Distribution Interfaces Using Physics-Based Machine Learning

* Voltage levels in power systems are strongly tied to reactive power, requiring appropriate management.

e Reactive power exchanges at T-D interfaces are crucial for TSO and DSO.

* Prediction is conducted using a limited feature set due to the constrained observability of the distribution
network, particularly for the TSO.
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* Predicting reactive power exchanges is complicated due to renewable generation, increasing replacement

of overhead lines with underground cables, and lack of detailed information (mainly at the distribution
level.

data-driven approaches may lack interpretability and anticipation of topology changes.

agg

ILF
E—)

Piag = LY

Qh, = ZQf’

—_—_—_—_—_—_—_—_—_—_’
I I IS IS S S S S S S S S S B S B B B S

Transmission

’____ _—_—_—~

Distributioﬁ‘\

PY Qg

U1

Inverse Load Flow (ILF)
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Hybrid Reactive Power Prediction Methodology at the T-D interface
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1 The proposed physics-based machine learning model is benchmarked against the classical data-driven prediction methods (DP = Direct Prediction) implemented by eliminating both ILF and LF steps

2 Linear Regression, K-Nearest-Neighbors, Random Forest

Short-term Prediction Results
PY [%] QY [%]
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Table — Relative RMSE of power predictions at T-D interface
obtained by the proposed ILF-based model and the classical DP
using different ML algorithms

Conclusion

3 Root Mean Square Error

Figure — Reactive Power prediction using K-Nearest-Neighbors

for Direct Prediction and Inverse Load Flow methods
to actual reactive power values for a 24 hours day
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A novel physics-based machine learning model is proposed for accurate T-D interface power prediction.

* The model uses ILF calculation to compute equivalent resistance and reactance of the network.

The model shows improved accuracy compared to classical data-driven methods by passing through the

obtained equivalent resistance and reactance.

Future work will focus on adding PV production and extending the model to real-life distribution grids.
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