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Abstract

This paper presents a neural network-constrained optimization model for the
optimal scheduling of pumped hydro energy storage. Neural networks are
trained offline to capture the complex head-dependent performance curves
in both pump and turbine modes using actual operation data. The trained
models are then embedded into the optimization framework that yields the
optimal and physics-compliant day-ahead scheduling in energy and reserve
markets for the pumped hydro energy storage. To identify the trade-off be-
tween modeling accuracy and computation burden, different neural network
architectures are investigated, along with the impact of neural network spar-
sity, i.e., weights pruning to reduce dimensionality. The proposed approach
is then compared with state-of-the-art solutions, such as piecewise linear ap-
proximations. To that end, a detailed simulator of the pumped hydro energy
storage, mimicking its minute-wise behavior, is developed to accurately assess
the feasibility and economic performance of the resulting schedules. Results
demonstrate the ability of neural networks to better guide the optimization
model, thus leading to higher profits while keeping acceptable solving times,
especially when weight pruning is leveraged. In particular, we show that
accurately capturing the non-linear characteristics of pumped hydro energy
storage is critical to offer reliable reserve commitments to power systems.
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Nomenclature

The various notations used in the paper are described in this section.

A. Sets and Indices

T Set of time steps, index t.

H Set of PHES plants, index h.

R Set of the reserve products, index r.

R+ ⊆ R Set of the upward reserve products.

R− ⊆ R Set of the downward reserve products.

fu, fd Frequency containment reserve upward and
downward.

au, ad Automatic frequency restoration reserve upward and
downward.

T,P Turbine and pump modes, index i.

B. Variables

resr Total reserve capacity committed to the reserve
product r, [MW].

resih,r Reserve capacity committed by each plant h to a
given reserve product r in mode i, [MW].

vresh,t,r Additional water volume moved because of the
reserve activation of plant h at time step t for the
reserve product r, [m3].

eDA
t Energy position in the day-ahead energy-only

market at time step t, [MWh].

zTh,t, z
P
h,t Binary variable indicating the operating mode, i.e.,

turbine (T) or pump (P) of plant h at time step t.
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pTh,t, p
P
h,t Output power in turbine (T) and pump (P) modes

of plant h at time step t, [MW].

pi
h,t
, pih,t Minimum and maximum output power of plant h at

time step t in mode i, [MW].

qTh,t, q
P
h,t Water flow rate in turbine (T) and pump (P) modes

of plant h at time step t, [m3/s].

vuph,t, v
low
h,t Water volume in the upper (up) and lower (low)

reservoirs of plant h at time step t, [m3].

hup
h,t, h

low
h,t Water head in the upper (up) and lower (low)

reservoirs of plant h at time step t, [m].

hnet
h,t Net water head of plant h at time step t, [m].

hloss
h,t Water head loss of plant h at time step t, [m].

b
(l)
k Binary variable associated with the activation

function of the neuron k in layer l.

ŷ(l) Input vector of layer (l) of a given NN.

ŷ
(l)
k One element of the vector ŷ(l).

y
(l)
k Output vector of layer (l) of a given NN.

y
(l)
k One element of the vector ŷ(l).

Ai
h,t, B

i
h,t Additional variables to enforce the consistency of the

NN constraints associated with the UPC of mode i
for plant h at time step t.

C. Parameters

∆t Time step duration of the optimisation [h].

λres
r Price for the reserve capacity made available in each

product r, [e/MW].

λDA
t Electricity price on the energy-only day-ahead

market at time step t, [e/MWh].

Cop
h Operating cost of plant h, [e/MWh].

∆Ri
h,r Ramping ability of plant h in mode i for reserve

product r, [MW].

Q
i

h Maximum water flow rate in mode i for plant h,
[m3/s].
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V
up

h , V
low

h Maximum water volume of the upper (up) and lower
(low) reservoirs of the plant h, [m3].

V target
h Target volume of water in the upper reservoir at the

end of the optimization horizon for plant h, [m3].

Hnet
h , H

net

h Minimum and maximum net water head of plant h.

W (l) Weight matrix associated with layer l.

B(l) Bias vector associated with layer l.

M1ih,M1
i

h,

M2ih,M2
i

h

Big-M constants of plant h in mode i.

D. Functions

fup
h,t, f

low
h,t Geometry of the upper (up) and lower (low)

reservoirs of plant h at time step t.

fUPC,i
h Unit Performance Curve (UPC) of the hydraulic

machine of plant h operating in mode i.

pi
h
, pih Upper and lower power bounds of the UPC

associated with mode i of plant h.

1. Introduction

In order to mitigate uncertainties from variable renewable generation,
power systems need to rely on increasing amounts of flexibility, which can
be provided by energy storage. For instance, the European Union assessed a
need for 97 GW of additional storage capacity by 2030 in order to support its
energy policies [1]. Pumped-Hydro Energy Storage (PHES) is a mature and
robust technology which currently represents more than 95% of the world-
wide utility-scale storage capacity [2]. In recent years, PHES has known
major technological improvements, driven by enhancements in power elec-
tronics that allow the units to operate at variable speeds [3]. Micro-PHES
can also benefit from these advancements, as demonstrated in [4]. The re-
sulting increased operating range, and associated flexibility, enables a higher
penetration of renewable-based fluctuating generation [5]. In that direction,
different approaches have been developed. First, variable-speed technologies
enable to provide balancing services to the power system [6]. Second, flexi-
bility can be created by coupling constant-speed PHES with energy storage
technologies such as batteries or flywheels [7].
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Figure 1: Unit Performance Curve (UPC) of a conventional Francis machine in (a) pump
mode, (b) turbine mode.

In this paper, the multi-period day-ahead scheduling problem faced by
PHES plant owners, who participate in both energy and reserve markets,
is studied. In addition to conventional constraints (e.g., ramping limits,
power and energy bounds), the constraints associated with the operation of
hydraulic units must also be considered. In particular, the operating char-
acteristics of the hydraulic machine, referred to as Unit Performance Curves
(UPC), need to be properly described. The UPC is a three-dimensional rela-
tionship between the net head (i.e., the height difference between the water
levels in the upper and lower basins, minus the losses), the output power and
the water flow rate. Figure 1 depicts the typical UPCs for a variable-speed
Francis pump-turbine, i.e., a reversible technology that can either be used
as a pump or a turbine over a wide range of head-level. The UPCs were ob-
tained through laboratory measurements of a reduced-scale model [8]. This
work was part of the SmartWater project [9]. The curves were obtained
via polynomial interpolation of the measurements aiming at minimizing the
squared modeling error.

Figure 1 shows that the UPCs are defined only in some parts of the
net head/power plane, rendering the underlying optimization problem dis-
continuous. Indeed, when the water flow rate is too high, cavitation (i.e.,
rapid implosion of gaseous cavities) can appear and damage the hydraulic
machine. In contrast, a low water flow may trigger harmful mechanical vi-
brations through self-excitation and severe system erosion [10]. Therefore,
accurately representing the head-dependent UPCs is key to guarantee the
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feasibility, reliability and cost-efficiency of the PHES operating schedule.
Various optimization models with different objective functions are de-

scribed in the literature for short-term scheduling of hydro generation. In
[11], the efficiency of hydro-power plant is maximized, thereby maximizing
the energy production on the long run. Other approaches aim at maxi-
mizing the profits. With the aim of guaranteeing the highest profits pos-
sible in case of extreme scenarios of uncertainties, robust optimization is
employed in reference [12]. In [13], the day-ahead scheduling of PHES is per-
formed under considerations for irrigation systems and uncertain wind power.
In those formulations, the PHES dynamics are modelled using determinis-
tic equations. However, in some installations such as underground PHES,
stochastic modelling is more appropriate because of the water exchanges with
nearby aquifers and rock porosity [14]. All resulting models are challenging
to solve. A straightforward approach is to rely on non-linear optimization,
but the solvers typically suffer from a high computational burden and offer
no optimality guarantee on the solution [15]. This problem is further exac-
erbated when considering uncertainties due to the increased dimensionality
of the resulting model [16]. To improve computational efficiency, alterna-
tive strategies relying on Lagrangian relaxation were also tested but they
exhibit convergence issues [17]. Meta-heuristic algorithms, another family of
optimization algorithms which are agnostic to the problem structure, were
then employed. Genetic algorithm, which mimics the genetic evolution of
a population through breeding and mutation to try converging towards the
optimal solution, was used for cost minimization [18]. It was also applied to a
more complex multi-objective optimization scheme including environmental
impact [19]. Particle Swarm Optimization (PSO), which is based on social
behaviour of animal populations such as fish schooling or bird flocking, was
used for optimizing the PHES operation with one or several upper basins
[20]. However, such methods do not offer any information on the quality of
the final solution which is dependent on the starting point of the algorithm
due to the inherent stochastic nature of the process. Dynamic programming
has also been applied but it was proven to be very sensitive to the curse of
dimensionality [21]. This remains valid even when approximating the hydro-
power generation function with a concave curve [22].
Alternatively, piecewise linear approximation of UPCs, which relies on Mixed-
Integer Linear Programming (MILP), has been widely investigated [23]. The
discontinuity between the pump and the turbine UPCs can be modelled us-
ing binaries [24]. Each UPC can be approximated with nine triangle plane
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Conventional Problem
OBJ: 
Maximize Profit

s. t. 
Technical constraints:

• Water volumes
• Water flow
• Ramping capabilities
• Power bounds
• Unit performance 

curves (UPCs):        
𝑞 = 𝑓(ℎ!"# , 𝑝)

NN-constrained Form
OBJ: 
Maximize Profit

s. t. 
Technical constraints:

• Water volumes
• Water flow
• Ramping capabilities
• Power bounds

UPCs expressed as a set of 
MILP constraints resulting 
from the reformulation of 1 or 
2 NN(s): 𝑞 = 𝑓$$(ℎ!"# , 𝑝)

Figure 2: Proposed approach with NN-constrained optimization

pieces [25]. The piecewise linear approximation was extended to 25 triangle
pieces in [26]. In [27], the authors modelled the non-linearity of the genera-
tion function in the case of hydro-power. A chance-constraint optimization
for underground PHES on top of a MILP approximation of the UPCs based
on rectangle plane pieces is proposed in [14]. Those formulations have been
improving continuously, becoming more compact and tighter. Nevertheless,
the number of pieces used to model the non-linear curves remains an expert-
based decision, which results from a trade-off between the modeling accuracy
and the number of additional variables. Furthermore, this segmentation of
the input space is usually performed in a uniform fashion. Hence, it may
arise that a linear part of a curve benefits from the same modeling granular-
ity as a highly non-linear area, resulting in a poor allocation of computing
resources. Finally, the solution of the MILP algorithm may not always be
feasible due to these inherent approximations [28].

To address the limitations of conventional piecewise-linear methods, this
paper introduces Neural Networks (NNs) to represent the nonlinear UPCs.
Instead of partitioning the feasible space arbitrarily, the proposed method
leverages the modeling power of NNs, defined with piecewise linear activation
functions, e.g., Rectified Linear Unit (ReLU), in order to obtain an optimal
approximation of the UPCs for a minimal number of neurons 2. The exact

2The resulting NN architecture is a trade-off between the precision of the UPCs approxi-
mation and the number of variables (continuous and binary) introduced in the optimization
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mixed-integer reformulation of the NN can then be integrated into the PHES
optimization problem which can be solved using an off-the-shelf MILP solver
[29]. Figure 2 summarizes the proposed data-driven approach.

The main contributions of this paper can be summarized as follows:

(a) We present a novel data-driven NN approximation of the UPCs to
model the non-linear behaviour of a pumped-hydro energy storage unit.
Then, an exact mixed-integer reformulation is developed to embed the
trained NN architecture into the optimization model which yields the
day-ahead scheduling in energy and reserve markets.

(b) We develop a new modeling strategy to enforce the formulation consis-
tency between the PHES operation modes (turbine, pump, idle). This
is achieved by ensuring that, in a given operation mode, only the NN
constraints associated with this mode are binding.

(c) We improve the compactness of the resulting MILP reformulation by in-
vesting two complementary strategies. First, we model both the pump
and the turbine UPCs using a single NN. Second, we investigate sparse
neural networks, i.e., by pruning some weights to decrease the number
of parameters.

The effectiveness of the proposed method is compared with state-of-the-art
approaches such as uniformly segmented piecewise linear approximations and
linear regression, using data of a candidate site for a PHES plant located in
Maizeret, Belgium, is used. The quality of the decisions is assessed through a
detailed simulator of the PHES operation in energy and reserve market floors
in order to obtain a fair and accurate estimation of ex-post profits. Thirty
scenarios are used to assess the ex-post profit performance of the models.
This validation is completed with a sensitivity analysis on the ex-post profit
with respect to the uncertain market penalties.

The rest of the paper is organized as follows. The formulation of the day-
ahead scheduling problem, with a joint participation in energy and reserve
markets, is presented in Section 2. Section 3 describes the NN modeling of the
UPCs and their reformulation into MILP constraints. Section 4 discusses and
compares the results of the proposed approach with state-of-the-art bench-

problem when reformulating exactly the NNs as constraints.
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marks. Lastly, Section 5 provides some conclusions and perspectives for
future research.

2. Problem Formulation

In this section, the formulation of the day-ahead scheduling problem faced
by a PHES operator, based on [14], is presented. We assume that the day-
ahead energy and reserve markets are jointly cleared for the 24 hours of the
next day. The formulation adopts a price-taker approach with a perfect price
forecast.

2.1. Objective Function

The objective of the PHES operator is to maximize their profit on the
day-ahead energy and reserve markets, subject to the operational and market
constraints. To do so, the decisions to pump (i.e., consuming power) or to
operate in turbine mode (i.e., generating power) are placed as quantity orders
on the markets in the most profitable way. The objective function of the
day-ahead scheduling problem (1), which maximizes the operator’s expected
profit, is made up of (i) the benefits earned by providing a constant amount
of upward and/or downward reserve capacities resr over the 24 hourly market
periods of the next day for each type of reserve product r at price λres

r ; (ii)
the inter-temporal arbitrage revenues on the day-ahead market obtained by
selling or purchasing an amount of electricity eDA

t at price λDA
t when operating

in turbine or pump mode; (iii) the operating cost, incurred by each unit h, is
assumed to be linear and proportional to the energy produced by the turbine
pTh,t ·∆t and consumed by the pump pPh,t ·∆t with a constant operating cost
Cop

h .

Φ =
∑
r∈R

24 · λres
r · resr︸ ︷︷ ︸
(i)

+
∑
t∈T

 λDA
t · eDA

t︸ ︷︷ ︸
(ii)

−
∑
h∈H

Cop
h · (p

T
h,t + pPh,t) ·∆t︸ ︷︷ ︸

(iii)

 (1)

Objective function (1) involves three assumptions. Firstly, the benefits
from the reserve activation are supposed to offset exactly to the PHES oper-
ating costs. Second, the operator cannot willingly deviate from his day-ahead
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schedule, thus explaining why imbalance penalties are absent from the objec-
tive function. Lastly, the operational costs scale linearly with the electrical
energy generated and consumed. This is a necessary simplification of the
very complex reality. For a more realistic approximation of the underlying
operational costs, the fluid dynamics in the hydraulic machine need to be
modelled but there exists no clear consensus on an effective model to evalu-
ate the resulting wear and tear costs [30].

2.2. Energy Balance

For each hourly market period, the energy offered to the market either in
pump mode or turbine mode must be delivered by the PHES plant, which is
ensured by constraint (2).

eDA
t = ∆t ·

∑
h∈H

(
pTh,t − pPh,t

)
∀t (2)

2.3. Reserve Allocation Constraints

The PHES flexibility can also be valued and traded on the reserve market.
The goal is to identify the profit-maximizing allocation of reserve products
r ∈ R over the daily scheduling horizon.

The Transmission System Operator (TSO) is in charge of sizing, allocat-
ing and activating the reserves. These reserves are divided into downward
and upward products. The downward reserve is activated when the grid fre-
quency is too high and can be provided either by reducing the generated
power in turbine mode or by increasing the consumed power in pump mode.
On the contrary, the upward reserve is activated when the grid frequency
is too low and can be provided either by increasing the generated power in
turbine mode or by reducing the consumption in pump mode.
Furthermore, both the downward and the upward reserves are organized in
three products, which differ in their expected response speed and price. Fre-
quency Containment Reserves (FCRs) are the first to be automatically called
upon in the emergence of a contingency, and must be fully operational within
30 seconds. Then, the automated Frequency Restoration Reserves (aFRRs),
which need to respond within 7.5 minutes, are activated in order to free up
the capacities of the FCRs for future contingencies. Lastly, if the imbalance
persists, the TSO requests the dispatch of manual Frequency Restoration Re-
serves (mFRRs) that remain online until the resolution of the disturbance.
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At each time step, the committed capacity of the PHES plant in the six
reserve products is the sum of the flexibility available from all units (3).∑

h∈H

(
resTh,t,r + resPh,t,r

)
= resr ∀t, r (3)

The PHES participation to the reserve market is limited by its ramping
ability. Hence, it must be ensured that the PHES ramping ability is not
doubly allocated to the different reserve products [14], which is enforced by
constraints (4) - (8).

resih,t,r ≤ zih,t ·∆Ri
h,r ∀ h, t, i ∈ {T,P}, r ∈ {fu, fd} (4)

resih,t,fd + resih,t,ad ≤ zih,t ·∆Ri
h,ad

∀h, t, i ∈ {T,P} (5)

resih,t,fu + resih,t,au ≤ zih,t ·∆Ri
h,au ∀h, t, i ∈ {T,P} (6)∑

r∈R−

resih,t,r ≤ zih,t ·∆Ri
h,md

∀h, t, i ∈ {T,P} (7)

∑
r∈R+

resih,t,r ≤ zih,t ·∆Ri
h,mu

∀h, t, i ∈ {T,P} (8)

2.4. Technical Constraints

The state-of-charge of the PHES plant is a function of the water volume
in the lower and upper basins. Those volumes cannot be lower than a given
threshold (V low

h and V up
h ), nor can they be higher than the maximum content

of the reservoirs (V
low

h and V
up

h ). Moreover, the PHES scheduling involving
the provision of upward reserve must ensure that the upper reservoir contains
enough water and the lower reservoir is able to receive the potential surplus of
water inflow (9). Reversely for downward reserve, there must be a sufficient
volume of water in the lower basin, along with enough free space in the upper
one to accommodate the extra water transferred (10).

V up
h +

t∑
t′=1

∑
r∈R−

vresh,t′,r ≤ vlowh,t ≤ V
up

h −
t∑

t′=1

∑
r∈R−

vresh,t′,r ∀h, t (9)

V low
h +

t∑
t′=1

∑
r∈R+

vresh,t′,r ≤ vlowh,t ≤ V
low

h −
t∑

t′=1

∑
r∈R+

vresh,t′,r ∀h, t (10)

11



The amount of water linked to the activation of reserve is determined as
follows

vresh,t′,r =
3600 · 106 ·

(
resTh,t′,r + resPh,t′,r

)
ηh,t′ · ρ · g · hnet

h,t′
(11)

where g = 9.81 m/s2, ρ is the volumetric mass density of water (1000 kg/m3).
In (11), nonlinearities arise from the efficiency ηh,t′ and the net head available
hnet
h,t′ . Here, conservative values are chosen, thus overestimating the volume

of water necessary for reserves vresh,t′,r and hedging against infeasible states.
The water volume within each reservoir at a time step t is obtained based

on the water volumes at the previous time step t− 1 and the current water
discharge qih,t, as shown by (12) and (13).

vuph,t = vuph,t−1 +
(
qPh,t − qTh,t

)
·∆t ∀h, t (12)

vlowh,t = vlowh,t−1 +
(
qTh,t − qPh,t

)
·∆t ∀h, t (13)

Each PHES unit has three distinct operating states, i.e., idle, pump and
turbine modes. Only one mode is accessible over a given time period t,
which is enforced by (14). Then, the water discharge is upper bounded by
Equations (15) - (16).

zPh,t + zTh,t ≤ 1 ∀h, t, zih,t ∈ {0, 1} (14)

qPh,t ≤ zPh,t · qhP ∀h, t (15)

qTh,t ≤ zTh,t · qhT ∀h, t (16)

At the end of the scheduling horizon, the water stored in the upper reser-
voir represents future financial values. The target amount of water to retain
in the upper reservoir at the end of the horizon t = T is set as a threshold
using (17).

vuph,t=T ≥ V target
h ∀h (17)

The net head depends on the water level in both reservoirs, which are
themselves dependent on the water volumes through the reservoir geometry
(18) and (19). Due to the friction of the fluid against the penstock walls and
the inner turbulence losses, the net head is lower than the gross head (21).
This head loss is usually modeled as proportional to the square of the water
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discharge (20) [31].

hup
h,t = fup

h,t

(
vuph,t

)
∀h, t (18)

hlow
h,t = f low

h,t

(
vlowh,t

)
∀h, t (19)

hloss
h,t = clossh ·

(
qTh,t + qPh,t

)2 ∀h, t (20)

hnet
h,t = hup

h,t − hlow
h,t︸ ︷︷ ︸

gross head

−hloss
h,t ∀h, t (21)

Equations (22) and (23) enforce the power bounds of the feasible operat-
ing zones while considering the possible reserve participation.

zPh,t · pPh,t +
∑
r∈R+

resPh,r ≤ pPh,t ≤ zPh,t · pPh,t −
∑
r∈R−

resPh,r ∀h, t (22)

zTh,t · pTh,t +
∑
r∈R−

resTh,r ≤ pTh,t ≤ zTh,t · pTh,t −
∑
r∈R+

resTh,r ∀h, t (23)

Figure 3: Domain modeling of the UPC in turbine mode using a trapezoid.

Finally, the turbine/pump operating point at each time step must com-
ply with the unit performance curve (UPC). The UPC is a three-dimensional
non-convex non-concave relationship between the net head, the ouptut power
and the water discharge. Both pump and turbine modes are characterized by
their own UPC curvature (24) and UPC domain (Figure 1). The UPC do-
mains must be respected since the hydraulic machine risks to be unstable out
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of these zones due to damaging mechanical vibrations or cavitation effects.
The safe power bounds of the UPC domain pi

h,t
and pih,t vary non-linearly

with respect to the net head hnet
h,t . To keep the problem tractable and avoid

a non-linear formulation, each domain is approximated by a trapezoid, as
shown in Figure 3, following Constraints (25) and (26).

pih,t = fUPC,i
h

(
qih,t, h

net
h,t

)
∀h, t, i ∈ {T,P} (24)

pi
h,t

=
pi
h
(H

net

h )− pi
h
(Hnet

h )

H
net

h −Hnet
h

· hnet
h,t + pi

h
(Hnet

h ) ∀h, t, i ∈ {T,P} (25)

pih,t =
pih(H

net

h )− pih(H
net
h )

H
net

h −Hnet
h

· hnet
h,t + pih(H

net
h ) ∀h, t, i ∈ {T,P} (26)

3. Data-driven Reformulation of Unit Performance Curves

Traditionally, the UPCs (24) are approximated using a piecewise linear
reformulation. To reduce the resulting modeling inaccuracies, we introduce a
data-driven strategy relying on Neural Networks (NNs), which can be exactly
reformulated as a set of mixed-integer linear constraints.

3.1. Neural Network Modeling

Neural Networks (NNs) have long demonstrated their ability to model [32]
non-linear dynamic system with great accuracy. They can also be used to go
further and control such complex systems [33]. Figure 4 depicts an example
of feed-forward fully-connected NN. In this type of NN, the propagation of
the information between two layers is described by Equation (27) where ŷ(l)

is the input vector of layer l composed of K(l); W (l) is the weight matrix of
size K(l)×K(l−1); y(l−1) is the output vector of size K(l−1) of layer l−1; B(l) is
the biais vector of size K(l) of layer l. We can enforce sparsity on the weight
matrix W (l) by destroying some connections between neurons (i.e., pruning
weights). In this work, a weight pruning rate of 25% is imposed on certain
architectures referred to as ”sparse”.

ŷ(l) = W (l) · y(l−1) +B(l) (27)

Each neuron takes a scalar input (an element of ŷ(l)) and applies an activation
function to obtain the scalar output. We selected the Rectified Linear Unit
(ReLU) as the activation function since it enables to reformulate the NN as
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Figure 4: Feed-forward fully-connected NN with four input elements, two hidden layers
with two neurons each and an output layer with one neuron.

a set of mixed-integer linear constraints. In addition, the ReLU quickens
training and reaches higher accuracy for deep conventional NNs [34]. Similar
observations were performed for sparse NNs [35]. The ReLU is depicted by
Figure 5 and the mathematical formulation is given by (28).

Figure 5: Rectified Linear Unit (ReLU) function.

y(l) = max(ŷ(l), 0) (28)

The reformulation of the ReLU function requires the introduction of one
binary variable bk, two continuous scalar variables ŷk and yk, and four con-
straints per neuron (29)-(33) [36]. Therefore, the complexity scales with the
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number of neurons.

bk ∈ {0, 1} (29)

yk ≤ ŷk − Ŷ min
k · (1− bk) (30)

yk ≥ ŷk (31)

yk ≤ Ŷ max
k · bk (32)

yk ≥ 0 (33)

The parameters Ŷ min
k and Ŷ max

k must be carefully chosen since they im-
pact the tightness of the reformulation. An effective way to determine the
value of these parameters is to record the minimum and maximum values
of Ŷk encountered during the NN training. This results in an exact, com-
putationally efficient data-informed approximation of the underlying ReLU
function.

3.2. Neural Network Formulation for Unit Performance Curve Modeling

In this subsection, the use of NNs as regressors to model the UPCs associ-
ated with the pump and turbine modes of PHES units is described. Firstly,
the modeling of a single UPC is explained. Secondly, this first model is
extended to account for the three operating modes (pump, turbine, idle).

A feed-forward fully-connected NN can be build to learn the UPC, using
the net head and power as inputs to predict the water flow rate. Once trained,
the NN is translated into constraints following Equations (27) and (29)-(33).

When the UPC of each mode is modelled with its own NN, the problem
becomes infeasible. Indeed, for any pair (hnet, p), each NN imposes its own
water discharge q, such that the model becomes inconsistent. In order to
address this problem, the constraints of each NN should only be binding
when the PHES is operating in the corresponding mode. In particular, the
NN-constrained pump UPC should not be binding when the PHES is in
turbine mode, and vice-versa.

It is thus necessary to decouple the output of the NN and the water
discharge variable qih,t. It can be achieved using a big-M relaxation on the
NN output introducing variable Bi

h,t (35). However, because the range of
NN inputs is limited by (30) and (32), these inputs must also stay within
their training range. Consequently, a big-M relaxation must also be applied
on the NN inputs. Since the net head range is identical for both pump and
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turbine modes, only the power input must be relaxed via variable Ai
h,t (34).

The constants involved in the big-M relaxations must be chosen as small as
possible to maintain the tightness of the resulting model.

pih,t +M1ih · (1− zih,t) ≤ Ai
h,t ≤ pih,t +M1

i

h · (1− zih,t) ∀h, t, i ∈ T, P

(34)

qih,t +M2ih · (1− zih,t) ≤ Bi
h,t ≤ qih,t +M2

i

h · (1− zih,t) ∀h, t, i ∈ T, P

(35)

3.3. A Single Neural Network For Joint Modeling of Pump And Turbine Unit
Performance Curves

Here, we further simplify the approach by using a single NN to model
both UPCs. By considering the power consumption of the pump as negative
and the power generation of the turbine as positive, a single NN needs to be
trained to fit both curves. Interestingly, this strategy bypasses the need to
make the MILP constraints of UPC curves unbinding when the PHES is in
operation. However, they must still be unbinding when the PHES is idle.

3.4. Market-based Simulator

The PHES operation schedule (obtained at the end of the optimization)
may be physically infeasible, which arises from the approximations in the
underlying model (e.g., on the UPCs and their bounds). In such cases, the
PHES operator gets exposed to financial risks due to the need to adjust
its market positions on the intraday or real-time imbalance schemes. In
order to quantify those deviations in actual revenues, an advanced ex-post
analysis is performed using a detailed simulator of the PHES revenue streams
in the different (energy and reserve) markets, accounting for re-dispatching
decisions.

The simulator used in this work takes the hourly decision output from
the optimization problem and emulates the resulting PHES operations in
the actual market environment. The simulator is characterized by a detailed
representation of the PHES operation (with a fine timescale) and the different
market floors (day-ahead and real-time stages for both energy and reserve
products). Hence, it enables to accurately quantify the actual (ex-post) value
of the PHES strategy.

It requires far less resources than an optimization process, which allows
to drastically reduce the time granularity of the procedure. Whereas the
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Algorithm 1 Simulator

Initialization of the water volumes and head levels:

hnet,sim
0 , hup,sim

0 , hlow,sim
0 , vup,sim0 , vlow,sim

0 ← hnet
0 , hup

0 , hlow
0 , vup0 , vlow0

for t = 00:01 to 24:00 with 1 minute time step do

Retrieve real power range [psim
h,t

, psimt ] based on UPC(hnet,sim
t−1 )

Tighten the bounds considering the reserve: [psim res
t

, psim res
t ]

Set psimt ∈ [psim res
t

, psim res
t ] as close to poptit as possible

Get water flow rate qsimt = UPC(hnet,sim
t , psimt )

if qsimt > qmax
t then

if {(p′t, q′t) ∈ UPC : q′t ≤ qmax
t and p′t ∈ [psim res

t
, psim res

t ]} ≠ ∅ then

qsimt ← q′t with q′t the closest to qoptit

psimt ← p′t
else if {(p′t, q′t) ∈ UPC : q′t ≤ qmax

t and p′t ∈ [psim
t

, psimt ]} ≠ ∅ then

qsimt ← q′t with q′t the closest to qoptit

psimt ← p′t
else

Set the machine in idle mode: psimt , qsimt ← 0, 0

end if

if Modet ̸= Modet−1 then

Set the machine in idle mode: psimt , qsimt ← 0, 0

end if

end if

Update water volumes and head levels

end for

Compute penalties and report ex-post profit

optimization considers hourly time steps, the simulator has a time granularity
of 1 minute. The state variables of the PHES simulator are indexed with the
upper-script ’sim’.

As depicted in Algorithm 1, the simulator is initialized (at the start of
the daily horizon) at the same values of heads and water volumes as the
optimization. With the exact net head and the reserve participation, the
actual available power range can be found. In this power range, the closest
operating point to the one provided by the optimization is selected. Based
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on the power and net head values, the actual water flow rate from the UPC
is retrieved. If water volume constraints are not met at the end of the minut-
wise time step, the simulator selects the closest water flow rate which meets
the constraints. Finally, water volumes and head values are updated, and the
loop is reiterated until the end of the daily horizon. The procedure enables
to quantify the exact value of the PHES scheduling, which is achieved using
the following four assumptions.

1. The simulator ensures that the operator can deliver the downward and
upward reserve at any time. Failure to meet this requirement leads to
a penalty of 500 e/MW.

2. The non-respect of the water volumes necessary for reserve activation,
which are expressed by (9) and (10), is penalized at a rate of 500
e/MWh. Equation (11) is used to convert water volumes into energy
capacity.

3. If the PHES operator cannot comply with its commitments on the
day-ahead energy market (DAM), electricity has to be purchased in
the imbalance settlement. The Positive Price (PP) and the Negative
Price (NP) attained from the Belgian TSO’s website, Elia, assuming a
dual pricing mechanism.

4. The lack of water in the upper reservoir at the end of the time horizon
with respect to the threshold, set by (17), is penalized at a rate of 100
e/MWh. On the contrary, a surplus of water is valued at a rate of
60.22 e/MWh, i.e., the daily average price of the MWh on the day-
ahead market, since it can be traded the following day.

4. Case Study

In this section, the two proposed approaches, i.e., using either a different
NN for each operation mode or a single NN for both modes, are applied to the
day-ahead scheduling problem of a fictitious PHES plant located in Maizeret,
Belgium. After presenting the data in subsection 4.1, subsection 4.2 discusses
the training outcome of the selected NN architectures. The NN models are
then embedded within the optimization and the results are presented and
analyzed in subsection 4.3. Both NN frameworks described in section 3 are
compared with a conventional uniformly segmented piecewise linear approx-
imation as well as a linear regression model.
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4.1. Data Description

PHES Specification
Upper and lower reservoirs

Shape Rectangular
Bottom surface 30, 000 m2

Total capacity 735, 000 m3

Initial volume 367, 500 m3

Height difference 74.5 m

Francis turbine

Rated power 10 MW
Ramping ability 4 MW/min
OPEX 3.8 e/MWh

Day-ahead Market
Energy prices [e/MWh]

Minimum price (4am) 39.9
Maximum price (7pm) 80.3
Average price 60.2

Reserve capacity prices [e/MWh]

FCR 20
aFRR 15
mFRR 10

Table 1: Fictitious PHES and day-ahead market specifications.

The various parameters used to perform the case study are gathered in
Table 1. The time-horizon is set to 24 hours (day-ahead scheduling) with
an hourly time step. The fictitious PHES plant in Maizeret is made up
of two basins separated by a height difference of 74.5 m. Each reservoir is
of rectangular shape with a bottom surface of 30,000 m2 and has a total
water capacity of 735,000 m3. The basins start the day half full (i.e., with
367,500 m3 of water) while, at the end of the time horizon, the upper reservoir
is expected to contain at least 250,000 m3 of water. The PHES station is
equipped with a variable-speed Francis pump-turbine featuring a rated power
of 10 MW. Its ramping ability stands at 4 MW/min for both upward and
downward directions.

Day-ahead market prices are based on BELPEX data from February 7,
2017, and range from 39.9 e/MWh at 4am to 80.3 e/MWh at 7pm. Figure 6
depicts the positive and negative imbalance prices for the day as retrieved
from the Belgian TSO website. The full price profile can be seen in Fig-
ure 7. The operating reserve capacities are valued at 20 e/MW for FCR, 15
e/MWfor aFRR and 10 e/MW for mFRR. PHES operating costs are set at
3.8 e/MWh in all modes.

The optimization is solved using Gurobi Optimizer version 10.0.0 build
v10.0.0rc2 (mac64[arm]) on an Apple M1 Pro chip with 32GB of RAM. The
MIP gap is set at 1% with a time limit of 10 minutes.
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Figure 6: Positive and Negative Prices for February 7, 2017.

4.2. Neural Network Training

The NNs used to model the UPCs are built using Tensorflow. Each NN
is trained on a dataset of 50050 data points. Those data points are based on
samples collected experimentally on a reduced-scale model of the hydraulic
machine. The batch size is set to 16 samples. An early stopping callback is
implemented so that training is interrupted when the loss of the validation
set is not decreasing for eight consecutive epochs, and the best weights are
saved. The quality of the fit, assessed on a test dataset of 500 samples using
the coefficient of determination R2, is presented in Table 2.
Overall, the training time is around one minute, which is insignificant since
NNs are trained offline only once before being integrated within the daily op-
timization routines. Increasing the number of neurons per layer and/or the
number of layers positively impacts the accuracy, whether the architecture
is sparse or not. Enforcing weight sparsity tends to decrease the resulting
NN accuracy, but this effect is marginal. One may observe that the pump
UPC is easier to model, which arises from its smoother profile over its smaller
operating domain compared to the turbine mode. For equivalent NN archi-
tectures, the quality of fit using a single NN is worse than using two. This is
particularly true when using a single neuron per layer.
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Conventional Sparse
aaaaaaaaa

N°
neurons

N° layers
1 2 3 1 2 3

Turbine 1 0.885 0.891 0.887
2 0.985 0.990 0.986 0.953 0.989 0.973
3 0.996 0.998 0.999 0.987 0.995 0.996
4 0.997 0.999 0.999 0.996 0.997 0.997
5 0.998 1.000 0.999 0.994 0.999 0.998

Pump 1 0.813 0.806 0.803
2 0.990 0.994 0.991 0.990 0.990 0.991
3 0.993 0.994 0.999 0.991 0.994 0.993
4 0.998 0.999 0.999 0.993 0.995 0.998
5 0.998 0.999 0.999 0.994 0.999 0.999

Both 1 0.225 0.176 0.287
2 0.894 0.895 0.941 0.814 0.926 0.888
3 0.962 0.991 0.994 0.892 0.930 0.958
4 0.990 0.997 0.999 0.940 0.991 0.997
5 0.992 0.997 0.999 0.989 0.995 0.998

Table 2: R2 values of the NNs on the test set at the end of training. Shadow cells highlight
the architectures reported in Table 3.

4.3. Model Performances

In this subsection, the impact of different UPC models in the day-ahead
PHES scheduling problem is investigated. In particular, both the expected
profit (as given at the end of the optimization) and the actual ex-post profit
(as computed by the market-based PHES simulator), along with the com-
putation time are analyzed. The best results for each type of model are
summarized in Table 3.

NNs are used to approximate the UPCs in two ways: (i) each UPC
is approximated by its own NN (two NNs are needed in total), and (ii)
both UPCs are approximated jointly by a single NN. Moreover, an advanced
method of Bayesian Optimization (BO), i.e., trust region Bayesian Optimiza-
tion (TuRBO) [37], was employed. Compared to conventional BO, TuRBO
avoids the over-exploration thus offering more resources for exploitation while

3The ex-post profit is obtained by subtracting the penalty to the expected profit and
accounting for the slight operational cost difference which is not reported in this table.
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N°
var.

Solving
Time [s]

MIP
Gap [%]

Expected
[e]

Penalty
[e]

Ex-post
[e]

2 NN 4710 600 56 2284 -133 2399 3

2NN sp. 3990 594 1 2321 -44 2368
1 NN 2694 600 99 2271 -107 2381

1 NN sp. 2694 600 69 2282 -101 2385
sota 3318 27 0 2278 170 2113
l.r. 726 1 0 2399 328 2072

TurBO 30 600 - - - 1959

Table 3: Results of (i) two conventional NNs, (ii) two sparse NNs, (iii) one conventional
NN, (iv) one sparse NN, (v) the piecewise state-of-the-art (sota) model with 5 head and
5 power sub-intervals (25 pieces), (vi) the linear regression (l.r.) approximation of each
UPC and (vii) the trust region bayesian optimization algorithm. All the NN models give
the best ex-post profit in their respective category.

allowing for heterogeneous modelling. TuRBO relies on a set of local opti-
mization runs. Each local model is robust to noisy samples and estimates
precisely the uncertainty, akin to BO. This method calls the simulator to eval-
uate potential solution in an iterative fashion. Hence, there is no expected
profit and the ex-post profit is directly optimized.

The best results in terms of ex-post profit for each type of model are
depicted in Table 3, but more detailed outcomes are available in Appendix
A. The highest expected profit is given by the sparse 2NN architecture which
stands at 2321e. The PHES scheduling obtained with this architecture is
displayed in Figure 7.
The plant is operated in turbine mode when the day-ahead prices are high
and in pump mode when they are low, thereby making profits through inter-
temporal arbitrage in the day-ahead energy market (Figure 7.a). The feasible
operational ranges of the hydraulic machine are displayed as light shadow
zones and dark shadow zones when accounting for the reserve capacity al-
located to the balancing stage. Both the inter-temporal arbitrage and the
reserve commitment, which forces the unit to operate in the dark shadow
zones, generate revenues.
It can be observed that the power bound approximation is of sufficient qual-
ity so that the decisions comply with the feasible power range, except from
6pm to 7pm where the turbine power scheduled is too high, thereby not
complying with the upward reserve capacity commitment. The simulator
assumes the plant operator does not want to risk any disciplinary issues for
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(a) (b)

(d)(c)

Figure 7: The outcome of the model using two sparse NNs with three layers of four
neurons: (a) the electricity prices on the day-ahead market and the power decisions of the
optimization, (b) power decisions as corrected by the simulator, (c) the water flow rate
decisions of the optimization, (d) water flow rate decisions as corrected by the simulator.

not being able to provide the contracted reserve. Therefore, the simulator
continuously adjusts the turbine power over the hour to be as close as possi-
ble to its offer on the day-ahead energy market while respecting the reserve
commitment (Figure 7.b). It results in a slight penalty of 48e because of
the consequent real time imbalance. Nevertheless, the imbalance penalty is
offset by the excess of water remaining in the upper reservoir which adds
91e leading to an ex-post profit of 2368e. Figure 7.c and Figure 7.d display
the water flow rates as decided by the optimization and corrected by the
simulator, respectively.

Interestingly, all NN approximations are able to yield higher ex-post prof-
its than the state-of-the-art methods. In particular, using two NNs with three
layers of 4 neurons gives the best ex-post profit, 2399e, which is an increase
of 11.3% compared to the piecewise linear approach.
For the piecewise linear UPC approximation, the head and the power spaces
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are partitioned into five subintervals, which amounts to fit each UPC with
25 planes. The day-ahead schedule is obtained in only 29s for an expected
profit of 2278e. The simulator yields an ex-post profit of 2113e because of
170e of penalties (see Table 3).
A linear regression model can be used to fit each UPC. Although the resulting
problem is still mixed-integer linear due to the remaining presence of binaries
to discriminate between operating modes, the solving time plummets to 1s.
This is a drastic reduction with respect to the piecewise linear UPC model.
The expected profit is higher than for its piecewise counterpart (2399e).
However, because the linear approximation is unable to fully capture the
complexity of the UPC, high penalties (298e) are incurred, which leads to
a smaller ex-post profit (2102e) than the best NN-based formulation, and
thus to a high disappointment for the PHES operator. Lastly, the best result
obtained with the TuRBO algorithm lies even lower at 1959e. Over the 10
runs, one did not converge. The nine others reaped a average ex-post profit
of 1878e. This indicates that the method struggles to capture the complexity
of the problem, especially the participation in the reserves due to the high
penalties incurred in case of inaccurate reserve commitments.

Figure 8 depicts the average performances of the various NN architec-
tures4. Increasing the UPC quality of fit improves the economic value of
the PHES scheduling. In particular, for the model with 2 NNs, the average
ex-post profit increases from about 2110e for a neuron to over 2370e for
5 neurons per layer. It only takes two neurons per layer to outperform the
piecewise linear approach. However, when using a single NN, the average
ex-post profit starts at 501e and rises up to 2343e. Such a bad outcome
for the one-neuron architectures was to be expected given the poor modeling
performances displayed during training. At three neurons per layer, the aver-
age ex-post profit stands at 2229e which is higher than the state-of-the-art.
As anticipated, the solving time tends to increase with the number of neu-
rons per layer. It should be noted that some NN architectures with a higher
number of layers and neurons involve a computation time higher than the
target time limit of 10 minutes. For these cases, the MIP gap is reported.

Interestingly, the approach with two NNs outperforms its single NN coun-

4Since the weight pruning rate is set to 25%, no pruning is conducted for layers con-
taining less than four weights. Therefore, the sparse architectures with hidden layers of
one neuron are not reported since they are equivalent to the ones without sparsity.
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Figure 8: Ex-post profits obtained using (left-hand side) two NNs (one per UPC); (right-
hand side) a single NN for both UPCs.

terpart in terms of average ex-post profit. Moreover, the former is faster to
solve for more complex architectures and exhibits tighter MIP gaps after 10
minutes.

4.3.1. The impact of weight pruning

The sparse architectures yield slightly lower ex-post profits, at the ex-
ception of the architectures using a single NN with four neurons per layer
(Figure 8). Since the pruning adds constraints to the NN training, it reduces
the modeling power of the resulting model. Still, such sparse NNs manage
to be very competitive and sometimes even outperform their conventional
counterpart, i.e., the best outcome for the single NN model is provided by
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Figure 9: Day-ahead electricity prices in Belgium for the ten days selected.

a sparse architecture, as reported in Table 3. Moreover, sparse architectures
tend to be quicker to solve, and if they are not solved in 10 minutes, the MIP
gap is smaller.

4.4. Performances over multiple scenarios

In order to assess the performance of the proposed methodology over a
representative number of scenarios, 10 days spanning from December 2022 to
September 2023 exhibiting different price levels and dynamics were selected.
For each day, the day-ahead electricity price were retrieved from Belpex.
Figure 9 depicts the price profile for these days. The impact of the water
volume in the upper reservoir at the beginning of each day is also evaluated.
Three configurations are studied wherein the upper reservoir is respectively
filled to 40%, 50% and 60%. In total, thirty scenarios are thus obtained,
three for each of the ten days.

27



(a) 0

5

10

15

20

25

30

·103

Fill Ratio = 0.4 Fill Ratio = 0.5 Fill Ratio = 0.6
E
x
-p
os
t
P
ro
fi
ts

[e
]

State-of-the-art Accurate NN Quick NN

(b)
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

0

10

Scenario

Im
p
ro
ve
m
en
t
[%

]

Figure 10: (a) Ex-post profit [e] of each scenario for the state-of-the-art piecewise method
with 25 planes, the 2NN-approximation with 3 hidden layers of 4 neurons and the 2NN-
approximation with one sparse hidden layers of 4 neurons; (b) Improvement [%] of the NN
models with respect to the state-of-the-art model.

Three models have been selected based on the outcomes of subsection 4.3:
(i) the best state-of-the-art model featuring 25 pieces, (ii) one model using
two sparse NNs of one hidden layer with four neurons and (iii) one model
using one sparse NN with three hidden layers of five neurons. The second
model is chosen for its trade-off between accuracy and computation burden
while the third model delivered the best ex-post profit on average.

The ex-post profit for each of the thirty scenarios is reported in Fig-
ure 10 (solid lines). The NN-based optimization is chosen for its accuracy
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that consistently outperforms the state-of-the-art. The average ex-post profit
achieved by the accurate model is 12,897e, 4.3% higher than the state-of-
the-art at 12,504e while the second NN model reaches 12,702e of average
ex-post profit (i.e., 1.6% improvement).

The relative improvements in % brought by the NN models with respect
to the state-of-the-art model are also depicted in Figure 10 (dashed lines). It
can be seen that the Accurate NN model consistently outperforms the state-
of-the-art model. It also exhibits higher gains that the Quick NN model at
the exception of price profile 2 for fill ratios at 0.4 and 0.5.

Regarding solving times, the quickest model is the state-of-the-art that
provides results in 24s on average. Then, the quick NN model is solved in
106s, while the Accurate NN takes 440s on average. Therefore, the quite
consistent gain in profitability comes at the cost of a longer solving time.
Interestingly, the NN architecture can be chosen to obtain the desired trade-
off between accuracy (and thus higher ex-post profits) and solving time.

4.5. Sensitivity analysis to real-time penalties

The sensitivity of ex-post profits to penalties arising from the inability to
comply with the optimized day-ahead schedule is evaluated on the same sce-
nario as in Subsection 4.3, i.e., the price signal is from February 7, 2017 with
a starting upper reservoir half full. The same three models as in Subsection
4.4 are used.

There are four types of penalties:

1. The penalty for each MW of reserve capacity which cannot be pro-
vided. A commitment to the reserve must be maintained; otherwise,
the operator might be kicked out of the reserve market by the TSO.
Therefore, the minimum penalty is set to 500 e/MW for and can go up
to 2000 e/MW for each hour of overcommitted reserve capacity. The
range is covered by steps of 100 e/MW.

2. The imbalance settlement price which is incurred to the PHES operator
for deviating from their energy bid in the day-ahead market. The
imbalance settlement costs, namely PP and NP, are retrieved for each
day from the Belgian TSO’s website.

3. The cost associated with the lack of water in the upper basin at the
end of the time horizon. This water represents energy which cannot
be generated in the future because it was used in excess on the present
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day. The excess of expected profit by over-using the water can be
evaluated between the minimum and the maximum electricity prices
over the present day. This range is covered by steps of 5 e/MWh.

4. The value associated with the excess of water in the upper basin at
the end of the time horizon. This excess of water represents energy
which could be traded on the following days. One extreme assumption
is to consider this water valueless. On the contrary, one might argue
it could be sold the following day at the maximum day-ahead price.
Hence, the excess of water is considered to vary between 0 e/MWh
and the maximum electricity price on the given day, with steps of 5
e/MWh.

Table 4 summarizes the possible range for each penalty. In total, the impact
of 2484 combinations of parameters on the results of three models are studied.

Values Unit

Reserve Overcommitment 500 : 100 : 2000 e/MW
Imbalance Settlement TSO’s e/MWh

Lack of water λDA,min
t : 5 : λDA,max

t e/MWh

Excess of water 0 : 5 : λDA,max
t e/MWh

Table 4: Description of the various penalty values for each type of deviation studied in
the sensitivity analysis.

For each model, a normal distribution of the ex-post profits are obtained
and represented in Figure 11. Firstly, one can see that the distributions are
quite compact with standard deviations at 35.1e, 25e and 12.9e for the
state-of-the-art, the Accurate NN and the Quick NN models, respectively. It
means the ex-post results reported do not vary significantly with respect to
the penalty values. Secondly, the average profit of the state-of-the-art model
stands at 2119e well under 2313e and 2309e for the quick and accurate NNs,
respectively. Surprisingly, under the proposed sampling, the Quick NN model
results are very slightly higher on average and more concentrated than the
ones of the Accurate NN model. Thus, the Quick NN model is more robust
to changes in penalty values.
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5. Conclusion

In this work, NN-constrained optimization is introduced to improve the
quality of the PHES day-ahead scheduling problem by enhancing the accu-
racy of the UPCs modeling. Two approaches are developed. The first one
replaces each of the UPC (in turbine and pump modes) by its NN approxi-
mation. The second relies on a single NN to approximate both curves. The
NNs are reformulated exactly as a set of MILP constraints and embedded
into the PHES optimization in day-ahead and reserve markets.

In the case study, the best performance is achieved by the proposed NN-
constrained optimization, considering a fictitious PHES plant on a Belgian
site. Over thirty scenarios, the best NN model was able to improve the ex-
post profit of the state-of-the-art by 4.3%. The validity of the results for dif-
ferent ex-post penalty values was confirmed by looking at 2484 combinations.
The solving time of the optimization problem tends to quickly increase with
the complexity of the NN architecture. Pruning weights alleviates this prob-
lem by reducing the computational burden with a limited loss in the quality
of the decisions. Such sparse architectures are thus natural candidates for

31



capturing non-linear relationships in optimization problems. Overall, if the
focus is to reach the optimal decisions, NN-informed optimization is a great
tool for models presenting multidimensional non-linear relationships. More-
over, the architecture of the NNs can be adapted to find the right trade-off
between accuracy and computational burden. In the present case study, re-
sults support the use of one NN per non-linear relationship. If the solving
time must be under one minute, state-of-the-art piecewise approximations
perform well. For close to real-time decision-making, e.g., with a one second
time resolution, at the expense of the decision quality, a linear regression
of the UPCs is a promising lead. Bayesian optimization algorithms are not
able to outperform formal optimization and the randomness of the results is
another strong barrier their adoption.

This data-driven approach is generic and can be used in any optimization
problem wherein one or several complex, physically unknown, relationships
need to be modelled in a tractable fashion using the robustness of MILP
solvers. The findings of this study offer valuable insights into the practical
applications of neural network-constrained optimization by addressing the
challenges of PHES modeling. The work can be extended to capture the
market price uncertainty. Furthermore, the PHES operational cost model
could more accurately account for the wear and tear of the hydraulic machine.
Lastly, it would be interesting to investigate whether other NN reformulations
(e.g., using tighter equations for the ReLU function) can help decrease the
computation time.
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Appendix A: Results of the NN informed models
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Figure A.1: Ex-post profits obtained using (left-hand side) two NNs (one per UPC); (right-
hand side) a single NN for both UPCs.
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Appendix B: Results of the TuRBO algorithm

Run N° Ex-post Profit [e]

1 1887.79035
2 1832.12974
3 1862.14761
4 1854.69737
5 -3252.7209
6 1898.24603
7 1832.82968
8 1907.62627
9 1959.44507
10 1867.20086

Table A.3: Results of the TuRBO algorithm over the scenario presented in Section 4.3.
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