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Introduction

We consider simple undirected graphs. Let v be a vertex of a graph G ,

recall that:
degree dG(v) = number of adjacent vertices of v ;

eccentricity εG(v) = maximal distance between v and any other
vertex.

We also define wG(v) = εG(v)dG(v).
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Introduction

For a graph G = (V ,E ),
its order |V | is denoted by n;
its number of pending vertices P = |{v ∈ V |dG(v) = 1}| is denoted
by p.
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Eccentric Connectivity Index

Definition
The Eccentric Connectivity Index (ECI) of a graph G, denoted by ξc(G), is

ξc(G) =
∑
v∈V

dG(v)εG(v) =
∑
v∈V

wG(v).

Example

a3 | 2
b

2 | 2

c
4 | 1

d
2 | 2

e 1 | 2 ξc(G) = 3 × 4 + 2 + 6 = 20
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The problem

We want to solve the following problem :

Problem
Among all connected graphs with n vertices and p pending vertices, what
are the graphs with minimum value of ξc?

Note : in this talk, we only consider graphs with n > 3 and p < n − 2.
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The graphs Gn,p

Definition
We define Gn,p as the graph with n vertices and p pending vertices
obtained from a star on n vertices by adding a maximal matching between
n−p−1 pending vertices. If n−p−1 is odd, we add an edge between one
of the remaining pending vertices and a vertex covered by the matching.

Example

G7,3 G7,2
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The graphs Gn,p

We can compute ξc (Gn,p) using the following formulae :
If n − p − 1 is even, ξc(Gn,p) = 5n − 2p − 5
If n − p − 1 is odd, ξc(Gn,p) = 5n − 2p − 3

Note : this doesn’t work if n = 4 and p = 0 since G4,0 has two dominant
vertices. In this case, ξc(G4,0) > ξc(K4).

ξc(G4,0) = 14

>

ξc(K4) = 12
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One dominant vertex

At least a star on n vertices.

We keep degrees as small as possible.
We might need one additional edge.
This is Gn,p.
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x ≥ 2 dominant vertices

With more than one dominant vertex, no pending vertex.
Let G be such a graph :

ξc(G) ≥ (n − 1)x + (n − x)2x = −2x2 + x(3n − 1)

Minimized when x = 2 or x = n.
x = 2 :

Sn,2

ξc(G) ≥ 6n − 10

x = n :

Kn

ξc(G) ≥ n2 − n
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No dominant vertex

Let G = (V ,E ) be a graph with no dominant vertex, can it be as
good as a graph with at least one dominant vertex ?
We can show that ∃u ∈ V such that dG(u) = εG(u) = 2
Let v and w be the neighbors of u.
We first suppose that v is adjacent to w .

Let
A = N(v)\N(w)\{u,w},
C = N(w)\N(v)\{u, v},
B = N(w) ∩ N(v)\{u},
B′ = {x ∈ B|dG(x) = 2},
B′′ = B\B′.

v w

u

B′

B′′

B

A C
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v and w are adjacent

We obtain G ′ by applying the following transformation :

v w

u

B′

B′′

B

A C

⇒
v w

u

B′

B′′

B

A C

G. Devillez P.H.O.E.G. ECCO 2018 10 / 19



v and w are adjacent

v w

u

B′

B′′

B

A C

⇒
v w

u

B′

B′′

B

A C

We can show that∑
z∈A∪B ∪C ∪{u}

wG(z) ≥
∑

z∈A∪B ∪C ∪{u}
wG ′(z)

Thus, to prove that G is not optimal, we have to show that

wG(v) + wG(w)− wG ′(v)− wG ′(w) = α− β > 0
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v and w are adjacent

v w

u

B′

B′′

B

A C

⇒
v w

u

B′

B′′

B

A C

wG(v) = 2(|A|+ |B|+ 2)

wG(w) = 2(|B|+ |C |+ 2)

α = 2 |A|+ 4 |B|+ 2 |C |+ 8

wG′(v) = 2(|B′|+ 2)

wG′(w) = |A|+ |B|+ |C |+ 2

β = |A|+ |B|+ |C |+ 2 |B′|+ 6

α− β = |A|+ 3 |B| − 2 |B′|+ |C |+ 2 = |A|+ |B′|+ 3 |B′′|+ |C |+ 2 > 0

Thus G is not optimal.
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v and w are not adjacent

If A∪B′′ and C ∪B′′ are not empty, we obtain G ′ by applying the
following transformation :

v w

u

B′

B′′

B

A C

⇒
v w

u

B′

B′′

B

A C

Just like before, we only need to show that α− β > 0.
But, α− β ≥ |A|+ |B′|+ 3 |B′′|+ |C | − 2 ≥ 0
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When could G be optimal ?

α− β ≥ |A|+
∣∣B′∣∣+ 3

∣∣B′′∣∣+ |C | − 2

The set B′′ must be empty.
B′ must be empty too.
|A| = |C | = 1
Two possible non-improving situations :
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>

ξc(G5,2) = 16
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When could G be optimal ?

α− β ≥ |A|+
∣∣B′∣∣+ 3

∣∣B′′∣∣+ |C | − 2

The set B′′ must be empty.
B′ must be empty too.
|A| = |C | = 1
Two possible non-improving situations :
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=

ξc(K5) = 20
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u and v are not adjacent
A∪B′′ (or C ∪B′′) is empty

If B′ is empty, C is not empty since n > 3 and ∃r ∈ C s.t. dG(r) ≥ 2
since p ≤ n − 3.
We can then apply the following transformation to obtain G ′ :

v w

u

r
C

⇒
v w

u

r
C
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Changes in ξc

v : 3 w : 2(n-2)

u : 4

r
C

⇒
v : 4 w : n-1

u : 2

r
C

wG(r)− wG ′(r) = 3dG(r)− 2(dG(r) + 1) = dG(r)− 2
∀z ∈ C\{r},wG(z) > wG ′(z)
There is at least one such vertex z such that wG(z)− wG ′(z) ≥ 2.
Thus, ξc(G)− ξc(G ′) ≥ 2 − 1 + n − 3︸ ︷︷ ︸

>0

+ dG(r)− 2︸ ︷︷ ︸
≥0

+2 > 0

And G is not optimal.
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u and v are not adjacent
A∪B′′ (or C ∪B′′) is empty

If B′ is not empty, we transform G as follows :

v w

u

C
B’

⇒
v w

u

C
B’

v w

u

C
B’

⇒
v w

u

C
B’
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Conditions for optimality

Again, we need to show that α− β > 0 and again,

α− β ≥ 3
∣∣B′∣∣+ |C | − 4 ≥ 0

For G to be optimal, we need |B′| = 1 and |C | ≤ 1.
In these situations, the bound is actually too low and G ′ is still better :

|C | = 0 :

16

>

14

In this case, G is again not optimal.
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Comparison of results

When p > 0, we saw that only Gn,p is optimal.
When p = 0, we can compare the different candidates we found
numerically via the formulae :
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The graphs Sn,2

Definition
We define Sn,2 as the graph with n vertices obtained from two adjacent
vertices u and v by adding n − 2 new vertices only adjacent to u and v.

Example

S4,2
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big values of p

If p = n − 1, the graph can only be a star on n vertices.

Example
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big values of p

If p = n − 2, the only possible graphs are obtained by adding n − 2
pending vertices randomly between the extremities of an edge with at
least one pending vertex on each side.

Example
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big values of p

In the rest of this talk, we suppose p ≤ n − 3.
Note that if n = 3, we can only have p = 0 which is K3.

We thus also suppose that n ≥ 4.
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No dominant vertex

Let G be an extremal graph with no dominant vertex.
Let Q ⊆ V be the set of vertices of degree 2 and eccentricity 2.
If Q = ∅, G is not extremal:

Every non-pending vertex v has dG(v) ≥ 2 and εG(v) ≥ 2. And
dG(v) ≥ 3 or εG(v) ≥ 3.
Every pending vertex v has εG(v) ≥ 3.

Thus,

ξc(G) ≥ 6(n − p) + 3p ≥ 5n − 2p + 3 > ξc(Gn,p)

And G is not extremal.
Also true when n = 4 and p = 0.
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A∪B ′′ and C ∪B ′′ are not empty

v w

u

B′

B′′

B

A C

⇒
v w

u

B′

B′′

B

A C

wG(v) ≥ 2(|A|+ |B|+ 1)

wG(w) ≥ 2(|B|+ |C |+ 1)

α ≥ 2 |A|+ 4 |B|+ 2 |C |+ 4

wG′(v) = 2(|B′|+ 2)

wG′(w) = |A|+ |B|+ |C |+ 2

β = |A|+ |B|+ |C |+ 2 |B′|+ 6

α− β ≥ |A|+ 3 |B| − 2 |B′|+ |C |+ 2 = |A|+ |B′|+ 3 |B′′|+ |C | − 2
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Changes in ξc

∀z ∈ B′ ∪C ∪{u},wG(z) ≤ wG ′(z)

v w

u

C
B’

⇒
v w

u

C
B’

wG(v) ≥ 2(|B′|+ 1)
wG(w) = 2(|B′|+ |C |+ 1)
α ≥ 4 |B′|+ 2 |C |+ 4

wG ′(v) ≤ 6
wG ′(w) = |B′|+ |C |+ 2
β ≤ |B′|+ |C |+ 8

α− β ≥ 3 |B′|+ |C | − 4
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Comparison of results

We have the following results :

If p > 0, Gn,p is the extremal graph.
If n = 4 and p = 0, the extremal graph is K4.
If n = 5 and p = 0, there are four extremal graphs : K5, G5,0, C5 and
S5,2.
If n = 6 and p = 0, the extremal graph is Sn,2.
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