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Abstract
Active learning is a paradigm of machine learning which aims at reducing the amount of 
labeled data needed to train a classifier. Its overall principle is to sequentially select the 
most informative data points, which amounts to determining the uncertainty of regions 
of the input space. The main challenge lies in building a procedure that is computation-
ally efficient and that offers appealing theoretical properties; most of the current meth-
ods satisfy only one or the other. In this paper, we use the classification with rejection in 
a novel way to estimate the uncertain regions. We provide an active learning algorithm 
and prove its theoretical benefits under classical assumptions. In addition to the theoreti-
cal results, numerical experiments are carried out on synthetic and non-synthetic datasets. 
These experiments provide empirical evidence that the use of rejection arguments in our 
active learning algorithm is beneficial and allows good performance in various statistical 
situations.

Keywords  Active learning · Rejection · Nonparametric learning · Classification

1  Introduction

The aim of machine learning consists in designing learning models that accurately maps 
a set of inputs from a space X  called instance space to a set of outputs Y called label 
space. Nowadays, with the data deluge, obtaining a powerful learning model requires a 
lot of data from X  to be labeled, which is time consuming in many modern applications 
such as speech recognition or text classification. This motivated the development of other 
paradigms beyond classical prediction tasks. In this paper, we focus on prediction in the 
binary classification setting, that is Y = {0, 1} . In this framework, one of the most studied 
techniques to deal with this specificity is the iterative supervised learning procedure called 
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active learning (Cohn et al., 1994; Castro & Nowak, 2008; Balcan et al., 2009; Hanneke, 
2011; Locatelli et al., 2017, 2018) that aims at reducing the data labeling effort by carefully 
selecting which data need to be labeled. The goal of active learning is to achieve a high 
rate of correct predictions while using as few labeled data as possible. One of the key prin-
ciples of active learning is to identify at each step the region of the instance space where 
the label requests should be made, called uncertain region in this paper, also known as 
disagreement region in the active learning literature (Hanneke, 2007; Balcan et al., 2009; 
Dasgupta, 2011). Many techniques have been developed to this aim, both in parametric 
(Cohn et al., 1994; Hanneke, 2007; Balcan et al., 2009; Beygelzimer et al., 2009; Hanneke 
et al., 2014) and nonparametric settings (Minsker, 2012; Locatelli et al., 2017, 2018).

In this paper, we are particularly interested in the nonparametric setting, where several 
computational difficulties have so far hampered the practical implementation of the pro-
posed algorithms. For example, Minsker (2012) provides interesting theoretical results 
which partly motivated (Locatelli et al., 2017, 2018) as well as the present work, but it fails 
to provide a computationally efficient way to estimate the uncertain region.

To overcome these shortcomings, we present a new active learning algorithm using 
the paradigm called rejection. The latter typically allows the learning models to evaluate 
their confidence in each prediction and to possibly abstain from labeling an instance (i.e., 
"reject" this instance) when the confidence in the prediction of its label is too weak. This 
rejection will however be used in a novel way in this work to conveniently compute the 
uncertain region, as explained below.

Rejection and active learning typically differ on how they are interested in this uncertain 
region. In rejection, the interest in the uncertain region appears after the design of a learn-
ing model, that rejects a test point in order to avoid a misprediction. This is very useful 
in some applications such as medical diagnosis where a misprediction can be dramatic. 
However, in active learning, the uncertain region is used during the training process to pro-
gressively improve the model’s performance by requesting labels where the classification 
is difficult.

In our algorithm, we use rejection at each step k of the training process to estimate the 
uncertain region Ak ⊂ X  based on the information gathered up to this step. Then some 
points are sampled from the region Ak and their labels are requested. Based on these 
labeled examples, an estimator f̂k is provided, that is then used to assess for each x ∈ Ak 
the confidence in the prediction. The points where the confidence is low are rejected and 
are considered to form the next uncertain region Ak+1 , thereby progressively reducing the 
part of instance space X  on which a model remains to be constructed. We study the rate of 
convergence with respect to the excess-risk of our nonparametric active learning algorithm 
based on histograms (or kernel methods) under classical smoothness assumptions. It turns 
out that combining active learning sampling together with rejection allows for optimal 
rates of convergence. Using numerical experiments on several datasets we also show that 
our active learning process can be efficiently applied to any off-the-shelf machine learning 
algorithm.

The paper is organized as follows: in Sect.  2 we provide the background notions of 
active learning and rejection separately, then review some recent works that proposed to 
combine these two notions, although in a way that differs from ours. Then we describe our 
algorithm in Sect.  3 along with the theoretical guarantees about its rate of convergence. 
Practical considerations to take into account when applying our algorithm are discussed in 
Sect. 4. Numerical experiments are presented in Sect. 5 and we conclude the paper along 
with some perspectives for future work in Sect. 6. The full proof of our theoretical result is 
relegated to the Appendix.
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2 � Background

In this section we review the literature related to active learning in Sect. 2.1, and the 
reject option framework in Sect. 2.2. Thereafter in Sect. 2.3 we provide a review on the 
use of the rejection in the context of active learning.

2.1 � Active (and passive) learning

Given an i.i.d. sample (X1, Y1),… , (Xn, Yn) from an unknown probability distribution P 
defined on X × Y , the classification problem consists in designing a map g ∶ X ⟶ Y 
from the instance space to the label space. However, building such mapping might 
become a tricky task in particular situations where the labeling process of input 
instances are only available through time-consuming or expensive requests to a so-
called oracle. In such applications, one might however have access to a huge amount 
of unlabeled data from the instance space. This motivated the use of the active learning 
paradigm (Cohn et al., 1994) that aims at reducing the data labeling effort by carefully 
selecting which data to label. In contrast, we call passive learning the setting where the 
model, for budget N, has access at once to N labeled observations randomly queried 
from the joint distribution P.

Active learning algorithms were initially designed according to somewhat heuristic 
principles (Settles, 1994) without theoretical guarantees on the convergence nor on the 
expected gain with respect to passive learning. The theory of active learning has then 
gradually developed (Cohn et al., 1994; Freund et al., 1997; Balcan et al., 2009; Han-
neke, 2007; Dasgupta et al., 2007; Castro & Nowak, 2008; Minsker, 2012; Hanneke & 
Yang, 2015; Locatelli et al., 2018, 2017; Hanneke et al., 2022).

We are particularly interested in the nonparametric setting, where regularity and 
noise assumptions are made on the regression function. Two types of regularity assump-
tions are made on the regression function. The first one was introduced in the seminal 
work by Castro and Nowak (2008) and was also used in Locatelli et al. (2018), where it 
is assumed that the decision boundary {x, �(x) = 1

2
} (where � is the regression function) 

is the graph of a smooth function. The second one, which was used in Minsker (2012); 
Locatelli et  al. (2017), assumes that the whole regression function is smooth. In this 
work, we will use similar regularity assumption as in Minsker (2012). Besides, the noise 
margin assumption corresponds to the so-called Tsybakov noise condition, and it was 
observed that it corresponds to the situation in which active learning can outperform 
passive learning (Castro & Nowak, 2008).

In this work, we design an efficient active learning algorithm, similar to that consid-
ered in Minsker (2012), but handling the uncertain region in an explicit and computa-
tionally tractable way using rejection. Our algorithm also comes with theoretical guaran-
tees of efficiency. Indeed, in dimension d ≥ 1 , if the random variable max(�(X), 1 − �(X)) 
has a bounded density (which, in turn, implies that the Tsybakov’s noise condition holds 
with parameter � = 1) and the regression function belongs to the Hölder class with 
parameter 𝛽 > 0 , it achieves a rate of convergence on the order n−

2�

2�+d−(�∧1) . This latter rate 
is optimal, as supported by the lower bound result provided in Minsker (2012), Loca-
telli et al. (2017). Furthermore, it outperforms the rates obtained in the passive learning 
counterpart, which are of the order of n−

2�

2�+d (Audibert & Tsybakov, 2007).
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2.2 � Classification with reject option

In the present contribution, we borrow some techniques from learning with reject option. 
Indeed, as detailed in Sect. 3, a core component of our active strategy relies on the confi-
dence we have on labels of the input instances. In contrast to the classical statistical learn-
ing framework where a label is provided for each observation x ∈ X  , learning with reject 
option is based on the idea that an observation for which the confidence on the label is 
not high enough should not be labeled. From this perspective, given a prediction function 
g ∶ X → Y , an instance x ∈ X  can be either classified and the corresponding label is g(x) 
or rejected and no label is provided for x (according to the literature, the output for x is ∅ 
or any symbol as ⊕ meaning reject). A classifier with reject option g̃ is then a measurable 
mapping g̃ ∶ X → Y ∪ {⊕} . Reject option has been first introduced in the classification set-
ting in Chow (1957). More recently, and since the development of conformal prediction 
in Vovk et al. (1999, 2005), reject option has become more popular and has been brought 
up to date to meet the current challenges. The paper by Herbei and Wegkamp (2006) pro-
posed the first statistical analysis of a classifier based on reject option. After these pio-
neer works, more papers on reject options appeared (e.g., Naadeem et al., 2010; Grandvalet 
et al., 2009; Yuan & Wegkamp, 2010; Lei, 2014; Cortes et al., 2016; Denis & Hebiri, 2019 
and references therein). They mainly differ on the way they take into account the reject 
option. In particular, we can distinguish three main approaches: (1) use the reject option 
to ensure a predefined level of coverage; (2) use the reject option to unsure a pre-specified 
proportion of rejected data; (3) consider a loss that balances the coverage and the propor-
tion of rejected data. It has been established that, while there is no best strategy, controlling 
the coverage requests more labeled data than controlling the rejection rate, which in turn 
asks more (unlabeled) data that the last strategy that does the trade-off. On the other hand 
this last approach does not control any of the two parameters.

Reject option has also been used in different contexts, such as in regression  (Vovk 
et al., 2005; Denis et al., 2020) or algorithmic fairness (Schreuder & Chzhen, 2021). These 
papers show how reject option can be used to efficiently solve issues that are intrinsic to the 
problem.

2.3 � Active learning with reject option

Most active learning schemes mentioned in Sect. 2.1 attempt to find the most "informative" 
samples in a region close the decision boundary, called uncertain region or disagreement 
region. Some recent works have refined this idea by adding an option to abstain from labe-
ling (i.e., reject) the points that are considered too close to the decision boundary.

Although the intersection of rejection and active learning seems natural, their combi-
nation is fairly recent. Many active learning works (Shekhar et al., 2021; Zhu & Nowak, 
2022; Puchkin & Zhivotovskiy, 2021) have provided algorithms that have rejection option, 
and they can be grouped depending on the studied excess error.

First, Shekhar et  al. (2021) considered the nonparametric framework under some 
smoothness and margin noise assumptions. The authors designed an active learning algo-
rithm with rejection option similarly to the standard reject option setting (Herbei & Weg-
kamp, 2006; Denis & Hebiri, 2019) by deciding not to label the instances which are located 
near to the decision boundary. In their framework, they derived rates of convergence for 
an excess-risk dedicated to the reject option (called Chow’s risk) and showed that these 



Machine Learning	

1 3

rates are better than those obtained by the passive learning counterpart (Denis & Hebiri, 
2019). However it is not obvious in this setting how to obtain computationally tractable 
algorithms, among others because the hypotheses class needs to be restricted.

Second, Puchkin and Zhivotovskiy (2021) considered an empirical risk minimiza-
tion approach and dealt with model misspecification. That is, given a class of classifiers 
F  (which possibly does not contain the Bayes classifier), the aim is to find an estima-
tor f̂  which achieves minimum excess error of classification. By using the reject option, 
Puchkin and Zhivotovskiy (2021) proved that exponential savings in the number of label 
requests are possible in model misspecification under Massart noise assumption (Massart 
& Nédélec, 2006). Their algorithm outputs an improper classifier f̂  (that is f̂  ∉ F  possibly) 
and mainly consists of two subroutines. The first one, named Mid-algorithm, combines the 
well-known disagreement-based approach (Hanneke, 2007; Balcan et al., 2009) and aggre-
gation strategies (Mendelson, 2017) to yield a classifier with rejection option. The second 
subroutine focuses on converting this classifier into a classical one f̂  (without rejection 
option), accomplished through a randomization process. The work of Puchkin and Zhi-
votovskiy (2021) was extended by Zhu and Nowak (2022) which provides a more efficient 
active learning algorithm that overcomes the difficulty of computing the uncertain region. 
More specifically, Zhu and Nowak (2022) considered more general noise assumptions (and 
therefore more general hypotheses classes) and built a classifier based on the rejection rule 
with exponential saving in labels for which they establish risk bounds in a general paramet-
ric setting. At each trial, the classifier does not label points for which the doubt is substan-
tial. This decision of abstaining from classifying a point is taken by considering a set of 
"good" classifiers among a class of functions. In particular, a point is rejected if all "good" 
classifiers consider it as a difficult point, that is, the corresponding score is within the inter-
val [1∕2 − � , 1∕2 + �] , where � is a (small) positive real value. However, the empirical per-
formance of the proposed algorithm is not considered in the paper. In the present paper, 
we focus on the classical active learning problem and derive rates of convergence for this 
problem, along with a practical implementation of the algorithm.

2.4 � Contributions

The recent works mentioned in Sect. 2.3 (Puchkin & Zhivotovskiy, 2021; Shekhar et al., 
2021; Zhu & Nowak, 2022) provide interesting theoretical contributions showing the inter-
est of combining active learning and reject option. However the practical implementation 
of the related algorithms is not straightforward, notably because it is computationally dif-
ficult to estimate the uncertain region.

In this work, we use a peculiar combination of rejection and active learning to propose 
an active learning which is easy to compute in practice. More precisely, our contributions 
are threefold:

•	 We transform the typical classification with reject option framework (from Sects. 2.2 
and 2.3) to estimate the so-called uncertain region in a novel way. Not only does this 
methodology provide a computationally efficient algorithm for active learning, but it 
also can be remarkably applied to any off-the-shelf machine learning algorithm. This is 
a twofold major improvement over (Minsker, 2012).

•	 Beyond the appealing numerical properties of our procedure, we show that it achieves 
optimal rates of convergence for the misclassification risk and the active sampling 
under classical assumptions in this setting.
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•	 We illustrate the benefit of our method for synthetic and real datasets.

3 � Active learning algorithm with rejection

In this section, after introducing some general notations and definitions, we present our 
algorithm in a somewhat informal way, and then provide the theoretical guarantees under 
some classical assumptions.

3.1 � Notations and definitions

Throughout this paper X  denotes the instance space and Y = {0, 1} is the label space. Let 
P be the joint distribution of (X,  Y). We denote by Π the marginal probability over the 
instance space and by �(x) = P(Y = 1|X = x) the regression function. The performance 
of a classification rule g ∶ X → {0, 1} is measured through the misclassification risk 
R(g) = P(g(X) ≠ Y) . With this notation, the Bayes optimal rules that minimises the risk R 
over all measurable classification rules (Lugosi, 2002) is given by g∗(x) = 1{�(x)≥1∕2} and 
we have:

where f ∗(⋅) = max(�(⋅), 1 − �(⋅)) is called score function. For any classification rule g, the 
excess risk is given by

In this work, we consider the following active sampling scheme. For each A ⊂ X  , and 
M ≥ 1 , we can sample (Xi, Yi)1≤i≤M i.i.d. random variables such that 

1.	 for all i = 1,… ,M , Xi is distributed according to Π(.|A);
2.	 conditionally on Xi , the random variable Yi is distributed according to a Bernoulli ran-

dom variable with parameter �(Xi).

[1.] As is commonly done in the active learning setting, we assume that the marginal dis-
tribution of X is known (Minsker, 2012; Locatelli et al., 2017). In the next paragraph, we 
describe our active algorithm for classification. As important tools that nicely merge the 
active sampling and the use of the rejection, we will pay a particular attention to the defini-
tion of the uncertain region and the rejection rate.

3.2 � Overall description of the algorithm

With a fixed number of label requests N (called the budget), our overall objective is to 
provide an active learning algorithm which outputs a classifier that performs better than its 
passive counterpart. The framework that we consider (Algorithm 1) is inspired from that 
developed in Minsker (2012), in which we incorporate rejection to estimate the uncertain 
region.

R(g∗) = 1 − �Π(f
∗(X)) ,

(3.1)R(g) − R(g∗) = 2�

[||||�(X) −
1

2

||||1{g(X)≠g∗(X)}
]

.
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In the following, let (�k)k≥0 be a sequence of positive numbers. Let (Nk)k≥0 be a sequence 
defined such that N0 = ⌊√N⌋ and Nk+1 = ⌊cNNk⌋ with cN > 1 (e.g., cN = 1.1 in Sect. 5). 
Furthermore, we consider A0 = X = [0, 1]d the initial uncertain region, and thus �0 = 1 . 
We construct a sequence of uncertain regions (Ak)k≥1 and for k ≥ 1 , an estimator 𝜂̂k of � on 
Ak is provided.

First, our algorithm performs an initialization phase:

•	 Initially, the learner requests the labels Y of N0 points X1,… ,XN0
 sampled in A0 accord-

ing to Π0 = Π.
•	 Based on the initial labeled data DN0

= {(X1, Y1),… , (XN0
, YN0

)} , an estimator 𝜂̂0 of � 
on A0 is computed and an initial classifier g𝜂̂0 = 1{𝜂̂0≥1∕2} is provided.

•	 An estimator of the score function f̂0(x) = max(𝜂̂0(x), 1 − 𝜂̂0(x)) associated to 𝜂̂0 is com-
puted.

Afterwards, our algorithm iterates over a finite number of steps until the label budget N has 
been reached. Step k ≥ 1 is described below. 

1.	 Based on the previous uncertain region Ak−1 , a constant �k is computed such that con-
ditionally on the data 

 These (�k)k≥0 explicitly define the sequence of the rejection rates  (Denis & Hebiri, 
2019).

2.	 This constant �k is used to construct the current uncertain region Ak which is the set 
where the previous classifier g𝜂̂k−1 (⋅) = 1{𝜂̂k−1(⋅)≥1∕2} might fail and thus abstains from 
labeling: 

 where f̂k−1(x) = max(𝜂̂k−1(x), 1 − 𝜂̂k−1(x)).
3.	 According to �

(
.|Ak

)
 the learner samples i.i.d. (Xi, Yi), i = 1,… , ⌊Nk�k⌋ used to compute 

an estimator 𝜂̂k of � on Ak.
4.	 The learner updates the classifier over the whole space X  as follows 

After the iteration process, the resulting active classifier with rejection is defined point-
wise as

3.3 � Theoretical guarantees

This section is devoted to the theoretical properties of the proposed procedure under com-
mon assumptions which are presented in Sect. 3.3.1. Thereafter, we state our main results 

(3.2)𝜆k = max
{
t, Π

(
f̂k−1(X) ≤ t|Ak−1

) ≤ 𝜀k
}

,

Ak = {x ∈ Ak−1, f̂k−1(x) ≤ 𝜆k} ,

𝜂̂ =

k−1∑
j=0

𝜂̂j1{Aj�Aj+1}
+ 𝜂̂k1{Ak}

.

(3.3)g𝜂̂(x) = 1{𝜂̂(x)≥1∕2} .
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in Sects. 3.3.2 and 3.3.3 that mainly show that, under classical smoothness conditions, our 
algorithm achieves an optimal rate of convergence for the excess-risk when the considered 
classifier is the histogram rule, or the kernel method, according to the regularity of the 
regression function � . We conclude with some general remarks in Sect. 3.3.4.

3.3.1 � Assumptions

We assume that X = [0, 1]d and consider two assumptions that are widely considered for 
the study of rates convergence in the passive  (Audibert & Tsybakov, 2007; Gadat et  al., 
2016) or active settings (Minsker, 2012; Locatelli et al., 2017).

Assumption 3.1  (Smoothness assumption) The regression function � is �-Hölder for some 
� ∈ (0, 1) , that is, there exists s > 0 , such that for all x, z ∈ [0, 1]d:

Assumption 3.2  (Strong density assumption) The marginal probability admits a density 
pX and there exist constants 𝜇min,𝜇max > 0 such that for all x ∈ [0, 1]d with pX(x) > 0 , we 
have:

Assumption  3.1 imposes the regularity of the regression function � while Assump-
tion 3.2 ensures in particular that the marginal distribution of X admits a density which is 
bounded from below. Furthermore, we also assume that f(X) admits a bounded density.

Assumption 3.3  (Score regularity assumption) Let f (x) = max(�(x), 1 − �(x)) be the score 
function. The random variable f(X) admits a bounded density (bounded by C > 0).

Assumption 3.3 has two important consequences. The first one is that the cumulative 
distribution function Ff  of f(X) is Lipschitz. The second one is that the so-called Mar-
gin assumption  (Tsybakov, 2004) is fulfilled with margin parameter � = 1 . This Margin 
assumption is also considered in Minsker (2012) for the study of optimal rates of conver-
gence in the active learning framework.

3.3.2 � Rates of convergence

In this section, we present our main theoretical result (Theorem 3.5) which highlights the 
performance of our algorithm. While our methodology can handle any machine learning 
algorithm for the estimation of the regression function � , we provide theoretical guarantees 
with the histogram rule (whose definition is recalled in Definition 3.4) for the estimation of 
the regression function at each step of the procedure described in Sect. 3.2, as in Minsker 
(2012). For completeness, we provide the full proof of our result in this particular case in 
the Appendix.

Let us denote by Cr = {Ri, i = 1,… , r−d} a cubic partition of [0, 1]d with edge length 
r > 0.

|�(x) − �(z)| ≤ s ∥ x − z ∥�
∞

.

�min ≤ pX(x) ≤ �max .
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Definition 3.4  (Histogram rule) Let A be a subset of [0, 1]d . Consider a labeled sample 
DNA

=
{
(XA

1
, Y1),… , (XA

NA
, YNA

)
}

 of size NA ≥ 1 , such that XA
i
 (i = 1,… ,NA) is distributed 

according to Π(.|A) . The histogram rule on A is defined as follows. Let Ri ∈ Cr with 
Ri ∩ A ≠ � . For all x ∈ Ri,

It is known that in the passive framework, the histogram rule achieves optimal rates 
of convergence (Devroye et al., 1996).

Theorem  3.5  Let N be the label budget, and � ∈
(
0,

1

2

)
 . Let us assume that Assump-

tions  3.1,  3.2, and  3.3 are fulfilled. At each step k ≥ 0 of the algorithm presented in 
Sect. 3.2, we consider 

	 (i)	 𝜂̂k ∶= 𝜂̂Ak ,⌊Nk𝜖k⌋,rk , with rk = N
−1∕(2�+d)

k
,

	 (ii)	 and define (�k)k≥0 as �0 = 1 , and for k ≥ 1 , �k = min
(

1, log
(

N
�

)

log(N)N−�∕(2�+d)
k−1

)

.

Then with probability at least 1 − � , the resulting classifier defined in Equation(3.3) 
satisfies

where Õ hides some constants and logarithmic factors.

The above result calls for several comments. First, our active classifier ĝ based on the 
histogram rule is optimal for the active sampling w.r.t. the misclassification risk up to 
some logarithmic factors (see Minsker, 2012) for the minimax rates, by considering �
-Hölder regression function with � ≤ 1 and the margin parameter equal to 1). This rate 
is better than the classical minimax rate in passive learning under the strong density 
assumption which is of order N−

2�

2�+d , see for instance (Audibert & Tsybakov, 2007). Sec-
ond, the sequence of the rejection rates (�k)k≥0 should be chosen in an optimal manner 
guided by our theoretical findings. In particular, for each k, the value of �k is of the same 
order as an upper bound on the error w.r.t. the �∞-norm of 𝜂̂k−1 , valid with high prob-
ability. This value of �k is also linked to the probability of the uncertain region in the 
procedure proposed by Minsker (2012). However, the major difference with the latter 
reference is that our rejection rate is explicit and thus our algorithm can be efficiently 
computed due to the use of rejection arguments to determine the uncertain regions. 
Finally, our work can be extended to Hölder regression functions with parameter 𝛽 > 1 
which is the purpose of Sect. 3.3.3.

𝜂̂A,NA,r
(x) =

Π(A)

Π(Ri|A)
1

NA

NA∑
j=1

Yj1{Xj∈Ri}
.

(3.4)R(g𝜂̂) − R(g∗) ≤ �O
(
N

−
2𝛽

𝛽+d

)
,
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3.3.3 � Extension to higher orders of regularity ( ̌ > 1)

In the present section, we investigate the case of higher orders of Hölder regularity on the 
regression function � . We then assume that:

Assumption 3.6  (Smoothness assumption) The regression function � is �-Hölder for some 
𝛽 > 1 , that is, for all k ≤ � with � = ⌊�⌋ , the k-th derivative �(k) of � exists and there exists 
s > 0 , such that for all x, z ∈ [0, 1]d:

To extend our procedure to the case 𝛽 > 1 , we need to slightly modify our algorithm 
described in Sect. 3.2 in the following way. The changes rely on a more suitable calibra-
tion of the sequence �k , that will be expressed in Theorem 3.7 below, and in the estimation 
procedure that is used in the last step. In other words, the algorithm consists of two subrou-
tines that are inspired by the work of Locatelli et al. (2017).

•	 Subroutine 1. The estimators 𝜂̂1,… , 𝜂̂L−1 resulting from steps k = 1,… , L − 1 respec-
tively, are obtained according to the sub-steps 1–3 in Sect.  3.2 considering histo-
grams estimators (according to Definition 3.4). This means that for these steps nothing 
changes as compared to the case � ≤ 1 . We only have to take care that we calibrate �k 
according to the optimal rate of convergence of histogram rules (c.f., Theorem 3.7 for 
the precise calibration of �k).

•	 Subroutine 2. The estimator 𝜂̂L resulting from step L is obtained according to the sub-
steps 1–3 in Sect. 3.2 using kernel methods. The whole explicit description of the esti-
mator used in this step as well as all technical aspects are developed in Appendix C 
(see Eq. C.5 for the formal definition of 𝜂̂L ). However let us explain why we need to 
consider a different subroutine in the last step. In our methodology the rate of conver-
gence is governed by the rate obtained in this last step. Moreover, histograms are not 
smooth enough to achieve the right optimal rate of convergence when the regularity of 
� is smoother than Lipschitz. Therefore, we rely on kernel methods that are known to be 
optimal for the �∞-norm in Hölder classes (Tsybakov, 2008; Giné & Nickl, 2015) – see 
Appendix C for more details.

Finally, as in the case � ≤ 1 , the resulting active classifier with rejection is given point-wise 
by

with 𝜂̂ being the learner updated over the whole space X  as follows

Theorem  3.7  Let N be the label budget, and � ∈
(
0,

1

2

)
 . Let us assume that Assump-

tions  3.2,  3.3, and  3.6 are fulfilled. Consider the estimator 𝜂̂ in  (3.5) obtained from the 
above two-subroutines algorithm such that 

|�(�)(x) − �(�)(z)| ≤ s ∥ x − z ∥�−�
∞

.

g𝜂̂(x) = 1{𝜂̂(x)≥1∕2} .

(3.5)𝜂̂ =

L−1∑
k=0

𝜂̂k1{Ak�Ak+1}
+ 𝜂̂L1{AL}

.
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	 (i)	 𝜂̂k ∶= 𝜂̂Ak ,⌊Nk𝜖k⌋,rk , with rk = N
−1∕(2�+d)

k
,

	 (ii)	 we define (�k)k≥0 as �0 = 1 , and for k ≥ 1 , �k = min
(
1, log

(
N

�

)
log(N)N

−1∕(2�+d)

k−1

)
.

Then with probability at least 1 − � , the resulting classifier defined in Eq. (3.3) satisfies

where Õ hides some constants and logarithmic factors.

This result shows that our active learning algorithm based on rejection arguments achieves 
the optimal rate of convergence, when the margin parameter is equal to 1, which has already 
been discovered (Minsker, 2012; Locatelli et al., 2017). Notably, our methodology achieves 
a fast rate of convergence while allowing for efficient computation of the uncertain regions 
thanks to the reject option arguments.

3.3.4 � Some general remarks

While our methodology is rather general and can be applied to any off-the-shelf algorithm, 
providing a theoretical guarantee needs to specify the estimator. In the above results, we con-
sidered histogram estimators. This type of tools is particularly convenient for our purpose 
since they allow, for each k, to describe the uncertain region Ak as a union of cells of the parti-
tion Cr . As a consequence, we can provide, using the strong density assumption (i.e., Assump-
tion 3.2), an explicit lower bound of Π(Ak) which is crucial to get Theorem 3.5. Having a 
theoretical lower bound for this quantity should be algorithm-specific and is often a laborious 
task. We believe that, as a first step, our methodology can be extended to kNN or kernel-type 
estimators—for which the main challenge would be to describe the Ak , for instance as a union 
of balls in the case of kNN.

Moreover, Theorems 3.5 and 3.7 are established assuming the knowledge of the marginal 
distribution of X. This is a classical assumption in active learning that helps for sampling. 
However, it is possible to extend our result to unknown distributions at the price of an addi-
tional unlabeled sample and then an additional factor 1∕

√
size of the unlabeled sample.

In view of the above remarks, we discuss the practical implementation of our proposed 
algorithm in Sect. 4 below.

4 � Practical considerations

Some practical aspects of the procedure are discussed in Sect.  4.1 and a simple numerical 
illustration is provided in Sect. 4.2. The full numerical experiments are presented in Sect. 5.

4.1 � Uncertain region

In this section, we discuss the effective computation of the uncertain regions. Let k ≥ 1 repre-
sent the current step k of our algorithm. We denote by DM = {X1, Y1),… , (XM , YM)} the data 
that have been sampled until step k. The random variable f̂k−1 is the score function built at step 
k − 1.

(3.6)R(g𝜂̂) − R(g∗) ≤ �O
(
N

−
2𝛽

2𝛽+d−1

)
,
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The construction of the uncertain region Ak relies on �k which is solution of Eq. (3.2). First 
of all, we randomize the score function f̂k−1 by introducing a variable � distributed according 
to a Uniform distribution on [0, u] independent of DM and by defining the randomized score 
function f̃k−1 as

Considering the randomized score f̃k−1 instead of f̂k−1 ensures that conditionally on DM , the 
cumulative distribution function of f̃k−1(X, 𝜁 ) , denoted by Ff̃k−1

 , is continuous. Therefore, it 
implies that

Hence, 𝜆̃k is expressed simply as the �k-quantile of the c.d.f. Ff̃k−1
 . To preserve the statistical 

properties of f̂k−1 , the parameter u is chosen sufficiently small (e.g., u → 0).
Note that the computation of the c.d.f. Ff̃k−1

 requires the knowledge of the marginal dis-
tribution of X. In practice, this distribution may be unknown. In a second step, based on an 
unlabeled dataset DU

Mk
= {Xi, i = 1,… ,Mk} with Xi ∼ Π(.|Âk−1) , and (�1,… , �Mk

) i.i.d. 
copies of � , we consider an estimator 𝜆̂k of 𝜆̃k defined as follows

where conditionally on the data, F̂f̃k−1
 is the empirical c.d.f. of the random variable 

f̃k−1(X, 𝜁):

Furthermore, the unlabeled set DU
Mk

 is assumed to be independent of DM , and since it 
remains unlabeled, it does not contribute to the budget.

Formally, the uncertain region Ak is then defined as follows

Therefore, XM+1 ∼ Π
(
.|Ak

)
 , is sampled from Π such that f̃k−1(XM+1, 𝜁 ) ≤ 𝜆̂k with � distrib-

uted according to U[0,u].

f̃k−1(X, 𝜁 ) = f̂k−1(X) + 𝜁 .

𝜆̃k = max
{
t, Π

(
f̃k−1(X) ≤ t|Ak−1

) ≤ 𝜀k
}
= F−1

f̃k−1
(𝜀k) .

𝜆̂k = F̂−1

f̃k−1
(𝜀k),

F̂f̂k
(t) =

1

Mk

Mk∑
i=1

1{f̃k(Xi,𝜁i)≤t} .

Ak =
{
(x, 𝜁 ) ∈ X × [0, u], f̃k−1(x, 𝜁 ) ≤ 𝜆̂k

}
.
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Algorithm 1   Active learning with rejection

4.2 � Illustrative example

For illustrative purposes, a two-dimensional dataset of 106 data points is generated using a 
regression function �(x1, x2) =

1

2
(1 + sin(

�x2

2
)) . We choose the estimators 𝜂k to be linear, to 

make the comparison with the best linear classifier ( x2 = 0 ) straightforward. The budget 
is set to N = 1000 , and the sequence of Nk is chosen such that Nk = ⌊1.1Nk−1⌋ , starting 
with N0 = ⌊√N⌋ and �0 = 1 . The sequence of �k is defined such that �1 = 0.85 and the 
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subsequent �k are adapted from Theorem 3.5. The parameter Mk is set to 150. A discussion 
of this choice of parameters can be found in Sect. 5.2.

Figure 1 (left) represents the situation after the step k = 2 of the algorithm, with only a 
subset of the 106 data points represented for clarity. At step k = 1 and k = 2 , �k is computed 
using (3.2), which allows to classify the points in Âk−1 ⧵ Âk (represented in black for k = 1 
and in brown for k = 2 ). The points remaining in Â2 are colored in red if their label has 
already been requested to the oracle, and in blue otherwise. At subsequent steps, points in 
Ak are selected according to the rejection rates shown in the center part of Fig. 1, which 
shows the theoretical reject rates ( �k , defined in Algorithm 1) in blue and the experimental 
ones ( ̂𝜀k , counted as the number of points effectively rejected) in red. As a whole, the rejec-
tion rate is well estimated with only Mk = 150 unlabeled samples.

For comparison with its passive learning counterpart, a Support Vector Machine (SVM) 
algorithm is used, namely the SVC subroutine from scikit-learn (Pedregosa et  al., 
2011) with a linear kernel and a regularization parameter C = 5 ). We also use two baseline 
active learning methods: uncertainty sampling and query by committee (QBC), adapted 
from Lewis and Gale (1994) and Freund et al. (1997), respectively. All numerical experi-
ments are repeated 10 times. More details about the methods and thorough numerical 
experiments can be found in Sect.  5, the purpose of the current section being mostly to 
illustrate the algorithm. The learning curves for passive and active procedures are repre-
sented on the right of Fig. 1, up to a budget of 1000 points. The average learning curves 
over 10 repetitions are represented in red for active learning with reject, in green for active 
learning with uncertainty, in orange for active learning with QBC and in blue for passive 
learning with their respective error bars in lighter color. As expected with this simplis-
tic illustrative dataset, using any active learning procedure does not provide a substantial 
advantage in the long run compared to passive learning, because the optimal classifier is 
relatively easy to find in passive learning, even with noisy data. In Sect. 5 we will compare 
more thoroughly the active and passive classifiers on several datasets, and show that even 
when the accuracy converges to the same value, active learning with reject can prove more 
efficient at low budget.

Fig. 1   Left: Illustrative dataset after the step k = 2 of the algorithm. The points in black belong to Â
0
⧵ Â

1
 

and the brown ones to Â
1
⧵ Â

2
 . In Â

2
 are the red points whose labels have been requested to the oracle and 

the remaining points in blue. Center: theoretical ( �
k
 , blue) and experimental ( ̂𝜀

k
 , red with error bars in grey) 

rejection rates. Right: average accuracy computed over 10 runs for our active learning algorithm (red), pas-
sive learning (blue), active learning with uncertainty (green), active learning with QBC (orange)
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5 � Numerical experiments

In this section, we propose a numerical comparison of our algorithm to passive learning, as 
well as to two popular approaches for active learning.

5.1 � Classifiers and learning algorithms

To test the applicability of our algorithm to various estimators, we perform our experi-
ments with four classifiers: linear SVM, SVM with a Gaussian kernel, random forests and 
k nearest neighbors from the scikit-learn library (Pedregosa et al., 2011) using the 
following parameters: regularization constant C = 5 for SVM, 100 trees for random forests, 
k = 5 for kNN. The other parameters from these classifiers are kept to their default value.

For each classifier, we compare our active learning algorithm with its corresponding 
passive learning classifier, as well as two other baseline active learning methods: uncer-
tainty sampling and query by committee (QBC), adapted from Lewis and Gale (1994) and 
Freund et  al. (1997), respectively. In uncertainty sampling, the unlabeled training points 
are ranked according to the value of |�(x) − 0.5| and the informative (i.e., least confident) 
points are selected by batches of � examples with the lowest values. For QBC, a committee 
of 5 classifiers is created, each classifier being trained with an independent fraction of the 
labeled points. At each step, batches of m points are selected as informative points in the 
region where disagreement occurs between the members of the committee. To keep batches 
of points of the same order of magnitude as in our algorithm, we use � = m = N0 . The 
numerical experiments with each active or passive classifier are systematically repeated 10 
times, to report the average and standard deviation in all tables and figures.

5.2 � Parameters choice and sampling strategy

This section discusses some aspects of the practical implementation of our algorithm.
Parameters choice To perform numerical experiments, a few parameters of our model 

introduced in Sect. 3 have to be set. Although the objective of the paper is not to do exhaus-
tive searches to fine-tune these parameters, we perform experiments with several values of 
these parameters to illustrate their effect on the results, and present an overview of the 
main trends in Sect. 5.4.

First, the sequence of rejection rates is defined such that �0 = 1;�1 = c� ∈]0, 1[ and the 
subsequent �k are adapted from Theorem 3.5. If c� is small, the uncertain region Âk will be 
small, which corresponds to an "aggressive" strategy where many points are considered to 
be correctly classified at each step. This would be suitable for simple classification prob-
lems where a reliable estimate 𝜂̂ can be obtained with N0 points. Conversely, if c� is large, 
the strategy will be more "conservative" and more suitable for practical classification prob-
lems where we expect our algorithm to be most useful. We therefore use a value c� = 0.85 
in our simulations, tending towards the latter strategy. In Sect. 5.4 (Fig. 3), we show the 
effect of decreasing it to c� = 0.65 and increasing it to c� = 0.95.

Second, the constant cN defines the sequence {Nk}k≥1 as Nk = ⌊cNNk−1⌋ and thus the 
number of points asked to the oracle at each step k ( ⌊Nk�k⌋ on line 17 of Algorithm 1). If 
cN is large, the algorithm will tend to use many points at each step, thereby progressing 
by larger leaps and potentially consuming the budget faster. However, the effect of cN is 
intertwined with that of c� . Indeed, as can be seen on line 17 of Algorithm 1, the number 
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of points asked to the oracle at each step is ⌊Nk�k⌋ , where Nk = ⌊cNNk−1⌋ . This effect is 
shown in Sect.  5.4, where cN = 1.1 is increased to cN = 1.3 on Fig.  3. The choice of cN 
mostly depends on the available budget and the desired "aggressiveness" of the strategy, in 
the sense discussed above for c� . We opt for a value of cN = 1.1 to avoid having to stop the 
algorithm prematurely due to an exhaustion of the budget.

Third, the number of points to build the initial classifier is theoretically set to 
N0 = ⌊√N⌋ . In practice, this number could be increased to get a better estimate of 𝜂̂0 . 
Using a larger N0 will however consume the budget faster. We keep the theoretical value in 
the simulations.

Fourth, Mk unlabeled data points in DU
Mk

 are used at each step to estimate 𝜆̂k . If Mk is 
large, the estimation of 𝜆̂k will be more accurate. As these Mk points remain unlabeled, they 
do not contribute to the budget, and Mk could in principle be large. The only restriction is 
that at each step k these (unlabeled) points have to be sampled independently of the 
(labeled) points asked to the oracle, it indirectly limits the number of points available to the 
oracle. Several experiments (results not shown) indicate that Mk ≥ 100 provides a reasona-
ble estimate of 𝜆̂k , regardless of the precise value of Mk . We use Mk = 150 in our 
experiments.

Finally, the parameter u in Sect. 4.1 is set to 10−5 . Its precise value does not affect much 
the results, as long as it remains close to 0.

Unless otherwise stated, our numerical experiments are thus performed using a rather 
"conservative" approach, with the parameters discussed above set to c� = 0.85 , cN = 1.1 , 
N0 = ⌊√N⌋ and Mk = 150.

This choice is designed to reproduce a practical situation with a limited budget and a 
potentially difficult classification problem.

Sampling strategy We design a sampling strategy that re-uses points whenever possible, 
using two recycling procedures explained below. This is not so important in our numeri-
cal experiments with synthetic data (Sect. 5.3), where 106 data points are used to mimic 
the theoretical situation with an "infinite" pool of data. However it can become crucial in 
practical applications with limited labeled data, as in the non-synthetic datasets used in 
Sect. 5.5.

The first recycling procedure is that the unlabeled points from step k − 1 will be re-used 
at step k. This does not invalidate our theory just because of the additive form of the risk 
over cells Ak . Indeed, our trained estimator has the form ĝ(⋅) =

∑
k ĝk(⋅)1Ak

(⋅) and then its 
overall risk R(ĝ) can be decomposed on the different regions Ak (by conditioning on the 
data used to approximate the region from the previous iteration).

The second recycling procedure is that the data already labeled by the oracle at previous 
iterations (up to k − 1 included) are reused to train 𝜂̂k , as long as they belong to the region 
Ak . A similar procedure was used in Urner et al. (2013). This allows to improve the estima-
tion of 𝜂̂k and to limit the budget consumption. This sampling strategy is permitted because 
of the expression of the estimator and the decomposition of the risk as noted above. It 
is particularly useful in practical applications where the total amount of labeled data is 
limited.

5.3 � Synthetic datasets

Setting Each numerical experiment is performed using a training set of 106 data points with 
a budget of N = 1000 . The accuracy is tested on an independent test set of 5000 points, that 
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are never used at any step in the algorithm. The parameters are set according to Sect. 5.2 
and will be further discussed in Sect. 5.4. The algorithm is first challenged on three syn-
thetic two-dimensional binary datasets (named dataset 1, 2, and 3, respectively). The three 
datasets are represented on the top row of Fig. 2, with the points colored in blue or cyan 
according to their class. Dataset 1 reproduces in two dimensions a toy example used by 
Dasgupta (2011), using the same distribution of points. The best linear classifier (accuracy 
= 0.975) is located at x1 = −0.3 but active learning algorithms (as well as passive to some 
extent) could be misled to x1 = 0 , corresponding to an accuracy of 0.95, as explained in 
Dasgupta (2011). Dataset  2 represents a situation where some data ( x1 < 0 ) are easy to 
classify while others ( x1 > 0 ) are not. Dataset 3 is a mixture of two Gaussian distributions 
with means of (0,−0.5) and (0, 0.5), respectively, and both standard deviation are set to 
� = 0.3 to create some overlap, as seen on Fig. 2. All datasets are well balanced so that the 
precision, recall and F1-score are not reported in the paper because they do not bring much 
additional information.

Our algorithm is compared with its passive counterpart and with two other classical 
active learning methods, as explained in Sect.  5.1. The learning curves for each dataset 
are presented on Fig. 2 in the case of SVM linear (middle row) and SVM rbf (bottom row) 
classifiers. The results are reported in Table 1.

Results Dataset 1 has been used in Dasgupta (2011) to challenge active learning algo-
rithms. Using SVM linear classifiers, Fig.  2 (left) shows that the best accuracy when 

Fig. 2   Top row: From left to right, synthetic datasets 1, 2, and 3 used in this study with the points colored 
in blue or cyan depending on their class. Middle: average learning curves for linear SVM classifiers, for 
active learning with reject (red), active learning with uncertainty (green), active learning with QBC 
(orange) and passive learning (blue) with their respective error bars in lighter color. Bottom: same as mid-
dle row but for SVM rbf classifiers
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reaching convergence ( N = 1000 ) is obtained by our active learning algorithm, which 
approaches the best theoretical accuracy (0.975) discussed in Dasgupta (2011). Upon 
convergence, our algorithm clearly surpasses its passive counterpart as well as the other 
two active learning algorithms. Interestingly, uncertainty sampling is better at very small 
budget ( N = 200 ) but it only reaches an accuracy within experimental error of 0.95, as pre-
dicted by Dasgupta (2011). The explanation is that uncertainty sampling is highly depend-
ent on the N0 points initially selected by random sampling. The N0 points will thus not 
contain enough representative points from the regions of low density, which will thus be 
ignored by the classifier at subsequent steps, thereby introducing bias. The QBC algorithm 
performs poorly in the setting considered here because at any step each classifier in the 
committee is trained on an independent fraction of the points (a fifth in our case, since 
we are using 5 members in the committee), making it more prone to errors than a single 

Table 1   Average accuracy over 10 runs, on synthetic datasets 1, 2, and 3, with several classifiers: SVM_
lin = linear SVM, SVM_rbf =SVM with Gaussian kernel, rf_100 = random forests (with 100 trees), and 
kNN_5 = k nearest neighbors (kNN, with k = 5)

The bold highlights the best accuracy achieved by one (sometimes tied with others) of the considered algo-
rithms
The comparison between passive and active learning (REJ = our method with reject, UNC = uncertainty 
sampling, QBC = query by committee) is presented for budgets N = 200 and N = 1000

Data  id Classifier N Accuracy

Passive Active REJ Active UNC Active QBC

1 SVM_lin 200 0.928 ± 0.012 0.928 ± 0.016 0.950 ± 0.017 0.835 ± 0.142
1000 0.930 ± 0.018 0.969 ± 0.007 0.952 ± 0.014 0.864 ± 0.262

SVM_rbf 200 0.936 ± 0.013 0.955 ± 0.013 0.953 ± 0.018 0.800 ± 0.152
1000 0.971 ± 0.005 0.975 ± 0.008 0.975 ± 0.011 0.847 ± 0.152

rf_100 200 0.985 ± 0.009 0.987 ± 0.007 0.983 ± 0.019 0.960 ± 0.022
1000 0.999 ± 0.001 0.996 ± 0.005 1.000 ± 0.000 0.996 ± 0.008

kNN_5 200 0.954 ± 0.009 0.962 ± 0.010 0.958 ± 0.012 0.890 ± 0.085
1000 0.991 ± 0.004 0.986 ± 0.007 0.988 ± 0.007 0.974 ± 0.036

2 SVM_lin 200 0.871 ± 0.023 0.881 ± 0.020 0.889 ± 0.010 0.855 ± 0.029
1000 0.859 ± 0.025 0.891 ± 0.017 0.897 ± 0.003 0.879 ± 0.028

SVM_rbf 200 0.925 ± 0.018 0.925 ± 0.019 0.941 ± 0.023 0.857 ± 0.098
1000 0.954 ± 0.004 0.962 ± 0.004 0.960 ± 0.019 0.897 ± 0.010

rf_100 200 0.954 ± 0.008 0.955 ± 0.009 0.944 ± 0.022 0.908 ± 0.028
1000 0.962 ± 0.004 0.960 ± 0.011 0.967 ± 0.003 0.963 ± 0.009

kNN_5 200 0.953 ± 0.008 0.954 ± 0.007 0.964 ± 0.004 0.904 ± 0.016
1000 0.963 ± 0.004 0.961 ± 0.005 0.965 ± 0.002 0.965 ± 0.003

3 SVM_lin 200 0.951 ± 0.003 0.951 ± 0.003 0.926 ± 0.021 0.801 ± 0.146
1000 0.951 ± 0.002 0.936 ± 0.008 0.945 ± 0.007 0.900 ± 0.046

SVM_rbf 200 0.949 ± 0.003 0.950 ± 0.003 0.949 ± 0.003 0.877 ± 0.079
1000 0.951 ± 0.002 0.949 ± 0.002 0.951 ± 0.002 0.948 ± 0.003

rf_100 200 0.943 ± 0.009 0.946 ± 0.003 0.947 ± 0.006 0.950 ± 0.003
1000 0.946 ± 0.004 0.943 ± 0.003 0.951 ± 0.002 0.951 ± 0.003

kNN_5 200 0.945 ± 0.004 0.942 ± 0.007 0.946 ± 0.004 0.935 ± 0.012
1000 0.947 ± 0.003 0.947 ± 0.002 0.949 ± 0.004 0.949 ± 0.003
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classifier trained with all the available points. This effect is particularly striking for small 
budgets.

Dataset 2 (Fig. 2, center) represents another simple situation where classification might 
be difficult due to an uneven distribution of points. In this case, for SVM linear classifi-
ers our active learning algorithm also outperforms its passive counterpart and QBC, even 
though it does not perform better than uncertainty sampling.

As a contrast the the first two datasets, dataset 3 (Fig. 2, right) is designed to represent 
an easier classification problem. In this case our active learning algorithm does not present 
any major advantage, but it does not deteriorate the results either, except slightly for SVM 
linear classifiers.

For the non-linear classifiers (e.g., SVM rbf on Fig.  2, bottom row) the difference 
between the algorithms after convergence is less pronounced.

5.4 � Discussion about the parameters choice

The effect of the parameters in our algorithms has been discussed in Sect. 5.2 in terms of 
"aggressive" and "conservative" approaches and is illustrated here using numerical experi-
ments with representative values of the parameters c� and cN , as reported on Fig. 3.

This indicates that in all configurations our algorithm eventually converges to the same 
solution as in Fig. 3, but much faster in the case of the "aggressive" strategies ( c� = 0.65). 
It also shows that with c� = 0.65 our algorithm abruptly stops before exhausting the budget 
of N = 1000 . This could happen in practice for two main reasons. First, the major reason 
is that, even though the simulations are performed with 106 points, an aggressive rejection 
procedure may lead to a situation with not enough points in the next uncertain region Ak , 
i.e., less than the ⌊Nk�k⌋ needed for our algorithm to continue. This effect is thus somewhat 
mitigated by increasing the value of cN , as can be seen on Fig. 3 when moving from cN = 
1.1 to cN = 1.3. Second, all the points in the region Ak could potentially belong to the same 
class, in which case it is impossible to build 𝜂̂k . This occurs less frequently in noisy data-
sets though.

In practical situations, with small datasets it is better to use a conservative approach. 
For large datasets it is possible to make it more aggressive, at the potential cost of inter-
rupting too early (i.e., before using the limit of the budget). This shows that our algorithm 

Fig. 3   Average learning curves 
for our algorithm with various 
parameters, using Dataset 1 with 
linear SVM classifier



	 Machine Learning

1 3

can reach convergence faster than its passive counterpart, which represents a considerable 
improvement when the budget is limited.

5.5 � Non‑synthetic datasets

To illustrate the applicability of our algorithm in addition to its theoretical guarantees, 
numerical experiments are also performed with various datasets from the UCI machine 
learning repository. Three "large" (more than 104 data points) datasets are used: skin 
(245,057 points in ℝ3 ), fraud (20,468 points in ℝ113 ) and EEG (14,980 points in ℝ14 ). For 
those "large" datasets the budget is set to N = 1000 in our algorithm, and the results are 
also presented at a low budget ( N = 200 ). Three "small" (less than 103 data points) are 
also considered: breast (683 points in ℝ10 ), credit (690 points in ℝ14 ) and cleveland (297 
points in ℝ13 ). Each dataset is split into training (70%) and testing (30%). We use the same 
classifiers and the same parameter values as in Sect. 5.3, except for the smallest dataset 
(cleveland), for which we opt for values c� = 0.95 and N = 1.2 , to avoid rejecting all the 
data points at the first iterations, as discussed in Sect. 5.4. The results for the largest dataset 
(skin) are presented as learning curves on Fig. 4. All results are summarized in Table 2.

These results are fairly balanced among the passive and active learning methods. The 
skin dataset leads to an overall advantage for active learning methods with reject or uncer-
tainty sampling, whereas the fraud dataset gives better results for passive learning or active 
QBC. It could be linked to the fact that the fraud dataset is high-dimensional ( ℝ113 ), but 
the study of the dimensionality of the data is not considered in this paper. The EEG dataset 
remains difficult to handle for all active and passive procedures.

Our algorithm is usually expected to be more performant with simple classifiers (e.g., 
SVM linear) because the more elaborate classifiers from scikit-learn (Pedregosa 
et al., 2011) are able to reach a good accuracy. This is visible on Fig. 4 and is quite striking 
in Table 2 for the EEG dataset.

For "small" datasets, most of the time the active method improves the passive one (see 
Table 3). However, this improvement is rather limited, expect for cleveland dataset where 
the use of the active algorithm is particularly beneficial.

5.6 � Summary of the results and discussion

The study on synthetic datasets shows that our active learning algorithm using rejection 
provides a clear advantage over passive learning for the first two datasets, especially at 
low budget, but not for the third dataset where classification is easier. Our algorithm is 

Fig. 4   Skin dataset with linear SVM, rbf SVM and kNN_5 classifiers, for active learning with reject (red), 
active learning with uncertainty (green), active learning with QBC (orange) and passive learning (blue). 
Average learning curves over 10 runs are presented with their respective error bars in lighter color
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only sometimes surpassed by the uncertainty sampling active algorithm, most notably for 
the second dataset. In non-synthetic datasets, the active learning procedures (our algorithm 
as well as the other active algorithms) do not appear to be very beneficial on the "small" 
dataset (e.g., a few hundreds points). Indeed, for such datasets the number of points N0 has 
to be quite small, otherwise all the data are used before the active part of the procedure. 
In our algorithm in particular, the estimate 𝜂̂0 is thus likely to be inaccurate, which in turn 
implies an inaccurate estimation of the uncertain region in the first steps and then leads 
to a poorly controlled algorithm. Interestingly, even in such small datasets, our algorithm 
is rarely detrimental to the final accuracy reached. For the larger datasets, our algorithm 
could more promising, especially with proper parameter tuning allowing for more aggres-
sive strategies. A thorough study of the parameters is however beyond the scope of this 
paper which focuses mostly on its sound theoretical guarantees.

Table 2   Average accuracy over 10 runs, on "large" non-synthetic datasets with several classifiers: SVM_
lin = linear SVM, SVM_rbf = SVM with Gaussian kernel, rf_100 = random forests (with 100 trees), and 
kNN_5 = k nearest neighbors (with k = 5)

The bold highlights the best accuracy achieved by one (sometimes tied with others) of the considered algo-
rithms
The comparison between passive and active learning (REJ = our method with reject, UNC = uncertainty 
sampling, QBC = query by committee) is presented for budgets N = 200 and N = 1000

Dataset  name Classifier N Accuracy

Passive Active REJ Active UNC Active QBC

skin SVM_lin 200 0.937 ± 0.008 0.936 ±  0.006 0.909 ± 0.058 0.756 ± 0.140
1000 0.931 ± 0.007 0.941 ± 0.005 0.909 ± 0.059 0.736 ± 0.248

SVM_rbf 200 0.977 ± 0.004 0.981 ± 0.003 0.980 ± 0.027 0.843 ± 0.039
1000 0.988 ± 0.001 0.979 ± 0.003 0.995 ± 0.002 0.959 ± 0.022

rf_100 200 0.975 ± 0.005 0.968 ± 0.008 0.931 ± 0.029 0.863 ± 0.028
1000 0.991 ± 0.002 0.995 ± 0.002 0.955 ± 0.032 0.957 ± 0.017

kNN_5 200 0.963 ± 0.008 0.958 ± 0.010 0.986 ± 0.006 0.927 ± 0.047
1000 0.987 ± 0.002 0.985 ± 0.007 0.999 ± 0.000 0.990 ± 0.006

fraud SVM_lin 200 0.839 ± 0.007 0.834 ± 0.018 0.818 ± 0.019 0.816 ± 0.024
1000 0.851 ± 0.004 0.847 ± 0.015 0.849 ± 0.011 0.856 ± 0.004

SVM_rbf 200 0.840 ± 0.008 0.798 ± 0.029 0.820 ± 0.033 0.785 ± 0.046
1000 0.856 ± 0.004 0.816 ± 0.036 0.852 ± 0.015 0.856 ± 0.005

rf_100 200 0.889 ± 0.007 0.854 ± 0.030 0.870 ± 0.022 0.868 ± 0.013
1000 0.908 ± 0.004 0.892 ± 0.004 0.905 ± 0.009 0.912 ± 0.003

kNN_5 200 0.806 ± 0.014 0.805 ± 0.012 0.819 ± 0.009 0.824 ± 0.024
1000 0.860 ± 0.005 0.847 ± 0.009 0.843 ± 0.024 0.828 ± 0.024

EEG SVM_lin 200 0.550 ± 0.004 0.551 ± 0.020 0.523 ± 0.048 0.529 ± 0.042
1000 0.550 ± 0.004 0.559 ± 0.014 0.540 ± 0.032 0.479 ± 0.046

SVM_rbf 200 0.550 ± 0.004 0.546 ± 0.022 0.532 ± 0.040 0.535 ± 0.029
1000 0.550 ± 0.004 0.553 ± 0.024 0.541 ± 0.030 0.517 ± 0.042

rf_100 200 0.701 ± 0.017 0.628 ± 0.014 0.720 ± 0.016 0.618 ± 0.022
1000 0.814 ± 0.008 0.691 ± 0.015 0.853 ± 0.007 0.759 ± 0.011

kNN_5 200 0.599 ± 0.018 0.571 ± 0.016 0.598 ± 0.014 0.554 ± 0.020
1000 0.697 ± 0.009 0.606 ± 0.013 0.706 ± 0.009 0.645 ± 0.015
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6 � Conclusion and perspectives

Recently several works have started to combine active learning and rejection arguments 
by abstaining to label some data within an active learning algorithm. This combination 
is very natural since active learning and rejection both focus on the most difficult data to 
classify. In this work, instead of completely abstaining to label some data, we use rejection 
principles in a novel way to estimate the uncertain region typically used in active learning 
algorithms. We therefore propose a computationally efficient active learning algorithm that 
combines active learning with rejection. We theoretically prove the merits of our algorithm 
and show through several numerical experiments that it can be efficiently applied to any 
off-the-shelf machine learning algorithm. The benefits are more pronounced when the label 
budget is limited, which is promising for practical applications.

Nevertheless, in the last steps of our algorithm the uncertainty about the label of some 
points can become very substantial, in which case it becomes natural to completely abstain 
from labeling. This abstention will be included in future work combined with our use of 
the reject option. Moreover, as pointed out in Sect. 3.3.4, the extension of our theory to 
other types of algorithms is an important guideline for further research.

Appendix

The section is devoted to the proof of the main results (Theorems 3.5 and  3.7), starting 
with a technical result that will be used in the proofs.

Table 3   Average accuracy over 10 runs, on three "small" non-synthetic datasets with several classifiers: 
SVM_lin = linear SVM, SVM_rbf = SVM with Gaussian kernel, rf_100 = random forests (with 100 trees), 
and kNN_5 = k nearest neighbors (with k = 5)

The comparison between passive and active learning (REJ = our method with reject, UNC = uncertainty 
sampling, QBC = query by committee) is presented for budget N = 200

Dataset  name Classifier Budget Accuracy

N Passive Active REJ Active UNC Active QBC

breast SVM_lin 200 0.968 ± 0.009 0.971 ± 0.012 0.972 ± 0.011 0.972 ± 0.009
SVM_rbf 200 0.973 ± 0.010 0.972 ± 0.009 0.973 ± 0.009 0.971 ± 0.008
rf_100 200 0.968 ± 0.008 0.970 ± 0.011 0.970 ± 0.005 0.973 ± 0.006
kNN_5 200 0.973 ± 0.008 0.969 ± 0.010 0.973 ± 0.009 0.969 ± 0.011

credit SVM_lin 200 0.862 ± 0.019 0.866 ± 0.015 0.863 ± 0.014 0.868 ± 0.021
SVM_rbf 200 0.858 ± 0.021 0.861 ± 0.023 0.863 ± 0.018 0.867 ± 0.022
rf_100 200 0.864 ± 0.022 0.818 ± 0.029 0.868 ± 0.019 0.867 ± 0.021
kNN_5 200 0.856 ± 0.022 0.853 ± 0.017 0.855 ± 0.017 0.860 ± 0.019

cleveland SVM_lin 200 0.808 ± 0.045 0.807 ± 0.040 0.807 ± 0.040 0.799 ± 0.035
SVM_rbf 200 0.796 ± 0.040 0.803 ± 0.042 0.800 ± 0.039 0.802 ± 0.046
rf_100 200 0.795 ± 0.040 0.784 ± 0.032 0.796 ± 0.033 0.807 ± 0.033
kNN_5 200 0.792 ± 0.038 0.779 ± 0.041 0.797 ± 0.037 0.800 ± 0.041
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Appendix A: technical result

Let us first introduce some general notations: Let A be a subset of [0, 1]d , and a cubic par-
tition Cr as introduced in Definition  3.4. For R ∈ Cr , with R ∩ A ≠ � , we introduce the 
regression function in R as:

and we define 𝜂̄(x) ∶= 𝜂̄(R) for all x ∈ R.
Here, for each k ≥ 0 , and rk = N

−1∕(2�+d)

k
 , we consider the estimator:

where 𝜂̂Ak ,⌊Nk𝜀k⌋,rk is defined according to Definition 3.4, and Ak is defined in Algorithm 1. 
Importantly, defining 𝜂̂k in this way for all k ≥ 0 allows us to characterize the set Ak in an 
explicit form:

Let L be defined as:

We firstly provide bounds on the maximum number of steps L (defined by (A.2)) per-
formed by our algorithm 1.

Lemma A.1  (Bounds on the maximum number of steps L) Let us consider the variable L 
defined in (A.2). We have the following statements: 

1.	 If the sequence of rejection rate (�k)k≥0 used by our algorithm 1 is defined as follows: 
�0 = 1 , and for k ≥ 1 , �k = min

(
1, log

(
N

�

)
log(N)N

−�∕(2�+d)

k−1

)
, thus we have: 

 and 

 where c8 , c6 are constants independent of N.

𝜂̄(R) =
1

Π(R|A) ∫R∩A

𝜂(z)Π(dz|A)

(A.1)𝜂̂k ∶= 𝜂̂Ak ,⌊Nk𝜀k⌋,rk ,

Ak =
⋃
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, R∩Ak≠�

R.

(A.2)L = max{j ≥ 1,N >
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⌊Nk𝜀k⌋}.
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2.	 If the sequence of rejection rate (�k)k≥0 used by our algorithm 1 is defined as follows: 
�0 = 1 , and for k ≥ 1 , �k = min

(
1, log

(
N

�

)
log(N)N

−1∕(2�+d)

k−1

)
, thus we have: 

 and 

 where c′
8
 , c′

6
 are the constants independent of N.

Proof  We begin with the proof of the first item: 

1.	 Notice that because of the geometric progression of Nj , and the definition of L, we have 

 Thus we get 

 where 

 Besides, as NL = 2LN0 and N0 =
√
N , we obtain the first inequality 
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 We can get the second inequality by starting with (C.1), that is: 

 Furthermore, as �L = min
(
1, c6 log

(
N

�

)
N

−�∕(2�+d)

L−1

)
 (see (B.11)), we get 

 If 1 ≤ c6 log
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N to deduce 

 On the other hand, if 1 > c6 log
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𝛿

)
N
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 then 

 Finally, by combining (A.6) and (A.7), we get the second inequality.
2.	 The proof of the second item is very similar to the first one. Importantly, the current 

choice of the sequence of rejection rate implies 

 where c′
8
 is a constant independent of N, L.

	�  ◻

Appendix B: proof of theorem 3.5

We firstly provide a high probability bound on the estimation error:

Lemma B.1  (Favorable event with high probability) Let L be defined by (A.2), k ∈ {0,… , L} 
and E be the event defined by:

where
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with ∥ 𝜂 − 𝜂̂k ∥∞,Ak
∶= supx∈Ak

|𝜂̂k(x) − 𝜂(x)| , c5 is a constant independent of N and Nk , 
but dependent on L and d and c1 depends on �min from Assumption (3.2). Under Assump-
tions 3.1 and 3.2 we have:

Proof  Let k ∈ {0,… , L} and the corresponding estimator 𝜂̂k (see (A.1)). Let Crk the cubic 
partition considered in Definition 3.4, and fix R ∈ Crk . Let x ∈ R with R ⊂ Ak.

Let Tj,k = Yj1{Xj∈R}
Π(Ak)

Π(R)
 . We observe that �

[
Tj,k

]
= 𝜂̄(R) , and

Furthermore

Hence, from Bernstein inequality, and using the fact that Π(Ak) ≤ �k , we deduce that for 
t ≤ 1,

by using (B.4).
Note that for t > 1 , the inequality is always satisfied. Now, applying the above inequal-

ity, we deduce that for each t > 0
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)
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From the strong density assumption, we then obtain that for all x ∈ R, with probability at 
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To get a result in L∞-norm on Ak , it remains to consider the union bound over all R ∈ Crk 
such that R ∩ Ak ≠ �.

By definition, for all k ≥ 0 , the estimator 𝜂̂k is constant on each cell R, in this case, we have:

Then, by using Assumption 3.2, we have:

As rk = N
−1∕(2�+d)

k
 , we get for all k ∈ {0,… , L},

Thus we have (conditionally on Ak):

Besides, Assumption 3.1 leads to

thus, by combining (B.5), (B.7) and (B.6), we can obtain that with probability at least 
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Finally, as rk = N
−1∕2�+d

k
 , by considering the union bound over all steps, we get with 

probability at least 1 − �,

where c5 depends on c4 , and L. 	�  ◻

The following result proves that in the event E, the classifier g𝜂̂k does not make any error 
of classification in the set Ak ⧵ Ak+1 for all k = 0,… , L − 1 , where L is defined by (A.2).

Lemma B.2  (Correct classification) Let E be the event defined by (B.1). If the sequence of 
rejection rate (�k)k≥0 used by our algorithm 1 is defined as follows: �0 = 1 , and for k ≥ 1 , 
�k = min

(
1, log

(
N

�

)
log(N)N

−�∕(2�+d)

k−1

)
. On the event E and under Assumption  3.3, the 

Bayes classifier g∗ agrees with g𝜂̂k on the set Ak ⧵ Ak+1 for k ∈ {0,… , L − 1} , where L is 
defined by (C.1), and 𝜂̂k by (A.1).

Proof  Let us start by stating general facts that hold for a generic estimator 𝜂̂ and the cor-
responding score function f̂ (x) = max(𝜂̂(x), 1 − 𝜂̂(x)) . We consider Ff  , and Ff̂  the cumu-
lative distribution of f(X) and f̂ (X) respectively, where f (x) = max(�(x), 1 − �(x)) . Let 
t ∈ (1∕2, 1) , we have that conditionally on the data

Besides, the following relation holds:

where C is the bound on the density f provided in Assumption 3.3. Using again Assump-
tion 3.3 we can write

We then deduce that for all t ∈ (1∕2, 1) , conditionally on the data

Given iteration k ∈ {0,… , L − 1} , we set t̂k = ‖𝜂̂k − 𝜂‖∞,Ak
 , and tk =

1

2
+ t̂k . Thanks 

to (B.9), with 𝜂̂ = 𝜂̂k and t = tk , we deduce that (conditionally on Ak)

Then, in the event E, we have that

where c6 = 3c5C , and c5 is defined in (B.8). Hence,
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��� ≤ �X

�
1{‖f̂−f‖∞≥�f (X)−t�}

� ≤ 2C‖f̂ − f‖∞,

Ff (t) ≤ C
(
t −

1

2

)
.

(B.9)Ff̂ (t) ≤ 2C‖f̂ − f‖∞ + C
�
t −

1

2

� ≤ 2C‖𝜂̂ − 𝜂‖∞ + C
�
t −

1

2

�
.

Ff̂k
(tk) ≤ 3Ct̂k.

(B.10)Ff̂k
(tk) ≤ c6 log

(
N

𝛿

)
N

−𝛽∕(2𝛽+d)

k
,
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This implies that 𝜆k+1 ≥ 1

2
+ t̂k by the definition of �k+1 (given by (3.2)).

Let x ∈ Ak⧵Ak+1 = {x ∈ Ak, f̂k(x) > 𝜆k+1} . Necessarily, we have

which implies g𝜂(x) = g𝜂̂k (x). 	�  ◻

Lemma B.3  (Excess-error) Let E be the event defined by (B.1). Let g𝜂̂ be the classifier pro-
vided by our algorithm. Then on the event E, we have

where Õ hides some constants and logarithmic factors.

Proof  Let us consider the sequence (Ak)0≤k≤L used in our algorithm. It is not difficult to 
see that {Ak⧵Ak+1, k = 0,… , L − 1} ∪ AL forms a partition of [0, 1]d , where L is defined by 
(C.1).

In this case, the excess-risk of g𝜂̂ can be rewritten as:

and thus

Due to the Lemma B.2, the first term in the r.h.s of (B.12) is zero in the event E. Thus we 
get

We thus have

By Lemma B.1, we get with probability at least 1 − �

(B.11)Ff̂k
(tk) ≤ min

(
1, c6 log

(
N

𝛿

)
N

−𝛽∕(2𝛽+d)

k

) ≤ 𝜀k+1.

f̂k(x) −
1

2
> ‖𝜂̂k − 𝜂‖∞,Ak

≥ �𝜂̂k(x) − 𝜂(x)�,

R(g𝜂̂) − R(g𝜂) ≤ Õ
(
N

−
2𝛽

d+𝛽

)
,

R(g𝜂̂) − R(g∗) =

L−1∑
j=0

�{g𝜂̂≠g∗}∩{Aj⧵Aj+1}

|2𝜂(x) − 1|dΠ(x) + �AL∩{g𝜂̂≠g∗}
|2𝜂(x) − 1|dΠ(x)

(B.12)
R(g𝜂̂) − R(g∗) =2

L−1∑
j=1

�X

[
|𝜂(X) − 1

2
|1{g∗(X)≠g𝜂̂j (X)}1{Aj⧵Aj+1}

]

+ 2�X

[
|𝜂(X) − 1

2
|1{g∗(X)≠g𝜂̂L (X)}1{AL}

]
.

R(ĝ) − R(g∗) = 2�X

[
|𝜂(X) − 1

2
|1{g∗(X)≠g𝜂̂L (X)}1{AL}

]

≤ 2�X

[
|𝜂(X) − 1

2
|1|𝜂(X)− 1

2
|<|𝜂̂L(X)−𝜂(X)|1{AL}

]
.

(B.13)
R(ĝ) − R(g∗) ≤ 2‖𝜂̂L − 𝜂‖∞,AL

.�X

�
1�𝜂(X)− 1

2
�<�𝜂̂L(X)−𝜂(X)�

�

≤ 4C‖𝜂̂L − 𝜂‖2
∞,AL

by Assumption3.3.
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Recalling the bound (A.3) on NL provided in the proof of Lemma A.1

for some constant c8 , we then conclude that (B.14) becomes

	�  ◻

Appendix C: proof of theorem 3.7

For the sake of simplicity, throughout the proof, we assume that the distribution Π of 
the X is the uniform distribution on [0, 1]d . We now consider the case when 𝛽 > 1 . The 
major difference with the case � ≤ 1 is in the last step k = L . However, these modifica-
tions induce slight adaptations in earlier steps. In particular, for all k ≤ L we set the 
rejection rate as:

According to this new definition, we need to consider a different event E in order to make 
the first term in the excess risk in (B.12) to be zero. We have the following Lemma:

Lemma C.1  Let L be defined as:

Let k ∈ {0,… , L} and E be the event defined by:

where

with ∥ 𝜂 − 𝜂̂k ∥∞,Ak
∶= supx∈Ak

|𝜂̂k(x) − 𝜂(x)| , 𝜂̂k is the histogram defined by (A.1), c1 is a 
constant independent of N, but dependent on d, and �min from Assumption (3.2). The quan-
tity c5 is a constant independent of N and Nk , but dependent on s (from Assumption 3.6) 
and d. Under Assumptions 3.6 and 3.2 we have:

(B.14)R(ĝ) − R(g∗) ≤ 4Cc2
5
log2

(
N(L + 1)

𝛿

)
N

−2𝛽∕(2𝛽+d)

L
.

NL ≥ c8

⎛
⎜⎜⎜⎝

1

log
�

N

�

�
⎞
⎟⎟⎟⎠

(d+2�)∕(�+d)

N(d+2�)∕(�+d)

R(g𝜂̂) − R(g𝜂) ≤ Õ
(
N

−
2𝛽

𝛽+d

)
.

�k = min
(
1, log

(
N

�

)
log(N)N

−1∕(2�+d)

k−1

)
.

(C.1)L = max{j ≥ 1,N >

j�
k=0

⌊NkΠ(Ak)⌋}.

(C.2)Ẽ = ∩L−1
k=0

Ẽk,

(C.3)Ẽk =

{
∥ 𝜂 − 𝜂̂k ∥∞,Ak

≤ c5 log

(
N(L + 1)

c1𝛿

)
N

−1∕(2𝛽+d)

k

}
,
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Proof  The proof is quite similar to that of Lemma B.1. We just have to adapt the choices of 
�k as follows:

	�  ◻

Moreover, this modification on the calibration of �k leads to a lower bound on NL , 
stated by (A.8). We also have the following result which states that, in the event Ẽ the 
classifier does not make any error in the set Ak ⧵ Ak+1 for all k = 0,… , L − 1.

Lemma C.2  (Correct classification) Let Ẽ be the event defined by (C.2). Under Assump-
tion 3.6, the Bayes classifier g∗ agrees with g𝜂̂k on the set Ak ⧵ Ak+1 for k ∈ {0,… , L − 1} , 
where L is defined by (C.1), and 𝜂̂k by (A.1).

Proof  The proof is quite similar to that of Lemma C.2. We just have to adapt the choices of 
�k as follows:

	�  ◻

By using the Lemma C.2, we thus obtain the following upper bound on the excess-risk of 
g𝜂̂ , which is valid on Ẽ:

Therefore, in view of Lemma C.1, and the lower bound on NL provided in (A.8), to con-
clude the proof of Theorem  3.7, it remains to show that with probability larger than 
1 −

1

L + 1
� , we have

for some positive constant C. To this end, we have to adopt the following strategy for the 
last iteration k = L : we build an estimator 𝜂̂L at each point from the current last set AL . In 
this set, we need to build a more refined analysis than in the previous case � ≤ 1 . In par-
ticular, we build a kernel estimator to achieve a higher order of regularity than with histo-
grams. Let us then consider a bounded one dimensional kernel K of order � = ⌊�⌋ (that is, 
∫ ujK(u)du = 0 for all j ∈ {1,… ,�} , see Tsybakov (2008)) with support [−1, 1] . Based on 
K, we define for all z = (z1,… , zd) ∈ [0, 1]d , the d-dimensional kernel Kd(z) =

∏d

j=1
K(zj) . 

Nevertheless, this time we do not sample ⌊NL�L⌋ points in AL but rather in a slightly bigger 
set ÃrL

 that we construct in the following way. Consider a first cubic partition CrL of AL . We 
define the set ÃrL

= ∪R∈CrL
R̃ where R̃ is a flatten version of R given by

ℙ(Ẽ) ≥ 1 −
L

L + 1
𝛿.

�k = min
(
1, log

(
N

�

)
log(N)N

−1∕(2�+d)

k−1

)
.

�k = min
(
1, log

(
N

�

)
log(N)N

−1∕(2�+d)

k−1

)
.

R(g𝜂̂) − R(g∗) ≤ 4C ∥ 𝜂̂L − 𝜂 ∥2
∞,AL

.

∥ 𝜂̂L − 𝜂 ∥∞,AL
≤ C log

(
N

𝛿

)
N

−𝛽∕2𝛽+d

L
,

(C.4)R̃ =
�
x ∈ [0, 1]d ∶ ∃ z ∈ R, ‖x − z‖∞ ≤ rL

�
.
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Now let us consider a second cubic partition C
r
�

L

 of AL . Importantly, each R ∈ CrL can be 
described by a collection of R′ from the second partition C

r
�

L

 . Let then R� ∈ C
r
�

L

 and R ∈ CrL 
such that R′ ⊂ R ⊂ AL . Let xR′ be the center of the cell R′ . In order to construct 𝜂̂L in the set 
R′ , we consider the center xR′ of the latter – then 𝜂̂L will be constant on R′ and the constant 
will be equal to the value that 𝜂̂L takes at xR′ (below is the precise expression). An impor-
tant difference with earlier steps is the definition of the variable Tj,L that is now given by

We then consider the estimator

We observe that �
[
Tj,L

]
=

1

rd
L

∫
R� �(z)Kd

(
z − xR�

rL

)
dz . Besides, since Kd is supported on 

[−1, 1]d and by definition of R′ , we have that

and then we can extend the integral in �
[
Tj,L

]
 on ℝ and write

This expression allows us to control the bias term of 𝜂̂(xR� ) . Indeed, using (Giné & Nickl, 
2015) (see also Lemma 6 in Locatelli et al. (2017)), we can write that for any point xR′

Now, we provide a bound for the variance of 𝜂̂L(xR� ) . First, notice that since the kernel Kd is 
bounded, we have

for some positive constant C – from now on, C is a positive constant that may change from 
one line to another. Therefore, using the fact that Y2

j
= Yj , we have

Since Π(R�) ≤ crd
L
 , we deduce from the above inequality that

Additionally, since Π(AL) ≤ �L and Π is the uniform distribution on [0, 1]d , we then have

Tj,L = Yj Kd

(
Xj − xR�

rL

)
1{Xj∈R

�}

Π(ÃL)

rd
L

.

(C.5)𝜂̂(xR� ) =
1

⌊NL𝜀L⌋
�
Xj∈R

�

Tj,L.

Kd

(
z − xR�

rL

)
= 0 if z ∉ R�,

𝔼
[
Tj,L

]
=

1

rd
L
∫
ℝ

�(z)Kd

(
z − xR�

rL

)
dz.

(C.6)
|||�
[
𝜂̂(xR� )

]
− 𝜂(xR� )

||| ≤ cr
𝛽

L
.

(C.7)|Tj,L| ≤ C
Π(ÃL)

rd
L

Yj1{Xj∈R
�},

Var(Tj,L) ≤ C
Π(ÃL)

2

r2d
L

�

[
Yj1{Xj∈R

�}

] ≤ C
Π(ÃL)

2

r2d
L

�R�

𝜂(z)Π(dz|ÃL) ≤ C
Π(ÃL)Π(R

�)

r2d
L

.

(C.8)Var(Tj,L) ≤ C
Π(ÃL)

rd
L

.
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Hence from Bernstein Inequality, and using (C.8), we deduce that for all t ≤ 1,

Note that for t > 1 , the inequality is always satisfied. Now, applying the above inequality, 
we deduce that for all t > 0

Hence choosing t =
√

log
(

log(N)N2(L+1)

C�

)
 , we deduce that with probability at least 

1 −
C�

log(N)N2(L+1)
 , we have

To get a result in L∞-norm on AL , it remains to consider the union bound over all xR′ , for all 
R′ ⊂ AL . First, we observe that

which implies with Equation (B.6) that

Thus we have for N large enough conditionally on AL

Finally, for x ∈ AL , we define 𝜂̂(x) = 𝜂̂(xR� ) if x ∈ R� . Let x ∈ R� , with R′ ⊂ AL . Since � 
is Lipschitz (because it is Hölder with 𝛽 > 1 ), using the triangle inequality together with 
Equation (C.6), we have

Π(ÃL) ≤ C𝜀L.

ℙ
��𝜂̂L(xR� ) − 𝔼

�
𝜂̂L(xR� )

�� ≥ t
� ≤ exp

⎛
⎜⎜⎜⎝
−

⌊NLΠ(ÃL)⌋t2
Var(Tj,L) +

tΠ(ÃL)

3rd
L

⎞
⎟⎟⎟⎠
≤ exp

�
−C⌊NLΠ(ÃL)⌋rdLt2∕Π(ÃL)

�
.

ℙ

�
�𝜂̂L(xR� ) − 𝔼

�
𝜂̂L(xR� )

�� ≥ t

�
Π(ÃL)

⌊NLΠ(ÃL)⌋rdL

�
≤ exp(−t2),

(C.9)|𝜂̂L(xR� ) − �
[
𝜂̂L(xR� )

]| ≤ C

√
log

(
log(N)N2(L + 1)

C𝛿

)
1

NLr
d
L

.

|{R�, R� ∩ AL ≠ �}| ≤ |{R�, R� ∩ AL ≠ �}|r1−�
L

,

(C.10)|{R�, R� ∩ AL ≠ �}| ≤ cNr
1−�

L
≤ CN2.

ℙ

⎛
⎜⎜⎜⎝
max
xR�

�𝜂̂L(xR� ) − 𝔼
�
𝜂̂L(xR� )

�� > C

����� log
�

log(N)N2(L+1)

C𝛿

�

NLr
d
L

⎞
⎟⎟⎟⎠
≤

�
R�, R�∩AL=�

ℙ

⎛⎜⎜⎜⎝
�𝜂̂L(xR� ) − 𝔼

�
𝜂̂L(xR� )

�� > C

����� log
�

log(N)N2(L+1)

C𝛿

�

NLr
d
L

⎞⎟⎟⎟⎠
≤ �{R�, R� ∩ AL ≠ �}� C𝛿

log(N)N2(L + 1)

≤ 𝛿

L + 1
by (C.10).
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Thus, combined with (C.10), we obtain that with probability at least 1 − �

L+1
,

Finally, as rL = N
−1∕2�+d

L
 , we get with probability at least 1 − 1

L+1
�,

which, combined with the fact that NL is of order N
2�+d

2�+d−1 (see in (A.8) for the formal lower 
bound), yields the result.
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