Geometry of Super Null Infinity

Noémie Parrini

Ongoing work with N. Boulanger and Y. Herfray

Workshop Beyond Lorentzian Geometry II

Table of Contents

- Introduction and context
- 2 The super case : Orbits exploration
- 3 Chirality in super Minkowski space
- 4 Generalisation
- Conclusion

Table of Contents

- Introduction and context
- 2 The super case : Orbits exploration
- Chirality in super Minkowski space
- 4 Generalisation
- Conclusion

Context

- Null Infinity is the boundary of asymptotically flat spacetimes
- Asymptotically flat spacetimes are relevant
- Asymptotic group of symmetries of these space is BMS [BMS 62]
- More recently, it was shown that these symmetries are equivalent to the conformal Carrolian symmetries (symmetries of Null Infinity) [Duval, Gibbons, Horvathy]

Goal of the work

Generalize this in a superspace formulation, with a Carrollian approach :

Goal of the work

Generalize this in a superspace formulation, with a Carrollian approach : Several works already investigated the subject [AGS 86][Henneaux et al.]

Goal of the work

Generalize this in a superspace formulation, with a Carrollian approach : Several works already investigated the subject [AGS 86][Henneaux et al.]

- We would like to propose a definition for asymptotically flat superspaces, for which the boundary would carry a superconformal Carrollian geometry
- This would give a geometrical realization of the super BMS group, as the conformal Carrollian symmetry group of super Null Infinity
- Starting point: super Minkowski space, through the study of homogeneous spaces

Klein Geometry and homogeneous spaces

Homogeneous space

Space M with a transitive action of a Lie group G

"All points look the same"

 $\longrightarrow M \simeq G/H$, where H is the stabilizer of one point $x \in G$

Examples:

- $\mathbb{S}^2 \simeq \frac{\mathsf{SO}(3)}{\mathsf{SO}(2)}$
- $\mathbb{M}^{1,3} \simeq \frac{\mathsf{ISO}(1,3)}{\mathsf{SO}(1,3)}$

Klein pair

The pair (G, H) is a Klein geometry

Example: Conformally compactified Minkowski

Conformally compactified Minkowski $\overline{\mathbb{M}}^{1,3}$ is a homogeneous space for the conformal group

$$\overline{\mathbb{M}}^{1,3} = \frac{\mathsf{SO}(2,4)}{\mathbb{R}^4 \rtimes (\mathbb{R} \times \mathsf{SO}(1,3))}$$

We can choose $ISO(1,3) \subset SO(2,4)$ and break the conformal invariance by imposing to stabilize the preferred degenerate direction called null

infinity tractor
$$I^I = \begin{bmatrix} 1 \\ 0^{AA'} \\ 0 \end{bmatrix}$$

 \rightarrow Split of $\overline{\mathbb{M}}^{1,3}$ into orbits of Poincaré

Orbit decomposition

Three orbits (subspaces invariant under the action of Poincaré)

$$\overline{\mathbb{M}}^{1,3} = \mathbb{M}^{1,3} \sqcup \mathscr{I} \sqcup \{I\}$$

Because Poincaré acts transitively on each of these subspaces, they are homogeneous spaces for ISO(1,3):

$$\overline{\mathbb{M}}^{1,3} = \frac{\mathsf{ISO}(1,3)}{\mathsf{SO}(1,3)} \sqcup \ \frac{\mathsf{ISO}(1,3)}{\mathbb{R}^3 \rtimes (\mathbb{R} \times \mathsf{ISO}(2))} \sqcup \frac{\mathsf{ISO}(1,3)}{\mathsf{ISO}(1,3)}$$

Conformal Carrollian geometry

$$\mathscr{I} = \frac{\mathsf{ISO}(1,3)}{\mathbb{R}^3 \rtimes (\mathbb{R} \times \mathsf{ISO}(2))} \simeq \mathbb{R} \times S^2$$

Conformal boundary of asymptotically flat spacetime is null, n^μ normal vector at $\mathscr I$ such that

$$n^b h_{ab} = 0$$

where the degenerate metric h_{ab} is the induced conformal metric from the conformal manifold \overline{M} .

 \Rightarrow (n^a, h_{ab}) constitues a conformal Carrollian geometry

Table of Contents

- Introduction and context
- 2 The super case : Orbits exploration
- Chirality in super Minkowski space
- Generalisation
- Conclusion

Super Minkowski space

Goal: generalize this to the supersymmetric case (naive generalization)

$$\begin{array}{cccc} \overline{\mathbb{M}}^4 & \to & \text{super compactified Minkowski space } \overline{\mathbb{M}}^{4|2\mathcal{N}} \\ \text{SU}(2,2) \twoheadrightarrow \text{SO}(2,4) & \to & \text{super conformal group SU}(2,2|\mathcal{N}) \\ \text{SU}(2,2) \circlearrowleft \overline{\mathbb{M}}^4 & \to & \text{SU}(2,2|\mathcal{N}) \circlearrowleft \overline{\mathbb{M}}^{4|2\mathcal{N}} \end{array}$$

$$\Rightarrow \overline{\mathbb{M}}^{4|2\mathcal{N}}$$
 (real) is an homogeneous space for the superconformal group

e.g. [?]

Question : Orbit decomposition of $\overline{\mathbb{M}}^{4|2\mathcal{N}}$ for super Poincaré group ?

Grassmannian definition of compactified Minkowski

Definition that generalizes to the susy case : (complexified)

$$\overline{M}^4 := \operatorname{Gr}(2, \mathbb{C}^4)$$

$$= \{\operatorname{span}(Z^{\alpha 1}, Z^{\alpha 2}) \mid Z^{\alpha b} = \begin{bmatrix} \omega^{Ab} \\ \pi_{A'}{}^b \end{bmatrix} \in \mathbb{C}^4 \text{ for } b = 1, 2\}$$

$$\downarrow$$

$$\begin{split} \overline{M}_{\ell}^{4|2\mathcal{N}} &:= \mathsf{Gr}(2|0,\mathbb{C}^{4|\mathcal{N}}) \\ &= \{\mathsf{span}(Z^{\hat{\alpha}1},Z^{\hat{\alpha}2}) \mid Z^{\hat{\alpha}b} = \begin{bmatrix} \omega^{Ab} \\ \pi_{A'}{}^{b} \\ \theta^{lb} \end{bmatrix} \in \mathbb{C}^{4|\mathcal{N}} \text{ for } b = 1,2\} \end{split}$$

We can change the basis of the plane :

$$Z^{\hat{\alpha}b} = \begin{bmatrix} \omega^{01} & \omega^{02} \\ \omega^{11} & \omega^{12} \\ \pi_{0'}{}^{1} & \pi_{0'}{}^{2} \\ \pi_{1'}{}^{1} & \pi_{1'}{}^{2} \\ \theta'^{11} & \theta'^{12} \end{bmatrix} \sim \begin{bmatrix} \omega^{01} & \omega^{02} \\ \omega^{11} & \omega^{12} \\ \pi_{0'}{}^{1} & \pi_{0'}{}^{2} \\ \pi_{1'}{}^{1} & \pi_{1'}{}^{2} \\ \theta'^{11} & \theta'^{2} \end{bmatrix} \cdot M$$

where $M \in GL(2, \mathbb{C})$.

+ Natural action of $\mathsf{SL}(4|\mathcal{N},\mathbb{C})$ (complexified super conformal group)

Orbit decomposition

Choice of a preferred super null direction
$$I^{\alpha b} = \begin{bmatrix} 1^{Ab} \\ 0_{A'}{}^{b} \\ 0^{lb} \end{bmatrix}$$
 \iff Choice of ISO(1, 3| \mathcal{N}) $_{\mathbb{C}} \subset$ SU(2, 2| \mathcal{N}) $_{\mathbb{C}}$

Result of the decomposition: more orbits!

$$\overline{M}_{\ell}^{4|2\mathcal{N}} = M_{\ell}^{4|2\mathcal{N}} \sqcup \mathscr{I}_{\ell}^{(3|\mathcal{N})} \sqcup \mathcal{O}_{\ell} \sqcup \mathcal{H} \sqcup \{I\}$$

 \hookrightarrow Each of these is an homogeneous space for super Poincaré

$$Z^{\hat{\alpha}b} = \begin{bmatrix} \omega^{Ab} \\ \pi_{A'}{}^{b} \\ \theta^{Ib} \end{bmatrix} \in \overline{M}_{\ell}^{4|2\mathcal{N}}$$

Coordinates on these orbits? (reality conditions)

• On $M_\ell^{1,3|2\mathcal{N}} \simeq \frac{\mathsf{ISO}(1,3|\mathcal{N})}{\mathsf{SO}(1,3)\times\mathsf{SU}(\mathcal{N})}$ we find coordinates $(X_\ell^{AA'},\theta^{A'}_l)$ such that one can write

$$X_{\ell}^{AA'} = X^{AA'} + \frac{i}{2} \theta^{A'} {}_{I} \bar{\theta}^{A}{}_{\bar{J}} \delta^{I\bar{J}},$$

for a real $X^{AA'}$

Chiral left coordinates appear naturally !

Coordinates on these orbits ? (reality conditions)

• On $M_\ell^{1,3|2\mathcal{N}} \simeq \frac{|\mathrm{SO}(1,3|\mathcal{N})}{\mathrm{SO}(1,3)\times\mathrm{SU}(\mathcal{N})}$ we find coordinates $(X_\ell^{AA'},\theta^{A'}_l)$ such that one can write

$$X_{\ell}^{AA'} = X^{AA'} + \frac{i}{2} \theta^{A'} {}_I \bar{\theta}^A{}_{\bar{J}} \, \delta^{I\bar{J}},$$

for a real $X^{AA'}$

Chiral left coordinates appear naturally !

• On $\mathscr{I}_{\ell}^{(3|\mathcal{N})} \simeq \frac{\mathsf{ISO}(1,3|\mathcal{N})}{\mathbb{R}^3 \rtimes \left(\mathbb{R}^{0|\mathcal{N}} \rtimes (\mathsf{ISO}(2) \times \mathbb{R} \times \mathsf{SU}(\mathcal{N}))\right)}$ we find coordinates $([\pi^A], u_{\ell} = -i\omega^A \tilde{\pi}_A, \theta_I)$ such that one can write

$$u_{\ell} = u + \frac{i}{2} \theta_{I} \overline{\theta}_{\bar{J}} \delta^{I\bar{J}}$$

for a real u

Table of Contents

- Introduction and context
- 2 The super case : Orbits exploration
- Chirality in super Minkowski space
- Generalisation
- Conclusion

So far, we have been looking only at one half of the history! Complexify and [?] :

$$\overline{M} = F(2|0, 2|\mathcal{N}, \mathbb{C}^{4|\mathcal{N}})$$

$$\overline{M}_{\ell} = Gr(2|0, \mathbb{C}^{4|\mathcal{N}})$$

$$Z^{\hat{\alpha}b} = \begin{bmatrix} \omega_{\ell}^{Ab} \\ \pi_{A'\ell}{}^{b} \\ \theta_{\ell}^{B} \end{bmatrix} \qquad \overline{M}_{r}$$
Chiral right

Chiral left

Flag variety

Let
$$0 \le d_0 < d_1 < ... < d_k \le \dim V$$

$$F(\textit{d}_0,\textit{d}_1,...,\textit{d}_k,\textit{V}) := \{\textit{V}_0 \subset \textit{V}_1 \subset ... \subset \textit{V}_k \text{ sub v.s. of } \textit{V} \mid \text{dim}(\textit{V}_i) = \textit{d}_i\}$$

Flag variety

Let
$$0 \le d_0 < d_1 < ... < d_k \le \dim V$$

$$F(d_0,d_1,...,d_k,V):=\{V_0\subset V_1\subset ...\subset V_k \text{ sub v.s. of } V\mid \dim(V_i)=d_i\}$$

in particular

$$F(k, V) = Gr(k, V)$$

$$F(1,V) = \mathbb{P}_{\mathsf{dim}\,V-1}(V)$$

Example

$$F(1,2,\mathbb{R}^3) := \{V_1 \subset V_2 \text{ sub v.s. of } \mathbb{R}^3 \mid \dim(V_i) = i\}$$

[?

Full complexified compactified super Minkowski space

$$\overline{M} = F(2|0, 2|\mathcal{N}, \mathbb{C}^{4|\mathcal{N}})$$

$$\overline{M}_{\ell} = \operatorname{Gr}(2|0, \mathbb{C}^{4|\mathcal{N}})$$

$$Z^{\hat{\alpha}b} = \begin{bmatrix} \omega_{\ell}^{Ab} \\ \pi_{A'\ell}^{b} \\ \theta_{\ell}^{b} \end{bmatrix}$$

$$\widetilde{Z}_{\hat{\alpha}}^{b} = \begin{bmatrix} \omega_{r}^{Ab} \\ \omega_{r}^{A'b} \\ \theta_{lr}^{b} \end{bmatrix}^{t}$$

$$\widetilde{Z}_{\hat{\alpha}}^{b} = \begin{bmatrix} \pi_{Ar}^{b} \\ \omega_{r}^{A'b} \\ \theta_{lr}^{b} \end{bmatrix}^{t}$$
Chiral left
$$Chiral right$$

Full complexified compactified super Minkowski space

$$\overline{M} = F(2|0,2|\mathcal{N},\mathbb{C}^{4|\mathcal{N}})$$

$$\overline{M}_{\ell} = \mathsf{Gr}(2|0,\mathbb{C}^{4|\mathcal{N}})$$

$$Z^{\hat{\alpha}b} = \begin{bmatrix} \omega_{\ell}^{Ab} \\ \theta_{\ell}^{Bb} \end{bmatrix}$$

$$\tilde{Z}_{\hat{\alpha}}^{b} = \begin{bmatrix} \pi_{A'\ell}^{b} \\ \theta_{\ell}^{Bb} \end{bmatrix}^{t}$$

$$\tilde{Z}_{\hat{\alpha}}^{b} = \begin{bmatrix} \pi_{A'\ell}^{b} \\ \theta_{\ell}^{Bb} \end{bmatrix}^{t}$$
Chiral left
$$Chiral right$$

Chiral right

Flag condition : $\forall a, b, Z^{\hat{\alpha}a}\tilde{Z}_{\hat{\alpha}}{}^b = 0$

Chiral right

Two importants orbits:

• In chiral right super Minkowski space M_R , the subspace of \overline{M}_R where $\det \pi \neq 0$, it exists $X^{A'A} \in \mathbb{R}$ such that we can write

$$X_r^{A'A} = X^{A'A} - \frac{i}{2} \theta^{IA'} \delta_{IJ'} \bar{\theta}^{J'B}.$$

Chiral right

Two importants orbits:

• In chiral right super Minkowski space M_R , the subspace of \overline{M}_R where $\det \pi \neq 0$, it exists $X^{A'A} \in \mathbb{R}$ such that we can write

$$X_r^{A'A} = X^{A'A} - \frac{i}{2}\theta^{IA'}\delta_{IJ'}\bar{\theta}^{J'B}.$$

• On the chiral right super Null Infinity \mathscr{I}_r it exists $u \in \mathbb{R}$ such that we can write

$$u_{-}=u-\frac{i}{2}\theta_{I}\overline{\theta}_{\bar{J}}\delta^{I\bar{J}}.$$

Non chiral

Non chiral super Minkowski space is defined as

$$\{(Z^{\hat{\alpha}b}, \tilde{Z}_{\hat{\alpha}b}) \mid Z^{\hat{\alpha}b} \in M_L \text{ and } \tilde{Z}_{\hat{\alpha}b} \in M_R\}$$

ightarrow Flag condition imposes $x_\ell^{AA'} - x_r^{AA'} = 2i\theta_\ell^{AI}\theta_{rI}^{A'}$

Non chiral

Non chiral super Minkowski space is defined as

$$\{(Z^{\hat{lpha}b}, ilde{Z}_{\hat{lpha}b}) \mid Z^{\hat{lpha}b} \in M_L \text{ and } ilde{Z}_{\hat{lpha}b} \in M_R\}$$

- ightarrow Flag condition imposes $x_\ell^{AA'} x_r^{AA'} = 2i\theta_\ell^{AI}\theta_{rI}^{A'}$
- The obvious candidate for non chiral super null infinity is

$$\{(Z^{\hat{\alpha}b}, \tilde{Z}_{\hat{\alpha}b}) \mid Z^{\hat{\alpha}b} \in \mathscr{I}_L^{(\mathcal{N})} \text{ and } \tilde{Z}_{\hat{\alpha}b} \in \mathscr{I}_R^{(\mathcal{N})}\}$$

ightarrow Flag condition imposes $ilde{\pi}_\ell^A \propto \pi_r^A$, $ilde{\pi}_r^A \propto \pi_\ell^A$ and $u_\ell - u_r = i\delta_{IJ}\theta_I^I\theta_r^J$

Non chiral super Minkowski (big cell)

Super Minkowski

$$(x^{AA'} := \frac{1}{2}(x_{\ell}^{AA'} + x_{r}^{A'A}), \ \theta_{\ell}^{Ib}, \ \theta_{Ir}^{b})$$

$$\pi_{\ell}$$

$$(x_{\ell}^{AA'} = x^{AA'} + \frac{i}{2}\theta_{\ell}^{IA}\theta_{Ir}^{A'}, \ \theta_{\ell}^{Ib})$$

$$(x_{r}^{A'A} = x^{AA'} - \frac{i}{2}\theta_{\ell}^{IA}\theta_{Ir}^{A'}, \ \theta_{Ir}^{b})$$
Chiral left
$$Chiral right$$

Non chiral super Null Infinity

Super Null Infinity

$$(u:=\frac{1}{2}(u_{\ell}+u_{r}),\theta_{\ell},\theta_{r},[\pi_{\ell}^{A}],[\pi_{r}^{A}])$$

$$\pi_{\ell}$$

$$\pi_{r}$$

$$(u_{\ell}=u+\frac{i}{2}\theta_{\ell}\theta_{r},\;\theta_{\ell},\;[\pi_{\ell}^{A}],\;[\pi_{r}^{A}])$$

$$(u_{r}=u-\frac{i}{2}\theta_{\ell}\theta_{r},\;\theta_{r},\;[\pi_{A'\ell}],[\pi_{r}^{A}])$$
Chiral left
$$Chiral right$$

Chiral left

Chiral right

Table of Contents

- Introduction and context
- 2 The super case : Orbits exploration
- Chirality in super Minkowski space
- 4 Generalisation
- Conclusion

For super Minkowski:

For super Minkowski:

Two integrable distributions $D_{\ell}, D_r \subset TM$ associated to the two fibrations Basis of the sections given by :

$$\begin{array}{lll} D_{\ell Ib} = \partial_{\theta_{\ell}^{Ib}} + i \theta_{rI}^{b} \partial_{\chi^{AA'}} & \longrightarrow & \text{s.t. } D_{\ell}(x_{r}, \theta_{r}) = 0 \\ D_{rb}^{I} = \partial_{\theta_{Ir}^{b}} + i \theta_{I}^{Ib} \partial_{\chi^{AA'}} & \longrightarrow & \text{s.t. } D_{r}(x_{\ell}, \theta_{\ell}) = 0 \end{array}$$

⇒ Covariant derivatives

Distributions ("covariant derivatives") already there in the homogeneous superconformal model !

Superconformal geometry

In fact, they are part of the superconformal geometry :

Superconformal geometry [?, ?]

A superconformal geometry on a complex supermanifold $M^{4|4}$ is a pair of integrable (0|2)-dimensional distributions $D_{\ell}, D_r \subset TM$ s.t.

- Their sum is direct in TM
- $\varphi: D_{\ell} \otimes D_r \to TM/(D_{\ell} \oplus D_r): (X \otimes Y) \mapsto [X, Y] \operatorname{mod}(D_{\ell} \oplus D_r)$ is an isomorphism

For super Null Infinity: works in the same way

For super Null Infinity: works in the same way

Two integrable distributions $D_\ell, D_r \subset T\mathscr{I}$ associated to the two fibrations

$$D_{\ell} = \partial_{\theta_{\ell}} - i\theta_{r}\partial_{u}$$
 \rightarrow s.t. $D_{\ell}(u_{r}, \theta_{r}) = 0$

$$D_r = \partial_{\theta_r} - i\theta_\ell \partial_u$$
 \rightarrow s.t. $D_r(u_\ell, \theta_\ell) = 0$

Super conformal Carrollian: curved setup

Based on the flat model, we propose to extend this definition for $\mathscr{I}^{3|1}$, as a model for a *super conformal Carrollian geometry*: the data of (D_{ℓ}, D_r, n) , with some compatibility conditions

Results:

Super conformal Carrollian: curved setup

Based on the flat model, we propose to extend this definition for $\mathscr{I}^{3|1}$, as a model for a *super conformal Carrollian geometry*: the data of (D_ℓ, D_r, n) , with some compatibility conditions

Results:

- We can always write :
 - $D_{\ell} = \partial_{\theta_{\ell}} i\theta_{r}\partial_{u}$
 - $D_r = \partial_{\theta_r} i\theta_\ell \partial_u$
 - ▶ $n = \partial_u$
- The symmetry group of these is the super BMS group of Awada-Gibbons-Shaw [AGS 86]

Table of Contents

- Introduction and context
- 2 The super case : Orbits exploration
- Chirality in super Minkowski space
- 4 Generalisation
- Conclusion

Conclusion

Short summary

- Mostly in the flat case
- Chirality: the non chiral super Minkowski space is a flag variety
- \bullet Identify two remarkable orbits inside the compactification : super Minkowski and super ${\mathscr I}$
- For non chiral super Minkowski and non chiral super

 we have the same structure of double fibration, characterized by two distributions
- This structure is the basis of the definition of superconformal geometry

Conclusion

Short summary

- Mostly in the flat case
- Chirality: the non chiral super Minkowski space is a flag variety
- \bullet Identify two remarkable orbits inside the compactification : super Minkowski and super ${\mathscr I}$
- For non chiral super Minkowski and non chiral super \mathscr{I} we have the same structure of double fibration, characterized by two distributions
- This structure is the basis of the definition of superconformal geometry

Still in progress ...

- Give precise definitions to treat the general asymptotically flat case
- Application to self dual supergravity

Thank you for your attention!

References