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Abstract: We construct a new family of rotating black holes with scalar hair and a

regular horizon of spherical topology, within five dimensional (d = 5) Einstein’s gravity

minimally coupled to a complex, massive scalar field doublet. These solutions represent

generalizations of the Kaluza-Klein monopole found by Gross, Perry and Sorkin, with

a twisted S1 bundle over a four dimensional Minkowski spacetime being approached in

the far field. The black holes are described by their mass, angular momentum, tension

and a conserved Noether charge measuring the hairiness of the configurations. They are

supported by rotation and have no static limit, while for vanishing horizon size, they reduce

to boson stars. When performing a Kaluza-Klein reduction, the d = 5 solutions yield a

family of d = 4 spherically symmetric dyonic black holes with gauged scalar hair. This

provides a link between two seemingly unrelated mechanisms to endow a black hole with

scalar hair: the d = 5 synchronization condition between the scalar field frequency and the

event horizon angular velocity results in the d = 4 resonance condition between the scalar

field frequency and the electrostatic chemical potential.
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1 Introduction

The five dimensional (d = 5) extension of Einstein’s theory of General Relativity (GR)

was introduced around one century ago by Kaluza [1] and Klein [2] in an early attempt

to unify the (then) known interactions, namely gravity and electromagnetism. In the

Kaluza-Klein (KK) framework, the Universe has three non-compact spatial dimensions;

one extra dimension is compact, topologically a circle and sufficiently small as to remain

unobservable.

This simple idea has proven to be one of the most fruitful in theoretical physics, and

the original KK model has been extended in various directions, such as including more

(than one) compact extra-dimensions and starting from higher dimensional theories that

are not vacuum GR, including, e.g., gauge and scalar fields - see [3] for a review and a

large set of original literature.

In the context of this work, a feature of the (initial) KK model is of particular interest:

the existence of gravitational solitons, i.e. non-singular, horizonless solutions of the vacuum

Einstein field equations. While no such solutions exist in four spacetime dimensions [4–6],

gravitational solitons exist in KK theory, as found in the ’80s by Gross and Perry [7] and

Sorkin [8]. In the simplest case, this corresponds to a regular solution, which, from a four-

dimensional perspective, describes a (gravitating) Abelian magnetic monopole, a feature

which has attracted much interest.

The Gross-Perry-Sorkin (GPS) soliton is the product between the d = 4 NUT-instanton

[9] and a time coordinate, being asymptotically locally flat only. This defines a special type

of squashed KK asymptotics, with a twisted S1 bundle over a four dimensional Minkowski

spacetime being approached in the far field. As expected, the vacuum GPS soliton pos-

sesses Black Hole (BHs) generalizations1 [15–19], with an event horizon of S3 topology,

geometrically being a squashed (rather thand round) sphere. Such solutions are essen-

tially higher dimensional near the event horizon, but look like four-dimensional - with a

compactified extra-dimension -, at large distances.

An interesting question which arises in this context concerns the validity of the ’no-

hair’ conjecture [20]. In particular, do the BHs with squashed KK asymptotics allow for

scalar hair? In the last decade it became clear that, at least for asymptotically flat [21]

or anti-de Sitter [22] BHs, there is a generic mechanism allowing for complex scalar hair

around rotating horizons. This mechanism relies on a synchronization condition [21, 23]

which guarantees that there is no scalar energy flux crossing the horizon. Mathematically,

this results in the following relation between the scalar field frequency ω and the event

horizon angular velocity ΩH :

ω = mΩH , (1.1)

where m is the winding number which enters the scalar ansatz and m ∈ Z+ for the d = 4

BHs in [21, 23]. Eq. (1.1) means that the scalar field phase angular velocity matches the

horizon’s angular velocity; hence the name ’synchronization’. This mechanism appears to

1There are also BH generalizations of the GPS solution with gauge fields [10–14].
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possess a certain degree of universality, applying to both asymptotically flat (d = 4) neutral

[21] and electrically charged [24] rotating BHs, as well as to BHs in d > 4 dimensions

[25, 26], toroidal horizon topology [27], or AdS asymptotics [22], and even to other spin

fields [28, 29].

One of the main results of this work is to provide evidence that the same mechanism

holds as well for BHs with the same squashed KK asymptotics as the GPS soliton. To do

so, we consider d = 5 Einstein’s gravity minimally coupled to a massive complex scalar field

doublet, with a special ansatz, originally introduced in [30], which factorizes the angular

dependence and reduces the problem to solving a set of ordinary differential equations

(ODEs). By numerically solving the Einstein-Klein-Gordon (EKG) equations, we find a

four parameter family of regular (on and outside the horizon) BHs with scalar hair and

squashed KK asymptotics. The four continuous parameters are the mass M , the angular

momentum J , the tension T and the Noether charge Q, which measures the scalar field

outside the horizon. For vanishing horizon size, the solutions reduce to solitonic Boson

Stars (BSs). Interestingly, some basic properties of these configurations are akin to those

of the d = 4 BSs and BHs with scalar hair [31, 32], rather than those of the known d = 5

asymptotically Minkowski EKG solutions [25, 30].

We also consider the equivalent d = 4 picture, obtained after performing a standard

KK reduction for both the metric and the scalar field, as discussed e.g. in [7]. While the

BSs result in d = 4 singular configurations - similarly to the dimensional reduction of the

(vacuum) GPS monopole -, the d = 5 BHs correspond to asymptotically flat solutions of

a specific d = 4 Einstein-dilaton-Maxwell-(gauged) scalar (EdMgs) field model. They are

spherically symmetric and describe gravitating dyonic BHs with scalar hair. Remarkably,

the synchronization condition (1.1) in d = 5 translates into the d = 4 resonance condition:

ω = qsV, (1.2)

which has been found in the study of charged (non-spinning) BHs with gauged scalar hair

[33–36]. In (1.2) qs is the gauge coupling constant, while V is the electrostatic chemical

potential, which, in the d = 5 picture, corresponds to the event horizon angular velocity.

This paper is organized as follows. In Section 2 we present the EKG model together

with a general framework, the ansatz taken - complemented by the equations in Appendix

A -, and discuss the computation of global charges, together with the solutions of the Klein-

Gordon equation in the probe limit. The EKG solutions with squashed KK asymptotics

are discussed in Section 3, where we consider both the case of BSs and BHs. Section 4 is

motivated by the observation that the GPS soliton can be taken as an intermediate state

between the five dimensional Minkowski spacetime and the ’standard’ KK vacuum, i.e.

the direct product of four dimensional Minkowski spacetime and a circle. Therefore, in

Section 4 we consider a comparison between the EKG solutions in Section 3 and those

found for the other two spacetime asymptotics mentioned above. In particular, the basic

properties of the KK vortices in EKG model are also discussed there for the first time in

the literature. Section 5 reconsiders the results from a d = 4 perspective and shows how

the synchronized d = 5 spinning hairy BHs (HBHs) become d = 4 resonant spherically
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symmetric BHs with gauged scalar hair. We conclude in Section 6 with a discussion and

some further remarks. A brief review of the vacuum spinning BH solution with squashed

KK asymptotics [16, 19] is presented in Appendix B, as well as an exact solution of the

KG equation on an extremal (vacuum) BH background.

2 The framework

2.1 Action and field equations

We consider the d = 5 Einstein’s gravity minimally coupled to a massive complex scalar

field doublet Ψ, with action

S =
1

4πG5

∫
M
d5x

√
−g
[
1

4
R− 1

2
gab
(
Ψ†
, aΨ, b +Ψ†

, bΨ, a

)
− µ2Ψ†Ψ

]
− 1

8πG5

∫
∂M

d4x
√
−hK,

(2.1)

where † denotes the complex transpose, G5 is the five dimensional Newton’s constant,

which will be set to unity in the numerics, µ is the scalar field mass, hij is the induced

metric on the boundary ∂M of the spacetime M, and Kij is the extrinsic curvature of this

boundary, with K = Kijh
ij .

Variation of this action with respect to the metric and scalar field gives the EKG

equations:

Rab −
1

2
gabR = 2 Tab ,

(
□− µ2

)
Ψ = 0 , (2.2)

where

Tab = Ψ†
,aΨ,b +Ψ†

,bΨ,a − gab

[
1

2
gcd
(
Ψ†
,cΨ,d +Ψ†

,dΨ,c

)
+ µ2Ψ†Ψ

]
, (2.3)

is the stress-energy tensor of the scalar field.

2.2 The vacuum Gross-Perry-Sorkin solution

We start by introducing the squashed Kaluza-Klein (KK) geometry found in [7, 8], which

captures some of the basic features of the solutions constructed in this work. This metric

solves the vacuum Einstein equations, Ψ = 0, and is the product between the d = 4

(self-dual) Euclidean Taub-NUT instanton [9] and a time coordinate,

ds2 = −dt2 + ds24 . (2.4)

The instanton metric ds24 possesses an intrinsic length scale N ⩾ 0, which is an input

parameter: the NUT charge. The geometry can be written with several different choices

of the radial coordinate r, which make more transparent various limits of interest.

The first form for the instanton metric we shall consider is

ds24 =
r +N

r −N
dr2 + (r2 −N2)(dθ2 + sin2 θdφ2) +

r −N

r +N
4N2(dψ + cos θdφ)2. (2.5)

The range of the radial coordinate is N ⩽ r < ∞, while θ, φ and ψ are the usual Euler

angles with ranges 0 ⩽ θ ⩽ π, 0 ⩽ φ < 2π, 0 ⩽ ψ < 4π. This metric is asymptotically

locally flat, in the sense that the curvature goes to zero as r → ∞. The surfaces of constant
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r are topologically S3, although their metric is a deformed 3-sphere, with an S1 fiber over

S2. Also, r = N corresponds to the origin of the coordinates, on R4, with the size of S3

shrinking to zero.

The coordinate transformation

r → r −N (2.6)

leads to an equivalent form of (2.5),

ds24 =

(
1 +

2N

r

)[
dr2 + r2(dθ2 + sin2 θdφ2)

]
+

4N2

1 + 2N
r

(dψ + cos θdφ)2, (2.7)

but now with the usual range of the new radial coordinate, 0 ⩽ r <∞.

The N → 0 limit of the d = 4 NUT instanton corresponds to the flat R3 × S1 space.

To take this limit, one defines a new coordinate

ψ =
z

2N
. (2.8)

Then, as N → 0, one finds the line element

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) + dz2 , (2.9)

which is the M1,3 × S1 metric, with an arbitrary periodicity L for the coordinate z.

An alternative form of the instanton metric, which shall later be employed in the

construction of BSs, is obtained by taking the following coordinate transformation in (2.5)

r → N +
r2

8N
, (2.10)

with the new radial coordinate ranging from zero to infinity. This result in the line element

ds24 =

(
1 +

r2

16N2

)[
dr2 +

r2

4
(dθ2 + sin2 θdφ2)

]
+

1

4

(
r2

1 + r2

16N2

)
(dψ+ cos θdφ)2. (2.11)

Then the limit N → ∞ corresponds to

ds = −dt2 + dr2 +
r2

4

[
dθ2 + sin2 dφ2 + (dψ + cos θdφ)2

]
, (2.12)

which is the d = 5 Minkowski spacetime M1,4.

As such, when varying the parameter N , one can consider the d = 5 metric (2.4)

as interpolating between the ’standard’ KK vacuum, i.e. the direct product of d = 4

Minkowski spacetime and a circle – the limit N → 0 –, and the d = 5 Minkowski spacetime

– the limit N → ∞.

As expected, the GPS soliton possesses BH generalizations, with a squashed horizon

of S3 topology and nonzero size, whose basic properties are reviewed in Appendix A.
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2.3 A general ansatz

The geometries studied in this work are described by a generic line element2

ds2 = −F0(r)dt
2 + F1(r)dr

2 + F2(r)
(
σ21 + σ22

)
+ F3(r)(σ3 − 2W (r)dt)2 , (2.13)

with the left-invariant 1-forms σi on S
3,

σ1 = cosψdθ + sinψ sin θdφ,

σ2 = − sinψdθ + cosψ sin θdφ, (2.14)

σ3 = dψ + cos θdφ,

and (θ, φ, ψ) the usual Euler angles defined above, while r and t denote the radial and time

coordinates, respectively3. Apart from the Killing vector K0 = ∂ψ, the line element (2.13)

possesses three additional Killing vectors

K1 = sinφ∂θ , K2 = − cosφ∂θ + sinφ cot θ∂φ − sinφ

sin θ
∂ψ , K3 = ∂φ ,

which obey an SU(2) algebra.

Concerning the scalar sector, we shall consider a general ansatz, with

Ψ = ϕ (r) e−iωtΨ̂s , with s = 0, 1 , (2.16)

where

Ψ̂0 =

(
1

0

)
, Ψ̂1 =

(
sin θ

2 e
−iφ

2

cos θ2 e
iφ
2

)
ei
ψ
2 . (2.17)

The case s = 0 is only compatible with a static line-element, in which case similar results

are found when considering a singlet scalar field, i.e. Ψ = ϕ(r)e−iωt. In the rotating case,

we shall use instead the s = 1 scalar ansatz, which was originally proposed in [30], albeit

for a parametrization of the 3-sphere in terms of {Θ, φ1, φ2} - see Eq. (2.15).

Both solitons and BHs, can be studied by using the general metric form (2.13) together

with the scalar ansatz (2.16), (2.17). The corresponding expressions of the Einstein and

energy-momentum tensors are given in Appendix A; the resulting EKG equations depend

only on the radial variable r. The BHs have a regular horizon located at some rH > 0, with

F0(rH) = 0. For solitons, the horizon is replaced with a regular origin r = 0, where both

2There is a residual metric gauge freedom in (2.13), to be fixed later. The GPS metric (2.4), with the

various choices of radial coordinate in the spatial part, is of the form (2.13).
3An equivalent form of this line element (used sometimes in the literature) is found by defining the new

coordinates Θ = θ/2, φ1 = (ψ − φ)/2, φ2 = (ψ + φ)/2 (with 0 ⩽ Θ ⩽ π/2, 0 ⩽ (φ1, φ2) < 2π), yielding

ds2 = −F0(r)dt
2 + F1(r)dr

2 + 4

[
F2(r)dΘ

2 + F3(r)(sin
2 Θ(dφ1 −Wdt)2 + cos2 Θ(dφ2 −Wdt)2)

]
(2.15)

+[F2(r)−F3(r)] sin
2(2Θ)(dφ1 − dφ2)

2 .
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F2 and F3 vanish, while F0 and F1 are finite and nonzero. In both cases, the solutions

share the far field asymptotics with the GPS metric (2.4), (2.5), with F0 → 1, F1 → 1,

F2 → r2, F3 → 4N2, W → 0 (and also ϕ→ 0) as r → ∞.

Finally, let us mention that the action (2.1) is invariant under the global U(1) transfor-

mation Ψ → eiαΨ, where α is a constant. This implies that the current ja = −i(Ψ∗∂aΨ−
Ψ∂aΨ∗) is conserved, i.e. ja;a = 0. Therefore integrating the timelike component of this

current on a spacelike slice Σ yields a conserved quantity – the Noether charge:

Q =

∫
Σ
jt = 32π2

∫ ∞

r0

dr F2

√
F1F3

F0
(ω −W )ϕ2, (2.18)

where r0 = {0, rH} for solitons and BHs respectively.

2.4 The computation of global changes

Apart from the Noether charge, the solutions possess three more conserved quantities:

mass M , angular momentum J and tension4 T , whose values are encoded in the far field

form of the metric functions. Given the non-standard asymptotics of the solutions in this

work, one way to compute their charges is to use the quasilocal tensor of Brown and York

[39], augmented by the counterterm formalism [40–43]. This technique, inspired by the

holographic renormalization method in spacetimes with anti-de Sitter (AdS) asymptotics

[44, 45] consists in adding a suitable boundary counterterm Sct to the action of the theory;

thus the bulk equations of motion are not altered. Sct is built up with curvature invariants

of the induced metric on the boundary, which is sent to spatial infinity after the integration.

Unlike the background substraction method (see below), this procedure is intrinsic to the

spacetime of interest and it is unambiguous once the counterterm is specified. In our case,

however, differently from the AdS case, this method has the drawback that there is no

rigorous justification for the choice of the counterterm.

In this work we shall use the counterterm proposed in [46] to compute the mass of the

KK monopole, with

Sct =
1

8πG5

∫
∂M

d4x
√
−h

√
2R , (2.19)

where R is the Ricci scalar of the induced metric on the boundary. The variation of this

action w.r.t. hij results in the boundary stress-energy tensor

Tij =
1

8πG5

(
Kij −Khij − Φ(Rij − Rhij)− hijh

klΦ;kl +Φ;ij

)
, (2.20)

where we defined Φ =
√
2/R. If the boundary geometry has an isometry generated by a

Killing vector ξi, then Tijξ
j is divergence free, from which it follows that the quantity

Q =

∫
Σ
dΣiT

i
jξ
j , (2.21)

4The tension of a spacetime was first introduced in [37, 38]. This global charge is associated with

the translation symmetry along the extra-dimension, in a similar way to the mass being related with the

existence of a timelike Killing vector field.
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associated with a closed surface Σ, is conserved. Physically, this means that the observers

on the boundary with the induced metric hij measure the same value of Q. For the

considered framework, the massM , tension T and angular momentum5 J are computed as

the integrals of the boundary stress-energy tensor components T tt , T
ψ
ψ and T tψ, respectively.

Interestingly, as found in [46], this approach predicts a non-zero value for the mass and

tension of the GPS soliton (2.4), respectively

M =M0 =
4πN2

G5
, T = T0 = − N

G5
, (2.22)

while the angular momentum is zero, as expected. When considering solutions of the

EKG equations with the same asymptotics, M and T will contain the above background

contributions.

Apart from the boundary counterterm method, we have also computedM, T and J by

using the Abbott-Deser approach [47]. This was initially proposed to address the issue of

conserved charges of asymptotically (anti-)de Sitter spacetime, but has also proved useful

for other asymptotic behaviors. In this approach, conserved charges are associated with

isometries of some background geometry and can be summarized as follows. First, the

following decomposition of the metric is introduced

gab = ḡab + h̄ab , (2.23)

where ḡab corresponds to the background metric and h̄ab is a perturbation. Assuming that

ḡab is a vacuum solution, then the field equations can be written as:

RabL − 1

2
ḡabRL = T̃ ab , (2.24)

where the subscript L denotes terms that are linear in the perturbation and T̃ ab collects all

higher order terms in h̄ (the tilde serves to distinguish it from the boundary stress-energy

tensor defined above for the counterterm method). It can be shown that the left-hand side

of the above equation satisfies the Bianchi identity w.r.t. the background metric - see e.g.

chap. 6 of [48]; then the field equations imply:

∇̄aT̃
ab = 0 , (2.25)

where the bar indicates that the covariant derivative is taken w.r.t. the background metric.

If χ is a Killing vector of the background geometry, the following conservation law holds:

∇̄a

(
T̃ abχb

)
= 0 , (2.26)

which allows to define the associated conserved charge:

Q̃ =

∫
Σ
dΣiT̃

ijχj , (2.27)

5When considering the coordinates of eq. (2.15), this angular momentum is related to equal rotations

w.r.t. the angular directions φ1 and φ2.
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where Σ is a closed surface.

The Abbott-Deser method has been extensively used to compute conserved charges on

some non-asymptotically flat spacetimes, see e.g. [19, 49, 50] for the case of KK asymp-

totics. One should, however, mention that the choice of the background metric ḡ requires

special care. It is sometimes common to consider the asymptotic metric as the background;

however this is not always a solution to Einstein’s equations, in which case the effective

energy-momentum tensor T̃µν has contributions not only from the perturbation, but also

from the background. For asymptotically squashed KK spacetimes, this issue has been

explored in [50]. The results there show that, when choosing the asymptotic form of the

metric (2.4), (2.5), as the background6, the mass and tension of the GPS soliton take the

same (nonzero) values (2.22) as found for the counterterm approach.

The global charges of the solutions in this work were computed using both methods

described above. We have found that the values of M , T and J obtained within the

counterterm approach and Abbott-Deser approach - with the asymptotic metric (2.28)

taken as the reference background -, agree7. But in order to simplify the picture, and in

particular to make clear the limit of a vanishing scalar field, we have subtracted the M0-

term in all figures where the mass of solutions with squashed KK asymptotics is displayed,

which is nonetheless in the corresponding equations.

2.5 The probe limit: no scalar clouds

Before discussing the solutions of the full system (2.2), it is of interest to consider the

solutions of the KG equation in the probe-limit case, i.e. ignoring the backreaction on the

spacetime geometry.

Starting with the case of a GPS background as given by (2.4) and (2.5), the KG

equation reads (where a prime denotes the derivative w.r.t. the radial coordinate r):

ϕ′′ +
2ϕ′(r)

r −N
+
r +N

r −N

(
ω2 − µ2eff

)
ϕ− s(r + 5N)

8N(r −N)2
ϕ = 0, (2.29)

with s = 0, 1 for the scalar ansatz (2.16), (2.17). Also, in the above expression we define

µeff =

√
µ2 +

s

16N2
. (2.30)

That is, for s = 1, the scalar field acquires a contribution to the mass coming from the

dependence on the ψ-direction, giving rise to an effective mass, a features shared also by

the gravitating solutions. The bound state condition then needs to consider this effective

mass, i.e. ω2 ⩽ µ2eff .

6The large−r limit of the GPS metric (2.4), (2.5), results in the line element

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2) + 4N2(dψ + cos θdφ)2, (2.28)

which, however, does not solve the vacuum Einstein equations.
7As expected, however, when using the Abbott-Deser approach with the GPS metric as background, the

terms M0 and T0, cf. eq. (2.22), are absent in the expression of mass and tension of the EKG solutions.
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For the scalar Ansatz (2.16), (2.17) with s = 0, the general solution of the equation

(2.29) reads ϕ(r) = c1ϕ1(r) + c2ϕ2(r) where c1, c2 are arbitrary constants, and

ϕ1(r) =
N

r −N
e−(r−N)U

(
N
√
µ2 − ω2, 0, 2(r −N)

√
µ2 − ω2

)
(2.31)

ϕ2(r) =
N

r −N
e−(r−N)L−1

−N
√
µ2−ω2

(
2(r −N)

√
µ2 − ω2

)
Here U is the confluent hypergeometric function and L is the generalized Laguerre poly-

nomial. For solutions satisfying the bound state condition, the function ϕ1(r) diverges at

r = N while ϕ2(r) diverges at infinity
8.

For the scalar ansatz (2.16), (2.17) with an explicit dependence of angular coordinates

(i.e. s = 1), the general solution is ϕ(r) = c1ϕ1(r) + c2ϕ2(r) , where

ϕ1(r) =

√
r

N
− 1e−(r−N)

√
µ2eff−ω2

U

(
c

2
3, 2(r −N)

√
µ2eff − ω2

)
, (2.32)

ϕ2(r) =

√
r

N
− 1e−(r−N)

√
µ2eff−ω2

L2
− c

2

(
2(r −H)

√
µ2eff − ω2

)
with c = 3 + 1/(8N

√
µ2eff − ω2) + 2N

√
µ2eff − ω2, which is again divergent at r = N

or at infinity9. Therefore we conclude that there are no scalar clouds on a GPS soliton

background, a situation also found for the M1,3 × S1 or M1,4 cases.

In d = 4, (real frequency) bound states are found for a particular set of Kerr BHs.

These configurations are at the threshold of the superradiant instability, the scalar field

satisfying the synchronization condition (1.1) [51, 52]. Inspired by this result, we have

looked for scalar clouds on a spinning vacuum BH with squashed KK asymptotics, whose

metric is presented in Appendix B.2, the scalar field ansatz being the case s = 1 in (2.17).

Unfortunately, in the generic, non-extremal case, the resulting equation for the scalar

amplitude ϕ(r) could not be solved analytically. Therefore we have considered a numerical

approach, employing similar methods as the ones described e.g. in [53]. After imposing the

synchronization condition, Eq. (1.1), we looked for scalar configurations which are regular

on and outside the horizon and vanish at infinity. We found no indication that such solution

exist, despite not being able to provide a non-existence proof. This result is also supported

by the exact solutions (B.13) found for the extremal (spinning) BH background, which is

displayed in Appendix B.2. Unlike the case of an extremal Kerr background in d = 4 [51],

this solution is singular at the horizon or at infinity.

This non-existence result implies the absence of an existence line for the HBHs with

squashed KK asymptotics, which would be given by the set of vacuum BH configurations

allowing for scalar clouds. We mention that a similar result [54, 55] is found for for a test

massive scalar field on the background of an asymptotically M1,4 Myers-Perry BHs [56].

8In the limiting case with ω2 = µ2, the solution (2.31) takes the simpler form ϕ(r) = c1
r−N + c2 .

9In the special case with ω2 = µ2
eff , the general solution (2.32) simplifies to

ϕ(r) =
4
√
2N√

r −N

[
c1I2

(√
r −N

2N

)
+ c2K2

(√
r −N

1N

)]
, (2.33)

where I and K are Bessel functions, which is again divergent.

– 10 –



3 The solutions

3.1 The numerical approach

The numerical methods employed here are similar to those used in [25] to study d = 5 EKG

solutions with equal-magnitude angular momenta and M1,4 asymptotics. The BH problem

possesses four input parameters (we recall that G5 = 1): two of them belong to a specific

model – the scalar field mass µ and the NUT parameter N ; and two specify a solution –

the field frequency ω and the horizon radius rH (with rH = 0 for solitons). In practice,

dimensionless variables and global quantities are introduced by using natural units set by

the scalar field mass µ, e.g. r → r/µ, ω → ω/µ and N → Nµ, which reduce to taking

µ = 1 in the input of the numerical code10. As such, we are left with three (two) input

parameters for BHs (solitons).

The system of five non-linear coupled ODEs for the metric functions and the scalar am-

plitude, subject to the boundary conditions described below, was solved using two different

solvers. The BH solutions and a part of the BS sets were found by using a professional

package based on the Newton-Raphson method [57]. In this case we have introduced a

compactified coordinate x, where 0 ⩽ x ⩽ 1; the relation between the usual radial coor-

dinate r and x being r = (rH + cx)/(1 − x), with c a suitable chosen constant, usually of

order one. Typical grids used have around 800 points, distributed equidistantly in x.

Most of the BSs solutions were found by using another package, which employs a col-

location method for boundary-value ordinary differential equations and a damped Newton

method of quasi-linearization [58]. The meshes here are non-equidistant and use around

300 points in the interval 0 ⩽ r < rmax, with rmax around 104.

We have compared a number of BS solutions constructed with these two different

methods and found a very good agreement between them. In both cases, the constraint

Einstein equation and the Smarr relation (3.14) have been used to test the accuracy of

the results. Based on that, we estimate a typical relative error < 10−5 for the solutions

reported herein. The numerical accuracy, however, decreases close to the maximal value of

the frequency and also for solutions close to the center of the (ω,M)-spiral - see below.

Finally, let us mention that in this work we report results for a nodeless scalar field

amplitude only, although solutions with nodes exist as well.

3.2 Boson Stars

Before discussing the BH solutions, it is useful to first describe the properties of their

solitonic limit, i.e. of the BSs. In the numerical construction of these horizonless solutions,

we have found useful to use the following metric ansatz11 - which can be viewed as a

10In principle, the effective mass relation for the scalar field, Eq. (2.30), would allow for the existence of

spinning solutions with µ = 0. However, so far these could not be obtained.
11Since gtt = −e−2F0(r) < 0, the t−coordinate provides a global time function and the spacetime is free

of causal pathologies, which is also the case for BHs.
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Figure 1: The profile of a typical static (left panel) and spinning (right panel) BS with the same

input parameters.

deformation of (2.11) -, in terms of four unknown functions (F0, F1, F2,W ):

ds2 = −e2F0(r)dt2 + e2F1(r)

(
1 +

r2

16N2

)[
dr2 +

1

4
r2
(
σ21 + σ22

) ]
+
e2F2(r)

4

(
r2

1 + r2

16N2

)
(σ3 − 2W (r)dt)2 . (3.1)

Near the origin (r = 0), the solutions possess a formal power series expansion, whose

first terms are given by

F0(r) = f
(0)
00 + f

(0)
02 r

2 + . . . , F1(r) = f
(0)
10 + f

(0)
12 r

2 + . . . , (3.2)

F2(r) = f
(0)
10 + f

(0)
22 r

2 + . . . , W (r) = w0 + w
(0)
2 r2 + . . . , ϕ(r) = ϕ1r + ϕ3r

3 + . . . ,

with all coefficients fixed by f
(0)
00 , f

(0)
10 , f

(0)
22 , w0 and ϕ1, e.g. f

(0)
12 = −f (0)22 − 2ϕ21/3.

For the far field expansion of the solutions, one finds

F0(r) =
f02
r2

+ . . . , F1(r) =
f12
r2

+ . . . , F2(r) = −(f02 + f12)

r2
+ . . . ,

W (r) =
w2

r2
+ . . . , ϕ(r) = c1

e−r
2
√
µ2eff−ω2

r2
+ . . . , (3.3)

with the parameters f02, f12, w2 and c1 being fixed by numerics.

The mass, tension and angular momentum are defined in terms of the asymptotic

coefficients by (note the presence of the background terms (2.22) in M, T )

M =
4π

G5

[
N2 +

1

8
(f12 − f02)

]
, T = − 1

G5

[
N +

1

4N
(f12 +

1

2
f02)

]
, J =

2πN2w2

G5
. (3.4)

One can easily show that, as with BSs with other asymptotics, the Noether charge and the

angular momenta of the spinning BSs are not independent quantities, with

Q = 2J . (3.5)
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derivative of the scalar field at the origin ϕ′(0) (right panel, spinning solutions). The insets shows

how ϕ(0) (or ϕ′(0)) is related to the frequency parameter ω.

The static solutions are constructed for a version of (3.1) with W = 0 and s = 0 in the

scalar field ansatz (2.17). While their far field behavior is still given by (3.3), with µeff = µ,

the scalar field does not vanish at r = 0, with ϕ(r) = ϕ0 +O(r).

The profile of typical static and spinning BS solutions, with the same values of the

input parameters N,µ and ω, are shown in Figure 1. One remarks that the metric functions

F0, F1, F2 (and W in the rotating case) interpolate monotonically between some constant

value at the origin and zero at infinity, without presenting a local extremum.

Taking ω as a control parameter, the numerical results show that both static and

spinning BSs exist for a limited range of frequencies, ωmin < ω < µeff , with ωmin depending

on the value of the NUT parameter N . In the limit ω → µeff , the mass, tension and the
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Noether charge go to zero12. One remarks that this is the behavior also found in the d = 4

asymptotically flat case [31].

As can be seen in Figure 2, the BS mass first increases as ω is decreased from µeff
approaching a maximal value, Mmax, for some ω0 (with both Mmax and ω0 increasing with

N). Then, the mass decreases, and, after some ωmin, a backbending is observed in the

M(ω)-diagram. Further following the curve, there is an inspiralling behaviour, towards a

limiting configuration at the center of the spiral, which occurs for a frequency ωcr (which

is also a function of N). This central inspiralling behaviour appears to be generic for BS

solutions in EKG model, being also found in d = 4 dimensions, or for d = 5 solutions

with M1,4 or even AdS asymptotics. A similar diagram is recovered for the curve Q(ω);

for static BSs, one finds M < µQ for a range of frequencies between µ and a critical value

marked with a black dot in Figure 2 (left) (see also the inset). Rather unexpectedly, we

have found that M > µQ for all considered spinning configurations, which suggests that

these solutions are unstable.

Further insights on the properties of the BSs can be taken from Figure 3, where we

plot the mass M and Noether charge Q as a function of the central value of the scalar field

ϕ(0) (static case) and ϕ′(0) (spinning BSs). Again, one notices a rather similar picture to

that found for static BSs in d = 4 [59, 60].

3.3 Synchronized hairy Black Holes

The BH solutions are constructed for a slightly more complicated metric ansatz, which

fixes the behaviour at the horizon and at infinity, and also can be taken as a deformation

of the static vacuum BH (B.2), namely13

ds2 = −e2F0(r)

(
1− rH

r

)4(
1 + rH

r

)2dt2 + e2F1(r)H(r)
(
1 +

rH
r

)4 [
dr2 + r2

(
σ21 + σ22

) ]
+ e2F2(r) 4N

2

H(r)
[σ3 − 2W (r)dt]2 , (3.6)

with F0, F1, F2 and W resulting from numerics, and the background function

H(r) = 1 +
2
(√

N2 + r2H − rH

)
r

(r + rH)2
. (3.7)

As with the BSs, one can write an approximate form of the solutions at the limits of the

r-interval. The essential coefficients in these expansions determine most of the quantities of

interest, either horizon quantities (r = rH) or global quantities (r → ∞). At the horizon,

the Killing vector14 ξ = ∂t + ΩH∂ψ becomes null, with ΩH = 2W (rH) the event horizon

angular velocity. The following (formal) power series holds there (where i = 0, 1, 2):

12Recall that the background contributions M0, T0 are subtracted such that M = T = 0 in the absence

of a scalar field, cf. the discussion in Section 2.4.
13The spinning BS solutions can also be studied within the metric ansatz (3.6) with rH = 0. However,

the numerics is more difficult as compared to the metric choice (3.1), the small-r expansion of the scalar

field starting with a
√
r-term.

14ξΨ = 0 is the only symmetry of the full solution (geometry and scalars) and is generated by ξ. Also,

the BSs are invariant under the action of ξ̂ = ∂t + 2ω∂ψ.
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and the asymptotic value gψψ(∞) = 4N2.

Fi(r) = f
(H)
i0 + f

(H)
i2 (r − rH)

2 + . . . ,

W (r) =
1

2
ΩH + w

(H)
2 (r − rH)

2 + . . . , ϕ(r) = ϕ
(H)
0 + ϕ

(H)
2 (r − rH)

2 + . . . , (3.8)

with the following relation between frequency and event horizon angular velocity

ω =W
∣∣
rH

=
1

2
ΩH , (3.9)

which is just the condition (1.1) with m = 1/2, as implied by the employed scalar ansatz.

The shape of the event horizon can be read off from the induced horizon metric

dΣ2
H = 8e2f

(H)
10 r2H

(
1 +

√
1 +

N2

r2H

)(
σ21 + σ22

)
+

8N2e2f
(H)
20

1 +
√

1 + N2

r2H

σ23 , (3.10)

which describes a squashed S3 geometry. The expansions at the horizon, (3.8), can be used

to compute the event horizon’s area AH and Hawking temperature TH , which are given by

AH = 256
√
2π2Nr2He

2f
(H)
10 +f

(H)
20

√√√√1 +

√
1 +

N2

r2H
, TH =

1

16πrH

√
2 ef

(H)
00 −f (H)

10√
1 +

√
1 + N2

r2H

. (3.11)

An approximate solution can also be constructed for large r, with

F0(r) =
f01
r

+ . . . , F1(r) =
f11
r

+ . . . , F2(r) = −f11 + f01
r

+ . . . ,

W (r) =
w1

r
+ . . . , ϕ(r) = c1

e−r
√
µ2eff−ω2

r
+ . . . . (3.12)
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With these expressions, the computation of the mass, tension and angular momentum

is straightforward, with

M =
4π

G5
N

(√
N2 + r2H + 3rH + f11 − f01

)
, J =

16πN3w1

G5
, (3.13)

T =
1

G5

(√
N2 + r2H + f11 +

1

2
f01

)
.

As usual in BH mechanics (without a cosmological term), the temperature, horizon area

and the global charges are related through a Smarr mass formula [61, 62], whose general

form for the squashed KK asymptotics reads

M =
1

2
T L+

3

2
TH

AH
4G5

+
3

2
ΩH

(
J − 1

2
Q

)
+M (Ψ), (3.14)

where L = 8πN is the length of the twisted S1 fiber at infinity, and

M (Ψ) = −3

2

∫
Σ

√
−gd4x

(
T tt −

1

3
T aa

)
, (3.15)

is the mass stored in the matter field(s) outside the horizon.

As with other BHs with synchronized hair, to measure the ’hairiness’ of the solutions,

we introduce a normalized Noether charge q, with q = 0 for a vanishing scalar field and

q = 1 for BSs:

q =
Q

2J
. (3.16)

The complete classification of the solutions in the space of input parameters {N ;ω, rH}
is a considerable task which is beyond the scope of this paper. In what follows we show
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the blue dotted line (in which case one takes ΩH = 2ω).

results for N = 1, while a very similar phase diagram has been found for N = 0.5, these

being the only values of N for which we have attempted for a systematic investigation of

the solutions. However, we have also constructed HBHs with N = 0.1, 2 and 5, and the

displayed picture for N = 1 appears to be generic.

The profile of a BH solution which smoothly interpolates between the asymptotic

expansions (3.8), (3.12) is shown in Figure 4. An interesting feature there is the existence

of two distinct ergo-regions (i.e. with gtt > 0), a feature which is found also for d = 4 BHs

with synchronized scalar hair [63]. This is not, however, the generic behaviour, since a

single ergo-region is found for a large part of the parameter space.

Given N ̸= 0, the domain of existence of solutions is obtained by considering sequences

of solutions at constant ω = ΩH/2 and varying the event horizon radius rH . As expected,

a (small) BH can be added at the center of any spinning BS with a given ω; this is the

starting point for any aforementioned sequence. However, the end point depends on the

value the frequency parameter (see Figure 5). For ωmin < ω < ωi, the sequence ends in

another BS with the same frequency (case (i) in Figure 5), where we introduced ωi to

denote the minimum frequency possible for extremal hairy BHs, i.e. the zero temperature

configurations, see the black dotted curve in Figure 6. A different picture is found for

ωi < ω < µeff (case (ii)), the sequences ending on extremal BHs with a nonvanishing

horizon area and hairiness parameter q.

In Figure 6 (left panel), we exhibit the domain of existence of the HBHs (shaded

region), in a M(ω) diagram, based on around two thousands of solution points, a similar

diagram being found for J(ω). The picture possesses some similarities with the one found

for spinning BHs with scalar hair in d = 4 [21, 32]. As with that case, the BS curve

(red solid line in Figure 6) forms a boundary of the domain; in particular the BSs set the

maximal value of the BHs’ mass. There is also a curve of extremal HBs (black line), which

appears to inspiral towards a central value, where, we conjecture, it meets the endpoint of
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Figure 7: The mass-angular momentum diagram is shown for vacuum BHs (left panel) and for

HBHs (right panel).

the BS spiral. In d = 4, the extremal BHs curve ends in a particular vacuum Kerr solution,

where it joins the existence line – a particular set of Kerr BHs allowing for scalar clouds

[21, 32]. However, in the absence of an existence line for d = 5 - no scalar clouds on a

vacuum BH backgound -, the extremal HBH curve continues all the way to the maximal

frequency, ω = µeff .

Now consider the horizon area vs. frequency diagram, see Figure 6 (right panel). Dif-

ferently from the d = 4 case [32], one notices the existence there of a vertical line segment

with ω = µeff and nonzero horizon area. That is, these solutions exist for a given range of

rH ⩾ 0; there the scalar field spreads and tends to zero as ω increases towards µeff , and

also the values of the Noether charge Q and of the mass stored in the field M (Ψ) both tend

to zero. At the same time, the geometry does not trivialize, becoming that of a vacuum

(spinning) KK BH, with the input parameters15 ΩH = 2µeff and rH (and nonzero global

charges M, T and J).

Further insight can be found in Figure 7 (right panel), where we plot the domain of

existence of HBHs in the (J,M)-plane Again, despite the absence of an existence line, the

overall picture is rather similar to that found in [32] for the d = 4 HBHs counterparts.

Observe, however, the existence in Figure 7 (also in the inset) of a green line, which

corresponds to the limiting solutions with ω = µeff ; this line starts at vacuum and ends in

an extremal vacuum BH with (for Nµ = 1) M = 15.0334 and J = 4.9348.

4 Boson stars and Black Holes with squashed Kaluza-Klein asymptotics

vs. solutions with M1,4 and M1,3 × S1 asymptotics

One of the main goals of this work is to identify the effects of considering squashed KK

asymptotics on the properties of BSs and hairy BHs solutions of the EKG system. Here

15The range of event horizon radius here is 0 ⩽ rH ⩽ rextH , the limits corresponding to the GPS soliton

and the extremal vacuum BH, respectively.
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we recall that, as discussed in Section 2.2, the GPS soliton - whose asymptotics provide

the background of our solutions - can be seen as a vacuum state interpolating between the

M1,4 and the (standard) M1,3 × S1 vacua, which are approached in the limit of an infinite

N and vanishing N , respectively. As such, it is of interest to contrast the picture found

above for EKG solutions with N ̸= 0, with that for BSs and BHs solutions of the same

model (2.1), which, however, approach at infinity a background given by (2.12) or (2.9).

This comparison will be the main subject of this Section.

4.1 Solutions with M1,4 asymptotics

The case of EKG solutions with M1,4 asymptotics is better understood, being the subject

of several studies. Starting with static, spherically symmetric solutions, we consider the

scalar ansatz (2.16) and the following metric form with two functions U(r) and δ(r)

ds = −e−2δ(r)U(r)dt2 +
dr2

U(r)
+
r2

4

[
dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2

]
, (4.1)

the line-element (2.12) being approached asymptotically. The horizonless solitonic solutions

have been discussed in [30], describing spherically symmetric BSs, and share all basic

properties of the spinning stars discussed below.

By adapting a general theorem put forward in [64], one can show that, as with the

d = 4 case and M1,3 asymptotics, there are no static, spherically symmetric BHs with

scalar hair (here we assume the existence of an horizon with U(rH) = 0 and δ(rH) finite).

The starting point is the conservation of the energy-momentum tensor of the scalar field

∇aT
a
b = 0 , (4.2)

which, for b ≡ r and the considered ansatz (note that we take s = 0 in (2.17)), results in

eδ(e−δT rr )
′ = −3

r
T rr +

1

2

dgab
dr

T ab, (4.3)

with

T rr = Uϕ′2 +

(
e2δω2

U
− µ2

)
ϕ2, (4.4)

and

1

2

dgab
dr

T ab = (4.5)

−3Uϕ′2

r
+

(
e2δω2

U
− µ2

)
3ϕ2

r
+

[
Uϕ′2 +

(
µ2 +

e2δω2

U

)
ϕ2
]
δ′ −

(
ϕ′2 +

e2δω2ϕ2

U2

)
U ′.

However, U ′ and δ′ can be eliminated from the above relation by using a suitable combi-

nation of the Einstein equations16, which results in the following form of Eq. (4.3)

eδ(e−δT rr )
′ = −2e2δw2(1− U)ϕ2

rU2
− 2(1 + 2U)ϕ′2

r
. (4.7)

16The Einstein equations implies

δ′ +
4

3
r

(
ϕ′2 +

e2δω2ϕ2

U2

)
= 0, [r2(1− U)]′ =

4

3
r2
[
Uϕ′2 +

(
µ2 +

e2δω2

U

)
ϕ2

]
. (4.6)
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One notices that, since the U -equation in (4.6) implies U < 1, the r.h.s. of the above

relation is a strictly negative quantity. Therefore e−δT rr is a strictly decreasing function.

Moreover, the equation (4.7) implies the following relation (where we use the fact that the

scalar field decay exponentially at infinity and thus T rr (∞) = 0):

T rr (rH) = eδ(rH)

∞∫
rH

dr̄ e−δ
(
2e2δw2(1− U)ϕ2

r̄U2
+

2(1 + 2U)ϕ′2

r̄

)
⩾ 0 . (4.8)

To analyze the near horizon limit of Eq. (4.7), one introduces a proper radial distance x,

which is regular at the horizon, with dx = dr√
U
. In terms of this coordinate, the Eq. (4.7)

becomes:

eδ
d(e−δT rr )

dx
= −2e2δw2(1− U)ϕ2

rU3/2
− 2

√
U

r
(1 + 2U)ϕ′2 . (4.9)

For regular solutions, the r.h.s. of this equation should remain finite as U → 0. It follows

that the quantity 2e2δw2ϕ2

rU3/2 must remain finite as r → rH . Thus the term
e2δω2

U ϕ2 will vanish

in the same limit, which, from (4.4), implies T rr (rH) ⩽ 0. However, this would contradicts

the Eq. (4.8) unless T rr (rH) = 0. Moreover, since the integrand of the r.h.s. in (4.8) has a

negative sign, it follows that ϕ = 0, i.e. the absence of scalar hair.

Turning to the case of the scalar field with dependence on the coordinates on the

three-sphere, i.e. the ansatz (2.17) with s = 1, the corresponding spinning BSs have been

discussed in [30]. Their most striking property is that they do not trivialize as the maximal

frequency is reached, ω → µ (note that this also holds for static BSs). While in this limit

the scalar field spreads and tends to zero point-wise and the geometry becomes arbitrarily

close to that of M1,4, the BS mass (and Noether charge/angular momentum) remains finite

and nonzero in that limit, see the red curve in Fig. 8 (left panel). This implies the existence

of a gap between the ω → µ limiting configurations and the ϕ = 0 (vacuum) M1,4 ground

state. This is very different from the case of aM1,3 background, where all BS charges vanish

as ω → µ, both in the static and in the spinning cases17. An analytical argument which

helps to understand this different behavior was presented in [30], which we shall briefly

review here. This relies on the special scaling properties of the EKG system, which are

dimension dependent. Basically, as ω → µ, the radial coordinate and the scalar field scale

as r = r̃/ξ, ϕ = ξ2ϕ̃ where µ2 = ω2 + ξ2ŵ2
c , with ξ a small parameter and ŵc a constant.

Then, in d = 4 the integral
∫∞
0 dr r2ϕ2 (which determines the Noether charge) vanishes as

ξ → 0, while the d = 5 corresponding expression
∫∞
0 dr r3ϕ2 remains finite and nonzero.

The same reasoning explains the different behavior of the scalar field mass-integral for

d = 4, 5.

This argument also helps to partially understand the behavior we have found above

for the BSs with squashed KK asymptotics. Since the size of S3 in the generic ansatz

(2.13) becomes proportional in the far field with r2 only, the solutions are effectively four

17Moreover, a similar behaviour is found for the d = 4 static non-spherically symmetric BSs reported

in [65], which can be axially symmetric chains or even configurations with no spatial isometries.
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Figure 8: Left: The (frequency-mass) domain of existence of hairy BHs with M1,4 (adapted

from [25]). Right: The mass, Noether charge and tension are shown as a function of frequency for

EKG static vortices with M1,3 × S1 asymptotics.

dimensional and thus the Noether charge integral (or the integral for the mass stored in

the field) vanishes as ω → µeff .

Differently from the spherically symmetric case, the scalar field ansatz (2.17) with

s = 1 allows for hairy spinning BH solutions [25], which are found for the same ansatz

employed in this work, and also obey the synchronization condition (3.9). As with the

BH solutions in Section 3, the hair of the asymptotically M1,4 is intrinsically non-linear,

without the existence of scalar clouds on a vacuum Myers-Perry BH background [56] (i.e.

of an existence line). Additionally, and naturally, the asymptotically M1,4 BH solutions

inherit from the solitonic limit a gap for the mass, angular momentum and Noether charge

- Fig. 8 (left panel).

4.2 The M1,3 × S1 case: EKG vortices and no hairy Black Strings

To our best knowledge, the case of EKG solutions with M1,3 × S1 asymptotics (see Eq.

(2.9)), has not yet been considered in the literature. Such solutions, if they exist, describe

EKG vortices and Black Strings.

To study them, we consider the scalar ansatz (2.16) together with the following line

element

ds2 = e−aψ(r)
(
−e−2δ(r)U(r)dt2 +

dr2

U(r)
+ r2dΩ2

2

)
+ e2aψ(r)dz2 , (4.10)

which makes contact with the d = 4 picture discussed in the next Section, with a = 2/
√
3

and an arbitrary periodicity L for the z-coordinate. The metric functions ψ(r), δ(r), U(r),
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and the scalar amplitude ϕ(r) are solutions of the equations

(e−δr2Uψ′)′ + 2ae−aψ−δµ2r2ϕ2 = 0 , δ′ + rψ′2 + 2r

(
ϕ′2 +

e2δω2ϕ2

U2

)
= 0,

[r(1− U)]′ − 2r2
(
Uϕ′2 + (µ2e−aψ) +

e2δω2

U

)
ϕ2 − r2Uψ′2 = 0, (4.11)

(e−δr2Uϕ′)′ + r2
(
e−δω2

U
− e−aψ−δµ2

)
ψ = 0 .

The vortices have no horizon, the size of the S2 sector in (4.10) shrinking to zero as r → 0,

while the size of the z-circle remains finite, with ψ(r) = ψ0 + O(r2), U(r) = 1 + O(r2),

δ(r) = δ0 +O(r2) and ϕ(r) = ϕ0 +O(r2) close to r = 0 (where ψ0, δ0, ϕ0 are parameters

fixed by numerics). The behaviour for large-r is

ψ =
ψ1

r
+ . . . , U = 1 +

h1
r

+ . . . , δ =
ψ2
1

2r2
+ . . . , ϕ = c1

e−r
√
µ2−ω2

r
+ . . . , (4.12)

with the free parameters ψ1, h1 and c1.

The vortices posses a nonvanishing mass, tension18 and Noether charge, with

M = −h1L
2G5

, T = −h1 + 3aψ1

4G5
, Q = 8πωL

∫ ∞

0
dr
r2eδϕ2

U
. (4.13)

The frequency-mass diagram of these solutions is shown in Figure 8 (right panel). The

picture there strongly resembles that for d = 4 spherically symmetric BSs in the (pure)

EKGmodel [31]. This can be understood by noticing that, when performing a KK reduction

w.r.t. the z-direction, these EKG vortices become d = 4 BSs in a EKG-dilaton model - see

Section 5.

As expected, no Black Strings with complex scalar hair exist in this case. This can be

shown following the same Pẽna-Sudarsky-type argument [64] as in the previous subsection.

It is straightforward to show that the conservation of the stress-energy tensor together with

the Einstein equations implies the following relation

eδ+aψ(e−δ−aψT rr )
′ = −e

2δ+aψω2(1− U)ϕ2

rU2
− eaψ(1 + 3U)ϕ′2

r
− µ2rϕ2ψ′2 + aµ2ϕ2ψ′. (4.14)

Since the ψ-equation in (4.11) implies that ψ′ < 0, we conclude that T rr is a strictly

decreasing function, with T rr (rH) ⩾ 0. However, by using similar arguments as employed

above to rule out the existence of (spherically symmetric) BHs with M1,4 asymptotics,

that is, by rewriting the eq. (4.14 in terms of the proper radial distance dx = dr√
U
), one

finds that T rr (rH) ⩽ 0. This leads to a contradiction, and we conclude that the scalar field

necessarily vanishes.

The case of solutions with the s = 1 scalar field ansatz (2.17) andM1,3×S1 asymptotics

is unclear and we leave it for future studies.

18The mass and tension are computed following [66, 67]. However, a similar result is found within the

counterterm approach, with the same boundary term (2.19).
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5 The Kaluza-Klein reduction and the four dimensional picture

The solutions with squashed KK asymptotics in Section 3 and also the above discussed

vortices can be considered from a d = 4 perspective, upon KK reduction on a circle.

Following [7], let us consider a generic KK metric ansatz

ds25 = e−aψ(x)ds24 + e2aψ(x)(dz + 2Ai(x)dx
i)2 , (5.1)

with ds24 = g
(4)
ij (x)dxidxj and a =

2√
3
, (5.2)

where in this section xi denote d = 4 coordinates, with time t being one of them, and z is

the (compact) fifth-dimension, which has some periodicity L.

For the scalar field (which can be a multiplet), one only assumes that it has a specific

z-dependence, which disappears at the level of energy-momentum tensor and equations of

motion, a single mode being excited,

Ψ = Φ(x)eikz, (5.3)

where the function Φ can be complex, and k = 2πm/L (m = 0,±1,±2, . . . ).

As such, the d = 5 EKG system admits an equivalent four dimensional description, the

function gzz determining the dilaton ψ, while the metric components giz resulting in a U(1)

field, with the field strength tensor Fij = ∂iAj − ∂jAi. That is, after integrating over the

z−coordinate and dropping a boundary term, the resulting four dimensional action reads

S4 =
1

4πG4

∫
M
d4x

√
−g(4)

[
1

4
R(4) − 1

4
e3aψFijF

ij − 1

2
∂iψ∂

iψ (5.4)

− 1

2
gij(4)

(
DiΦ

†DjΦ+DjΦ
†DiΦ

)
− U(|Φ|, ψ

)]
,

with G4 = G5/L. Observe that the d = 4 scalar field Φ is gauged w.r.t. the U(1) field Ai,

with the gauged derivative

DjΦ = (∂j − iqsAj)Φ, (5.5)

the gauge coupling constant being qs = 2k and a potential19

U(|Φ|, ψ) = µ2|Φ|2e−aψ + k2e−3aψ|Φ|2, (5.6)

which depends on both Φ and ψ. This EdMgs model reduces to the standard KK Einstein-

dilaton-Maxwell (EdM) model for Φ = 0. For vanishing gauge potential, Ai = 0, it reduces

to an Einstein-dilaton-Klein-Gordon (EdKG) model.

19For a dilaton ψ which vanishes aymptotically, the d = 4 scalar Φ possesses an effective mass µ2
eff =

µ2 + k2.
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5.1 Static, dyonic Black Holes with gauged scalar hair

Starting with the vacuum case (Ψ = 0), and the squashed KK asymptotics, let us remark

that, since gzz shrinks to zero as r → 0, the dilaton diverges there and the five-dimensional

GPS soliton is singular from a four dimensional perspective [7, 8]. However, the situation

is different with BHs; for example, the spinning solution in Section B results in spherically

symmetric dyonic BHs in a specific Einstein-Maxwell-dilaton model discussed e.g. in [18].

Turning now to the EKG solution in Section 3, the situation with the BSs is similar to

that of (vacuum) KK monopoles, being singular at r = 0 in the d = 4 picture. The spinning

HBHs, on the other hand, result in a family of d = 4 solutions of the model (5.4) which

describe static spherically symmetric BHs with resonant gauged scalar hair and a dyonic

U(1) field. All properties of these solutions follow from those of the d = 5 EKG BHs. To

make explicit this correspondence, we have found useful to consider an (equivalent) version

of the d = 5 line element with the following form of the last term in Eq. (3.6)

e2F2(r) 1

H(r)
(dz + 2N cos θdφ− 4NW (r)dt)2, with z = 2Nψ , (5.7)

such that the dilaton ψ(r) = F3(r)/a vanishes asymptotically20. The d = 4 gauge field

describes a dyon, with A = V (r)dt + Qm cos θdφ, the N -parameter becoming in the d =

4 perspective the magnetic charge, Qm = N , while the W (r)-function associated with

rotation determines the electric potential, V (r) = −2NW (r). The d = 4 BH metric reads

ds24 = −S0(r)dt2 + S1(r)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (5.8)

where S0(r) = e2F0(r)+aF3(r)

(
1− rH

r

)4(
1 + rH

r

)2 , S1(r) = e2F1(r)+aF3(r)H(r)
(
1 +

rH
r

)4
,

and H(r) is given by Eq. (3.7). The expression of the d = 4 scalar field reads21

Φ = ϕ(r)

(
sin θ

2 e
−iφ

2

cos θ2 e
iφ
2

)
e−iωt.

The gauged coupling constant is fixed by the N -parameters, with qs = 1/(2N) (and

k = 1/(4N). Then one can easily see that d = 5 synchronization condition (1.1) translates

into the d = 4 resonance condition (1.2), that is22

ω = mΩH =W
∣∣
rH

= − 1

2N
V
∣∣
rH

= qsV, (5.9)

with V = V (∞)− V (rH) the electrostatic chemical potential23.

20Alternatively, one can work with the initial form in Eq. (3.6), which implies a non-vanishing dilaton in

the far field, and then consider a rescaling of the d = 4 line element.
21Properties of this scalar ansatz (including regularity) are discussed in a more general context in [68, 69].
22This result holds as well when considering a form of the metric (3.6) with the coordinate ψ replaced

by z, cf. Eq. (5.7). Although in this case ΩH = 4NW (rH), the synchronization condition ω =W (rH) still

holds, since the z-dependence in (the new form of) scalar field ansatz implies m = 1/(4N).
23Since W (∞) = 0, the d = 4 BH solutions are found by fixing a (residual) gauge freedom via V (∞) = 0,

while [34] uses V (rH) = 0. The physical results are, of course, independent of the gauge choice.
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There is a simple map between the all quantities of interest of the d = 5 BHs and those

of the d = 4 solutions, with e.g.

LG4M
(d=4) = G5M

(d=5), LG4Q
(d=4)
e = 2G5J

(d=5), A
(d=4)
H =

1

L
A

(d=5)
H , T

(d=4)
H = T

(d=5)
H ,

where Qe is the electric charge.

Differently from the other BHs with resonant hair discussed in the literature [33–36],

these d = 4 solutions exist without self-interaction terms in Ψ, in the scalar potential (5.6).

Finally, we remark that the absence of an existence line for the d = 5 vacuum spinning

BHs corresponds to the absence of charged scalar bound states on the background of a

dyonic BH in a KK Einstein-dilaton-Maxwell (EdM) model, although this result should

not perhaps be a surprise, given the similar findings in [70, 71] for the Reissner-Nordström

BH case.

5.2 Other cases

The case of EKG vortices with M1,3 × S1 asymptotics in Section 4.2 is simpler, since the

direct KK reduction leads to an (ungauged) EdKG model, i.e. with Ai = 0 in (5.4), while

the d = 4 metric form and dilaton are read directly from (4.10). We remark that, for the

employed s = 0 ansatz (2.16), (2.17), it is more natural to interpret the results as for a

model with a single scalar field, which has the same expression (and also field mass µ) in

both d = 4, 5.

d = 4 solutions with a gauged scalar field can, nonetheless, be generated by using the

d = 5 EKG vortices as seeds. The basic procedure is well known in the literature - however,

without also considering a complex scalar field - and works as follows. Starting with any

EKG vortex, we perform a boost in the (t, z)-plane, with{
t = coshα T − sinhα Z

z = coshα Z − sinhα T
, where α ∈ R . (5.10)

Then a KK reduction w.r.t. the direction Z results in the following solution of the d = 4

model (5.4)

ds24 = −e
−2δ(r)N(r)√

S(r)
dT 2 +

√
S(r)

(
dr2

N(r)
+ r2dΩ2

2

)
, A = V (r)dt, (5.11)

where

S(r) = cosh2 α− e−δ(r)−3aψ(r)N(r) sinh2 α, V (r) =
(
e−2δ(r)−3aψ(r)N(r)− 1

) sinhα coshα

2S(r)
,

while the d = 4 dilaton field is ψ(r) = ψi(r)+
logS(r)

2a , with ψi(r) the function which enters

the seed d = 5 solution, denoted by ψ in the metric (4.10). The d = 4 scalar field Φ is

Φ = ϕ(r)e−iω̃T , with ω̃ = ω coshα, (5.12)

while the gauge coupling constant is gs = 2ω sinhα.
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These solutions describe static, electrically charged, spherically symmetric gauged BSs,

which are a generalisation of the usual (uncharged) EKG BSs [72–74], with an extra-dilaton

field, cf. eq. (5.4). Again, it is straightforward to derive the map between the quantities

of interest of the d = 5 and d = 4 configurations.

Finally, we mention that the same setup can be used to construct a generalization

of the known d = 4 spherically symmetric (ungauged) BSs by including the effects of a

background U(1) magnetic field. In this case, one starts again with the d = 5 EKG vortices

in Section 4.2; however, the resulting d = 4 configurations have axial symmetry only,

and describe (unguged) BSs which approach asymptotically a dilatonic Melvin Universe

background. The way to introduce a d = 4 magnetic field in a KK setup involves twisting

the z-direction [75, 76], that is by taking φ → φ + B0z in the metric (4.10), with B0

an arbitrary real constant, and reidentifying points appropriately. Upon reduction, the

resulting d = 4 solutions have a line element

ds24 =
√

Λ(r, θ)

(
dr2

N(r)
+ r2dθ2 −N(r)e−2δ(r)dt2

)
+
r2 sin2 θdφ2√

Λ(r, θ)
, (5.13)

with Λ(r, θ) = 1 + e−3aψ(r)B2
0r

2 sin2 θ. The U(1)-potential and the d = 4 dilaton are

A =
e−3aψ(r)B0r

2 sin2 θ

2Λ(r, θ)
dφ, ψ(r, θ) = ψi(r) +

1

2a
log Λ(r, θ), (5.14)

while the scalar Φ has the same expression as Ψ in five dimensions, and remains ungauged.

6 Conclusions and remarks

The study of solitons and BH solutions in more than d = 4 dimensions is a subject of long

standing interest in General Relativity, the case of a KK theory with only one (compact)

extra-dimension providing the simplest model. Although the original proposal in [1, 2]

does not result in a realistic theory of Nature, it still continues to provide insight into more

sophisticated theories, such as supergravity and string/M-theory.

In the context of this work, we were mainly interested in KK solutions of the d = 5

Einstein equations with a squashed sphere at infinity, the simplest case being the vacuum

soliton found by Gross and Perry [7] and Sorkin [8] (GPS). As discussed by various authors,

an horizon can be added also for these asymptotics, which results in BHs with a squashed

horizon of S3 topology [15–19].

The main purpose of this paper was to extend the solutions in [7, 8, 15–19] by including

a scalar field doublet, with a special ansatz, originally proposed in [30], in the action of the

model; both solitons (BSs) and BHs were considered.

Our main results can be summarized as follows:

• We have provided evidence for the existence of BHs with scalar hair, with the same far

field squashed KK asymptotics as the GPS soliton. These solutions provide further

evidence for the universality of the hair synchronization mechanism. They satisfy the
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same specific condition between the scalar field frequency and event horizon velocity

known to hold for a variety of other BHs with (complex) scalar hair, see e.g. [21]-[27].

Moreover, similar to other cases, the BHs do not trivialize in the limit of a vanishing

horizon area, and become BS solutions with squashed KK asymptotics.

• The basic properties of the considered BSs and BHs are a combination between those

of the known d = 4 and d = 5 solutions with Minkowski spacetime asymptotics. For

example, as with the d = 4 case [31], the global charges of the BSs vanish as the

maximal frequency is approached. On the other hand, for BHs, there is no existence

line, i.e. of scalar clouds on a vacuum, spinning BH background, a feature shared

with the d = 5 solutions in Ref. [25].

• As a new feature induced by the squashed KK asymptotics, the scalar field possesses

(in the spinning case) an effective mass µ2eff = µ2 + 1
16N2 , where the second term is

a geometric contribution - N is related to the size of the twisted S1 fiber at infinity.

The bound state condition for the scalar field frequency is ω ⩽ µeff .

• These d = 5 solutions of the EKG equations possesses an equivalent d = 4 description.

While, as with the vacuum GPS case [7], the solitons corresponds to d = 4 singular

configurations, the KK reduction of the BHs result in static spherically symmetric

dyonic BHs with gauged scalar hair, in a specific EdMgs model.

As a byproduct of this study, we have also investigated EKG solutions with standard

M1,3 × S1 asymptotics and established first the absence of static Black Strings with scalar

hair. However, horizonless solutions do exist, corresponding to EKG vortices. After boost-

ing and considering a KK reduction, these configurations result in spherically symmetric,

charged BSs, generalizing for an extra-dilaton field the known gauged BSs [72–74]. Figure 9

provides an overview of the solutions studied in this paper and their relations.

As possible avenues for future research, we mention first the more systematic investiga-

tion of the d = 5 squashed BHs solutions, such as the study of geodesic motion, their lensing

properties or their thermodynamics, together with a detailed study of the resulting d = 4

configurations. It would be interesting to investigate solutions with the same squashed KK

asymptotics, but which rotate also in φ-direction, for the coordinates in the metric ansatz

(2.13). This would result in EKG generalization of the vacuum BHs discussed in [77–79];

their study, however, requires solving a set of partial differential equations. Moreover, the

KK reduction of these HBHs would result in a generalization of the d = 4 Kerr-Newman

BHs with scalar hair studied in [24], with an extra-dilaton field in the action and also with

a nonzero magnetic charge.

Finally, we mention the case of KK dipolar asymptotics instead of monopolar, as in

this work. In the vacuum case, such a configuration has been considered in [7], being

again of the form (2.4), with ds24 there corresponding to the Kerr instanton metric. We

anticipate the existence of similar configurations in an EKG model with a single complex

scalar field. Differently from the vacuum case, which necessarily possess a ’bolt’ - i.e. a

minimal nonzero size of the S2 part in ds24 metric -, the EKG system would allow also also
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Figure 9: Overview of the solutions used or constructed in this paper and their inter-relations.

The vertical green dashed arrows represent KK reduction. The sections where the solutions are

discussed in this paper are also given.

for ’nutty’ solitons - that is, with the S3 part in the ds24 metric shrinking to zero at r = 0,

as with the BSs in this work. We hope to return elsewhere with a study of these aspects.
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A The Einstein and energy-momentum tensors

To get an idea about the equations solved in practice, we display here the expression of the

non-vanishing components of the Einstein tensor Eba = Rba− 1
2Rδ

b
a and of energy-momentum
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tensor T ba for the generic metric ansatz (2.13) and the scalar ansatz (2.16), (2.17). For the

Einstein tensor, one finds

Ett =
1

F2

(
F3

4F2
− 1

)
+

1

F1

(
F ′
2
2

4F2
2

+
F ′
3
2

4F2
3

+
F ′
1F ′

2

F1F2
− F ′

3F ′
2

F2F3
+

F ′
1F ′

3

2F1F3

)
− 1

F1

(
2F3WW ′′

F0
+

F ′′
2

F2
+

F ′′
3

2F3
+

F3W
′2

F0

)
− F3WW ′

F0F1

(
F ′
0

F0
+

F ′
1

F1
− 2F ′

2

F2
− 3F ′

3

F3

)
,

Err =
F3W

′2

F0F1
+

1

2F1

(
F ′2
2

2F2
2

+
F ′
0F ′

2

F0F2
+

F ′
3F ′

2

F2F3
+

F ′
0F ′

3

2F0F3

)
+

1

F2

(
F3

4F2
− 1

)
, (A.1)

Eθθ = Eφφ = (
F ′′
0

F0
+

F ′′
2

F2
+

F ′′
3

F3
)

1

2F1
− (

F ′2
0

F2
0

+
F ′2
2

F2
2

+
F ′2
3

F2
3

)
1

4F1
− F3W

′2

F0F1
− F3

4F2
2

+ (−F ′
0F ′

1

F0F1
+

F ′
0F ′

2

F0F2
+

F ′
0F ′

3

F0F3
− F ′

1F ′
2

F1F2
− F ′

1F ′
3

F1F3
+−F ′

2F ′
3

F2F3
)

1

4F1
,

Eψψ =
1

F1

(
−2F3WW ′′

F0
+

F ′′
0

2F0
+

F ′′
2

F2

)
− 1

F1

(
3F3W

′2

F0
+

F ′
0
2

4F2
0

+
F ′
2
2

4F2
2

)
+

F3WW ′

F0F1

(
F ′
0

F0
+

F ′
1

F1
− 2F ′

2

F2
− 3F ′

3

F3

)
− 1

2F1

(
F ′
0F ′

1

2F0F1
+

F ′
2F ′

1

F1F2
− F ′

0F ′
2

F0F2

)
+

1

F2

(
3F3

4F2
− 1

)
,

Etψ =
1

cos θ
Etφ =

W ′

F1

(
F3F ′

0

2F2
0

+
F3F ′

1

2F0F1
− F3F ′

2

F0F2
− 3F ′

3

2F0

)
− F3W

′′

F0F1
,

Eψφ = cos θ

[
1

2F1

(
−4F3WW ′′

F0
+

F ′′
2

F2
− F ′′

3

F3

)
+

1

F2

(
F3

F2
− 1

)
+

F3W
′

F1

(
W

F0

(
F ′
0

F0
+

F ′
1

F1
− 2F ′

2

F2
− 3F ′

3

F3

)
− 2W ′

F0

)
+

1

4F1

(
F ′
3
2

F2
3

− F ′
0F ′

3

F0F3
+

F ′
1F ′

3

F1F3
− F ′

2F ′
3

F2F3
+

F ′
0F ′

2

F0F2
− F ′

1F ′
2

F1F2

)]
,

while the non-vanishing components of the energy momentum tensor are

T tt = −µ2ϕ2 − ω2 − sW 2

F0
ϕ2 − s

4

(
1

F3
+

2

F2

)
ϕ2 − ϕ′2

F1
,

T rr =
ϕ′2

F1
− s

1

2
(
1

F2
+

1

2F3
)ϕ2 +

(ω − sW )2

F0
ϕ2 − µ2ϕ2,

T θθ = Tφφ = −ϕ
′2

F1
− s

1

4F3
ϕ2 +

(ω − sW )2

F0
ϕ2 − µ2ϕ2,

Tψψ =

(
ω2 − pW 2

)
F0

ϕ2 − µ2ϕ2 +
s

4
ϕ2
(

1

F3
− 2

F2

)
− ϕ′2

F1
,

T tψ = s
(ω −W )

F0
ϕ2, T tφ = T tψ cos θ, (A.2)

Tψφ = s

(
2W (ω −W )

F0
− 1

2F2
+

1

2F3

)
cos θ ϕ2,

where s = 0, 1 – cf. the scalar ansatz (2.16), (2.17).

– 29 –



In the numerics, we choose a metric gauge with F2 = λF1r
2 with λ = 1/4, 1 for

solitons and BHs, respectively. Then Eθθ is a linear combination of Eψψ and Eψφ (and also

for the corresponding T ba) and we are left with five Einstein equations for four metric

functions. However, the (r, r)-Einstein equation is treated as a constraint, being satisfied

once the remaining equations are zero. Therefore we conclude that the considered ansatz

is consistent.

For completeness, we include here also the general equation satisfied by the scalar

amplitude:

ϕ′′ +
1

2

(
F ′
0

F0
− F ′

1

F1
+

2F ′
2

F2
+

F ′
3

F3

)
ϕ′ (A.3)

+

[
(ω − sW )2

F0
− µ2 − s

2

(
1

F2
+

1

2F3

)]
F1ϕ = 0.

B The vacuum Black Hole solution

B.1 The static Black Hole

The GPS solution allows for BH generalizations [15–19]. The static case has a particularly

simple form, with

ds = −
(
1− rh

r

)
dt2+

(
1 +

2N̄

r

)[
dr2

1− rh
r

+ r2(dθ2 + sin2 θdφ2)

]
+

4N2

1 + 2N̄
r

(dψ+cos θdφ)2

with N̄ =
√
N2 + 1

16r
2
h −

1
4rh. The coordinate transformation (with rh = 4rH)

r → r
(
1 +

rH
r

)2
, (B.1)

leads to the following equivalent form of (B.1) in isotropic coordinates, which was used as

the background for the non-extremal HBH solutions reported in Section 3.3:

ds2 = −
(
1− rH

r

)4(
1 + rH

r

)2dt2+(1 + rH
r

)4 [
dr2+r2(dθ2+sin2 θdφ2)

]
+

4N2

H(r)
(dψ+cos θdφ)2 ,

(B.2)

with the function H(r) given by (3.7) and rH > 0 the event horizon radius. Note that the

Schwarzschild Black String is recovered as N → 0, while rH = 0 results in the GPS solution

with the form (2.7) of ds24 part of the metric. The corresponding expressions of various

quantities of interest results straightforwardly from those of the spinning BHs displayed

below.

B.2 The rotating Black Hole

B.2.1 The general case

The rotating generalization of the static line element (B.2) has been derived in [16, 19]. It

can be written in the generic form (2.13), where we have found useful to use a form of the
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metric functions with

F0 =
(1 + u2(1− y))

y

1− (1−y)P1(r)
P 2
2 (r)

1 +
u2(1−y)P 2

1 (r)

P 2
2 (r)

, F1 =
P1(r)

P2(r)

y

1− (1− y) P1(r)
P 2
2 (r)

,

F2 = r2P1(r)P2(r) , F3 =
r20

(
1 + u2(1− y)

P 2
1 (r)

P 2
2 (r)

)
P2(r)

(1 + u2)2yP1(r)
, (B.3)

W (r) =
(1 + u2)3/2(y − 1)u

2r0
√

1 + (1− y)u2

1− P 2
2 (r)

P 2
1 (r)

(y − 1)u2 − P 2
2 (r)

P 2
1 (r)

,

where

P1(r) = 1 +
r0
r
, P2(r) = 1 +

r0
r

u2

1 + u2
, (B.4)

{r0, u, y} being three parameters. The static limit is recovered for u = 0, resulting in the

metric form (B.1) (with rh = r0(1− y)/y and N = r0/(2
√
y)).

Returning to the spinning case, we notice first the absence of a rotating generalization

of the horizonless (vacuum) GPS soliton24. To better understand the BH properties, we

express the y-parameter in terms of the horizon radius rH , with

y =
r0(rH − (r0 + rH)u

4)

rH(r0 + rH)(1 + u2)2
, (B.5)

and define

r0 = srH . (B.6)

As such, the input parameters become u, s and rH > 0, with 0 ⩽ u ⩽ 1 and 1−(1+s)u2 ⩾ 0.

One can easily verify that metric has the right asymptotics, with W → 0 as r → ∞,

while the following relation holds between the horizon radius and the NUT-parameter:

rH = 2N
(
1 + u2

)√ 1− (1 + s)u4

s(1 + s+ (3 + 2s)u2 + 3(1 + s)u4 + (1 + s)2u6)
. (B.7)

The computation of various quantities which enter the thermodynamic description of this

rotating BH solution is straightforward, with

M =
4πN2

G5

(
2 + s+ 2(1 + s)u2

) (
1 + 2u2 + (1 + s)u4

)
(1 + s+ (3 + 2s)u2 + 3(1 + s)u4 + (1 + s)2u6)3/2

√
s(1− (1 + s)u4)

×
(
1 + s+ (1 + 2s)u2 − (1 + s)u4 − (1 + s)2u6

)
,

J =
16πN3

G5

√
1 + su(1 + (1 + s)u2)2

×
(

1 + u2

1 + s+ (3 + 2s)u2 + 3(1 + s)u4 + (1 + s)2u6)

)3/2

,

24Note, however, the existence of such spinning solitons in a model with a U(1) field [80].
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T =
N

2G5

(
1 + s+ (1 + 2s)u2 − (1 + s)u4 − (1 + s)2u6

)√
s(1− (1 + s)u4)(1 + s+ (3 + 2s)u2 + 3(1 + s)u4 + (1 + s)2u4)3/2

×
(
s2u4(u2 − 1) + (1 + u2)3 + 2s(1 + u2)(1 + u4)

)
,

AH =128π2N3(1 +
1

s
)(1 + (1 + s)u2)2(1− (1 + s)u4) (B.8)

×
(

1 + u2

1 + s+ (3 + 2s)u2 + 3(1 + s)u4 + (1 + s)2u6)

)3/2

,

TH =
1

8πN

s(1− (1 + s)u2)(1 + s+ (3 + 2s)u2 + 3(1 + s)u4 + (1 + s)2u6)

(1 + s)
√
s(1 + u2)(1 + (1 + s)u2)(1− (1 + s)u4)3/2

,

ΩH =
1

2N

u(2 + s+ 2(1 + s)u2

1 + (1 + s)u2

√
s√

(1 + s)(1 + u2)(1− (1 + s)u4)
.

This solution has a variety of interesting properties, some of them different from the case of

asymptotically M1,4 Myers-Perry BHs (with the same symmetries). Here we mention only

the existence, for a given value of the N , of an upper bound of the spinning parameter J ,

with Jmax = 8πN3

G5
. For J = Jmax, the mass can take an arbitrary valueM > Mc =

8π
√
2N2

G5
,

see Figure 7 (left panel). Note that the solution with M = Mc, J = Jmax corresponds to

an extremal BH. Also, in the context of this work, it is interesting to consider the issue of

solutions with constant ΩH . These sequences start at the horizonless GPS soliton limit;

however, their end point can be different. For 0 < ΩH ⩽ 1/(
√
2N) they reach an extremal

BH solution (TH = 0) - see the inset in Figure 7 (left panel); the extremal BH is marked

there with a red dot. The situation is different for larger angular velocities, and a sequence

of BHs at constant ΩH ends on the set of critical solutions with J = Jmax and M > Mc.

B.2.2 The extremal limit and an exact solution of the Klein-Gordon equation

The extremal BH limit (TH = 0) is found for

s =
1

u2
− 1 , (B.9)

in which case the solution takes a much simpler form. One finds

F1 =

(
1−

(
1− 1

u2

)
rH
r

) (
1 + 1−u2

1+u2
rH
r

)
(
1− rH

r

)2 , F2 = r2
(
1−

(
1− 1

u2

)
rH
r

)(
1 +

1− u2

1 + u2
rH
r

)
),

F3 =
r2H

(
1 + 2rH

r +
5r2H
r2

+ 2
(
1− rH

r

) (
1 + 5rH

r

)
u2 + 5

(
1− rH

r

)2
u4
)

u4 (1 + u2)2
(
1 + 1−u2

1+u2
rH
r

) (
1− (1− 1

u2

)
rH
r )

, (B.10)

W =
2u

r

√
1 + u2

1 + 2u2 + 5u4
2u2

(
1 + u2

)
+
(
1− u2

) (
1 + 2u2

)
rH
r

1 + 2rH
r +

5r2H
r2

+ 2
(
1− rH

r

) (
1 + 5rH

r

)
u2 + 5

(
1− rH

r

)2
u4

,
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for the metric functions, with the main quantities of interest are

M =
4πN2

G5

(
1 + 3u2

)3
(12u2 + 5u4)3/2

, J =
64πN3u3

G5

(
1 + u2

1 + 2u2 + 5u4

)3/2

,

AH = 512π2N2u3
(

1 + u2

1 + 2u2 + 5u4

)3/2

, ΩH =
1

4N

1 + 3u2

u
√
1 + u2

, (B.11)

T =
N

G5

(
1 + 3u2

) (
1 + 3u4

)
(1 + 2u2 + 5u4)3/2

.

The Klein-Gordon equation (A.3) (with s = 1) takes a relatively simple form for the

above (extremal) background(
(r − rH)

2ϕ′
)′ − (s2(r − rH)

2 + s1(r − rH) + s0
)
ϕ = 0 (B.12)

where we note

s0 =
3

8
+

2µ2r2H
u2(1 + u2)

, s1 =

(
µ2rH

u2(1 + u2)
− 1

16rH

)(
1 + 3u2

)
, s2 = µ2 −

u2
(
1 + u2

)
16r2H

.

The general solution of the above equation reads

ϕ(r) =e−
√
s2(r−rH)(r − rH)

1
2(

√
1+4s0−1)

×
[
c1L

√
4s0+1

−κ (2
√
s2(r − rH))

+ c2U
(
κ, 1 +

√
1 + 4s0, 2

√
s2(r − rH)

) ]
(B.13)

where U and L are the confluent hypergeometric function and the generalized Laguerre

polynomial, respectively, and κ = 1
2

(
1 +

√
1 + 4s0 +

s1√
s2

)
(c1, c2 arbitrary constants).

This solution diverges either at spatial infinity or at the horizon.
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