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Context

@ Null Infinity is the boundary of asymptotically flat spacetimes
o Asymptotically flat spacetimes are relevant
e Asymptotic group of symmetries of these space is BMS [BEMS 62]

@ More recently, it was shown that these symmetries are equivalent to
the conformal Carrolian symmetries (symmetries of Null Infinity)
[Duval, Gibbons, Horvathy]
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Goal of the work

Generalize this in a superspace formulation, with a Carrollian approach :

o =3 = E DAl
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Goal of the work

Generalize this in a superspace formulation, with a Carrollian approach :
Several works already investigated the subject |[AGS 86|[Henneaux et al ]

@ We would like to propose a definition for asymptotically flat
superspaces, for which the boundary would carry a superconformal
Carrollian geometry

@ This would give a geometrical realization of the super BMS group, as
the conformal Carrollian symmetry group of super Null Infinity

@ Starting point : super Minkowski space, through the study of
homogeneous spaces
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Klein Geometry and homogeneous spaces

Homogeneous space J

Space M with a transitive action of a Lie group G

"All points look the same”

— M ~ G/H, where H is the stabilizer of one point x € G
Examples :
2 o S0(3)
1,3 ~ 150(1,3)
o MM~ o) '

Klein pair
The pair (G, H) is a Klein geometry J
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Example : Conformally compactified Minkowski

Conformally compactified Minkowski M is a homogeneous space for the
conformal group

13 SO(2,4)
~ R* x (R x SO(L,3))
We can choose 1SO(1,3) C SO(2,4) and break the conformal invariance

by imposing to stabilize the preferred degenerate direction called null
1

infinity tractor /! = |04
0
— Split of M into orbits of Poincaré

M
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Orbit decomposition

Three orbits (subspaces invariant under the action of Poincaré)

M7 =M us u{l}

Because Poincaré acts transitively on each of these subspaces, they are
homogeneous spaces for ISO(1,3) :

3 1S0(13) 1SO(1, 3) 1SO(1, 3)
T S0(1,3) - R3x (R x150(2)) ~ 1SO(1,3)
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Conformal Carrollian geometry

150(1, 3)

_ ~ 2
T Bk (Rx1S0Q)) " XX°

Conformal boundary of asymptotically flat spacetime is null, n* normal
vector at .# such that
nPhoy =0

where the degenerate metric h,p is the induced conformal metric from the
conformal manifold M.

= (n?, h,p) constitues a conformal Carrollian geometry
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Super Minkowski space

Goal : generalize this to the supersymmetric case (naive generalization)

v —  super compactified Minkowski space MWN
SU(2,2) - SO(2,4) — super conformal group SU(2,2|\)
sU@2,2) oM - su(2, 2l o MY

—4 :
=M 2N (real) is an homogeneous space for the superconformal group J

eg. [

. . . —4 . ,
Question : Orbit decomposition of M 2N for super Poincaré group ?
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Grassmannian definition of compactified Minkowski

Definition that generalizes to the susy case : (complexified)

M= Gr(2,C*)
WA
= {span(Z*, z°2) | 2% = [W b] € C* for b=1,2}
A/
1
M*V .= Gr(2]0, C*V)
o A WA
= {span(Z%*,282) | 780 = |wpP| € C*W for b=1,2}
9lb
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We can change the basis of the plane :

WO 02 oL
Wit 12 Wil
Z&b _ 7T0’1 7T0/2 ~ 7.(.0,1
7['1/1 7['1/2 71'1/1
9/1 9/2 0/1

where M € GL(2,C).

+ Natural action of SL(4|\,C) (complexified super conformal group)

w02

12

7'('0/2

7T]_/2

0/2
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Orbit decomposition

].Ab

Choice of a preferred super null direction /%0 = [04/°
Olb
<= Choice of I1SO(1,3|N)c C SU(2,2|N )¢

Result of the decomposition : more orbits !

——4[2

MM U BN o, u (i

— Each of these is an homogeneous space for super Poincaré
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Coordinates

Wi 42N
7% — | 7P| e M,
alb
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Coordinates

—4
A € M£|2N’
elb

7N\
detm #0

detm =0
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Coordinates

Wi 42N
7% — | 7P| e M,
elb

IXAA/
Zéb 5ij detm =0
9/b
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Coordinates

Wi 42N
7% — | 7P| e M,
elb

detm =0

! / \
T#0 =20
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Coordinates

wAb
Z8b = | rab| e MY
elb
detm #0
Mz‘lzjv 7:% =0
m#0
wh A r=0
Z8b a0
0/ 17/
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Coordinates

wAb
Z4b — 7TA/b € Wﬁlw
elb
detm # 0 \
. /de ) 0\
m#0 =20
wA TNI'A g_}A ﬁ-A
7r,¢l\/ 0 7a O
’ (3\/\9) O
52 7 (B[2N)
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Coordinates

wAb
Z4b = 7TA/b S M4|2N
elb
detm # 0 \
MzﬂzN /detﬂ 0\
m#0
WA FA WA A / \
a0 ;0
(3INV)
52 7 (B[2N)
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Coordinates

elb
detm # 0 \
MzﬂzN /detﬂ 0\
m#0
wh A WA RA / \
ﬂ-A’ O 7'(‘A/ 0 Hlb
%(3\/\/) 7(312N)
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Coordinates on these orbits ? (reality conditions)

e On M€1’3|ZM ~ % we find coordinates (XA, 04')) such

that one can write
i _ _
XPA = XA 4 59“’,9/‘] s

!
for a real XAA

Chiral left coordinates appear naturally ! J
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Coordinates on these orbits ? (reality conditions)

132V I1SO(1,3|N)
® On M, ~ SO(1,3)xSUN)
that one can write

we find coordinates (X", 0/) such

XPA = XM 0% 1575 6V,

!
for a real XAA

Chiral left coordinates appear naturally ! J

GBIN) _ ISO(1,3|\)
° On I = B B x(150(2) x EXSUV)))

([74], up = —iw”#4,0)) such that one can write

we find coordinates

up = u-+ é@/yjélj
for a real u
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Chiral structure

So far, we have been looking only at one half of the history ! Complexify

and [7] :

M = F(2/0, 2|\, C*V)

’ N
\

7T€// \
’

N
\7_
\ T
\r

\

M, = Gr(2]0, C*V) "

Chiral left

Noémie Parrini Geometry of super Null Infinity

plp Chiral right

18 / 36



Flag variety
let0<dp < di <...<d <dmV

F(do,dl, ., dg, V) = {Vo CViC..CVsubvs. of V | dim(\/,-) = d,'}

o =3 = E DAl
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Flag variety

let0<dp < di <...<d <dmV
F(do,dl,...,dk, V) = {Vo CViC..CVsubvs. of V | dim(\/,-) = d,'}

in particular
F(k,V) = Gr(k,V)

F(1,V) =Pgimv-1(V)
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Example

F(172,R3) ={V1 C Vasubvs. of R3 | dim(V;) =i}

K
Gn(1,R*) = RF,

-

v,

6"— {z‘l R’)

Noémie Parrini
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Chiral structure

M = F(2/0,2|N, C*N)

Y

Tr

M, = Gr(2]0,C4VY)

M, = Gr(2|NV,C*W)
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Chiral structure

Full complexified compactified super Minkowski space

M = F(2/0,2|N, C*)

/ M, = Gr(2|N, C*W)

v 4N
M, = Gr(2]o,C ) ~ Gr(2|0 (CHVY)
we b t
Zab _ ,,b 5 W
nglf ZzP = |wi'h
J4 leb
Chiral left Chiral right

7]
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Chiral structure

Full complexified compactified super Minkowski space

M = F(2/0,2|N, C*)

/ M, = Gr(2|N, C*W)

v 4N
M, = Gr(2]o,C ) ~ Gr(2|0 (CHVY)
we b t
Zab _ ,,b 5 W
nglf ZzP = |wi'h
J4 leb
Chiral left Chiral right

7] Flag condition : Va, b, Z%Z;? =0

Noémie Parrini Geometry of super Null Infinity

22/36



Chiral right

Two importants orbits :

o In chiral right super Minkowski space Mg, the subspace of Mg where
detm # 0, it exists XAA € R such that we can write

XrA’A — XA’A . éalAlélJ’éJ/B-
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Chiral right

Two importants orbits :

o In chiral right super Minkowski space Mg, the subspace of Mg where
detm # 0, it exists XAA € R such that we can write

XrA’A _ XA’A . éalA’(sU,éJ’B'

@ On the chiral right super Null Infinity .#, it exists u € R such that we
can write )
P -
_=u— 0,070,
u u 2 | J
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Non chiral

@ Non chiral super Minkowski space is defined as
{(Z%, Zap) | Z%% € My and Zsp, € MR}

. . / / . /
— Flag condition imposes XéAA — xAA = 2/92"9;4,
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Non chiral

@ Non chiral super Minkowski space is defined as
{(Z%%, Zsp) | Z%% € My and Zap € MR}
— Flag condition imposes XfA/ — X,',AA/ = 2i02"9’r4,/

@ The obvious candidate for non chiral super null infinity is
(2%, Z4) | 20 € 7™ and Zsp € 78V}

— Flag condition imposes frlf‘ oc A, 74 Wf and vy — u, = iélﬂl’eﬂ
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Non chiral super Minkowski (big cell)

Super Minkowski

M
(M= B+ XA, 0, 6y°)

a ur
MZ Mr )
(A = XA BglReY o) (A =X — 56707, 0P)
Chiral left Chiral right
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Non chiral super Null Infinity

Super Null Infinity

54
(u:= %(ug + ur), 00, 01, [Wf‘]a [77])

Ly’ U

(e = u+ 50.0,, 00, [7], [7F])  (ur = u—500r, Or, [Tad], [77])

Chiral left Chiral right
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Distributions

For super Minkowski :

M
AN L( AN (JAAY glb g b
(X = E(XE +Xr )7 QZ ; 9[, )
. T
M, M,
AN _ AN i glIAgA b AA _ AN iglAgA g b
O = x50, 07) (77 =X = 50000, 61)
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Distributions

For super Minkowski :

Two integrable distributions Dy, D, C TM associated to the two fibrations
Basis of the sections given by :

Dy = agéb + iezaXAA’ — s.t. Dg(X,-, 9,) =0
D!, = aef, +i0/°0, aw — s.t. Dy(xp,00) =0

= Covariant derivatives
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Distributions

F(2|0,2|N, C*N)

N

= Gr(2|0,C*V) M, = Gr(2|\, C*W)

Distributions (" covariant derivatives") already there in the homogeneous
superconformal model !
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Superconformal geometry

In fact, they are part of the superconformal geometry :

Superconformal geometry [?, ?]

A superconformal geometry on a complex supermanifold M** is a pair of
integrable (0|2)-dimensional distributions Dy, D, C TM s.t.
@ Their sum is direct in TM
o 0: D@D, — TM/(Dy® D) : (X® Y) > [X, Y]mod(D, & D) is
an isomorphism )

Noémie Parrini Geometry of super Null Infinity 30/ 36



Distributions

For super Null Infinity : works in the same way

54
(U = %(UZ + Ur)a Géa 0r7 [71—24]’ [7T/r4])

Uy Ty

7 Ir

(ue=u+ 5060, 0o, (7], [72])  (ur = u— 50,0,, 0, [7ad], [71])
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Distributions

For super Null Infinity : works in the same way

Two integrable distributions Dy, D, C T.# associated to the two fibrations

D, = 894 — 10,0, — s.t. Dg(ur, 0r)

=0
D, = 89, — 10,0, — s.t. Dr(UK,og) =0
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Super conformal Carrollian : curved setup

Based on the flat model, we propose to extend this definition for .#3I1, as
a model for a super conformal Carrollian geometry : the data of
(Dy, Dy, n), with some compatibility conditions

Results :
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Super conformal Carrollian : curved setup

Based on the flat model, we propose to extend this definition for .#3I1, as
a model for a super conformal Carrollian geometry : the data of
(Dy, Dy, n), with some compatibility conditions

Results :

® We can always write :
> Dg = (992 — i0,5‘u
> Dr = 89, — ieg&,
> n=20,

@ The symmetry group of these is the super BMS group of
Awada-Gibbons-Shaw [AGS 86|
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Conclusion

Short summary
@ Mostly in the flat case
@ Chirality : the non chiral super Minkowski space is a flag variety

o ldentify two remarkable orbits inside the compactification : super
Minkowski and super .

@ For non chiral super Minkowski and non chiral super .# we have the
same structure of double fibration, characterized by two distributions

@ This structure is the basis of the definition of superconformal
geometry
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Conclusion

Short summary

Mostly in the flat case
Chirality : the non chiral super Minkowski space is a flag variety

Identify two remarkable orbits inside the compactification : super
Minkowski and super .

For non chiral super Minkowski and non chiral super .# we have the
same structure of double fibration, characterized by two distributions
This structure is the basis of the definition of superconformal
geometry

Still in progress ...

Give precise definitions to treat the general asymptotically flat case

Application to self dual supergravity
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Thank you for your attention !
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