LARYNGOLOGY

ChatGPT performance in laryngology and head and neck surgery: a clinical case-series

Jerome R. Lechien^{1,2,3,4,5,7} · Bianca M. Georgescu² · Stephane Hans^{1,3} · Carlos M. Chiesa-Estomba^{1,6}

Received: 16 July 2023 / Accepted: 6 October 2023

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Objectives To study the performance of ChatGPT in the management of laryngology and head and neck (LHN) cases. **Methods** History and clinical examination of patients consulting at the Otolaryngology-Head and Neck Surgery department were presented to ChatGPT, which was interrogated for differential diagnosis, management, and treatment. The ChatGPT performance was assessed by two blinded board-certified otolaryngologists using the following items of a composite score and the Ottawa Clinic Assessment Tool: differential diagnosis; additional examination; and treatment options. The complexity of clinical cases was evaluated with the Amsterdam Clinical Challenge Scale test.

Results Forty clinical cases were submitted to ChatGPT, accounting for 14 (35%), 12 (30%), and 14 (35%) easy, moderate and difficult cases, respectively. ChatGPT indicated a significant higher number of additional examinations compared to practitioners (p = 0.001). There was a significant agreement between practitioners and ChatGPT for the indication of some common examinations (audiometry, ultrasonography, biopsy, gastrointestinal endoscopy or videofluoroscopy). ChatGPT never indicated some important additional examinations (PET–CT, voice quality assessment, or impedance-pH monitoring). ChatGPT reported highest performance in the proposition of the primary (90%) or the most plausible differential diagnoses (65%), and the therapeutic options (60–68%). The ChatGPT performance in the indication of additional examinations was lowest.

Conclusions ChatGPT is a promising adjunctive tool in LHN practice, providing extensive documentation about disease-related additional examinations, differential diagnoses, and treatments. The ChatGPT is more efficient in diagnosis and treatment, rather than in the selection of the most adequate additional examination.

 $\label{eq:comparison} \begin{array}{l} \textbf{Keywords} & Otolaryngology \cdot Head neck \cdot Surgery \cdot Laryngology \cdot Voice \cdot ChatGPT \cdot Artificial \cdot Intelligence \cdot Comparison \cdot Diagnosis \cdot Treatment \cdot Reflux \cdot Laryngopharyngeal \end{array}$

Jerome R. Lechien Jerome.Lechien@umons.ac.be

- ¹ Research Committee of Young Otolaryngologists of the International Federation of Otorhinolaryngological Socities (IFOS), Paris, France
- ² Division of Laryngology and Broncho-Esophagology, Department of Otolaryngology-Head Neck Surgery, UMONS Research Institute for Health Sciences and Technology, EpiCURA Hospital, University of Mons (UMons), Mons, Belgium
- ³ Department of Otorhinolaryngology and Head and Neck Surgery, School of Medicine, UFR Simone Veil, Foch

Hospital, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France

- ⁴ Department of Otorhinolaryngology and Head and Neck Surgery, CHU Saint-Pierre, Brussels, Belgium
- ⁵ Polyclinique Elsan de Poitiers, Poitiers, France
- ⁶ Department of Otorhinolaryngology–Head & Neck Surgery, Donostia University Hospital–Biodonostia Research Institute, St. Sebastian, Spain
- ⁷ Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, Avenue du Champ de Mars, 6, 7000 Mons, Belgium

Introduction

A chatbot is currently defined as an electronic system that simulates conversations by responding to keywords or phrases. Chatbots are commonly used in various marketing platforms, websites or messaging [1]. The Chatbot Generative Pre-trained Transformer (ChatGPT) was launched November 20, 2022 by OpenAI (Open AI, San Francisco, USA) to use algorithms to respond to simple-to-complicated questions [2]. Some reports have showed that Chat-GPT is able to succeed law, business, or medical school exams [3], and should be useful to help the practitioner in clinical practice, research or administrative tasks [4, 5]. Because its large access to knowledge database, ChatGPT should be used as an adjunctive clinical tool for practitioners, helping in the establishment of differential diagnoses in clinical situations, and, therefore, the prescription of additional examinations and treatments. To date, there is no publication assessing the ChatGPT performance in the management of clinical cases in laryngology and head and neck surgery.

The objective of this study was to investigate the performance of ChatGPT in the management of laryngology and head and neck surgery cases.

Methods

Setting

Forty-eight patients consulting in the Laryngology-Head and Neck Surgery division of CHU Saint-Pierre (Department of Otolaryngology, Head Neck Surgery, Brussels, Belgium) and the Dour Medical Center (Dour, Belgium) were recruited in July 2023. The data of patients with complete information regarding history, complaints, comorbidities, medication, clinical and potential additional examinations were presented to ChatGPT version 3.5 (Open AI, San Francisco, USA). ChatGPT was systematically interrogated for differential diagnoses (What are your differential diagnoses?), additional examinations (What are your additional examinations to find the diagnosis?) and potential therapeutic regimen (What are your treatment(s) for the primary diagnosis?). The responses/propositions of ChatGPT were collected in a database by an independent researcher (BG) and compared with the responses/propositions of two senior laryngologists (JRL, SH) who were blinded regarding the differential diagnosis, check-up and potential therapeutic management of ChatGPT. The two senior laryngologists carefully reassessed the management of all patients prior to submit the data to ChatGPT.

Note that all patients benefited from a complete ear, nose, and throat examination, including tympanoscopy, nasofibroscopy (with stroboscopy in cases of dysphonia), oral examination and neck palpation.

The study was approved by the institutional review board (reference: CHU Saint-Pierre, B0762023230708, Belgium). Patient consented to participate.

Level of difficulty of the case

A clinical case commonly consists of four basic elements: the medical history; the clinical examination; the technical diagnostic findings (additional examinations); and the treatment, including the psychosocial context of the patient [6, 7]. The findings of these characteristics may lead to a variation of the degree of complexity, while the clinical case complexity may increase as it contains distracting information. Based on these findings, some scoring systems were developed and available in the literature. In the present study, a modified version of the General Items off the Amsterdam Clinical Challenge Scale test (ACCS) [6] was used to rate the complexity of clinical cases submitted to ChatGPT. The ACCS consisted of six generic items that play a critical part in the challenge posed by an individual consultation: previous history/actual context; problem presented; communication (patient complaints and responses); physical examination (typical versus atypical signs); patient management (adequate versus complicated management); and prevention. Each item was evaluated on a 5-point scale, ranging from 1 (easy) to 5 (difficult). According to Gercama et al. [6], the extremes of each item were defined in general terms. For example, the item "problem presented" is scored 1 when the problem is straightforward, not likely to be serious and of a limited nature, and 5 when it is vague, difficult to define, probably serious or complex [6]. For example, patients with atypical presentation of disease or poor therapeutic response to an evidence-based treatment may be assessed as 5/5 in examination and management. Each clinical case has a score ranging from 6 to 30. Scores ranging from 6 to 14, 15-23, and 24-30 were considered as easy, moderate, and difficult, respectively. At the end of the consultations, two practitioners evaluated the ACCS of each patient case (Fig. 1) [6].

ChatGPT performance

The data collected throughout the consultation were presented to ChatGPT. The performance of ChatGPT in the management of clinical cases was scored with items of the Ottawa Clinic Assessment Tool (OCAT) [8], which is a clinical instrument used to evaluate the performance of resident or fellow-in-training. Precisely, two board certified otolaryngologists head and neck surgeons (JRL, CC) evaluated the accuracy of the responses of ChatGPT with following

OCAT outcomes: differential diagnosis; management plan (additional examinations); and therapeutic approaches. For each item, the practitioner used a 5-point Likert scale ranging from 1 (unprepared to do, inappropriate management) to 5 (can be independent, adequate management) (Fig. 1). In addition to the OCAT items, practitioners were invited to judge the performance of ChatGPT (yes or no) in the establishment of the most plausible primary diagnosis; the quality of differential diagnoses; the usefulness of proposed additional examinations regarding the clinical case; the necessity of additional examinations; the consideration of all important additional examinations for the clinical situation; the adequacy of therapeutic options, and the consideration of all indispensable therapeutic options (Fig. 1). The judgement of ChatGPT management findings by the two otolaryngologists was based on current clinical guidelines available on websites of scientific societies, including the Confederation of European Otorhinolarynological-Head Neck Surgery/European Laryngological Society, American Academy of Otolaryngology Head Neck Surgery, the International Federation of Otorhinolaryngological Societies, the French Society of Otorhinolaryngology (SFORL), and the Spanish Otorhinolaryngological Society.

Statistical analyses

Statistical analyses were performed with the Statistical Package for the Social Sciences for Windows (SPSS version 22.0; IBM Corp, Armonk, NY, USA). The number of additional examinations prescribed by patients were compared between practitioners and ChatGPT with Mann–Whitney U Test. Additional examinations proposed by practitioners and ChatGPT were coded with a predefined number in a matrix, allowing the evaluation of consistency between findings of the physicians versus ChatGPT (*kappa* analysis). The results of the competence scores of ChatGPT provided by the two experienced otolaryngologists were compared with a consistency analysis (Kendall tau). The consistency was considered as low, moderate and strong for k < 0.40, 0.40–0.60, and k > 0.60, respectively. A level of significance of p < 0.05 was used.

Results

Subjects and setting

Of the 48 initial recruited patients, the clinical history of 40 patients was completed and presented to ChatGPT. There were 25 females (62.5%) and 15 males (37.5%), respectively. The mean age of patients was 47.7 ± 15.9 years. The clinical cases were considered as easy, moderate or difficult in 14 (35%), 12 (30%), and 14 (35%) patients, respectively. The mean ACCS was 17.5 ± 6.4 . The main ear, nose and throat symptoms of patients are reported in Table 1. Dysphonia (N = 17, 43%), globus sensation (N = 15, 38%), throat sticky mucus/postnasal drip (N=11, 28%), dysphagia (N=10, 25%), and throat clearing (N=10, 25%) were the most prevalent symptoms. The most common primary or secondary diagnoses of patients included laryngopharyngeal reflux (LPR) (N=20, 50%), vocal fold benign lesions (N=6, 15%), unilateral or bilateral vocal cord paralysis (N=2, 5%), chronic otitis media (N=2, 5%), and Eustachian tube dysfunction (N=2, 5%) (Appendices 1, 2 and 3).

Additional examination performance

A total of 74 additional examinations were indicated by the senior otolaryngologists (mean per patient = 1.78 ± 1.00),

t symptoms	Main symptoms	Easy cases ACCS 6–14	Moderate cases ACCS 15–23	Difficult cases ACCS 24–30	Total
	Dysphonia, roughness or voice fatigue	7 (50)	4 (33)	6 (43)	17 (43)
	Globus sensation	5 (36)	7 (58)	3 (21)	15 (38)
	Throat sticky mucus or postnasal drip	5 (36)	5 (42)	1 (7)	11 (28)
	Dysphagia	4 (29)	3 (25)	3 (21)	10 (25)
	Throat clearing	7 (50)	2 (17)	1 (7)	10 (25)
	Throat pain or odynophagia	2 (14)	3 (25)	2 (14)	7 (18)
	Cough	1 (7)	4 (33)	1 (7)	6 (15)
	Cervical mass	2 (14)	0 (0)	2 (14)	4 (10)
	Hearing loss	3 (21)	1 (8)	0 (0)	4 (10)
	Anorexia or weight loss	1 (7)	0 (0)	2 (14)	3 (8)
	Nasal obstruction	0 (0)	2 (17)	0 (0)	2 (5)
	Tinnitus	1 (7)	1 (8)	0 (0)	2 (5)
	Dyspnea	0 (0)	0 (0)	2 (14)	2 (5)
	Dry mouth	0 (0)	1 (8)	0 (0)	1 (3)
	Fever	1 (7)	0 (0)	0 (0)	1 (3)
	Heartburn	0 (0)	1 (8)	0 (0)	1 (3)
	Smell loss of parosmia	0 (0)	1 (8)	0 (0)	1 (3)
	Dry eyes	0 (0)	1 (8)	0 (0)	1 (3)
	Aspirations	0 (0)	0 (0)	1 (7)	1 (3)
	Tonsil ulceration	0 (0)	0 (0)	1 (7)	1 (3)

ACCS Amsterdam Clinical Challenge Scale

Table 1 Patien

while ChatGPT proposed 108 additional examinations (mean per patient = 2.78 ± 1.3 ; p = 0.001; Mann–Whitney U test). The imaging examinations and bacteriology/cultures are indicated by ChatGPT 2.56 and 8.0 times as much as the practitioners (Table 2). Considering the level of difficulty of cases (ACCS), the mean numbers of additional examinations indicated by the practitioners were 1.71 ± 1.07 , 1.75 ± 0.87 and 1.86 ± 1.10 for ACCS easy, moderate or difficult cases, respectively (p = 0.378). The mean numbers of additional examinations proposed by ChatGPT were 3.29 ± 1.13 , 2.92 ± 0.79 , and 2.14 ± 1.51 for clinical cases judged as easy, moderate and difficult, respectively (p = 0.010). Additional Pearson analysis reported a negative significant association between the degree of difficulty of clinical cases and the number of additional examinations proposed by ChatGPT $(r_s = -0.373, p = 0.018).$

The consistency analysis data between practitioner and ChatGPT in the indication of additional examinations are described in Table 2. Table 2 includes additional examinations, which were prescribed at least once by practitioners and ChatGPT. Indeed, some additional examinations were prescribed only by ChatGTP (i.e., sinus X-ray (N=3), sinus MRI (N=1), pH study (N=8), thyroid check-up (N=1), polysomnography (N=2), lung volume evaluation (N=3) and electromyography (N=5). In the same way, practitioners prescribed additional examinations that were never indicated by ChatGPT (i.e., impedance-pH testing (N=9), psychophysical olfactory evaluations (N=1), voice quality assessment (N=16), and Positron Emission tomography and

Table 2 Additional examination consistency

Additional examinations	Kappa	p value
Head and neck ultrasonography	0.481	0.001
Head and neck CT	0.158	NS
Head and neck MRI	0.091	NS
Sinus come beam/CT	0.231	NS
Biology (CRP, leucocytes, etc.)	0.053	NS
Allergy skin or blood assessments	0.048	NS
Audiometry	0.643	0.001
Tympanometry	0.481	0.001
Ear CT	0.999	0.001
Gastrointestinal endoscopy	0.216	0.028
Esophageal manometry	0.039	NS
Biopsy	0.483	0.002
Cytology	0.655	0.001
Videofluoroscopy (swallowing)	0.362	0.019
Bacteriology (swab, secretions, etc.)	0.186	0.043

This table presents additional examinations commonly indicated by OTO and ChatGPT at least once time

*CRP*C-reactive protein, *CT* computed tomography, *MRI* magnetic resonance imaging, *NS* non-significant, *OTO* otolaryngologists

computed tomodensimetry (Pet-CT) (N=3). The consistency analysis of these additional examinations, which were never prescribed by ChatGPT or practitioners, was consequently not significant.

There were significant consistencies between practitioners and ChatGPT for some examinations, such as head and neck ultrasonography, audiometry, tympanometry, ear tomodensitometry, gastrointestinal endoscopy, lesion biopsy or cytology, videofluoroscopy swallowing study, and bacteriology. The indications of audiometry (k = 0.643), ear CT (k = 0.999) and cytology (k = 0.655) were the only additional examinations reporting strong consistency. However, some additional examinations were never considered by ChatGPT, including the voice quality assessment (subjective and objective voice evaluations), impedance-pH monitoring, psychophysical olfactory evaluation, and the Pet-CT, which support the low kappa coefficient value of some items. Note that in the case number 19, ChatGPT proposed head and neck MRI in a patient with a history of pacemaker.

Diagnosis and treatment performance

The mean ChatGPT performance scores of additional examination, differential diagnosis, and treatment items are summarized in Table 3. The interrater consistency of both otolaryngologist judges was significant in the assessment of primary diagnosis, useful additional examinations, necessary additional examinations, complete additional examination options, and OCAT scores for diagnosis, management, and treatment (Table 3). The performance score of ChatGPT did not significantly differ in additional examination, differential diagnosis and treatment scores of the OCAT items. According to judges, ChatGPT reported highest performance in the proposition of plausible differential diagnoses (90%), the proposition of the most plausible diagnosis (65%), and the proposition of a series of adequate therapeutic options (60-68%). In 67-90% of cases, judges reported that some additional examinations indicated by ChatGPT are not necessary, while ChatGPT forgot some indispensable additional examinations in 55-75% of cases (Table 3). The performance of ChatGPT did not significantly differ according to level of difficulty of clinical cases.

Discussion

The development of artificial intelligence and chatbot dedicated to healthcare is an important ongoing topic in medicine. The development of ChatGPT was so fast that a collective of more than 1000 artificial intelligence experts, researchers and backers have joined a call for an immediate pause of at least 6 months on the creation of giant Ais, such as GPT-4, to study and mitigate the capabilities and

Outcomes	Otolaryngolo	igist 1		Tot	Otolaryngolo	ogist 2		Tot	Consisten	cy
	Easy	Moderate	Difficult		Easy	Moderate	Difficult		Kendall	<i>p</i> value
Composite score [N (%)]										
1. The primary diagnosis was the most plausible $[N(\%)]$	10 (71)	7 (58)	9 (64)	26 (65)	10 (71)	7 (58)	9 (64)	26 (65)	0.890	0.001
2. The differential diagnoses were all plausible	14(100)	11 (92)	11 (79)	36 (90)	14(100)	11 (92)	11 (79)	36 (90)	0.167	SN
3. The additional examinations could be usefull in the situation	8 (57)	7 (58)	10 (71)	25 (63)	8 (57)	5 (42)	7 (50)	20 (50)	0.650	0.001
4. The additional examinations were all necessary	7 (50)	2 (17)	4 (29)	13 (33)	1 (7)	(0) (0)	3 (21)	4(10)	0.375	0.001
5. All additional examination option were presented	6 (43)	7 (58)	5 (36)	18 (45)	3 (21)	1 (8)	6 (43)	10 (25)	0.368	0.010
6. The therapeutic options are all adequate regarding the disease	8 (57)	8 (67)	11 (79)	27 (68)	11 (79)	5 (42)	8 (57)	24 (60)	0.409	0.009
7. All therapeutic indispensable options were presented	9 (64)	6 (50)	7 (50)	22 (55)	4 (29)	(0) (0)	6 (43)	10 (25)	0.238	SN
Ottawa Clinic Assessment Tool outcomes (mean (SD))										
1. Differential diagnoses	4.14 (0.95)	3.75 (1.48)	3.71 (1.20)	3.88 (1.20)	3.86 (0.66)	3.42 (0.79)	3.57 (0.94)	3.63 (0.81)	0.365	0.010
2. Management plan	3.71 (1.20)	3.33 (0.78)	3.29 (0.83)	3.45 (0.96)	3.21 (0.98)	2.92 (0.67)	3.14 (0.66)	3.10 (0.78)	0.520	0.001
3. Therapeutic manament	3.79 (1.25)	3.50 (1.17)	3.57 (1.16)	3.63 (1.17)	3.71 (0.91)	3.33 (0.78)	3.21 (1.31)	3.43 (1.04)	0.664	0.001
The interrater reliability analysis was carried out with Kendall ta	-									

Table 3 Performance analysis of ChatGPT in diagnostic and treatment

dangers of these systems [9]. Indeed, to date, the reliability of ChatGPT was not extensively investigated, while it is full available for patients and physicians. In the field of otolaryngology, there are currently less than 10 studies exploring the potential of ChatGPT and no study has investigated its performance and reliability in clinical practice. To the best of our knowledge, this study is the first investigation of the performance of ChatGPT in clinical practice when some real clinical cases are presented to the chatbot.

The primary observation of the present study was the ability of ChatGPT to propose additional examinations to explore potential differential diagnoses related to the presentation a list of symptoms and findings associated with an otolaryngological condition. ChatGPT was found to indicate a significant higher number of additional examinations compared to practitioners but cannot discern the superiority of one over the other (for example, the superiority of sinus CT over sinus X-ray). In evidence-based medicine, the choice of additional examinations needs to consider the patient risk (radiation of some X-ray or CT), the clinical history of patients (pacemaker and MRI), the information obtained through the examination, and the cost of the examination for the healthcare system [10, 11]. The findings of the present study support that ChatGPT is not ready to select the best additional examination considering all these important outcomes and the patient history. The MRI proposition of ChatGPT in a patient with a pacemaker supports this conclusion as well as the systematic proposition of sinus X-ray for diagnosing chronic rhinosinusitis, because X-ray is not evidence-based according to guidelines [12, 13]. However, according to our consistency analysis, it appears that some ChatGPT propositions significantly matched with the indications of practitioners. The significant strong consistencies concern some common/first-line examinations, which are all frequently prescribed in practice (e.g., head and neck ultrasonography, audiometry, and cytology) for prevalent and easily diagnosed conditions. Interestingly, ChatGPT never proposed some more specialized additional examinations, including voice quality assessment, psychophysical olfactory evaluations, or impedance pH-monitoring, which are recommended in the management of dysphonia [14, 15], chronic olfactory dysfunction [16], and recurrent or chronic LPR [17].

The selection of adequate additional examinations is an important step to confirm the primary diagnosis of a clinical condition and to propose treatment(s). According to two blinded board-certified otolaryngologists, the highest ChatGPT performance concerns the proposition of primary (90%), differential diagnoses (65%), and therapeutic options (60–68%), whereas ChatGPT performance appears lowest in the indication of additional examinations. Judges observed that the performance of ChatGPT may substantially vary regarding the current knowledges of the disease.

NS non significant

For example, the ChatGPT management of LPR was not adequate. ChatGPT does not differentiate LPR from gastroesophageal reflux disease (GERD) and systematically proposed pH-study, gastrointestinal endoscopy, and proton pump inhibitors (PPI) or antiH2 blockers in all LPR patients, including those with confirmed nonacid reflux at the pH-impedance monitoring and related resistance to PPI. As for the additional examinations, ChatGPT functions as an encyclopedia and proposes a list of theoretical treatments that cannot consider the personal history of patient. The theoretical performance of ChatGPT in otolaryngology was recently supported in two original studies. Chiesa-Estomba et al. observed a significant agreement between ChatGPT and a college of experts in the theoretical clinical decision-making process within the salivary gland clinic [18]. Hoch et al. investigated the accuracy of ChatGPT to 2576 theoretical questions covering 15 otolaryngology subspecialties [19]. ChatGPT correctly answered to 57% of questions, especially in single-choice questions, which may be commonly judged as easier than multiple questions in which distracting information may increase the level of difficulty [7].

The consideration of some medical history information as important or not is a key human aptitude for the determination of the most plausible primary diagnosis [7]. As it was difficult to objectify this point, the two otolaryngologist judges observed that ChatGPT tried to consider some distracting information (e.g., comorbidities without relation with the otolaryngological condition) in the establishment of diagnosis and treatment. In general, there are two sources of mistake: the lack of knowledge and lack of information processing [7]. In particular the degree of complexity leads to errors due to incorrect information processing or distracting information. This is especially important if in one case several differential diagnoses are conceivable, or the patient has several clinical problems that need to be weighted correctly. To what extent the degree of complexity of a clinical case contributes to the difficulty is unclear [7].

The findings of the present study are important for patients and young practitioners in otolaryngology and head and neck surgery. Indeed, according to the mediatization of ChatGPT, there is an increasing number of patients who consult ChatGPT prior to a physician [20, 21]. The access of some theoretical information, such as the list of potential additional examinations or differential diagnoses, may complicate the task of the practitioner when indicating such additional examinations or treatment. In the same vein, young practitioners, e.g., medical students, residents or fellow-in-training, need to consider the ChatGPT information with precautions, keeping in mind that the human discernment is not yet acquired by chatbot systems.

The main strengths of the present study are the originality and the consideration of real clinical cases, which makes this study the first investigation assessing the reliability and performance of ChatGPT in otolaryngology head and neck surgery practice. Because the development of intelligent chatbots is very recent, there is no validated clinical tool for the assessment of IA effectiveness in clinical practice. Thus, we used two modified clinical tools to characterize the difficulty of clinical cases (ACCS), and to judge the performance of ChatGPT (OCAT). The use of items of these validated tools is the main limitation of the present study, because they were not developed for chatbot evaluations. Future studies are needed to develop clinical instruments dedicated to the evaluation of the performance of chatbots.

Conclusion

ChatGPT is a promising adjunctive tool in laryngology and head and neck surgery practice, providing extensive documentation about disease-related additional examinations, differential diagnoses, and treatment. The ChatGPT is more efficient in diagnosis and treatment, rather than in the selection of the most adequate additional examination. Future clinical studies are needed to assess the performance of ChatGPT in other otolaryngology subspecialties.

N	G	Age	Symptoms	History/medica-	Clinical examination	Otolaryngologist co	onsultation findings	
				tion		Additional exami- nations	Diagnosis	Treatment
37	F	30	Recurrent throat pain fever and lymphadenopathy chronic dysphagia (5 years)	Tonsil abcess (2 times) treated with antibiotics	Grade III tonsils	-	Recurrent tonsil infections	Tonsillectomy
7	F	24	Globus, throat clearing, abdomi- nal pain, postnasal drip/sticky mucus (2 years)	None	Tongue tonsil hypertrophy, laryngo-pharyngeal inflammation	HEMII-pH testing Negative allergy test	LPR	Diet, stress reduction, PPI/alginate
8	F	40	Dysphonia, globus, throat pain (6 months)	Suspected LPR	Vocal fold erythema laryngeal inflam- mation	Voice quality assessment	Suspected LPR	Diet, stress reduction, PPI/alginate
9	F	53	Dysphonia, dyspha- gia, throat clear- ing, throat mucus (> 1 year)	Ehlers Danlos	Coated/tongue, tonsil hypertrophy, laryngo-pharyngeal inflammation	Voice quality assessment	Suspected LPR	Diet, stress reduction, PPI/alginate
21	М	56	Right neck mass, weight loss (10 kg) dysphagia (6 months)	Alcohol/tobacco overuses (30 years)	Right piriform sinus exophytic mass	Neck CT, PetCT, biopsy, biology and nutrition check-up	Hypopharyngeal primary carci- noma	Oncological board discussion
23	F	32	Dysphonia post- thyroidectomy (1 month)	Thyroidectomy for goiter	Right vocal cord paralysis	Voice quality assessment	Vocal cord paraly- sis	Medialization, speech therapy
3	М	22	Left hearing loss, tinnitus, throat clearing, globus, cough (6 months)	Recurrent LPR recurrent otitis media	Bilateral ear retrac- tion pocket, laryngo-pharyngeal inflammation	Audiometry, Tympanometry, naso-pharyngeal pH testing	Chronic otitis media, recurrent suspected LPR	Nasal saline irriga- tion, corticoids, diet stress reduction, PPI/alginate
17	F	53	Chronic hoarseness, throat clearing, globus, sticky mucus (>4 years)	Tobacco overuse (30 PY)	Bilateral Reinke edema (grade III), laryngo-pharyngeal inflammation	Voice quality assessment	Reinke edema	Stop tobacco, in- office laser surgery, speech therapy
5	М	39	Recurrent throat clearing, postnasal drip, sticky mucus (> 3 years)	Nasopharyngeal reflux (Restech)	Mulberry turbinate, and hypertrophy laryngeal inflam- mation	Normal sinus CT Nasopharyngeal Reflux	Recurrent/chronic LPR	Drug change: magaldrate to algi- nate, continue diet and stress reduction
1	F	33	Left cervical painful mass (3 months)	Asthma	Submandibular mass	Neck US, MRI and biology	Salivary lithiasis	NSAID, pilocarpin, sialadenoscopy
10	F	24	Dysphonia, dyspha- gia, throat sticky mucus (> 12 months)	Tonsillectomy vocal cord nodules	Vocal cord nodules, laryngopharyngeal inflammation	Voice quality assessment	Vocal cord nod- ules suspected chronic LPR	Diet, stress reduction, PPI/alginate, Speech therapy
20	F	32	Sudden dysphonia after crying (1 weeks)	Voice profes- sional	Right vocal cord hemorrhage	Voice quality assessment	Vocal cord hem- orrhage	In-office laser cauteri- zation
14	М	53	Dysphonia, cough, sticky mucus, throat clearing (24 months)	Septoplasty, Nonacid naso- pharyngeal reflux	Postnasal drip Laryngopharyngeal inflammation	Nasopharyngeal pH test- ing: nonacid nasopharyngeal reflux	LPR	Diet, stress reduction, alginate only
2	М	65	Hearing loss throat clearing, globus (6 months)	External ear ste- nosis, GERD	Bilateral total EED stenosis, laryngeal inflammation	Audiometry (bone) ear CT	Bilateral EED stenosisn acute suspected LPR	Canaloplasty diet, stress reduction, PPI/alginate

Appendix 1: Clinical case features and ChatGPT results

N	G	Age	Symptoms	History/medica-	Clinical examination	Otolaryngologist co	onsultation findings	
				tion		Additional exami- nations	Diagnosis	Treatment
12	F	54	Dysphagia, globus, heartburn tinnitus (>15 months)	Breast cancer, COPD, hypo- thyroidism	Inferior turbinate hypertrophy, laryngo-pharyngeal inflammation	Voice quality assessment, audiometry, tympanometry	Eustachian tube dysfunction, suspected LPR	Diet, stress reduction, PPI/alginate
13	Μ	67	Cough, throat pain, postnasal drip, globus (7 months)	Nonacid LPR (HEMII-pH)	Coated tongue, tonsil erythema, laryngeal inflammation	<i>HEMII-pH:</i> non- acid LPR	LPR	Diet, stress reduction, alginate only
15	F	62	Dry mouth, sticky mucus, cough, globus follow-up (> 6 months)	Recurrent suspected LPR aspecific laryngitis	Sticky mucus, tongue tonsil edema laryn- geal inflammation	Biology: positive for chlamydia pneumonia	Resistant LPR to PPI, infectious laryngitis	Diet, stress reduction, alginate, antibiotics (clarithromycin)
16	Μ	27	Globus, dysphonia, sticky mucus, left nasal obstruction, halitosis (>19 months)	Hearth insuf- ficiency ineffective PPI- therapy	Left septal deviation laryngopharyngeal inflammation	Normal sinus CT nonacid naso-pharyngeal reflux	Recurrent/chronic nonacid LPR	Diet, stress reduction, alginate only
18	Μ	51	Dysphonia, suspi- cion of vocal fold paralysis, globus, throat clearing (6 months)	Crohn, COVID- 19 suspected LPR	Left vocal fold polyp laryngopharyngeal inflammation	Voice quality assessment	Left vocal fold polyp suspected LPR	In-office laser polyp surgery, speech therapy, diet/stress, alginate
24	М	56	Recurrent laryngeal cancer after primary chemo- radiation (cT3 carcinoma)	Alcohol/tobacco overuses	Persistent carcinoma 5 months after the treatment	PetCT and biopsy: resistant carci- noma	Laryngeal carci- noma resistant to chemoradia- tion	Salvage laryngectomy
11	F	65	Hypoacusis, dys- phonia, dyspha- gia, sticky mucus (>9 months)	Recurrent chronic otitis media	Adenoid hypertrophy, chronic otitis media, laryngeal inflam- mation	Audiometry, Tympanometry, voice quality assessment	Chronic otitis media, LPR, Eustachian tube dysfunction	Diet, stress reduction, PPI/alginate, nasal saline irrigation and corticoids
30	Μ	70	Bilateral odynopha- gia, otalgia (6 months)	None	Bilateral stylo-hyoid calcified ligaments	Neck CT scan	Eagle syndrome	Transoral robotic styloidectomy
27	F	50	Chronic cough, neg- ative pH testing, normal pulmonary examinations	None	Laryngopharyngeal hypersensitivity	HEMII-pH testing: negative	Laryngeal hyper- sensitivity	Amitryptilin, GABA pentin, or superior laryngeal nerve infiltration
6	М	75	Nasal conges- tion, heartburn, dysphonia (> 12 months)	Nasopharyngeal reflux, (Rest- ech)	Laryngopharyngeal hypersensitivity and inflammation	Normal sinus CT Nasopharyngeal reflux	Nasopharyngeal reflux	Diet, stress reduction, PPI/alginate, nasal saline irrigation and corticoids
39	F	38	Dysphonia, dys- phagia, cough, globus, sticky mucus (4 years)	Thyroidectomy diabetes, arthrosis	Normal vocal cord mobility, laryngeal inflammation	HEMII-pH testing voice quality assessment	Suspected LPR	Diet, stress reduction, PPI/alginate
4	F	71	Sudden smell loss, globus, dry eyes, sticky mucus, throat clearing (7 months)	COVID-19	Dry eyes, coated tongue, Laryn- gopharyngeal inflammation	Psychophysical evaluations	Postviral OD suspected LPR	Olfactory cleft PRP injection, diet, stress reduction, PPI/ alginate
25	F	66	cT3 supraglottic cancer, weight loss (6 kg), dys- phagia	Radiotherapy for supraglottic cancer (10 years), hyperte	Epiglottis carcinoma	Neck CT, PetCT Biopsy: carci- noma	Second supraglot- tis carcinoma	Salvage surgery

Ν	G	Age	Symptoms	History/medica-	Clinical examination	Otolaryngologist co	onsultation findings	
				tion		Additional exami- nations	Diagnosis	Treatment
26	F	49	Aspirations, cough, globus, throat, sticky mucus (9 months)	None	Coated tongue, normal FEES, laryngeal inflam- mation	Videofluoroscopy	Suspected LPR	Diet, stress reduction, PPI/alginate
40	F	45	Singer with dif- ficulty to reach high-pitch sounds (6 months)	Thyroidectomy (12 months), hip prosthesis (2 years)	Normal vocal cord mobility, hyposen- sitivity right tongue base	Voice quality assessment	Superior laryn- geal nerve injury during surgery	Speech therapy
19	F	61	Right parotid tumor, progressive growth (6 months)	Gastritis HIV, pacemaker	Right parotid mass	Neck MRI and CT cytology (US)	Parotid lympho- epithelial cyst	Imaging and cytology
22	F	36	20 kg loss after a diet, dysphonia, voice fatigue (3 months)	None	Glottal insufficiency	Voice quality assessment	Glottis insuffi- ciency	Speech therapy, vocal cord augmentation
28	F	36	Dysphonia, voice fatigue (6 months)	Asthma, inhaled corticosteroids (9 months)	Vocal fold dryness, sticky mucus	Voice quality assessment	Laryngitis post-inhaled corticosteroids	Stop inhaled corti- coids/change drugs
29	Μ	66	Bilateral vocal cord paralysis post- thyroidectomy, tracheotomy, Wish for decan- nulation	Thyroid cancer Thyroidectomy Tracheotomy	Bilateral vocal cord paralysis in adduc- tion	Neck CT scan	Bilateral vocal cord paralysis	Bilateral CO2 anterior crico-arytenoidec- tomy
33	М	40	Progressive dyspnea when playing trumpet, neck mass, dysphagia (9 months)	None	Left laryngeal ventri- cle hypertrophy, left neck mass	Neck CT	Laryngocele	Surgery
34	М	70	Dysphagia, globus, throat pain (1 year)	Cervical arthro- desis (1 year), diabetes, hyper- tension	FEES: normal	Videofluoroscopy neck CT	Arthrodesis- related dyspha- gia (iatrogenic)	Speech therapy (swal- lowing)
38	Μ	20	Left tonsil ulcera- tion (3 months)	Oral sexual practice	Left tonsil ulceration	Biology (sexual diseases), biopsy and culture	Syphilis	Antibiotics
35	F	36	Dysphonia, throat pain voice professional (12 months)	Vocal cord nodule surgery (12 mo)	Lack of vibration of vocal cord	Voice quality assessment	Vocal fold scars	Speech therapy, resec- tion of scars, PRP injection
36	F	41	Sudden dysphonia (12 months)	Diabetes, burnout	Normal cough, apho- nia, NFN	Voice quality assessment	Psychogenic dysphonia	Speech therapy, psy- chotherapy
31	F	66	Recurrent dys- phagia, globus, weight loss, telangiectasia (3 years)	Resistant LPR to PPI, alginate, magaldrate	Telangiectasia (fingers), laryngeal inflammation	Manom- etry, GI, biology (immun), biopsy	CREST syndrome esophageal scleroderma	Vasodilators, immu- nosuppressant
32	F	34	Dysphonia, arthralgia, voice professional (> 12 months)	None	Orange nodules on vocal cord	Voice quality assessment, biology (autoim- mun), biopsy	Bamboo nodes rheumatoid polyarthritis	Corticoids, speech therapy

The additional examinations in italics consisted of results of examination at the consultation time

COPD chronic obstructive pulmonary disease, *COVID-19* coronavirus disease 2019, *CRS(w)NP* chronic rhinosinusitis (without) nasal polyposis, *CT* computed tomography, *EMG*

electromyography, *FEES* fiberoptic endoscopic evaluation of swallowing, *FESS* functional endoscopic sinus surgery, *EED* external ear duct, *ETD* Eustachian tube dysfunction, *GERD* gastroesophageal reflux disease, *GI* gastrointestinal endoscopy, *LPRD* laryngopharyngeal reflux disease, *MRI* magnetic resonance imaging, *NFN* normal nasofibroscopy, *NSAID* non-steroidal anti-inflammatory drug, *OD* olfactory dysfunction, *OSAS* obstructive sleep apnea syndrome, *PPI* proton pump inhibitors, *PRP* platelet-rich plasma, *PY* pack/year, *US* ultrasonography

Appendix 2: ChatGPT findings regarding clinical cases

N	Otolaeryngologist	ChatGPT		
	Diagnosis	Additional examination	Differential diagnosis	Treatment regarding the clini- cal presentation
37	Recurrent tonsil infections	Throat culture, Neck CT or MRI, PSG	Chronic tonsillitis, tonsillar hypertrophy, tonsilloliths	Antibiotics, tonsillectomy
7	LPR	Sinus CT, sinus X-ray, biol- ogy (CRP)	Acute sinusitis, GERD, upper aerodigestive tract infection, COPD, viral bronchitis	PPI and H2 blockers diet and stress management
8	Suspected LPR	Sinus CT, X-ray, biology (CRP)	Acute sinusitis, GERD, laryngopharyngeal infection, COPD, viral bronchitis	PPI and H2 blockers diet and stress management
9	Suspected LPR	Neck CT, prick test, genetics for Ehlers Danlos swal- lowing study, GI	LPR, chronic pharyngitis, vocal cord dysfunc- tion, eosinophilic esophagitis, oral candido- sis, tongue tonsillitis	Speech therapy, PPI and H2 blockers diet and stress management
21	Hypopharyngeal primary carcinoma	Biopsy, neck CT or MRI	Laryngeal or pharyngeal carcinoma, metasta- sis, benign mass, granulomatosis, pseudo- tumor	Biopsy, neck CT or MRI
23	Vocal cord paralysis	EMG, Neck CT and MRI	Recurrent laryngeal nerve injury	Speech therapy, medializa- tion, thyroplasty, reinnerva- tion
3	Chronic otitis media, recurrent suspected LPR	Audiometry, Tympanom- etry pH metry, GI, throat bacteriology	Chronic otitis media (effusion/suppurative), cholesteatoma, tympanosclerosis	Nasal corticoids or transtym- panic tube, allergy checkup
17	Reinke edema	Vocal cord biopsy, stro- boscopy, lung testing (spirometry)	Reinke edema, vocal cord dysfunction, vocal cord polyps, bilateral vocal cord nodules	Vocal hygiene, speech therapy, smoking cessation, surgery
5	Recurrent/chronic LPR	pH metry, GI, neck CT, sinus/throat cultures	GERD, unspecified CRS, allergic rhinitis, LPR, Chronic tonsilitis	PPI and H2 blockers diet and stress management
1	Salivary lithiasis	Neck US, MRI, BIOLOGY, Prick skin tests	Adenitis, abcess, adenopathy, parotidis, thyroiditis	Hot compress, pilocarpin, Surgery
10	Vocal cord nodules Sus- pected chronic LPR	Neck CT, voice quality assessment, allergy testing	Vocal cord nodules, vocal cord polyps, GERD, LPR, chronic laryngitis	Corticoids, voice rest, PPI and H2 blockers diet and stress management
20	Vocal cord hemorrhage	None	Vocal cord hemorrhage	Voice rest, anti-inflammatory drugs, vocal cord abuse reduction
14	LPR	Neck CT, throat cultures, allergy tests	Acute laryngitis, chronic laryngitis, GERD, COPD, vocal cord nodules	PPI and H2 blockers diet and stress management
2	Bilateral EED stenosis, acute suspected LPR	Ear CT pH metry, GI, throat bacteriology	EED stenosis, Chronic otitis media, Presby- cusis, ETD, GERD, CRS, allergic rhinitis, LPR, chronic tonsilitis	Canaloplasty, balloon dilata- tion, saline irrigation, skin flap, PPIs, H2 blockers, diet/ stress management
12	Eustachian tube dysfunc- tion, suspected LPR	Neck CT, thyroid function tests	LPR, unspecified CRS, hypothyroidism, bron- chitis, cancer-related symptoms (unspeci- fied?)	PPI and H2 blockers, diet and stress management, nasal decongestants, antibiotics and corticoids

N	Otolaeryngologist	ChatGPT		
	Diagnosis	Additional examination	Differential diagnosis	Treatment regarding the clini- cal presentation
13	LPR	Neck CT, throat swab, allergy testing	Chronic tonsilitis, chronic pharyngitis, GERD, LPR	PPI and H2 blockers diet and stress management
15	Resistant LPR to PPI, infectious laryngitis	Neck CT, salivary gland function test, Allergy, polysomnography	CRSwNP, chronic tonsilitis, GERD, OSAS, Sjögren syndrome	PPI and H2 blockers, stress reduction, diet, antibiotics
16	Recurrent/chronic nonacid LPR	Esophageal manometry, pH Metry, allergy	LPR, GERD, CRSwNP, chronic tonsilitis, postnasal drip	PPI and H2 blockers, stress reduction, diet, nasal saline irrigation and corticoster- oids
18	Left vocal fold polyp suspected LPR	Neck CT laryngeal biopsy	LPR, CRSwNP, allergic rhinitis, vocal fold polyp, vocal fold nodules	Polypectomy/resection of mass, corticoids, speech therapy
24	Laryngeal carcinoma resistant to chemoradia- tion	Neck CT or MRI, oncologi- cal board assessment	Persistent carcinoma	Salvage surgery, immunother- apy, clinical trials, palliative
11	Chronic otitis media, LPR, Eustachian tube dysfunction	Throat swab culture, audiometry, swallowing study, GI	Laryngitis, chronic pharyngitis, otitis media, GERD,	Speech therapy, PPI and H2 blockers, diet and stress management, GERD- surgery
30	Eagle syndrome	Neck CT or MRI	Tonsilloliths, tonsillar hypertrophy, chronic pharyngitis, GERD	PPIs, H2 blockers, diet/stress management, saltwater gargles, good oral hygiene/ hydration, tonsillectomy
27	Laryngeal hypersensitiv- ity	pH testing, manometry, allergy, inhaled broncho- dilators, methacholine test	Cough variant asthma, GERD, LPR	PPIs, inhaled corticoids, speech therapy
6	Nasopharyngeal reflux	RAST (IgE), nasal cytology (eosinophiles), sinus CT	LPR, allergic rhinitis, CRSNP	Speech therapy PPI and H2 blockers
39	Suspected LPR	pH study, GI, allergy evalu- ation	LPR, chronic laryngitis, allergic rhinitis	PPIs, H2 blockers, diet/ Stress management, speech therapy
4	Postviral OD suspected LPR	Psychophysical evaluations, sinus X-ray, neck CT, biol- ogy (B12 level, CRP)	Postviral OD, CRSNP, CRSwNP, neurodegen- erative disease, autoimmun disease	PPIs, H2 blockers, diet/stress management
25	Second supraglottic carcinoma	Neck CT or MRI, biopsy	Supraglottic carcinoma	Radiation, chemotherapy or chemoradiotherapy, surgery, immunotherapy
26	Suspected LPR	pH testing, EMG	LPR, chronic laryngitis, laryngeal hypersensi- tivity, postnasal drip, chronic tonsilitis	Diet, stress reduction, mucolytics, nasal corticoids, antihistamine, PPIs, H2 blockers, laryngeal desensi- tization (breath)
40	Superior laryngeal nerve injury during surgery	EMG, Neck CT and MRI, neurological consultation	Superior laryngeal nerve dysfunction, hypoglossal dysfunction, vocal cord muscle atrophy	Speech therapy, nerve recon- struction
19	Parotid lympho-epithelial cyst	Neck US, CT, cytology, biology (CRP)	Peiomorphic or Whartin tumor, malignancy, lymph node, metastasis	Surgery
22	Glottis insufficiency	None	Muscle atrophy, vocal cord paresis, psycho- genic dysphonia, vocal fold lesions	Biology (autoimmun diseases), speech therapy, psychological support
28	Laryngitis post-inhaled corticosteroids	Lung assessment	Vocal cord dysfunction, Reinke edema, vocal cord nodules, vocal cord polyps, muscle ten- sion dysphonia	Continue asthma treatment
29	Bilateral vocal cord paralysis	-	Bilateral vocal cord paralysis (adduction) and permanent tracheotomy	Vocal cord lateralization, speech therapy, electrolar- ynx,

N	Otolaeryngologist	ChatGPT		
	Diagnosis	Additional examination	Differential diagnosis	Treatment regarding the clini- cal presentation
33	Laryngocele	Neck CT or MRI, biopsy	Laryngeal papillomatosis, laryngeal cancer, laryngocele, lymphadenopathy	Surgery, radiation, voice therapy
34	Arthrodesis-related dys- phagia (iatrogenic)	Esophageal manometry, videofluoroscopy, endo- scopic US, biopsy	Achalasia, esophageal stricture, esophageal spasm, esophageal cancer	Calcium channel blockers, nitrates, or botulinum toxin injections, esophageal dila- tation, surgery or chemora- diation
38	Syphilis	Throat culture, Neck CT or MRI, biopsy	Bacterial or viral tonsillitis, tonsil abscess, HPV infection, cancer	Antibiotics, analgesics
35	Vocal fold scars	Neck CT or MRI, EMG	Vocal fold scar, granuloma, Reinke edema, vocal cord paresis,	Speech therapy, corticoids, surgery of the lesion
36	Psychogenic dysphonia	EMG and psychological evaluation	Functional dysphonia, muscle tension dyspho- nia, conversion disorder, vocal fold paresis or spasmodic dystonia	Speech therapy, psychother- apy, muscle relaxants
31	CREST syndrome sclero- derma	GI, biology	Scleroderma, GERD	HE blockers, prokinetic, esophageal dilatation
32	Bamboo nodes rheuma- toid arthritis	-	Reinke edema, vocal cord polyps	Speech therapy, vocal cord surgery (removal of lesion)

COPD chronic obstructive pulmonary disease, COVID-19 coronavirus disease 2019, CRS(w)NP chronic rhinosinusitis (without) nasal polyposis, CT computed tomography, EMG electromyography, FEES fiberoptic endoscopic evaluation of swallowing, FESS functional endoscopic sinus surgery, EED external ear duct, ETD Eustachian tube dysfunction, GERD gastroesophageal reflux disease, GI gastrointestinal endoscopy, LPRD laryngopharyngeal reflux disease, MRI magnetic resonance imaging, NFN normal nasofibroscopy, NSAID non-steroidal anti-inflammatory drug, OD olfactory dysfunction, OSAS obstructive sleep apnea syndrome, PPI proton pump inhibitors, PRP platelet-rich plasma, PY pack/year, US ultrasonography

Appendix 3: Main diagnoses

Primary diagnoses	Easy	Moderate	Difficult	Total
	ACCS 6-14	ACCS 15-23	ACCS 24-30	
Laryngeal disorders				
Chronic suspected or confirmed laryngopharyngeal reflux	6	7	1	14
Vocal fold polyp, hemorrhage, nodules or scarring	2	1	1	4
Acute suspected or confirmed laryngopharyngeal reflux	2	1	0	3
Recurrent suspected or confirmed laryngopharyngeal reflux	1	2	0	3
Unilateral or bilateral vocal cord paralysis	1	0	1	2
Bacterial laryngitis	0	1	0	1
Reinke edema	1	0	0	1
Bamboo nodes (vocal folds)	0	0	1	1
Glottis insufficiency	0	0	1	1
Laryngeal primary hypersensitivity	0	1	0	1
Iatrogenic laryngitis	0	0	1	1
Laryngocele	0	0	1	1
Iatrogenic laryngeal superior nerve injury	0	0	1	1
Psychogenic dysphonia	0	0	1	1
Swallowing disorders				
Cervical arthrodesis inducing iatrogenic dysphagia	0	0	1	1

Primary diagnoses	Easy ACCS 6–14	Moderate ACCS 15–23	Difficult ACCS 24–30	Total
Eagle syndrome	0	1	0	1
Esophageal scleroderma (CREST syndrome)	0	0	1	1
Recurrent tonsil infection	1	0	0	1
Head and neck disorders				
Salivary lymphoepithelial cyst	0	0	1	1
Salivary lithiasis	1	0	0	1
Hypopharyngeal primary carcinoma	1	0	0	1
Supraglottic laryngeal carcinoma (resistant to radiation)	0	1	0	1
Second laryngeal carcinoma	0	0	1	1
Pharyngeal syphilitic ulceration	0	0	1	1
Associated otological or rhinological conditions				
Chronic otitis media	1	1	0	2
Eustachian tube dysfunction	0	2	0	2
Postviral olfactory dysfunction	0	1	0	1
Rheumatoid polyarthritis	0	0	1	1
Bilateral ear external duct stenosis	1	0	0	1

ACCS Amsterdam Clinical Challenge Scale test

Author contributions JRL design, acquisition of data, data analysis and interpretation, drafting, final approval, and accountability for the work; final approval of the version to be published; agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. BG design, acquisition of data, data analysis and interpretation, agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. SH design, final approval, and accountability for the work; final approval of the version to be published; agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. CMC-E design, acquisition of data, data analysis and interpretation, final approval, and accountability for the work; final approval of the version to be published; agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding None.

Data availability Data are available on request.

Declarations

Conflict of interest Prof. Jerome LECHIEN is Associate Editor of the Special Issue "ChatGPT". Consequently, he was not the associate editor managing this paper.

Informed consent Patients consented to participate to the study.

References

- Pernencar C, Saboia I, Dias JC (2022) How far can conversational agents contribute to IBD patient health care—a review of the literature. Front Public Health 10:862432. https://doi.org/10.3389/ fpubh.2022.862432
- Hill-Yardin EL, Hutchinson MR, Laycock R, Spencer SJ (2023) A Chat(GPT) about the future of scientific publishing. Brain Behav Immun 110:152–154. https://doi.org/10.1016/j.bbi.2023.02.022
- Choi JH, Hickman KE, Monahan A, Schwarcz D (2023) ChatGPT goes to law school? Minnesota Legal Studies Research Paper No. 23-03
- Gupta R, Park JB, Bisht C, Herzog I, Weisberger J, Chao J, Chaiyasate K, Lee ES (2023) Expanding cosmetic plastic surgery research using ChatGPT. Aesthet Surg J. https://doi.org/10.1093/ asj/sjad069
- Salvagno M, Taccone FS, Gerli AG (2023) Can artificial intelligence help for scientific writing? Crit Care 27(1):75. https://doi. org/10.1186/s13054-023-04380-2
- Gercama AJ, de Haan M, van der Vleuten CPM (2000) Reliability of the Amsterdam Clinical Challenge Scale (ACCS): a new instrument to assess the level of difficulty of patient cases in medical education. Med Educ 34(7):519–524
- Braun LT, Lenzer B, Fischer MR, Schmidmaier R (2019) Complexity of clinical cases in simulated learning environments: proposalfor a scoring system. GMS J Med Educ. 36(6):Doc80. https:// doi.org/10.3205/zma001288
- Rekman J, Hamstra SJ, Dudek N, Wood T, Seabrook C, Gofton W (2016) A new instrument for assessing resident competence in surgical clinic: the ottawa clinic assessment tool. J Surg Educ 73(4):575–582. https://doi.org/10.1016/j.jsurg.2016.02.003
- 9. https://futureoflife.org/open-letter/pause-giant-ai-experiments/
- Fine B, Dhanoa D (2014) Imaging appropriateness criteria: why Canadian family physicians should care. Can Fam Physician 60(3):217–218

- Kang SK, Gold HT (2023) How to perform economic evaluation in implementation studies: imaging-specific considerations and comparison of financial models. J Am Coll Radiol 20(3):292–298. https://doi.org/10.1016/j.jacr.2022.11.018
- Hellings PW, Fokkens WJ, Orlandi R, Adriaensen GF, Alobid I, Baroody FM et al (2023) The EUFOREA pocket guide for chronic rhinosinusitis. Rhinology 61(1):85–89. https://doi.org/10.4193/ Rhin22.344
- Yoshiyasu Y, Wu F, Dhanda AK, Gorelik D, Takashima M, Ahmed OG (2023) GPT-4 accuracy and completeness against international consensus statement on allergy and rhinology: rhinosinusitis. Int Forum Allergy Rhinol. https://doi.org/10.1002/alr. 23201
- 14. Dejonckere PH, Bradley P, Clemente P, Cornut G, Crevier-Buchman L, Friedrich G, Van De Heyning P, Remacle M, Woisard V, Committee on Phoniatrics of the European Laryngological Society (ELS) (2001) A basic protocol for functional assessment of voice pathology, especially for investigating the efficacy of (phonosurgical) treatments and evaluating new assessment techniques. Guideline elaborated by the Committee on Phoniatrics of the European Laryngological Society (ELS). Eur Arch Otorhinolaryngol 258(2):77–82. https://doi.org/10.1007/s004050000299
- Stachler RJ, Francis DO, Schwartz SR, Damask CC, Digoy GP, Krouse HJ, McCoy SJ, Ouellette DR, Patel RR, Reavis CCW, Smith LJ, Smith M, Strode SW, Woo P, Nnacheta LC (2018) Clinical practice guideline: hoarseness (dysphonia) (update). Otolaryngol Head Neck Surg 158(1 suppl):S1–S42. https://doi. org/10.1177/0194599817751030
- Stuck BA, Beule A, Damm M, Gudziol H, Hüttenbrink KB, Landis BN, Renner B, Sommer JU, Uecker FC, Vent J, Hummel T, Committee on Olfaction and Gustation of the German Society of Otorhinolaryngology, Head and Neck Surgery (2014) Position paper "chemosensory testing for expert opinion in smell disorders." Laryngorhinootologie 93(5):327–329. https://doi.org/10. 1055/s-0033-1364034

- 17. Lechien JR, Vaezi MF, Chan WW, Allen J, Karkos PD, Saussez S, Altman K, Amin MR, Ayad T, Barillari MR et al. (2023) The Dubai definition and diagnostic criteria of laryngopharyngeal reflux: the IFOS Consensus. Laryngoscope
- Chiesa-Estomba CM, Lechien JR, Vaira LA, Brunet A, Cammaroto G, Mayo-Yanez M, Sanchez-Barrueco A, Saga-Gutierrez C (2023) Exploring the potential of Chat-GPT as a supportive tool for sialendoscopy clinical decision making and patient information support. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-023-08104-8
- Hoch CC, Wollenberg B, Lüers JC, Knoedler S, Knoedler L, Frank K, Cotofana S, Alfertshofer M (2023) ChatGPT's quiz skills in different otolaryngology subspecialties: an analysis of 2576 single-choice and multiple-choice board certification preparation questions. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/ s00405-023-08051-4
- 20. Millstein J, Agarwal A (2023) What can doctors and patients do with ChatGPT? | Expert Opinion. Philadelphia Inquirer
- Chaix B, Bibault JE, Pienkowski A, Delamon G, Guillemassé A, Nectoux P, Brouard B (2019) When chatbots meet patients: one-year prospective study of conversations between patients with breast cancer and a chatbot. JMIR Cancer 5(1):e12856. https://doi. org/10.2196/12856

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.