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Imaging ellipsometry is an optical characterization tool that is widely used to investigate the spatial variations of the opto-
geometrical properties of thin films. As ellipsometry is an indirect method, ellipsometric map analysis requires a 
modeling step. Classical methods such as the Levenberg–Marquardt algorithm (LM) are generally too time-consuming to 
be applied on a large data set. In this way, an artificial neural network (ANN) approach was introduced for the analysis of 
ellipsometric map. As a proof of concept this method was applied for the characterization of silver nanoparticles 
embedded in poly-(vinyl alcohol) film. We demonstrate that the LM and ANN gives similar results. However, the time 
requires for the ellipsometric map analysis decreases from 15 days for the LM to 1s for the ANN. This suggests that ANN is 
a powerful tool for fast spectroscopic ellipsometric imaging analysis.

Spectroscopic ellipsometry (SE) is one of the most powerful 
techniques for investigating the opto-geometrical properties of 
materials. SE is based on the measurement of the change of 
polarization state of light reflected from sample. This technique, was 
previously used to determine the complex refractive index of 
materials, the optical anisotropy, the stoichiometry of alloys, the 
thickness and the roughness of thin films [1-5], the profile of 
diffraction grating [6-8] or the volume fraction and shape 
distribution of nanoparticles (NP) contained in nanocomposite 
films [9-10]. The beam size of standard ellipsometer which limits 
the lateral resolution, is about few millimeters. However, the trends 
of devices miniaturization require the development of ellipsometric 
set up with microscopic scaled resolution. Cohn et al. have 
addressed this issue by introducing an imaging ellipsometer [11]. 
This kind of set-up allows recording the spatial variation of 
ellipsometric spectra with a lateral resolution as small as 1 μm. This 
technique was previously used to investigate the homogeneity and 
the optical properties of 2D nanomaterials [12-13], optical 
waveguides [14], patterned biosensors [15], diffraction gratings 
[16] or plasmonic materials [17]. Two images representing the 
ellipsometric angles  and  are recorded for each wavelength. As 
SE is an indirect characterization tool, the extraction of physical 
parameters of the sample from the recorded spectra requires a 
modeling step. However, the analysis of this huge data cube remains 
challenging. To reduce the data size, pixels can be gathered into 
region of interest (ROI) by using the binning process. However, this 
approach assumes that opto-geometrical properties are 

homogeneous inside a ROI. On the other end, the fitting of the full 
ellipsometric map by using classical optimization algorithm such 
the Levenberg-Marquard algorithm (LM) is often time consuming. 
Even the interpolation of the  and  values limits to power of the 
analysis to 1-parameter optical models. Recent works have 
suggested that ellipsometric spectra, recorded without spatial 
resolution, can be exploited by using an artificial neural network 
(ANN) [4,6-8,18-23]. Fried et al. have used an ANN analysis of 
ellipsometric spectra to determine the damage profile induced by 
ion implantation in silicon-on-insulator structure [18]. This neural 
analysis procedure was also used to analyze ellipsometric map [19]. 
They also modified the sample selection strategy to improve the 
convergence of the learning algorithm toward global minima [20]. 
Urban III et al. have implemented a cascade of several ANN to 
improve the accuracy of the ANN analysis [21]. Recently, some 
authors. have shown that ANN could be a fast, accurate, and useful 
approach to exploit ellipsometric measurements performed on Ge-
Sb-Te alloys [22] or perovskite materials [23]. In our previous work, 
we have also demonstrated that ANN is less sensitive to local 
minima and solves the inverse problem in a shorter time than the 
LM algorithm [24]. Despite these development in ellipsometric 
characterization, this approach has never been used to exploit 
ellipsometric images. Indeed, it was only applied to punctual 
ellipsometric measurements or ellipsometric map with a small 
number of pixels [4, 19]. 
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In this context, the aim of this letter is to demonstrate the feasibility 
of the complete analysis of ellipsometric images by using a neural 
network. Compare to punctual ellipsometric measurements or 
standard ellipsometric map, these images are composed of a large 
number of pixels. The fine analysis of this kinds of images generally 
constitutes a challenge. For this proof of concept, spectroscopic 
imaging ellipsometry measurements were performed on thin poly-
(vinyl alcohol) (PVA) film containing silver nanoparticles (NPs) and 
deposited on silicon wafer. This sample was elaborated according 
to the Porel method [25]. Briefly, a (0.12g/ml) aqueous solution of 
PVA (MW: 13000 – 23000) is first prepared and stirred vigorously 
at 90°C for 1 hour, and at room temperature for 23h. Then, silver 
nitrate (AgNO3) is added to the solution in order to obtain an AgNO3 
concentration of 0.0475 g/ml. After that, the solution was deposited 
by spin coating at 5000 rpm on a silicon substrate. Finally, the 
central part of the obtained sample was irradiated with a 150W 
Xenon lamp for 2h at an irradiance value of 2000 W/m².   Twenty 
maps of ellipsometric angles  and  were recorded at 10 
wavelengths in the 380–812 nm spectral range by means of an EP3-
SE spectroscopic nulling imaging ellipsometer (Accurion GmbH). 
This corresponds to a data-cube of 8424600 elements. The 
objective was a Nikon 10X (NA=0.21). The angle of incidence was 
set to 60°. The spatial resolution was estimated to 0.52x0.52 μm² 
per pixel, without binning of the images. Ellipsometric spectra are 
also recorded by using a classical ellipsometer (UVISEL, Horiba), 
without spatial resolution. The measurements are performed at an 
angle of incidence of 70° in the 270nm-900nm spectral range and a 
spot size of about 800 µm.
As ellipsometry is an indirect technique, each spectrum must be 
analyzed with a model which reflects the physical properties of the 
sample. In our case, the model consists in Ag NPs embedded in a 
PVA film on a silicon substrate. As previously shown [9-10], the 
effective dielectric function (𝜀𝑒𝑓𝑓) of the film can be described by 
using the shape distributed effective medium theory (SDEMT):

𝜀𝑒𝑓𝑓 = (1 ― 𝑓)𝜀𝑚 + 𝑓𝛽𝜀𝑁𝑃

1 ― 𝑓 + 𝑓𝛽 . (1)

f is the volume fraction of Ag NPs. 𝜀𝑚 and 𝜀𝑁𝑃 are the dielectric 
function of PVA matrix and silver, respectively. The coefficient 𝛽 is 
given by:

𝛽 = 𝜀𝑚

3 ∬ 𝑃(𝐿1,𝐿2)∑3
𝑖=1

1
𝜀𝑚 + 𝐿𝑖(𝜀𝑁𝑃 ― 𝜀𝑚)

𝑑𝐿1𝑑𝐿2. (2)

𝑃(𝐿1,𝐿2) is the normalized distribution of the depolarization factors 
𝐿𝑖 of NP which is directly related to the distribution of NP shape. 
These parameters must respect the following sum rule:

∑3
𝑖=1 𝐿𝑖 = 1. (3)

In the following, we assume that the distribution 𝑃(𝐿1,𝐿2) is 
described by a Gaussian distribution centred on the locus of 
spherical NP:

𝑃(𝐿1,𝐿2) = 𝐶𝑒
― 𝐿1―

1
3

2+ 𝐿2―
1
3

2

2𝜎2 . (4)

𝜎 and C are the standard deviation and the normalization factor of 
the distribution, respectively. Three parameters must be 
determined for each pixel positions: f, 𝜎 and the film thickness h. The 

spatial variations of f, 𝜎 and h deduced from ellipsometric 
measurements by using the LM algorithm are depicted in Figure 1 
a-c. These maps highlight the inhomogeneities of nanocomposite 
film at the microscale. This spatial inhomogeneities are probably 
related to the NPs growth mechanism and especially the diffusion 
and aggregation of NPs in the film. Some statistical parameters can 
be extracted from ellipsometric maps. The mean value of f, h and 𝜎 
are 4.75%, 253 nm and 0.099, respectively. These results are close 
to the f, h and 𝜎 values of 4.14%, 253 nm and 0.99 by using a classical 
ellipsometer, without spatial resolution. The standard deviation of  
f, h and 𝜎 are 0.72%, 15 nm and 0.017, respectively. The root mean 
square error between the measured and modeled spectra is 
estimated to 0.013 ± 0.019. This value is in the same order of 
magnitude as the accuracy of the ellipsometer confirming the 
validity of the model. 

Figure 1: Specially-resolved parameters of the optical model : (a)(b) Ag 
NP volume fraction ; (c)(d)  Film thickness ; (e) and (f) Width of the 
normal distribution of the depolarization factors. (a)(c)(e) images: are 
obtained from a LM inversion. (b)(d)(f) images are obtained from ANN.

Despite local information on the sample can be deduced from 
imaging ellipsometry, the analysis of the ellipsometric maps with 
the LM algorithm requires 15 days computing time. Thus, this 
procedure is too time consuming to be used for routine 
characterizations. Other optimization algorithm should be found to 
overcome this issue. Since ANN is a universal and parsimonious 
approximator [26], it can be considered as a promising candidate to 
solve these kinds of problem with a shorter computing time. As a 
proof of concept, we implement in Matlab multilayer perceptron 
(Figure 2(a)) composed of a single hidden layer and an output layer 
of neurons. The calculations are performed with a multi-core 
personal computer (Intel Core i7 7700k, 4 cores, 3.6 GHz). The 
layers are linked together by weighted synaptic connections. Each 
neuron 𝑚 applies a specific transfer function 𝑔 to its weighted 
inputs:

𝑜𝑚 = 𝑔(∑𝑁
𝑝=0 𝑤𝑚,𝑝𝑥𝑝). (5)



𝑤𝑚,𝑝 is the weight of the synapse which links the input 𝑥𝑝 and the 
neuron m. The transfer functions of the hidden neurons and output 
neurons are sigmoid and linear functions, respectively. The input 
vector consists in the ellipsometric parameters Is and Ic. The 
number of hidden neurons is arbitrary set to 30. The output layer is 
composed of 3 neurons. The outputs of the ANN are f, 𝜎 and h. The 
relationship between the input and output of the ANN is learned 
during the training step. This step requires a large number of 
input/output data.  400000 samples are randomly generated from 
a uniform distribution by taking the parameters f, 𝜎 and h in the 
following ranges.

0.8% ≤ 𝑓 ≤ 30%,
100 𝑛𝑚 ≤ ℎ ≤ 400 𝑛𝑚,

0.0007 ≤ 𝜎 ≤ 0.3.

The generation of these data takes almost 6h. Then, the 
ellipsometric spectra of these samples were simulated by using our 
model. These couples of input/output data were then split into 
three corpuses: the training data (280000 couples), the validation 
data (80000 couples), and the test data (40000 couples). The ANN 
was then trained with the training data by using the back 
propagation Levenberg–Marquardt algorithm [27]. During the 
training step, the synaptic weights were adjusted to minimize the 
error between the training data and the ANN output. To avoid the 
overfitting, the training was stopped by using the early stopping 
technique, i.e. until the error evaluated from the validation data 
increases. The training of the ANN takes almost 3h. Once trained, the 
ANN can be reused to analyze several ellipsometric images without 
any further training step. The performances of the ANN were 
evaluated on the test data. Figure 2(b)(c)(d) shows the value of f, 𝜎 
and h determined by the ANN as a function of the corresponding 
value of the test data. Linear variation is found between the f, 𝜎 and 
h values predicted by the ANN and the nominal ones. The slope and 
intercept value are close to 1 and 0, respectively. The root mean 
square error on f, 𝜎 and h are estimated to 0.1%, 2 nm and 0.003, 
respectively. These results obtained on test data, confirm the high 
level of operating performance of the ANN. Nevertheless, this 
performance was evaluated on virtual samples. 

Figure 2: (a) Schematic representation of the ANN used in this work. 
Comparison between the (b) f, (c) h, and (d)  values estimated by the 
ANN and the theoretical values of the test data. The linear regressions 
are represented by the red dashed line.

It is therefore important to evaluate the performance of our ANN on 
an experimental ellipsometric map. Figure 1(d)(e)(f) shows the f, 𝜎 
and h maps deduced from the analysis of the ellipsometric map with 
the ANN. These maps are similar to those obtained by the LM 
algorithm. To give a more quantitative comparison, the results 
determined by the ANN for each pixel are against those deduced 
from the ANN (Figure 3). Each point of Figure 3 is located along the 
identity line. The root mean square error between the f, h and 𝜎, as 
estimated by ANN and LM are 0.3%, 4.8 nm and 0.008, respectively. 
In addition, both methods give similar f, h and 𝜎 distributions. Thus, 
it can be concluded that the ANN globally reproduces the results 
obtained by the LM. The mean value of the root mean square error 
between the measured and the modeled spectra from the ANN is 
estimated to 0.014 ± 0.024. This value is close to that obtained by 
the LM, suggesting that the LM and ANN have the same accuracy. 
We can also remark that for 9 pixels, the LM falls into a local 
minimum located at 𝜎 = 0.3. However, the ANN gives other 
solutions with a smaller root mean square error for these pixels. It 
probably converges toward the global minima. Indeed, as shown by 
several works ANN is more robust than LM to local minima [21, 24].



Figure 3: Comparison between the (a) f, (b) h, and (c)  values and 
histogram estimated by the ANN and LM.  Each dot represents 1 pixel of 
the ellipsometric map. The red dashed line represents the identity line.

In summary, a new method based on an ANN is introduced to 
analyze spectroscopic ellipsometric maps. This method, applied to 
silver NPs in PVA film, allows investigating the spatial variation of 
film thickness, volume fraction and the shape distribution of NPs. 
This neural and LM data processing gives similar results with the 
same accuracy. However, the computing time required for the 
analysis of the 842460 spectra of  and  which composed the 
ellipsometric map decreases from 15 days for the LM to 1s for the 
ANN. This can be considered as real drastic improvement for in-line 
SE imaging characterization.  In addition, once trained, the ANN can 
be reused without any further training step. As also reported by 
several works [21, 24], ANN is less sensitive to local minima of the 
error function than LM. Finally, the ANN ellipsometric map 
processing is fairly flexible and can be easily applied to other kind of 
samples., although requiring a specific training for each class of 
sample.   
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