002; Lopez-Joven et al., 2018), while Vibrio splendidus
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was detected in cleaner fish used for removing sea lice from salmon in

salmon farms (Gulla et al., 2015). Special relationships between

chitinous exoskeleton zooplankton such as copepods and the Vibrio

genus were previously described as well (Tamplin et al., 1990;

Heidelberg et al., 2002; Brandt et al., 2010). Nevertheless, the two

Vibrio species were detected in only one replica in generations two to

four but were not detected in the following depurated generation or

water samples used to start each generation.
Conclusion

Altogether, our results suggest that MPs impact copepod

microbiota rapidly (from the first generation) and continuously

(until the last exposed generation) despite plastic origin, types, and

aging conditions. Thus, the biodegradable polymer PBATmight not be

an ideal alternative for replacing nonbiodegradable plastics considering

similar impacts on copepod microbiota (and possibly on microbiota of

other organisms). It would be interesting to compare other MPs, both

biodegradable and nonbiodegradable, for their impacts on the

microbiota of copepod and other organisms. Our study also showed

that copepod microbiota returned promptly to their original

composition as soon as MP exposition stopped. This result, which

needs to be confirmed by further studies on a wider range of organisms,

brings some hope for the resilience of organisms and restoring the

ecosystem by preventing plastics from entering the environment.
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