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Theoretical analysis of water protons transverse relaxation (T,) induced by cubic-shaped superparamagnetic nanoparticles (Np) of magnetite,
used as negative contrast agents in MRI, has been conducted with Monte Carlo simulations considering a high static magnetic field (B,). The
comparison between spherical and cubic-shaped nanoparticles, at equal volumes, revealed minor deviations in the transverse relaxation (T,)
within the Motional Average Regime [d < 30nm] whereas no deviation was observed for larger particles [d > 30nm].

I. Introduction and research context

= For the last 20 years, there has been an ongoing interest in the synthesis and characterization of non-spherical
nanoparticles. Several experimental studies, such as [1], using exotic particles reported an increase in the efficiency of
shortening water relaxation times T; and T,.

= In contrast, very few studies have confronted experimental results to simulations or theory. Our goal is to study the
influence of non-spherical shape induced relaxation by magnetite nanoparticles using Monte Carlo simulations.

| 1. Methodology

| 1. a. Simulation Setup [2] | | IIl. b. Simulations
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I : Random Walk Temporal evolution of proton spin ¢ (F(t)):
1 1" CPMG Sequence, Tg~ms ) 0
H . i Periodic Boundaries = = = = 5, =u (cos(d), sin(d) = W ® =y,
I Mk . - ) -
I \& /‘V : = Uniformly distributed = AP(F(D) = v B,(¥) At = Larmor precession w,(t) = —YB, (1)
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| lll. T- Comparizon between spherical and cubic contrast agents
Bell Curve . . .
; | | : L. Partial Refocusing (PR) Regime, [d > 200nm]
III. Motional 1 L Partial | . pioions diffusing close to the Np are almost immediately lost from the signal
Average /i Refocusing due to high magnetic field gradients.
w | = Relaxation arises mainly from proton diffusion far from the Np.
_ : =  As the distance grows, the magnetic field of a cubic shaped Np converges to
ﬂw | the magnetic field of a spherical Np.
=t I = Proton spin dephasing in the PR is the same for any shape.
= > 2
= ! = It has been shown in [4] that [1/T, < 6?], where [02 = ‘—1/f|VBZ| dV].
.E Study of cubic shape Np céﬂ showed a steep convergence as the distance
E from its center grows to the spherical Np 03; confirming our interpretation.
& I1. Static Dephasing Regime, [30nm < d < 200nm]
= The statistical distribution of the magnetic field [P(B,)] converges rapidly as
1ot — Models the distance grows to the dipole model. The lack of variation in relaxation
I Cube Particle can then be explained by the relation [1/T, « p(B,)][5].
Sphere Particle 11l. Motional Average Regime, [d < 30nm]
10t } o 10 ® Protons diffusing near the Np can perceive the contrast agent shape due to
Particle diameter [nm] the small magnetic field intensity of the Np.
= LIL No significant variations observed = Study of [<BZ>] indicated a ~20% variation with the dipolar model which
= Il ~ 10% increase of 1/T, can be linked to our results via [<BZ> « 1/T,] by the Redfield theory.

IV. Summary and Future Directions

= Monte Carlo simulations demonstrate that the contrast agent shape has no impact on T, within the static diffusing and partial refocusing
regimes. However, a 10% increase is observed in the Motional Average regime [d < 30nm].
= Future studies will focus on the agglomeration of exotic-shaped Np (stars, cylinders, ...) and their impact on T, in the MAR.
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