

Monte Carlo Simulations of the T₂ Relaxation induced by Cubic Shaped Superparamagnetic NanoParticles

Florent Fritsche¹, G.Rosolen², A. De Corte², B.Maes², Y. Gossuin¹ and Q.L. Vuong¹

- 1. Biomedical Physics Unit, UMONS
- 2. Micro- and Nano- Photonic Physics Unit, UMONS

Table of contents

Contextualization

- Magnetic Resonance Imaging
- Contrast Agents & Signal Acquisition
- Nanoparticles as Contrast Agents
- Exotic Nanoparticles / Results in litterature
- Simulation Methodology
- Proton Relaxation with Exotic CA's
- Conclusion & Perspectives

MRI: Magnetic Resonance Imaging

- Physics behind the MRI: NMR
- Static magnetic field: $B_0 \sim 5T$
- Oscillating magnetic field: $B_1 \ll 1T$
 - Excitation of nuclear spins: ¹H
 - Return to equilibrium: T_1, T_2
- Each tissue reacts differently
 - Natural contrast
- Tumor detection

Liver & brain MRI Scans

CA's: Contrast Agents

- Accumulation in tissues
- Shorten T₁ or T₂
- Modify signal intensity
- Magnetic compounds
- Magnetite / Maghemite
 - Signal « Killers »
- Gadolinium complexes
 - Signal « Amplifiers »

 \downarrow CA's: Magnetite & Gadolinium Complex

Liver & brain MRI Scans

Signal Acquisition

- 1) System at Equilibrium
- 2) Radio-Frequency Pulse
- 3) Return to Equilibrium
- Characterised by T₁, T₂
- Signal acquisition at t

Université de Mons

NanoParticles as Contrast Agents

Université de Mons

Exotic NanoParticles

- Lots of synthetised shapes
- Cubes, Cylinders, Stars,
- Flowers, Rods ...
- Experimental data
- $> T_2$ Characterisation
- Differences with spheres
- No theoretical model

Yang, L., & Wang, Z. et al. (2018). The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. *ACS Nano*, *12*(5), 4605–4614.

Results in litterature

- **>** Relaxation Rates ($B_0 = 7T$)
- Increase in $1/T_2$

Relaxation Rate over Magnetic ion concentration

Yang, L., & Wang, Z. et al. (2018). The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. *ACS Nano*, *12*(5), 4605–4614.

Université de Mons

Table of contents

Contextualization

Simulation Methodology

- Magnetic Field of Exotic Shapes
- Simulation of a CPMG Sequence
- Signal Acquisition
- Proton Relaxation with Exotic CA's
- Conclusion & Perspectives

Magnetic Field of Exotic Shapes

- Numerical resolution of Maxwell equations
- Study of differences in field gradient
- Comparizon cube/ sphere with analytical dipole

Université de Mons

Simulation of a CPMG Sequence

- 1. Starts at Excitation Pulse
- 2. Proton diffusion & Spin relaxation
- Random Walk

Université de Mons

- Spin Dephasing ∝ Local Magnetic Field
- 3. Reverse magnetic Pulse

Proton relaxing in a water dispersant with CA's

Signal Acquisition

Table of Content

- Contextualization
- Simulation Methodology

Proton Relaxation with Exotic CA's

- Simulation Validation: Sphere Dipolar
- Cubic-shaped CA's Induced Relaxation
- Interpretation: Inner/Outer-Sphere

Simulation Validation: Sphere - Dipolar

Diameter [nm]	1/T ₂ [s] Sphere	1/T ₂ [s] Dipolar	Relative Difference
15	34.80	35.81	< 3 %
20	59.64	60.06	< 1 %
30	106.58	108.83	< 2 %
40	134,44	134,58	< 1%
> 40			< 1 %

- Magnetic Field:
- Dipolar ⇔ Sphere Fit NMR Models
- Comparizon with existing data

Vuong, Q. L., Gillis, P., & Gossuin, Y. (2011). Monte Carlo simulation and theory of proton NMR transverse relaxation induced by aggregation of magnetic particles used as MRI contrast agents. In Journal of Magnetic Resonance (Vol. 212, Issue 1, pp. 139–148). Elsevier BV.

Université de Mons

Cubic-shaped CA's Induced Relaxation

Diameter [nm]	1/T ₂ [s] Sphere	1/T ₂ [s] Cube	Relative difference
15	34.80	41.60	20%
20	59.64	70.57	18%
30	106.58	120.58	13%
40	134,44	138,12	< 3%
> 40			< 1 %

- NP's over 40 nm
 - No effect on T₂
- NP's under 40 nm
 - Significant in MAR (> 10%)
 - The smaller the size, the stronger the differences

Université de Mons

Interpretation: Inner/Outer-Region

- Proton: Close Relaxation Far Relaxation
- ➤ High radius CA:
- Protons diffusion: Static
- Shape's impact reduced
- Low radius CA:
- Protons diffusion: Static
- Shape's impact increased

Conclusion

- Relaxation induced by Shaped Nanoparticles
 - Magnetic field differences maximized in InnerRegion
- 20% increase in relaxation rates at 20 nm

Perspectives

- Simulations needed for agglomerates
- New shapes options: Stars, Cylinders, Flowers, Octapods, ...
- Shape Optimisation for contrast maximisation

Thank you for your attention

Monte Carlo Simulations of the T₂ Relaxation induced by Cubic Shaped Superparamagnetic NanoParticles

• Florent Fritsche, G.Rosolen, A. De Corte, B.Maes, Y. Gossuin and Q.L. Vuong

Université de Mons Fritsche Florent - Monte Carlo Simulations : Relaxivity induced by Cubic Shaped NP's

Université de Mons Fritsche Florent - Monte Carlo Simulations : Relaxivity induced by Cubic Shaped NP's

Contenu du Backup

> NMRD

- Variations expérimentales de T2
- Calcul du champ magnétique
- Rayon sphérique effectif
- Agent de contraste T1 T2
- Déphasage du spin des protons

Variations expérimentales de T₂

3. L. Yang et al., 'The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles', ACS Nano

Université de Mons

Calcul du Champ Magnétique

- Méthode des éléments finis (FEM)
- COMSOL (logiciel commercial)
- Complexité des formes
- Optimisation requise
- Paramétrisation

des formes

Modélisation d'une particule cubique et sphérique via COMSOL

Rayon sphérique effectif

➢ Pour comparer au cas sphérique

$$\bullet V_{forme} = V_{S,eff}$$

➢Pour le cube :

•
$$(2R_C)^3 = 4\pi R_{S,eff}^3/3$$

 $\Leftrightarrow R_C = \sqrt[3]{\pi/6} R_{S,eff}$

Schéma 2D de l'équivalence $V_C = V_S$

Agent de contraste T₂

Université de Mons

Agent de contraste T₁

➢Intensifie le signal dans la zone tumorale

Clichés IRM du cerveau pris à Erasme

Université de Mons

Schéma de relaxation pour deux T_1 différents.

lons accumulation in tumoral zone

➢La zone tumorale a besoin d'un grand flux sanguin

- Création d'un système vasculaire « difforme »
 - Cellules endothéliales mal alignées
- Enhanced Permeability and Retention effect (EPR)
 - Les particules peuvent diffuser en dehors du circuit sanguin

Agrégation dans les zones tumorales

Passive targeting

lons accumulation in tumoral zone

- Application d'un gradient de champ localisé
 "Leaky" vasculature
 - Force magnétique attire les NPs
 - Aide à la rétention
- Utilisation de ligandsActive targeting

Déphasage du spin des protons

Les AC créent des inhomogénéités

de champ magnétique

$$\Delta \phi_i(t) = \gamma \mu_0 H_z \Delta t$$

