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A B S T R A C T

Following the recent advent of Process Analytical Technologies, dataset production has undergone significant
leverage. In this new abundance of data, isolating meaningful, informative content is critical for process
dynamic modeling. This paper proposes a data-driven algorithm based on low-rank matrix approximation, the
so-called successive projection algorithm, to retrieve a minimal set of macroscopic reactions, the corresponding
stoichiometry, and a consistent kinetic model structure from the measurements of the trajectories of the species
concentrations during cultures in a bioreactor. The proposed method is successfully validated in simulation,
considering a case study related to monoclonal antibody (MAb) production with hybridoma cell cultures.
1. Introduction

In the past few decades, Process Analytical Technologies (PAT) have
contributed to improving bioprocess production yields and quality at-
tributes [1], partly due to the progress in techniques involving process
modeling, monitoring, and control. In addition, new achievements in
online, in-line, at-line, and off-line measurement protocols are respon-
sible for gathering large amounts of process data that allow advanced
process modeling and analysis, targeting the development of digital
twins.

One of the fundamental modeling tools for designing bioprocess
monitoring and control is the concept of macroscopic reaction schemes,
introduced in the late eighties by Bastin and Dochain [2]. It has been
successfully applied for decades in several fields, such as wastewa-
ter treatment [3–5], anaerobic digestion [6–8], mammalian cell cul-
tures for biopharmaceuticals [9–12] or microalgae cultures [13–16]. A
macroscopic representation of a bioprocess consists of lumping complex
reactions and metabolite interconnections in parsimonious relations to
derive a set of mass balance equations capturing the primary dynamics.
The design of a macroscopic model requires first the inference of a
global structure and, in the second step, parameter estimation.

This paper focuses on the first objective, which can be decomposed
into three tasks: (i) extracting the number of macroscopic reactions,
(ii) inferring the corresponding stoichiometry, and (iii) designing an
appropriate structural kinetic model. Many different approaches could
be used to solve these problems, from reducing complex metabolic
networks [17,18] to machine learning of black-box structures such
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as neural networks [19,20]. Halfway, hybrid models combine data-
driven techniques with mechanistic process knowledge. For instance,
Rogers et al. [21] integrate physical knowledge into machine-learning
solutions to model complex biochemical processes. Since the kinetic
structure is considered the most uncertain part of a biochemical model,
hybrid modeling suggests combining mass balance differential equation
systems with neural-network-based kinetics [22–24]. For an exten-
sive review on machine learning-based optimization and control for
bioprocesses, see [25]. However, these hybrid methods still consider
significant metabolic a priori knowledge.

Recently, new approaches have been proposed to identify the un-
derlying structure of a dataset and extract meaningful information
to guide the design of dynamical models with minimum complexity.
These models benefit from being interpretable and tend to generalize
and prevent overfitting [26]. Examples of these approaches are the
extended dynamic mode decomposition (EDMD) [27,28], multilinear
Gaussian processes [12,29], sparse matrix decomposition [30], and
sparse identification of nonlinear dynamics [26,31,32].

Other simple and powerful methods to retrieve valuable informa-
tion from data can also be considered, such as linear dimensionality
reduction (LDR) techniques, which are equivalent to low-rank ma-
trix approximations (LRMA). The latter represents each data point
of a dataset as a linear combination of a small number of subspace
basis elements. Linear dimensionality reduction methods are a corner-
stone of high dimensional data analysis due to their simple geometric
interpretation and attractive computational properties. These meth-
ods capture features of interest from the data, such as covariance,
959-1524/© 2023 Elsevier Ltd. All rights reserved.
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dynamical structure, the correlation between data sets, input–output
relationships, as well as margins between data classes [33]. Among
the LDR techniques, principal component analysis (PCA) and indepen-
dent component analysis (ICA) are popular methods for simple linear
transformations. Considering minimal a priori process knowledge, PCA
and maximum likelihood PCA (MLPCA) have been used successfully to
infer the number of reactions and extract information about stoichiome-
try [34–36]. Besides, LRMA is a workhorse in numerical linear algebra,
with singular value decomposition (SVD) being a central technique.
LRMA is closely related to eigenvalue decomposition and factorization,
such as Cholesky, QR, and LU, to cite a few [37].

In a previous work of the authors [30], a class of LRMA called
nonnegative matrix decomposition is used to design a data-driven
linear predictor for batch cultures of hybridoma cells. In this study,
the nonnegativity constraint imposed on the input and mixing matrices
is relaxed, enhancing stoichiometry estimation and revealing hidden
kinetic model structures from the dataset. The main contribution of
this paper is, therefore, to propose data-driven tools based on low-rank
matrix approximation, and especially a successive projection algo-
rithm [38,39], to obtain the process stoichiometry and guidelines for
selecting the kinetic model structure. As it will become obvious in
the following, the differentiation of the time evolution of the species
concentrations is required in the course of the procedure and a dis-
cussion of some of the readily available numerical approaches is also
provided. The whole procedure is tested using a case study related to
the production of monoclonal antibodies.

The paper is structured as follows: First, Section 2 introduces the
problem statement. Next, Section 3 presents low-rank matrix approx-
imation methods, and Section 4 proposes a procedure for extracting
the number of reactions as well as information on the stoichiometry
and kinetics illustrated by a simple numerical example. In addition, the
numerical differentiation of noisy signals is discussed, together with
the continuation of the simple numerical example. Finally, Section 5
applies the method to a simulation case study related to a hybridoma
cell culture process, and the main conclusions and perspectives are
discussed in Section 6.

2. Problem statement

The metabolism of a microorganism can be macroscopically de-
scribed by a scheme of 𝑀 reactions involving 𝑁 key species, which
are typically biomass, substrates, and products [2]:
∑

𝑖∈ℛ𝑗

𝑘𝑖,𝑗𝜉𝑖
𝜑𝑗 (𝜉,𝜗𝑗 )
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

∑

𝑙∈𝒫𝑗

𝑘𝑙,𝑗𝜉𝑙 (1)

where ℛ𝑗 and 𝒫𝑗 denote the sets of reactants and products, respec-
ively, in the 𝑗th reaction. 𝑘𝑖,𝑗 and 𝑘𝑙,𝑗 are the pseudo-stoichiometric

coefficients related to the 𝑖th and 𝑙th species while 𝜑𝑗 (𝜉, 𝜗𝑗 ) is the re-
action rate, function of the vector of species 𝜉 (gathering reactants and
products) considered as state variables and 𝜗𝑗 , the kinetic parameter
vector.

Applying mass balance to (1), the following ordinary differential
equation system is obtained:
𝑑𝜉(𝑡)
𝑑𝑡

= 𝐾 ⋅ 𝜑(𝜉(𝑡), 𝜗) + 𝑣(𝜉(𝑡), 𝑡), (2)

where 𝐾 is the pseudo-stoichiometric matrix, and 𝑣(𝜉(𝑡), 𝑡) represents
the transportation term, including dilution effects, input feeds, and
gaseous outflows. The number of components 𝑁 is usually larger than
the number of reactions 𝑀 , which are assumed independent, and
the rank of the stoichiometric matrix 𝐾 is, therefore, 𝑀 . Assuming
that the component concentrations of interest (the state variables)
and the bioreactor inputs (inflows and outflows in liquid and gaseous
forms) can be measured, the original mass-balance system (2) can be
reformulated as a transport-free equation of the form [36]:
𝑑𝜉⋆(𝑡)

= 𝐾 ⋅ 𝜑(𝜉(𝑡), 𝜗), (3)
2

𝑑𝑡
where �̇�⋆(𝑡) = �̇�(𝑡)−𝑣(𝜉(𝑡), 𝑡), and �̇�(𝑡) denotes the time derivative of 𝜉(𝑡).
s stated in [36],

roperty 1. the transport-free vector evolves within a linear affine
subspace defined by the column-subspace (or range) of 𝐾. This
affine subspace is independent of the reaction rates and its
dimensionality is equal to the reaction number 𝑀 .

his implies that the matrix 𝐾 can be estimated, even when the vector
(𝜉(𝑡), 𝜗) has an unknown structure if the evolution of the transport-free
ector can be measured or estimated.

In the following, a data-driven approach will be developed to infer
he reaction stoichiometry and kinetics from the measurements of the
omponent concentrations and bioreactor inflows and outflows (lead-
ng to the estimation of transport-free derivatives). To this end, the
ransport-free system (3) will be cast into a low-rank matrix approx-
mation of the form 𝑌 𝑇 = 𝐻𝑇 ⋅𝑊 𝑇 , where the input matrix 𝑌 𝑇 , which
ollects the estimated transport-free derivatives 𝑑𝜉⋆(𝑡)

𝑑𝑡 , is factorized into
a mixing matrix 𝐻𝑇 that will be the used to infer the number of
reactions and stoichiometry and 𝑊 𝑇 , which will lead to the appropriate
kinetics. Before embarking on the algorithm details, concepts of near-
separable matrix factorization and successive projection algorithms are
first introduced in the next section.

3. Matrix factorization methods

Linear dimensionality reduction (LDR) represents each data point
as a linear combination of a small number of subspace basis elements.
Mathematically, the problem can be expressed as follows: given a data
set of 𝑚 measurements of 𝑛 species 𝑦𝑗 ∈ R𝑚 (1 ≤ 𝑗 ≤ 𝑛), use LDR to
search for a small number 𝑟 of basis vectors 𝑤𝑘 ∈ R𝑚 (1 ≤ 𝑘 ≤ 𝑟) such
that each data point is approximated by a linear combination of these
basis vectors:

𝑦𝑗 ≈
𝑟
∑

𝑘=1
𝑤𝑘ℎ𝑘𝑗 , for all 𝑗 = 1,… , 𝑛 (4)

where ℎ𝑘𝑗 are scalar coefficients. Note that LDR is equivalent to low-
rank matrix approximation (LRMA) formulated as follows:

[𝑦1, 𝑦2,… , 𝑦𝑛]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

≈ [𝑤1, 𝑤2,… , 𝑤𝑟]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

⋅ [ℎ1, ℎ2,… , ℎ𝑛]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

, (5)

𝑌 ∈ R𝑚×𝑛 ≈ 𝑊 ∈ R𝑚×𝑟 ⋅ 𝐻 ∈ R𝑟×𝑛

where each column of the matrix 𝑌 ∈ R𝑚×𝑛 stands for one species 𝑗,
that is, 𝑌 (∶, 𝑗) = 𝑦𝑗 for 1 ≤ 𝑗 ≤ 𝑛. Each column of the matrix 𝑊 ∈ R𝑚×𝑟

is a basis element, that is, 𝑊 (∶, 𝑘) = 𝑤𝑘 for 1 ≤ 𝑘 ≤ 𝑟, and each column
of the mixing matrix 𝐻 ∈ R𝑟×𝑛 contains the coordinates of a data point
𝑌 (∶, 𝑗) in the basis 𝑊 , that is, 𝐻(∶, 𝑗) = ℎ𝑗 for 1 ≤ 𝑗 ≤ 𝑛 [37].

Hence, LDR provides a rank-𝑟 approximation 𝑊 ⋅𝐻 of 𝑌 , and each
data point is mapped into the basis 𝑊 using the corresponding column
of 𝐻 :

𝑦𝑗 ≈ 𝑊 ℎ𝑗 , for all 𝑗 = 1,… , 𝑛. (6)

Typically, the corresponding subspace basis dimension 𝑟 is much
smaller than the dimension 𝑛, and the number of data points 𝑚, that
is, 𝑟 ≪ min(𝑚, 𝑛). In order to compute 𝑊 and 𝐻 , given 𝑌 and 𝑟, a cost
criterion to be minimized can be established, for instance, from the sum
of squares of the residual 𝑌 − 𝑊𝐻 , e.g., using the following squared
Frobenius norm:

‖𝑌 −𝑊𝐻‖

2
𝐹 =

∑

𝑖,𝑗
(𝑌 −𝑊𝐻)2𝑖𝑗 . (7)

In this work, LRMA techniques are used to find the minimal macro-
scopic reaction scheme (with the minimum number of reactions,
rank(𝐾)) required to represent a specific dataset, infer the corre-
sponding stoichiometry 𝐾, and reveal an appropriate kinetic structure
(i.e., 𝜑(𝑡) = 𝜇(𝜉)𝑋), as in the following relation:
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𝑑𝜉⋆(𝑡)
𝑑𝑡
⏟⏟

= 𝐾
⏟⏟⏟

𝜑(𝜉(𝑡), 𝜗)
⏟⏞⏟⏞⏟

(8)

𝑌 𝑇
𝑛×𝑚 = 𝐻𝑇

𝑛×𝑟 𝑊 𝑇
𝑟×𝑚 (9)

where 𝑚 is the number of collected samples (observations), 𝑛 is the
number of process species, which, in this study, are essentially extra-
cellular measurements (i.e., biomass, metabolites, and substrate con-
centrations), and 𝑟 is the number of biochemical reactions.

Considering Eq. (8), the following assumption must hold in order to
minimize the criterion (7).

Assumption 1. The matrix 𝑑𝜉⋆(𝑡)
𝑑𝑡 , also denoted 𝑌 𝑇

𝑛×𝑚, can be obtained
from the process measurement vector 𝜉(𝑡) by numerical differentiation.

The first step towards the solution of our problem is the idea of
eparable matrix factorization, which was first introduced as a subclass
f nonnegative matrix factorization [40], and which states that if the
nput matrix 𝑌 has the form 𝑌 = 𝑊𝐻 , for 𝐻 to be separable requires

that all unit vectors are hidden among the columns of 𝐻 .
Separability of 𝐻 is equivalent to assuming an index set 𝜅 such that

𝑊 = 𝑌 (∶, 𝜅), i.e., the elements of the vector 𝜅 represent the column
ndexes of 𝑊 , which appear as columns of 𝑌 [37]. Thus, the proposed
ethod aims to recover from the input matrix 𝑌 the index vector set
of dimension 𝑟 and a matrix 𝐻 ∈ R𝑟×𝑛 with 𝑌 = 𝑌 (∶, 𝜅)𝐻 , which is

quivalent to

= 𝑊
[

𝐼𝑟 �̄�
]

𝛱, (10)

here 𝐼𝑟 is the 𝑟− 𝑏𝑦− 𝑟 identity matrix, �̄� ∈ R𝑟×(𝑛−𝑟) is a nonnegative
atrix and 𝛱 is a permutation. This permutation factor allows the

hange in the column order of both 𝑌 and 𝐻 matrices (see Eq. (6)) that
esults in having the first 𝑟 columns of 𝑌 correspond to the columns of

. This allows a simplification in the implementation of the proposed
lgorithm.

The matrix separability proposed by [40] aims to identify the num-
er 𝑟 of columns of 𝑌 , and its indexes (vector 𝜅), to reconstruct 𝑌
erfectly from the given 𝑌 (∶, 𝜅)𝐻 [38]. It is essential to highlight that
t is unreasonable to reconstruct 𝑌 perfectly in practice, as input matrix

rarely admits an exact, separable matrix factorization decomposition,
ainly because of noise and model structural misfit. Therefore, in prac-

ice, it is more reasonable to consider separable matrix factorization
roblems in the presence of noise, referred to as Near-Separable Matrix
actorization in the literature.

Near-Separable Matrix Factorization has been successful in many
ifferent applications, such as document classification, blind source
eparation, video compression, image classification, and hyperspectral
nmixing [37], and can be stated as follows: given the noisy 𝑟-separable
atrix 𝑌 = 𝑊𝐻 + 𝒩 ∈ R𝑚×𝑛 where 𝒩 is the noise, 𝑊 ∈ R𝑚×𝑟, 𝐻 =

𝐼𝑟 �̄�]𝛱 where 𝛱 is a permutation, recover approximately the columns
f 𝑊 among the columns of 𝑌 . This statement is the foundation of the
uccessive projection algorithm (SPA) used to solve the near-separable
atrix factorization problem.

. Model feature extraction based on a modified successive pro-
ection algorithm

In order to retrieve the minimal set of macroscopic reactions, the
orresponding stoichiometry, and a consistent kinetic model structure
rom noisy measurements, a Successive Projection Algorithm (SPA) is
sed. SPA is a simple but fast and robust recursive algorithm, first
ntroduced in [39], that has attracted increasing interest in many
ifferent communities in the past ten years [41]. In this study, a
istinct projection formulation from [39] is used and the nonnegative
estrictions imposed by [38] are relaxed.

The algorithm (see Algorithm 1) first requires an input matrix 𝑌 , the
umber 𝑟 of basis vectors to be tested, and a specific ending flag when
he residual norm is below a threshold 𝜖𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒. Before the extraction of
3

he indexes of the vector 𝜅, the scaling of the matrices could be carried p
ut as (this step is not explicitly accounted for in Algorithm 1)

1 =
∑

𝑖 𝑌 (𝑖, 𝑗) =
∑

𝑖
∑

𝑘 𝑊 (𝑖, 𝑘)𝐻(𝑘, 𝑗) =
∑

𝑘 𝐻(𝑘, 𝑗)
∑

𝑖 𝑊 (𝑖, 𝑘) =
∑

𝑘 𝐻(𝑘, 𝑗).

(11)

As highlighted by [37], the column normalization increases the algo-
rithm robustness with respect to noise since the sum of the entries of
each column of the normalized matrices 𝑌 and 𝑊 is one, and 𝑌 (∶, 𝑗) =
𝑊𝐻(∶, 𝑗) for all 𝑗. Therefore, the sum of the entries of each column of
𝐻 must also be one, for all 𝑗.

At each step, the column of the input matrix 𝑌 with maximum 𝓁2
norm is selected (line 3) creating the vector 𝜅 (line 4). The matrix of
the residual 𝑅 is then updated by projecting each column onto the
orthogonal complement of the columns selected so far (line 5). The
computation of the residuals 𝑅 uses 𝐻𝑟, which is the best approxima-
tion of a mixing matrix considering 𝑊 = 𝑌 (∶, 𝜅) (line 6). The algorithm
stops when 𝑘 > 𝑟 or argmax𝜅 ‖𝑅(∶, 𝜅)‖2 ≤ 𝜖𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 ⋅ argmax𝜅 ‖𝑌 (∶, 𝜅)‖2
(line 2). Note that for the first iteration we have ‖𝑅(∶, 𝜅)‖2 = ‖𝑌 ‖2.

Algorithm 1 Successive Projection Algorithm
Input: Near-separable matrix 𝑌 = 𝑊𝐻+𝒩 ∈ R𝑚×𝑛, and the number

𝑟 of columns to be extracted.
Output: Set of indices 𝜅 such that 𝑌 (∶, 𝜅) ≈ 𝑊 up to permutation

and mixing matrix 𝐻𝑟.
1: Let 𝑅 = 𝑌 , 𝜅 = {}, 𝑘 = 1.
2: while argmax𝜅 ‖𝑅(∶, 𝜅)‖2∕ argmax𝜅 ‖𝑌 (∶, 𝜅)‖2 > 𝜖𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 and 𝑘 ≤ 𝑟

do
3: 𝑝 = 𝑎𝑟𝑚𝑎𝑥𝑗‖𝑅∶𝑗‖2.
4: 𝜅 = 𝜅 ∪ {𝑝}.
5: 𝑅(∶, 𝑗) = 𝑌 (∶, 𝑗) − 𝑌 (∶, 𝜅)𝐻𝑟(∶, 𝑗) for all 𝑗, where
6: 𝐻𝑟(∶, 𝑗) = argmin

ℎ𝑗
‖𝑌 (∶, 𝑗) − 𝑌 (∶, 𝜅)ℎ𝑗‖2;

7: 𝑘 = 𝑘 + 1.
8: end while

The advantages of SPA, highlighted in [38,39,41], are (i) the al-
gorithm execution time, corresponding to 2𝑚𝑛𝑟 + 𝒪(𝑚𝑟) operations for
a dense input matrix 𝑌 and 𝒪(𝑟 𝑛𝑛𝑧(𝑌 )) operations for a sparse input
matrix 𝑌 , where 𝑛𝑛𝑧(𝑌 ) is the number of nonzero entries in 𝑌 , (ii) the
hoice of the number of columns of 𝑌 being the sole parameter to tune.
owever, the main issue of this approach is its sensitivity to outliers,
hich can be minimized by preprocessing the input data matrix.

.1. Unveiling bioprocess models

SPA will be used repeatedly for increasing values of parameter 𝑟,
nd the following cost function will be computed:

𝑟 = 𝜖𝑟 𝑄
−1 𝜖𝑇𝑟 , (12)

here 𝜖𝑟 =
∑𝑛

𝑖=1 |𝑌 −𝑊𝑟𝐻𝑟|, with 𝑊𝑟 = 𝑌 (∶, 𝜅) and 𝐻𝑟 is computed
y the SPA algorithm for the predefined 𝑟-dimension. 𝑄 is a diagonal

scaling matrix whose diagonal elements are the maximum absolute
values from each column of 𝑌 . Note that 𝐽𝑟 is a decreasing function
of 𝑟, i.e., the larger the number of reactions 𝑟, the smaller the fitting
error norm and 𝐽𝑟). It is always smaller or equal to the log-likelihood
cost 𝐽⋆, known to have a chi-square distribution with 𝑁 ⋅ 𝑛 degrees
of freedom [42], where 𝑁 is the number of components. Thus, the
umber of macroscopic reactions is chosen as the smallest 𝑟 such that
he fitting error is smaller or equal to the range of a 𝜒𝑛⋅𝑁 -distributed
andom variable.

The next step is to infer the pseudo-stoichiometric matrix �̂� using
he mixing matrix 𝐻𝑇

𝑟 obtained by SPA. It can be defined as a linear
ombination of the basis vectors, i.e.,

̂ = 𝐻𝑇
𝑟 𝛺, (13)

here 𝛺 is a 𝑟 by 𝑟 regular matrix imposing a maximum of 𝑟 constraints
̂
er column of 𝐾. These constraints confer biological consistency using
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Fig. 1. Flowchart of the procedure to extract the reaction number, stoichiometry and information on the kinetics.
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priori knowledge about cell metabolism. They allow, for instance,
liminating specific reactants or products from one of the reactions or
ormalizing a reaction with respect to a specific compound [11]. Note
hat the matrix 𝑊𝑟 = 𝑌 (∶, 𝜅), obtained by SPA, corresponds to the best

estimate considering the mixing matrix 𝐻𝑟. However, due to the linear
transformation (13), matrix 𝑊𝑟 should, in general, be recomputed
considering the stoichiometric matrix �̂�, which is a constrained linear
combination of the basis vectors of 𝐻𝑟, by the following optimization:

arg min
�̃� >=0

‖𝑌 − �̃� �̂�𝑇
‖

2
𝐹 , (14)

which is a special case of (7), where the matrix �̂�𝑇 is fixed.
The new matrix �̃� contains the time evolution of the reaction rates

(𝜉(𝑡), 𝜗), and the growth rate signal �̂�(⋅) can be obtained by

̂(⋅) = �̃�
𝑋

. (15)

It is now possible to summarize the approach in the flowchart of
ig. 1.

.2. Illustrative example

A simple application considering cell growth on glucose in batch
ode [2] is now considered to illustrate and develop the numerical pro-

edure. The reaction involves the consumption of a substrate (glucose,
) and the production of biomass (𝑋) combined with the release of a
yproduct (lactate, 𝐿). Therefore, the following macroscopic reaction
s the underlying mechanism:

𝜑(𝑋,𝐺)
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑘𝑋𝑋 + 𝑘𝐿𝐿, (16)

here 𝑘𝑋 and 𝑘𝐿 are the biomass and lactate pseudo-stoichiometric
oefficients, respectively, and 𝜑(𝑋,𝐺), is the reaction rate, function
f the available biomass and substrate concentrations. Applying mass
alance to (16) yields the following ordinary differential equation
ystem that describes the time evolution of the concentrations 𝑋, 𝐺,

and 𝐿:
𝑑𝑋
𝑑𝑡

= 𝑘𝑋𝜑(𝑋,𝐺), (17a)
𝑑𝐺
𝑑𝑡

= −𝜑(𝑋,𝐺), (17b)
𝑑𝐿
𝑑𝑡

= 𝑘𝐿𝜑(𝑋,𝐺). (17c)

The specific growth rate and the reaction rate are respectively defined
s

(𝐺) = 𝜇𝑚𝑎𝑥
𝐺

(𝐾𝐺 + 𝐺)
, (18)

(⋅) = 𝜇(⋅)𝑋, (19)

here 𝐾𝐺 is the half-saturation constant, and 𝜇𝑚𝑎𝑥 the maximum
pecific growth rate.
4

A simulation considering 𝑘𝑋 = 20, 𝑘𝐿 = 0.5, 𝜇𝑚𝑎𝑥 = 0.3 d−1, and
𝐺 = 0.2 g/l is performed to generate a dataset containing the time
volution of the derivatives of the concentration trajectories that can
e stored into the input matrix 𝑌 . Note that this information is assumed
o be noise-free, an assumption that will be relaxed later on in this
tudy. The first step is obtaining the minimum number of macroscopic
eactions explaining the data by using the procedure explained in Fig. 1.
herefore, we compute the 99.9% quantile of 𝜒𝑛⋅𝑁 , resulting in 𝐽⋆ =
60.66. Next, we assume that the dataset can be represented by only one
eaction, 𝑟 = 1, and compute (12), which gives 𝐽1 = 3.7 × 10−30. This
imple test concludes that the 1-reaction macroscopic scheme is a good
odel candidate, as 𝐽1 < 𝐽⋆. This means that in this application, where

here is no measurement noise and no noise amplification by computing
ime derivatives, we obtain the exact factorization of matrix 𝑌 .

Given 𝑌 =
[

𝑑𝑋∕𝑑𝑡 𝑑𝐺∕𝑑𝑡 𝑑𝐿∕𝑑𝑡
]

and 𝑟 = 1, the next step
onsists of computing the pseudo-stoichiometric matrix �̂� using bio-
ogically inspired constraints and matrix 𝐻𝑟 obtained by SPA.

Considering the hypothetically true system, Fig. 2 illustrates the
elations between concentration derivatives, stoichiometric matrix, and
inetic law.

Fig. 2. Relation between concentration derivatives, stoichiometric matrix, and kinetic
law.

The output of the SPA algorithm reveals 𝜅 = [1], thus 𝑊𝑟 = 𝑌 (∶, 𝜅) =
𝑋∕𝑑𝑡 and the mixing matrix 𝐻𝑟 =

[

1.0000 −0.0500 0.0250
]

, which
an be illustrated by the relations presented in Fig. 3.

It is easy to see the importance of the separability assumption in this
xample. The growth rate 𝜑(𝜉), represented by matrix 𝑊 𝑇

𝑟 , is indeed an
mage of the derivative of the biomass concentration 𝑑𝑋∕𝑑𝑡, that can
e used to compute the growth rate signal 𝜇(𝐺). In this simple case the
toichiometry is normalized with respect to 𝐺 (see (16)), and �̂� can be
etrieved as

̂ =
[

𝐻𝑟
|𝐻𝑟(1, 2)|

]𝑇
=
⎡

⎢

⎢

⎣

20.000
−1.0000
0.5000

⎤

⎥

⎥

⎦

, (20)

resulting in the same stoichiometric values as the nominal ones. Note
that the same result is obtained using Eq. (13).
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Fig. 3. Outcomes of the SPA algorithm.

Remark 1. In simple cases, such as the example under consideration,
�̂� can be obtained by the normalization of 𝐻𝑟 considering one of its
elements, and the optimization (14) is not required. The estimation of
𝜑(𝜉(𝑡), 𝜗) can be obtained by the normalization of 𝑊𝑟 considering the
same element of 𝐻𝑟 as in Eq. (21).

̂(⋅) =
𝑊𝑟 ⋅ |𝐻𝑟(1, 2)|

𝑋
≡ �̃�

𝑋
, (21)

s shown in Fig. 4, which represents the Monod law as defined
y Eq. (18).

Fig. 4. Monod law estimation computed by Eq. (21).

emark 2. In Eq. (21), the division operation symbol is applied be-
ween two vectors of respective dimensions 1 × 𝑚. In the present case,
n element-by-element division is considered.

.3. Differentiating noisy signals

In real-life applications, the computation of the stoichiometric ma-
rix and kinetics has to face the noise present in the measurements.
alculating derivatives of concentration time evolutions is a crucial step
f the procedure. However, differentiating experimental data can be a
hallenge due to measurement sparsity and noise [43].

This challenge can be effectively addressed in two directions. First,
s discussed in the introduction, the introduction of PAT in many
ioprocess industries is reducing the traditional scarcity of data that
as observed in the past. Second, the use of recent regularization

echniques that impose smoothness on the signals might provide the
equired derivative estimates.

The topic of numerical differentiation of noisy signals has attracted
onsiderable attention in the literature. According to [44], numerical
ifferentiation methods based on filtering, Tikhonov regularization,
nd smoothing splines have all demonstrated success in different sce-
arios. Other alternatives include the use of sliding mode techniques
nd Levant’s robust differentiators [45]. In [46], generalized super
5

twisting observers are developed while [47] proposes arbitrary-order
fixed-time differentiators. In [48], the use of state observers is high-
lighted for obtaining time derivatives when a model of the system
and the noise characteristics are known. This restriction can be al-
leviated using the constant acceleration forward–backward Kalman
smoother, which can be developed considering a simple model and
noise covariances [49].

In this study, the total-variation regularized difference method
(TVRegDiff) developed in [50] is considered to compute the mea-
surement derivatives. There are mainly two key benefits related to
this method. First, it effectively decreases noise by reducing the total
variation. Secondly, it does not suppress jump discontinuities, making
it an ideal choice for detecting corners and edges in noisy data while
also computing discontinuous derivatives [50]. One of the drawbacks
of this method is that it also requires hyperparameter tuning and
causes aliasing, so there is the need to trim the ends of the time
series generated by each initial condition [26,51,52]. This phenomenon
typically also happens in interpolation methods where the error tends
to be larger at the boundaries of the interpolating interval since the
second derivatives of the approximating functions are assumed to
vanish there [53].

In order to illustrate some features of the differentiation methods,
Figs. 5 and 6 present the results of the application of TVRegDiff
and a smoothing spline (Matlab function spaps [54]) to a set of
experimental data (trajectory of lactate measurements in a cell culture).

Fig. 5. Using splines with moderate smoothing: measurement signals (top), and their
derivatives (bottom). Thick-gray lines are the ground truth values, blue lines are the
smoothing spline (Matlab function spaps), and red dashed-line is the TVRegDiff
derivatives.

Fig. 6. Splines with stronger smoothing: measurement signals (top) and their deriva-
tives (bottom). Thick-gray lines are the ground truth values, blue lines are the
smoothing spline (Matlab function spaps), and red dashed-line is the TVRegDiff
derivatives.



Journal of Process Control 134 (2024) 103148G.A. Pimentel et al.

o
t
i
d
c
l
o
t

s
s

r
p
r
i

i
s

𝜇

t

Table 1
Simulation parameters, identified values, and their standard deviations for the one-reaction case study.

Monod kinetics Haldane kinetics Contois kinetics

Stoichiometric parameters Stoichiometric parameters Stoichiometric parameters

Value Identified Value Identified Value Identified

𝑘𝑋 20.0 (20.39 ± 0.234) 𝑘𝑋 15.0 (14.96 ± 0.387) 𝑘𝑋 25.0 (24.73 ± 0.601)
𝑘𝐿 0.50 (0.501 ± 0.005) 𝑘𝐿 0.8 (0.794 ± 0.011) 𝑘𝐿 6.0 (5.813 ± 0.129)

Kinetic parameters Kinetic parameters Kinetic parameters

𝜇𝑚𝑎𝑥 0.3 d−1 – 𝜇𝑚𝑎𝑥 0.3 d−1 – 𝜇𝑚𝑎𝑥 0.3 d−1 –
𝐾𝐺 0.5 g∕l – 𝐾𝐺 1 g∕l – 𝐾𝐶 0.5 g∕X –

𝐾𝐼 0.06 g2∕l2 –
When splines are used to smooth data, two extreme situations can
ccur: (1) the smoothing spline follows the data realization including
he noise, or (2) the smoothing spline cuts off much of the data variabil-
ty including part of the process dynamics. Fig. 5 shows that moderate
ata smoothing will result in derivatives with large variations. In
ontrast, Fig. 6 shows that strong spline smoothing may result in a
oss of information about the derivatives. Conversely, the derivatives
btained by TVRegDiff are quite close to the true values, even when
he derivatives present an abrupt behavior around time 4.

It is important to stress that depending on the signal-to-noise ratio,
atisfactory results can be obtained by the direct use of smoothing
plines, as in [18,55–57] to name a few.

In this study, we first use moderate smoothing splines in order to
esample the signal and have enough data points for the rest of the
rocedure. Then, we apply TVRegDiff to compute derivatives of the
esampled signal and trim the ends of the time series generated by each
nitial condition (first and last 10%), to improve accuracy.

The illustrative example of Section 4.2 is now revisited consider-
ng noisy measurements. In addition, three alternative models for the
pecific growth rate are considered:

𝜇𝑀 (𝐺) = 𝜇𝑚𝑎𝑥
𝐺

(𝐾𝐺 + 𝐺)
, (22a)

𝜇𝐻 (𝐺) = 𝜇𝑚𝑎𝑥
𝐺

(

𝐾𝐺 + 𝐺 + 𝐺2

𝐾𝐼

) , (22b)

𝐶 (𝑋,𝐺) = 𝜇𝑚𝑎𝑥
𝐺

(𝐾𝐶𝑋 + 𝐺)
, (22c)

with the corresponding reaction rate:

𝜑𝑖(⋅) = 𝜇𝑖(⋅)𝑋, (23)

where 𝑖 = {𝑀, 𝐻, 𝐶} are indices respectively standing for Monod,
Haldane, and Contois laws, 𝐾𝐺 is the half-saturation constant, 𝐾𝐼 the
inhibition constant, 𝐾𝐶 is the Contois constant and 𝜇𝑚𝑎𝑥 the maximum
specific growth rate.

A dataset is generated in simulation using model (17) with a sam-
pling period 𝑡𝑠 = 0.01𝑑 (around 15 min) for a batch lasting one day. A
Monte Carlo analysis is carried out to quantify the uncertainties in the
model feature extraction (stoichiometry and kinetics) when measure-
ments are affected by noise. To this end, 100 different realizations of
Gaussian noises with a standard deviation of 1% are considered for each
scenario (i.e., Monod, Haldane, Contois). To obtain the measurement
derivatives, smoothing splines are first applied and resampled (three
times more), then, TVRegDiff is used. The first and last 10% of the
time series are trimmed to improve the overall accuracy.

Given 𝑌 =
[

𝑑𝑋∕𝑑𝑡 𝑑𝐺∕𝑑𝑡 𝑑𝐿∕𝑑𝑡
]

and 𝑟 = 1, the pseudo-
stoichiometric matrix 𝐾 is computed along the same lines as in Sec-
ion 4.2 using biologically inspired constraints and matrix 𝐻𝑟 obtained

by SPA. Table 1 presents the stoichiometry identification with the
corresponding standard deviations, which are quite satisfactory results.
The growth rate evolutions as a function of glucose are shown in
Figs. 7–9, respectively.

It is apparent in Figs. 7 and 8 that the variance is higher for
large glucose concentrations. These concentrations occur at the start
6

Fig. 7. Monod law estimation. The dashed blue line presents the nominal model. The
red lines show the estimations for the 100 Gaussian noise realizations.

Fig. 8. Haldane Law estimation. The dashed blue line presents the nominal model.
The red lines show the estimations for the 100 Gaussian noise realizations.

of the culture, and this variability is associated with the less accurate
determination of the signal derivatives towards the ends of the time
interval under consideration. However, on the whole, the kinetic laws
are fairly well reconstructed.

5. Case study: Hybridoma cell catabolism

In this section, the proposed method is tested in a more realistic
scenario. The model presented in Dewasme et al. [11] is used to
emulate a culture of hybridoma cells. Three macroscopic reactions are
considered:

(a) Substrate oxidation:

𝑘 𝐺 + 𝑘 𝐺𝑛
𝜑1
←←←←←←←←←←←→ 𝑋 + 𝑘 𝑀𝐴𝑏, (24)
31 41 𝑣 61
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Fig. 9. Contois model estimation. The dashed blue line presents the nominal model.
The red lines show the estimations for the 100 Gaussian noise realizations.

(b) Substrate overflow:

𝑘32𝐺 + 𝑘42𝐺𝑛
𝜑2
←←←←←←←←←←←→ 𝑋𝑣 + 𝑘52𝐿, (25)

(c) Biomass death

𝑋𝑣
𝜑3
←←←←←←←←←←←→ 𝑋𝑑 + 𝑘63𝑀𝐴𝑏, (26)

where 𝑋𝑣, 𝑋𝑑 , 𝐺, 𝐺𝑛, 𝐿, and 𝑀𝐴𝑏 are the concentrations of viable
biomass, dead biomass, glucose, glutamine, lactate, and monoclonal
antibodies (MAb), respectively. 𝜑𝑗 is the 𝑗th reaction rate and 𝑘𝑖𝑗 is
the stoichiometric coefficient of the 𝑖th compound in the 𝑗th reaction.

Applying mass balance to the above macroscopic reactions yields
the following differential equation system:

𝑑𝑋𝑣
𝑑𝑡

= 𝜑1 + 𝜑2 − 𝜑3, (27a)
𝑑𝑋𝑑
𝑑𝑡

= 𝜑3, (27b)
𝑑𝐺
𝑑𝑡

= −𝑘31𝜑1 − 𝑘32𝜑2, (27c)
𝑑𝐺𝑛
𝑑𝑡

= −𝑘41𝜑1 − 𝑘42𝜑2, (27d)
𝑑𝐿
𝑑𝑡

= 𝑘52𝜑2, (27e)
𝑑𝑀𝐴𝑏
𝑑𝑡

= 𝑘61𝜑1 + 𝑘63𝜑3, (27f)

where the specific reaction rates represent the overflow metabolism and
cell decay, according to [9]:

𝜇1 = min(𝜇𝐺 , 𝜇𝐺𝑚𝑎𝑥), (28a)

2 = max(0, (𝜇𝐺 − 𝜇𝐺𝑚𝑎𝑥)), (28b)

3 = 𝜇𝑑𝑚𝑎𝑥
𝐾𝐺𝑑

𝐾𝐺𝑑 + 𝐺
𝐾𝐺𝑛𝑑

𝐾𝐺𝑛𝑑 + 𝐺𝑛
, (28c)

here

𝐺 = 𝜇𝑚𝑎𝑥1
𝐺𝑛

𝐾𝐺𝑛 + 𝐺𝑛
, 𝜇𝐺𝑚𝑎𝑥 = 𝜇𝑚𝑎𝑥2, and (29)

𝜑𝑖 = 𝜇𝑖 ⋅𝑋𝑣, 𝑖 = {1, 2, 3}. (30)

A dataset is generated by simulation of model (27) with the parameters
of Table 2, considering a sampling time of 𝑡𝑠 = 0.1𝑑, and the addition of
Gaussian noise on the measurements, with a relative standard deviation
of 0.5%.
7

Table 2
Simulation parameters [11].

Parameters Values Parameters Values

𝜇𝑚𝑎𝑥1 0.484 d−1 𝑘31 3.12
𝜇𝑚𝑎𝑥2 0.319 d−1 𝑘32 15.2
𝐾𝐺𝑛 0.0089 g∕l 𝑘41 0.624
𝐾𝐺𝑑 1.58 g∕l 𝑘42 1.22
𝐾𝐺𝑛𝑑 1.33 g∕l 𝑘52 23.9
𝜇𝑑𝑚𝑎𝑥 0.866 𝑑−1 𝑘61 43.5
𝐾𝐺 0.100 g∕l 𝑘63 14.2
𝑋𝑣(0) 0.100 cells∕ml 𝑋𝑑 (0) 0.0151 cells∕ml
𝐺(0) 5.99 g∕l 𝐺𝑛(0) 0.303 g∕L
𝐿(0) 0.360 g∕l 𝑀𝐴𝑏(0) 6.53 μg∕ml

5.1. Selection of the subspace dimension

The number of reactions is obtained by analyzing the values of 𝐽𝑟
computed by (12), as we can see in the flowchart in Fig. 1. Thus, the
number of macroscopic reactions is chosen as the smallest 𝑟 such that
the fitting error is smaller or equal to the range of a 𝜒𝑛⋅𝑁 -distributed
random variable, see Fig. 10.

Fig. 10. Results of 𝐽𝑟 for each 𝑟-dimension.

The histogram of Fig. 10 shows that a 3-reaction macroscopic
scheme is the best model candidate since the corresponding log-
likelihood is smaller than the 99.9% quantile represented by the red
dashed line. This matches the (unknown) number of reactions of the
process emulator.

5.2. Inference of the stoichiometry and kinetics

Using the process model (which is unknown to the user of the
data-driven tool, but useful to interpret the results in this illustrative
example), Fig. 11 shows the relations between the derivatives of the
concentration trajectories, the stoichiometric matrix, and the kinetic
laws.

Fig. 11. Case Study. Relation between concentration derivatives, stoichiometric matrix,
and kinetic law.



Journal of Process Control 134 (2024) 103148G.A. Pimentel et al.

c
c

Fig. 12. Case Study. Outcomes of the SPA algorithm.
a

w
d

d
T
n
c
w
c
o
e

𝜖

n

In the data-driven procedure, the derivatives 𝑌 = [𝑑𝑋𝑣∕𝑑𝑡
𝑑𝑋𝑑∕𝑑𝑡 𝑑𝐺∕𝑑𝑡 𝑑𝐺𝑛∕𝑑𝑡 𝑑𝐿∕𝑑𝑡 𝑑𝑀𝐴𝑏∕𝑑𝑡] are used (they are ob-
tained by a combination of spline smoothing and TVD differentiation),
𝑟 = 3 is adopted according to the results of the previous subsection, and
SPA provides 𝜅 =

[

6 5 1
]

, with 𝑊𝑟 = 𝑌 (∶, 𝜅) and 𝐻𝑟 as presented in
Fig. 12.

The factorization of the matrix 𝑌 yields a matrix 𝐻𝑇
𝑟 emphasized

with unitary values in rows 1, 5 and 6.
The reaction stoichiometry is now normalized with respect to the

viable biomass, and �̂� is computed according to (13), with the assump-
tion that there is a reaction that is associated with biomass death and
that MAbs are produced only in the growth and death reactions, to yield

�̂� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎 −𝟏.𝟎𝟎𝟎𝟎
𝟎 𝟎 𝟏.𝟎𝟎𝟎𝟎

−3.1335 −14.3622 0.0012
−0.6212 −1.1954 −0.0001

0 22.4159 0
44.3676 𝟎 14.1840

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (31)

where the bold values are the biologically inspired constraints imposed
on the computations of �̂�. The values of �̂�𝑖𝑗 are quite close to the
nominal parameters presented in Table 2.

It is now required to recompute the 𝑊𝑟 matrix to obtain the 𝜑𝑖(⋅)
values. To this end, (14) is solved with �̂�, resulting in a new 𝑊 matrix,
alled �̃� . From relation (30), the specific reaction rate profiles are
omputed as

�̂�(⋅) =
[

�̃� (∶,1)
𝑋𝑣

�̃� (∶,2)
𝑋𝑣

�̃� (∶,3)
𝑋𝑣

]

. (32)

Fig. 13 shows �̂�𝑖(⋅) with 𝑖 = {1, 2, 3} as functions of 𝐺𝑛. The
estimated evolutions offer the possibility to extract candidate kinetic
structures. The blue line represents 𝜇1(⋅), which could be described by a
Monod law. Indeed, an activation/saturation behavior is observed (see
(30) and Table 2). The red line shows the evolution of 𝜇2(⋅), starting
with a slow increase, followed anew by a Monod profile. One way to
express this behavior is to consider a discontinuous switching function,
as in (28b). Alternatively, combining continuous rate expressions with
inhibition factors could also be used, as already proposed in [58,59].
Lastly, the yellow curve corresponds to 𝜇3(⋅), where the inhibition
profile is evident and consistent with (28c).

This case study demonstrates the usefulness of the proposed proce-
dure in extracting information about stoichiometry and kinetics from
datasets of the evolution of the culture species. The most critical step
in the procedure is the computation of the numerical differentiation of
these signals whose quality can greatly affect the results.

5.3. Sensitivity of SPA to measurement noise

To assess the robustness of the SPA algorithm to noise, the deriva-
tives computed directly with the simulation model (27) are corrupted
8

Fig. 13. Evolutions of the specific reaction rates as functions of the substrate 𝐺𝑛.
Dashed lines stand for the nominal model values. Solid lines are the approximations
from the noisy dataset. Blue, red, and yellow are respectively related to 𝜇1(⋅), 𝜇2(⋅),
nd 𝜇3(⋅).

ith 1000 different Gaussian noise realizations with relative standard
eviation ranging from 0.01 to 1.5%.

Fig. 14 presents the 𝜅 values computed by SPA, also called the car-
inality of 𝑊𝑟 = 𝑌 (∶, 𝜅), where the reference values are 𝜅 =

[

6 5 1
]

.
he method extracts the correct structure for 𝜎 = [0.01 1]%. When
oise levels exceed 1%, the algorithm extracts another model structure
orresponding to a different 𝜅. The deviation occurs for 9 h of the cases
ith 𝜎 = 1% and 61% with 𝜎 = 1.5%. This can be considered as a worst-

ase scenario since no denoising methods are used (no smoothing spline
r other filtering methods). In addition, Fig. 15 presents the relative
rror of the stoichiometric parameters, defined as

�̂�𝑖𝑗
=

𝑘𝑖𝑗 − �̂�𝑖𝑗
𝑘𝑖𝑗

, (33)

where 𝑖 and 𝑗 are the desired indices of the elements of the identified
stoichiometric matrix �̂�. As expected, the estimation is accurate at low
oise levels. However, the parameter estimates deteriorate for 𝜎 = 1%

and 𝜎 = 1.5%, resulting in significant relative errors.

6. Conclusions

A bioprocess data-driven modeling strategy is proposed using a Suc-
cessive Projection Algorithm. This data-driven tool reveals the minimal
set of macroscopic reactions, computes the corresponding stoichiom-
etry, and simplifies the choice of an adequate kinetic structure. A
case study considering Hybridoma Cell cultures is used to validate the

method. Future work focuses on alternative numerical differentiation
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Fig. 14. Values of 𝜅 for each noise magnitude considering 1000 noise realizations for each 𝜎.
Fig. 15. Relative error of the stoichiometric parameters for each noise magnitude considering 1000 noise realizations for each 𝜎.
schemes in order to enhance robustness to measurement noise and on
the development of systematic data-driven methods for the identifica-
tion of the species involved in the reaction kinetics and the selection of
the most likely kinetic model structure.
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