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Abstract: We study the decay J/ψ → π+π−π0 within the framework of the Khuri-
Treiman equations. We find that the BESIII experimental di-pion mass distribution in the
ρ(770)-region is well reproduced with a once-subtracted P -wave amplitude. Furthermore,
we show that F -wave contributions to the amplitude improve the description of the data
in the ππ mass region around 1.5 GeV. We also present predictions for the J/ψ → π0γ∗

transition form factor.
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1 Introduction

Decays of the lowest-lying charmonium states provide an excellent environment to study
light hadron spectroscopy, search for exotic mesons, test QCD and QCD-based models, as
well as testing theoretical techniques in a region where both non-perturbative and pertur-
bative QCD effects play a role.

In this work we analyze the decay J/ψ → π+π−π0, to study the dynamics of the three-
pion system at low and intermediate energies under rather clean conditions. Here, the final
state invariant mass distribution can contain contributions from the P -wave (JPC = 1−−)
and F -wave (JPC = 3−−) states of the ππ subsystem. Previous experimental studies from
BESII [1] and BABAR [2] showed that the P -wave ρ(770)π intermediate state dominates
the process, but limited statistics prevented any detailed study of substructures in the 3π
system. While the dominance of the ρ(770) resonance can be clearly seen in the Dalitz
plot distribution and projection measurements by the BESIII collaboration obtained with
roughly 1.9 million J/ψ → π+π−π0 events [3], there are hints of contributions other than
the ρ(770). For example, the absence of events in the center of the Dalitz plot indicates the
contribution from additional states and/or partial waves which may interfere destructively
with the ρ(770). Exactly the opposite situation is found for the partner reaction ψ(2S)→
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π+π−π0. There, the 7872 events from BESIII [3] show a completely different shape of the
ππ invariant mass distribution and the Dalitz plot — the ρπ contribution is subleading
and almost all events are found in the center of the Dalitz plot, with data indicating that
the main contribution comes from a higher mass resonance, i.e. the ρ(2150) resonance with
JPC = 1−−. The different picture between the J/ψ and ψ(2S) decays into π+π−π0 and
the lack of reasonable explanations within the quark model is known as the ρπ puzzle
and still remains largely unresolved (see e.g. Refs. [4–8], and references therein). New high-
statistics BESIII data on J/ψ decays will soon be available [9, 10], which could be used
to greatly improve the theoretical uncertainties associated to vector charmonium decays.
In particular, they might help clarify the ρπ puzzle, as well as provide access to high-
precision ρ-ω mixing effect analyses and motivate coupled channel studies with the decays
J/ψ → K+K−π0 and J/ψ → KSK

±π∓.
The decay J/ψ → π+π−π0 has previously been studied within the context of the

Veneziano model [11], and using aspects of unitarity and analyticity constraints [12, 13].
Here, we adapt the Khuri-Treiman (KT) framework [14], applied extensively in the isospin-
violating decay η → 3π [15–21] and in the decay of light vector isoscalar resonances ω, φ→
3π [22–24], to the analysis of the vector charmonium decay J/ψ → π+π−π0. We show
that one subtraction in the KT equations satisfactorily describes the BESIII experimental
di-pion mass distribution at the peak of the ρ(770). In addition, we find that F -wave effects
are needed to describe the intermediate energy region around 1.5 GeV. We also apply our
analysis techniques to predict the J/ψ → π0γ∗ transition form factor. Our study lays the
groundwork for a detailed analysis of J/ψ decays using the large data sample currently
being collected at BESIII.

This paper is organized as follows. In Section 2 we review the KT formalism for the
J/ψ → 3π decay. In Section 3 we apply the formalism to the BESIII data and discuss the
results. In Section 4, we present predictions for the J/ψ → π0γ∗ transition form factor,
and we summarize our findings in Section 5.

2 Formalism

2.1 Decay amplitude and kinematics

The amplitude for the decay J/ψ(pV )→ π0(p0) π+(p+) π−(p−) can be expressed in terms
of a kinematic prefactor and a single invariant scalar function F (s, t, u) containing the
dynamical information,

M(s, t, u) = i εµναβ ε
µ(pV ) pν+ pα− p

β
0 F (s, t, u) , (2.1)

where εµναβ is the Levi-Civita tensor and εµ(pV ) is the polarization vector of the J/ψ

meson. The particle momenta are related to the Mandelstam variables through:

s = (p+ + p−)2 , t = (p0 + p+)2 , u = (p0 + p−)2 , (2.2)

with s+ t+u = m2
J/ψ + 3m2

π. In this paper, we work in the isospin limit with mπ
.= mπ± =

mπ0 and mπ = (2mπ± + mπ0)/3. The scattering angle in the s-channel, defined by the
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center of mass of the π+π− pair, is denoted by θs and is given by:

cos θs(s, t, u) = t− u
4 p(s) q(s) , sin θs(s, t, u) =

√
φ(s, t, u)

2
√
s p(s) q(s) , (2.3)

where the momenta p(s) and q(s),

p(s) = λ
1
2 (s,m2

π,m
2
π)

2
√
s

, q(s) =
λ

1
2 (s,m2

J/ψ,m
2
π)

2
√
s

, (2.4)

are, respectively, the momenta of the π± and π0 in the s-channel. λ(a, b, c) = a2 + b2 +
c2 − 2ab− 2bc− 2ca is the Källén, or triangle, function [25]. The zeroes of the well-known
Kibble function [26] ,

φ(s, t, u) =
(
2
√
s sin θs p(s) q(s)

)2 = s t u−m2
π(m2

J/ψ −m2
π)2 , (2.5)

define the boundaries of the physical regions of the process. The Dalitz-plot boundaries in
t for a given value of s for J/ψ → 3π lie within the interval [tmin(s), tmax(s)], with

tmax,min(s) =
m2
J/ψ + 3m2

π − s
2 ± 2 p(s) q(s) , (2.6)

while the allowed range for s is given by smin = 4m2
π to smax = (mJ/ψ −mπ)2 .

Finally, the measured differential decay width can be written in terms of the invariant
amplitude F (s, t, u) as

d2Γ
ds dt

= 1
(2π)3

1
32m3

J/ψ

1
3
φ(s, t, u)

4 |F (s, t, u)|2 . (2.7)

2.2 Khuri–Treiman equations for J/ψ → 3π

The KT formalism for the J/ψ → 3π amplitude F (s, t, u) is formally identical to the
well-established one for the ω → 3π decay amplitude [22–24, 27], and has been discussed
in Ref. [28] (see also Ref. [29]). As shown in these references, the s-channel partial-wave
expansion for F (s, t, u) is given by

F (s, t, u) =
∞∑

J odd
(p(s) q(s))J−1 P ′J(zs) fJ(s) , (2.8)

where zs = cos θs and P ′J(zs) is the derivative of the Legendre polynomial. The KT rep-
resentation of the scalar function F (s, t, u) in Eq. (2.8) may be obtained by replacing the
infinite sum of partial waves in the s-channel with the sum of three so-called isobar ampli-
tudes, one for each of the s-, t- and u-channels. By truncating the partial wave expansion
of each isobar amplitude at Jmax = 1 we obtain the following crossing-symmetric isobar
decomposition [22, 23, 30]:

F (s, t, u) = F1(s) + F1(t) + F1(u) , (2.9)
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where each isobar amplitude, F1(x), has only a right-hand or unitary cut in its respec-
tive Mandelstam variable. The relation between F1(s) and f1(s) is obtained by projecting
Eq. (2.9) onto the s-channel partial wave,

f1(s) = F1(s) + F̂1(s) , (2.10)

F̂1(s) ≡ 3
∫ 1

−1

dzs
2 (1− z2

s ) F1(t(s, zs)) , (2.11)

where the inhomogeneity F̂1(s) contains the s-channel projection of the left-hand cut con-
tributions due to the t- and u-channels, and its evaluation in the decay region requires a
proper analytical continuation [31]. Assuming elastic unitarity with only two-pion inter-
mediate states, we arrive at the KT equation for the J/ψ → 3π decay, i.e. the unitarity
relation for the isobar amplitude F1(s):

discF1(s) = 2i
(
F1(s) + F̂1(s)

)
sin δ1(s) e−iδ1(s) θ(s− 4m2

π) , (2.12)

where δ1(s) is the P -wave ππ phase shift, which is real.
Given the discontinuity relation in Eq. (2.12), one can write an unsubtracted dispersion

relation for F1(s) as

F1(s) = 1
2πi

∫ ∞
4m2

π

ds′
discF1(s′)
s′ − s , (2.13)

the solution of which can be written as:

F1(s) = Ω1(s)
(
a+ s

π

∫ ∞
4m2

π

ds′

s′
sin δ1(s′) F̂1(s′)
|Ω1(s′)| (s′ − s)

)
, (2.14)

where Ω1(s) is the usual Omnès function [32],

Ω1(s) = exp
[
s

π

∫ ∞
4m2

π

ds′

s′
δ1(s′)
s′ − s

]
. (2.15)

The subtraction constant a in Eq. (2.14) is the only free parameter in the model. It is in
general complex, a = |a| eiφa . While its modulus |a| can be fixed from the experimental
J/ψ → 3π decay width, no observable of the decay is sensitive to the overall phase φa,
so we can set φa = 0. Since it determines the overall normalization of the amplitude, the
constant a can be factored out.

We note that due to the asymptotic behavior of F1(s) in Eq. (2.14), the amplitude
F (s, t, u) satisfies the Froissart-Martin bound [22, 33, 34]. Also note that, even though
F1(s)/Ω1(s) in Eq. (2.14) looks like a once-subtracted dispersion relation, F1(s) actually
satisfies the unsubtracted dispersion relation given in Eq. (2.13). Therefore, the energy
dependence of F1(s) is a pure prediction given solely by the phase shift δ1(s). Here, we take
δ1(s) from the phase shift parametrizations of Ref. [35] that are valid roughly up to

√
s = 2

GeV. These phase shifts contain information about inelastic channels, but given that the
inelasticity is found to be rather small until about 1.4 GeV we refrain to consider them.
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Figure 1. Solutions I, II and III for the P -wave phase shift δ1(s) from Ref. [35] valid roughly up
to
√
s = 2 GeV. The solution of Ref. [37] (dotted red line) is valid only up to about

√
s = 1.3 GeV,

and is shown for completeness.

Therefore, the phase shift that we employ have the physics of the ρ(770) and also the effects
of the higher ρ(1450) and ρ(1770) resonances. For our analysis, beyond

√
s = Λ ≡ 1.85

GeV we smoothly guide the δ1(s) to π through [27, 36]

δ∞(s) ≡ lim
s→∞

δ1(s) = π − α

β + (s/Λ2)3/2 , (2.16)

where α and β are parameters introduced so that the phase δ1(s) and its first derivative
δ′(s) are continuous at s = Λ2. Their explicit expressions read

α = 3
(
π − δ1(Λ2)

)2
2Λ2δ′1(Λ2) , β = −1 + 3

(
π − δ1(Λ2)

)
2Λ2δ′1(Λ2) . (2.17)

This ensures the expected asymptotic 1/s behavior of Ω1(s). The three phase shifts δ1(s)
from Ref. [35] that we use as an input are shown in Fig. 1 up to 2.5 GeV. The different
solutions come from using different ππ scattering data sources. As seen, the behavior of
the phase shift solution I suggests a large interference between the ρ′ and ρ′′, with a sizable
change in the phase in the region between 1.5 and 1.8 GeV, while solutions II and III looks
smoother in this region. For our analysis, we use solution I as our central input for the
phase and solutions II and III to quantify the systematic uncertainties in our calculations.

We solve Eq. (2.14) following a numerical iterative procedure similar to Refs. [16, 20–
22, 38]. We use F1(s) = Ω1(s) as an efficient initial input to calculate F̂1(s) from Eq. (2.11),
which subsequently is inserted as an input in Eq. (2.14) for the computation of an updated
F1(s). This cyclic calculation is repeated until the solution converges. In Fig. 2, we show
the solutions for F1(s) (normalized to a = 1) after each iteration step along with the initial
input (dashed blue line). As can be seen, convergence is achieved after three iterations. The
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Figure 2. Convergence behavior of the iterative procedure for the real (left plot) and imaginary
(right plot) parts of the amplitude F1(s) given in Eq. (2.14) using solution I of the phase shift δ1(s)
as input. The vertical line denotes the two-pion threshold.

difference between the final solution (solid black) and the starting point, i.e. F1(s) = Ω1(s)
(dashed blue), is rather small, hinting at moderate crossed-channel effects.

Note that when the crossed-channel rescattering effects are removed from the isobar
F1(s), i.e. when F̂1(s) = 0 in Eq. (2.14), F1(s) is simply the pure Omnès function multiplied
by a constant,

F1(s) = a′Ω1(s) , (2.18)

which implies the following isobar decomposition of the full amplitude (cf. Eq. (2.9)):

F (s, t, u) = a′ (Ω1(s) + Ω1(t) + Ω1(u)) . (2.19)

In this case, a new normalization constant a′ has to be chosen to reproduce the J/ψ → 3π
decay width. Also note that Eq. (2.14) can be written in the form

F1(s) = Ω1(s)
(
a+ b′ s+ s2

π

∫ ∞
4m2

π

ds′

(s′)2
sin δ1(s′) F̂1(s′)
|Ω1(s′)| (s′ − s)

)
, (2.20)

where b′ satisfies the following sum rule [22]:

b ≡ b′/a = 1
π

∫ ∞
4m2

π

ds′

(s′)2
sin δ1(s′) F̂1(s′)/a

|Ω1(s′)| . (2.21)

The subtraction constant, b, is complex due to the presence of the three-particle cut in the
physical region of the decay amplitude. This value is found to be:

bsum ' 0.141 e2.321 i GeV−2 . (2.22)
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Had we used solution II or III of the phase shift δ1(s) (cf. Fig. 1), we would have obtained
bsum ' 0.129 e2.640 i GeV−2 and bsum ' 0.124 e2.811 i GeV−2, respectively.

Performing one subtraction on Eq. (2.13) leads to the solution [20, 22, 30]:

F1(s) = a [Fa(s) + b Fb(s)] , (2.23a)

where now b is not constrained to satisfy Eq. (2.21), and the functions Fa(s) and Fb(s) are
given by

Fa(s) = Ω1(s)
[
1 + s2

π

∫ ∞
4m2

π

ds′

s′2
sin δ1(s′) F̂a(s′)
|Ω1(s′)|(s′ − s)

]
, (2.23b)

Fb(s) = Ω1(s)
[
s+ s2

π

∫ ∞
4m2

π

ds′

s′2
sin δ1(s′) F̂b(s′)
|Ω1(s′)|(s′ − s)

]
. (2.23c)

These functions only need to be calculated once since they are independent of the numer-
ical values of a and b and, as we will discuss in Sec. 3, a and b will become fit parameters.
In Fig. 3, we show the solutions for Fa(s) and Fb(s) using a numerical iterative proce-
dure similar to the one described previously. In this case, nine iterations are needed to
obtain convergent solutions. Strictly speaking, the amplitude F (s, t, u) built from F1(s) in
Eq. (2.23a) does not satisfy the asymptotic Froissart-Martin bound for an arbitrary value of
the parameter b 6= bsum [cf. Eq. (2.22)]. The main advantage of introducing one subtraction
is that, due to the additional 1/s′ factor introduced, we reduce the importance of the high
energy region of the dispersion integrals where the phase shift is not well known. By letting
the subtraction constant b be a free parameter, we can partially absorb our ignorance of
the higher energy part of the integral. This allows us to parametrize some unknown energy
dependence of the J/ψ → 3π interaction not directly related to ππ rescattering. As we
will show in the following section, the once-subtracted parametrization provides a good
representation of the data from BESIII in the ρ(770) resonance region.

3 Results

3.1 P -wave contribution

We now compare our KT amplitudes defined in the previous section to the experimen-
tal data from the BESIII collaboration [3]. Given that the Dalitz plot distribution is not
publicly available, we are only able to analyze the di-pion mass projection of Eq. (2.7),
computed on the

√
s ≡ mππ invariant mass, shown in Fig. 2 of Ref. [3]. A Poisson distri-

bution is assumed to assign uncertainty for every bin. High statistics of the data sample
make it challenging to achieve an accurate description of the data with reasonably simple
models. Nevertheless, we will be able to obtain a qualitative description of the data in the
whole energy range. We start by using the unsubtracted KT amplitude Eq. (2.14). The
single free parameter a only affects the overall normalization of the amplitude and can be
fixed from the J/ψ → π+π−π0 decay width. Using the PDG values ΓJ/ψ = 92.6 keV and
BR(J/ψ → π+π−π0) = 2.10(8)% [39] one finds |a| ' 0.051 GeV−3. In Fig. 4, we compare
our prediction to the mππ distribution by BESIII with proper normalization [cf. Eq. (3.1)].
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Figure 3. Convergence behavior of the iterative procedure for the real (left plots) and imaginary
(right plots) parts of the amplitudes Fa(s) (Eq. (2.23b), upper plots) and Fb(s) (Eq. (2.23c), lower
plots) using solution I of the phase shift as δ1(s) input. The vertical line denotes the two-pion
threshold.

In the figure, we also show the result obtained when the crossed-channel rescattering is
neglected [cf. Eq. (2.19)], in which case the global normalization is found to be |a′| ' 0.046
GeV−3. As can be observed, the result of the latter solution (dotted brown line) lies below
that of the unsubtracted KT F1(s) solution at the peak of the ρ-meson, and neither repro-
duce the experimental data in this region. In addition, both appear to fail at describing
the intermediate energy region. In order to achieve a better description of the data, we
next use the more flexible, once-subtracted amplitude Eqs. (2.23b) and (2.23c), with the
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Figure 4. BESIII (red circles) [3] measurement of the mππ invariant mass distribution for the
decay J/ψ → 3π as compared to our prediction without crossed-channel effects (dotted brown
line), with the unsubtracted KT amplitude (dashed green line) and our fit in Eq. (3.2) including
one subtraction (black solid line). The gray band accounts for the systematic uncertainties attached
to our calculations. See main text for details.

additional subtraction constant b fitted to BESIII data. For our analysis, we define

χ2
data =

∑
i=1

(
Nev,i −NdΓth

i /dmππ

σNev,i

)2

, (3.1)

where Nev,i and σNev,i are, respectively, the experimental number of events distribution
and the corresponding error in the i-th bin and dΓth

i /dmππ is the theoretical expression
for the decay distribution [cf. Eq. (2.7)]. For σNev,i we take

√
Nev,i. The constant N is at

this stage an arbitrary normalization. Since we are not determining the branching ratio,
we reabsorb the global normalization of the amplitude a into N and fix alone this overall
constant from the fit to the BESIII data. The sum in Eq. (3.1) runs over the 80 data points
and we take into account an efficiency of about 0.3 for the number of events and the errors
in our fits [3].

The χ2
data minimization yields

|b| = 0.198(35) GeV−2 , φb = 2.675(300) , (3.2)

which implies |a| = 0.0565(22) GeV−3 for the normalization of the amplitude upon using
the BR(J/ψ → π+π−π0) from the PDG. The statistical error is negligible and the quoted
error is the theoretical systematic uncertainty attached to our calculations. This is obtained
from the absolute value of the difference between the fits performed with solutions I (central
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solution) and III of the phase shift δ1
1(s) (cf. Fig. 1), which gives the largest variation. We

observe that the systematic errors attached are sizable, of about 18% and 11% for |b| and
φb, respectively. We also note that this value stays close to its sum-rule prediction given in
Eq. (2.22). Therefore, we conclude that the pion-pion P -wave phase shift saturates the sum
rule for the J/ψ → 3π partial wave to about 75%. This result is to be compared to similar
sum rules for ω → 3π in Ref. [38], where the fitted value of b was found to be quite different
than its sum-rule bsum, and for φ→ 3π in Ref. [22], where it was observed that the difference
between the fitted b and bsum was small. The result of the fit is shown in Fig. 4 with the
normalization of the events distribution resulting from the fits, N = 7.64(33)×108 in units
of (2.4 MeV)−1. The gray error band in the figure accounts for the systematic uncertainties
associated to our fits and is defined as the (symmetrized) difference between the fit results
obtained with solution I of the phase shift with respect to the ones from solution III, which
give the largest difference. It can be seen that this fit provides a satisfactory description
of experimental data up to mππ ∼ 1 GeV (the elastic region). However, we obtain high
values of the χ2/dof of about 200 but this problem is not critical. We shall come back to
discuss this point below. Here we stress that the once-subtracted KT amplitude is able to
reproduce the ρ(770) function shape and note that contributions of partial waves other than
the elastic P -wave, which is the main one, seem to be required to describe the intermediate
energy region around mππ ∼ 1.5 GeV. The next allowed partial wave is the F -wave, which
we will include in the following subsection. As we will see, the inclusion of an explicit
F -wave improves the quality of the fit.

In Fig. 5, we show the Dalitz plot distribution resulting from our fit, which exhibits
unambiguous contributions from ρ(770) resonances which appear as bands along the Dalitz
plot boundaries, with almost no events in the center of the Dalitz plot. The visual compar-
ison with the corresponding BESIII Dalitz-plot data shows a good agreement (see Fig. 2
in Ref. [3]).

3.2 Inclusion of the F -wave contribution

The isobar decomposition of the amplitude including F -waves follows from Eq. (2.8) and
reads [22, 38]:

F (s, t, u) = F1(s) + F1(t) + F1(u)

+ (p(s)q(s))2P ′3(zs)F3(s) + (p(t)q(t))2P ′3(zt)F3(t) + (p(u)q(u))2P ′3(zu)F3(u) ,
(3.3)

where F1(s) is the P -wave isobar [cf. Eq. (2.23a)], F3(s) is the F -wave isobar amplitude,
which as F1(s) only has a right-hand cut, and:

zt = s− u
4p(t)q(t) , zu = s− t

4p(u)q(u) . (3.4)

The discontinuity of the F -wave is expressed by:

discF3(s) = 2i
(
F3(s) + F̂3(s)

)
sin δ3(s) e−iδ3(s) θ(s− 4m2

π) , (3.5)

– 11 –
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Figure 5. Dalitz plot distribution d2Γ/ds dt (in arbitrary units) resulting from our fit in Eq. (3.2).

where δ3(s) and F̂3(s) are the F -wave phase shift and inhomogeneity, respectively. Here,
we will simplify Eq. (3.5) by neglecting F̂3(s), as done for instance in Ref. [20]. The solution
is then given by:

F3(s) = p3(s)Ω3(s) , (3.6)

where Ω3(s) is the F -wave Omnès function (cf. Eq. (2.15))

Ω3(s) = exp
[
s

π

∫ ∞
4m2

π

ds′

s′
δ3(s′)
s′ − s

]
. (3.7)

In order to obtain the required input phase δ3(s), we model the F -wave contribution
by a ρ3(1690) resonance (JPC = 3−−). While the dominant decay mode of the ρ3(1690) is
to 4π, we only consider here its decay to ππ and neglect inelastic channels effects. We use
the following Breit-Wigner representation for F3(s):

F3(s)|BW =
m2
ρ3

m2
ρ3 − s− imρ3Γ`=3

ρ3 (s) , (3.8)

with the energy-dependent width given by

Γ`R(s) = ΓRmR√
s

(
p(s)
p(m2

R)

)2`+1 (
F `R(s)

)2
. (3.9)

The F `R(s) denotes the Blatt-Weisskopf factor that limits the growth of the isobar [40]. For
` = 3 it is given by:

F `=3
R (s) =

√
z0(z0 − 15)2 + 9(2z0 − 5)2

z(z − 15)2 + 9(2z − 5)2 , z = r2
Rp

2(s) , z0 = r2
Rp

2(m2
ρ3) , (3.10)
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Figure 6. F -wave phase shift δ3(s) Eq. (3.11) (left plot) and output for the Omnès function Ω3(s)
Eq. (3.7) (right plot).

with the hadronic scale rR = 2 GeV−1. The phase can then be computed from the relation

tan δ3(s) = ImF3(s)|BW
ReF3(s)|BW

, (3.11)

which completes our representation of the F -wave isobar F3(s). Using mρ3 = 1688 MeV
and Γρ3 = 161 MeV from the PDG, in Fig. 6 we display the model for the phase δ3(s)
Eq. (3.11) and the output for the corresponding Omnès function Ω3(s) Eq. (3.7) that we
use for our analysis.

Finally, the function p3(s) in Eq. (3.6) is a polynomial that parametrizes the energy
dependence not directly related to the propagation of the ρ3(1690) resonance and fixes
the strength of the F -wave amplitude. In order to achieve a satisfactory description of
the data, we take p3(s) linear in s with parameters relative to the P -wave amplitude, i.e.
p3(s) = a(|c|eiφc + |d|eiφd s), such that the overall normalization of the amplitude a can be
factored out in Eq. (3.3) and absorbed in N (cf. Eq. (3.1)) as in the previous subsection.
By minimizing Eq. (3.1), we obtain the following values for the fit parameters:

|b| = 0.205(34) GeV−2 , φb = 2.784(298) , (3.12)

for the P -wave subtraction constant, and

|c| × 102 = 4.38(1.46) GeV−4 , φc = 3.80(5) ,

|d| × 102 = 1.58(46) GeV−6 , φd = 0.65(8) ,
(3.13)

for the parameters of the F -wave subtracted polynomial p3(s). Again, the quoted error
in the previous equations is the systematic uncertainty obtained from using the different
P -wave phase shifts δ1(s) as input. The result of this fit implies |a| = 0.0581(60) GeV−3 for
the overall normalization of the amplitude and it is plotted in Fig. 7 as the dash-dotted blue
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Figure 7. BESIII (red circles) [3] measurement of the mππ invariant mass distribution for the decay
J/ψ → 3π as compared to our fits in Eqs. (3.2) (solid black line), (3.12) and (3.13) (dot-dashed blue
line). The blue error band accounts for the systematic uncertainties attached to our calculations.
See main text for details.

line using the event distribution normalization from the fits, N = 8.09(41) × 108 in units
of (2.4 MeV)−1. In the figure, the result of the standalone P -wave fit [cf. Eq.(3.2)] is also
shown for comparison. As seen, the ρ3(1690)-induced F -wave contribution improves the
description of the data around 1.5 GeV. Numerically, we find that the individual F -wave
contribution is rather small, while the interference between the P - and F -waves gives a
correction of a few percent in the region mππ ∼ 1.5 GeV. The χ2/dof remains high (about
100). However, with the systematic uncertainties associated to our fits (blue error band in
Fig. 7), we conclude that our representation of the amplitude is capable of describing the
two more prominent features shown by the data: the line shape of the BESIII measurements
in the vicinity of the ρ(770) resonance as well as the movement of the function at mππ ∼ 1.5
GeV due to the F -wave effects.1 As for the Dalitz-plot distribution, the F -wave effects
provides no significant change with respect to Fig. 3.2 and we thus refrain to show them
here.

4 J/ψ → π0γ∗ transition form factor

The J/ψπ0 transition form factor (TFF), fJ/ψπ0(s), governs the J/ψ → π0γ∗ amplitude
and its energy dependence is experimentally accessible from the decays J/ψ → π0e+e− and

1We shall wait for the arrival of new Dalitz distribution experimental data from BESIII to ascribe a
strict statistical meaning to our χ2 fits.
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Figure 8. Diagrammatic representation of the two-pion contribution to the discontinuity of the
J/ψπ0 transition form factor [cf. Eq. (4.1)]. The blue and red circles represent, respectively, the full
s-channel P -wave J/ψ → 3π amplitude f1(s) and the pion vector form factor FVπ (s).

J/ψ → π0µ+µ−. At present, there is no measurement of the shape of the form factor and
the only experimental information on these decays is the measurement of the branching
ratio by the BESIII collaboration, BR(J/ψ → π0e+e−) = (7.56± 1.32± 0.50)× 10−7 [41].
This measurement was obtained subtracting the ρ resonance contribution and assuming
that excited cc̄ exchanges, e.g. coming from off-shell ψ′ contributions, dominate the energy-
dependence of the form factor. Refs. [28, 42] showed that subtracting this contribution is
not well motivated, as the light vector meson contributions to the form factor actually
dominate the decay. Using the formalism previously employed for the decays of light vector
mesons ω/φ→ π0γ∗ [24, 43], we present a dispersive description of fJ/ψπ0(s) comparable to
Ref. [28], but with the difference that our analysis is driven by the J/ψ → 3π experimental
data analysis presented in Sec. 3.

A dispersive representation of fJ/ψπ0(s) is fully determined, up to possible subtractions,
by the discontinuity across the right hand cut. Here, we focus on the light-quark resonance
contributions to the discontinuity, which dominate the form factor at low and intermediate
energies. Additional cc̄ contributions can arise close to the upper limit of the accessible
phase space,

√
s = mJ/ψ − mπ0 , and in fact can dominate the transition form factor

there [28, 42], but these contributions appear in a region of the Dalitz decays which are
strongly suppressed by phase space [28, 42], rendering the task of experimentally observing
them nearly impossible. Bearing this in mind, and because of the absence of experimental
data for the form factor, we do not consider them in our analysis.

In order to be consistent with the elastic approximation in the J/ψ → π+π−π0 study,
we include only the two-pion intermediate state contribution to the discontinuity (see Fig. 8
for a diagrammatic interpretation):

discfJ/ψπ0(s) = i
p3(s)
6π
√
s
F Vπ
∗(s) f1(s) θ(s− 4m2

π) , (4.1)

which requires as input the full s-channel P -wave J/ψ → 3π amplitude f1(s) given in
Eq. (2.10) and the pion vector form factor complex-conjugate F Vπ

∗(s), which we approxi-
mate by the Omnès function (complex-conjugate) given in Eq. (2.15). Given that we are
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using a once-subtracted dispersion relation for the J/ψ → 3π KT equations, an unsub-
tracted dispersion relation for the TFF, as used for instance in Ref. [28], would result in
a divergent integral if no cutoff is used. Therefore, we use a once-subtracted dispersion
relation for the TFF itself,

fJ/ψπ0(s) = |fJ/ψπ0(0)| eiφJ/ψπ0 (0) + s

12π2

∫ ∞
4m2

π

ds′

(s′)3/2
p3(s′) F Vπ

∗(s′) f1(s′)
(s′ − s) , (4.2)

where we indicate explicitly the existence of a non-vanishing phase of fJ/ψπ0(s) at s = 0.
This is implied by the cross-channel effects, i.e. the functions F Vπ

∗(s) and f1(s) do not
have the same phase, and the discontinuity of fJ/ψπ0(s) is in general complex [24, 43]. The
modulus of the subtraction constant |fJ/ψπ0(0)| can be fixed from the J/ψ → π0γ partial
decay width

Γ(J/ψ → π0γ) =
e2(m2

J/ψ −m2
π0)3

96πm3
J/ψ

|fJ/ψπ0(0)|2 . (4.3)

Using the value of the partial decay width of J/ψ → π0γ [39] in combination with the
above equation, one obtains:

|fJ/ψπ0(0)| = 6.0(3)× 10−4 GeV−1 . (4.4)

The phase φJ/ψπ0(0) is a free parameter that can only be accessed from the transition form
factor experimental data (see e.g. Ref. [24]). Due to the absence of data for J/ψ → π0γ∗,
we set φJ/ψπ0(0) = 0 in our study.

In Fig. 9, we show up to
√
s = 2 GeV our prediction for the absolute value of the

transition form factor resulting from Eq. (4.2) and using the results from Eq. (3.2) (solid
black line). This is our central result for the form factor. In this figure, however, we also
show the result of using the unsubtracted KT solution for J/ψ → 3π (dashed blue line).
It is worth noting that both curves are similar and only a slight difference is observed at
the ρ peak. Additionally, the calculations when an unsubtracted dispersion relation for the
form factor is used are also shown in the figure, both with an unsubtracted (dotted red
line) and once-subtracted (dot-dashed green line) J/ψ → 3π amplitude. In the latter case,
we have cut the dispersive integral at 4 GeV2 to avoid the dispersion relation to diverge.
Again, both curves are similar. In this case, the value at the real photon energy can be
calculated from the sum rule [28, 43]:

fJ/ψπ0(0) = 1
12π2

∫ ∞
4m2

π

ds′
p3(s′)F V ∗π (s′)f1(s′)

(s′)3/2 . (4.5)

This value is found to be |fJ/ψπ0(0)| = 5.0(2) × 10−4 GeV−1 for both versions of the un-
subtracted dispersion relation. The quoted uncertainty is the systematic error from using
the different phase shifts as input. This value is in qualitative agreement with the value
extracted from the measured J/ψ → π0γ in Eq. (4.4), indicating that the normalization is
saturated by the two-pion intermediate state contribution by roughly 85%. The difference
between the various lines provides an estimate of the theoretical uncertainty associated to
our description. We expect our study to strengthen the case for new experimental measure-
ments of the shape of this form factor, which would allow improving the understanding of
radiative J/ψ decays.

– 16 –



——
----
- -- -··
⋯⋯

��� ��� ��� ��� ���
���

���

���

���

���

���

���

Figure 9. Prediction for the absolute value of the transition form factor J/ψ → π0γ∗ using Eq. (4.2)
(solid black line) and variants of it. See main text for details.

5 Summary

We have analyzed the decay J/ψ → π+π−π0 within the framework of the Khuri-Treiman
equations, which satisfy the constraints imposed by unitarity, analyticity and crossing sym-
metry. We have included the P -wave effects of the ππ subsystem up to around 2 GeV, which
are controlled by the ππ P -wave scattering-phase shift. We have seen that one subtraction
in the P -wave amplitude is necessary to achieve a good description of the experimental
data in the ρ(770)-region. The corresponding subtraction constant was fixed from fits to
the di-pion invariant mass distribution from BESIII. We have also seen that the P -wave
alone is not capable of reproducing the data in the mass region around mππ ∼ 1.5 GeV,
and that the inclusion of an F -wave contribution arising from the ρ3(1690) brings theory
closer to data in this region. In addition, we have provided predictions for the transition
form factor J/ψ → π0γ∗ up to 2 GeV. Our study lays the groundwork for an event-by-event
likelihood fit of high-precision data from J/ψ decays, which are expected to be available
from BESIII in a near future.
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