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Theoretical analysis of water protons transverse relaxation T2 induced by cubic-shaped superparamagnetic nanoparticles (Np) of magnetite,
used as negative contrast agents in MRI, has been conducted with Monte Carlo simulations considering a high static magnetic field B0 . The
comparison between spherical and cubic-shaped nanoparticles, at equal volumes, revealed minor deviations in the transverse relaxation T2
within the Motional Average Regime [d < 30nm] whereas no deviation was observed for larger particles [d > 30nm].

I. Introduction and research context

▪ For the last 20 years, there has been an ongoing interest in the synthesis and characterization of non-spherical
nanoparticles. Several experimental studies, such as [1], using exotic particles reported an increase in the efficiency of
shortening water relaxation times T1 and T2.

▪ In contrast, very few studies have confronted experimental results to simulations or theory. Our goal is to study the
influence of non-spherical shape induced relaxation by magnetite nanoparticles using Monte Carlo simulations.
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II. Methodology

II. a. Simulation Setup [2] II. b. Simulations

III. 𝐓𝟐- Comparizon between spherical and cubic contrast agents 

Analytical Magnetic Field for a cubic particle [3]

൞

xk = x + −1 k r

yl = y + −1 l r

zm = z + −1 mr

, rklm = xk
2 + yl

2 + zm
2

⟹ Bz =
μ0M0

4π


k,l,m=0

1

−1 k+l+m arctg
xkyl

zmrklm
 

Temporal evolution of proton spin ϕ Ԧr(t ):

▪ Static Magnetic Field, B0ොez

▪ Proton Diffusion via 
Random Walk

▪ CPMG Sequence, TE~ms
▪ Periodic Boundaries

I. Partial Refocusing (PR) Regime, [d > 200nm] 
▪ Protons diffusing close to the Np are almost immediately lost from the signal 

due to high magnetic field gradients.
 ⟹ Relaxation arises mainly from proton diffusion far from the Np.
▪ As the distance grows, the magnetic field of a cubic shaped Np converges to 

the magnetic field of a spherical Np.
 ⟹  Proton spin dephasing in the PR is the same for any shape.

▪ It has been shown in [4] that 1/T2 ∝ σ2 , where σ2 =
1

V
 ∇Bz

2
dV . 

Study of cubic shape Np σ2 showed a steep convergence as the distance 
from its center grows to the spherical Np σ○

2; confirming our interpretation.

II. Static Dephasing Regime, [30nm < d < 200nm] 
▪ The statistical distribution of the magnetic field P Bz  converges rapidly as 

the distance grows to the dipole model. The lack of variation in relaxation 
can then be explained by the relation 1/T2 ∝ p Bz [5].

III. Motional Average Regime, [d < 30nm] 
▪ Protons diffusing near the Np can perceive the contrast agent shape due to

the small magnetic field intensity of the Np.
▪ Study of <Bz

2> indicated a ~20% variation with the dipolar model which 
can be linked to our results via <Bz

2> ∝ 1/T2  by the Redfield theory.
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▪ Monte Carlo simulations demonstrate that the contrast agent shape has no impact on T2 within the static diffusing and partial refocusing 
regimes. However, a 10% increase is observed in the Motional Average regime [d < 30nm]. 

▪ Future studies will focus on the agglomeration of exotic-shaped Np (stars, cylinders, …) and their impact on T2 in the MAR.

IV. Summary and Future Directions

▪ μi⊥ t = μi
0

⊥
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▪ Δϕ Ԧr(t ) = γ Bz Ԧr Δt ⟹ Larmor precession ω0 t = −γBz Ԧr

▪ < μ⊥(t) > ∝ exp −t / T2

▪ μi∥ t = μi
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▪ 10 000 Protons
⟹ Each with spin, μiොexy 

▪ 1 Cubic Np 
⟹  Magnetic Moment, μොez

⟹ Uniformly distributed 
Np’s in aqueous solution
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▪ I. II. No significant variations observed
▪ III. ~ 10% increase of 1/T2 
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